
Efficient Mid-Query Re-Optimization of Sub-Optimal Query
Execution Plans*

Abstract

Navin Kabra
Computer Sciences Department
University of Wisconsin, Madison

navin@cs.wisc.edu

For a number of reasons, even the best query optimizers can
very often produce sub-optimal query execution plans, lead-
ing to a significant degradation of performance. This is es-
pecially true in databases used for complex decision support
queries and/or object-relational databases. In this paper,
we describe an algorithm that detects sub-optimality of a
query execution plan during query execution and attempts
to correct the problem. The basic idea is to collect statis-
tics at key points during the execution of a complex query.
These statistics are then used to optimize the execution of
the query, either by improving the resource allocation for
that query, or by changing the execution plan for the re-
mainder of the query. To ensure that this does not signifi-
cantly slow down the normal execution of a query, the Query
Optimizer carefully chooses what statistics to collect, when
to collect them, and the circumstances under which to re-
optimize the query. We describe an implementation of this
algorithm in the Paradise Database System, and we report
on performance studies, which indicate that this can result
in significant improvements in the performance of complex
queries.

1 Introduction

One of the key reasons for the success of relational database
technology is the use of declarative languages and query op-
timization. The user can just specify what data needs to
be retrieved and the database takes over the task of finding
the most efficient method of retrieving that data. It is the
job of the query optimizer to evaluate alternative methods
of executing a query, and selecting the cheapest alternative.

Notwithstanding the tremendous success of this approach,
query optimization still remains a problem for database sys-
tems. Modern database systems are placing an increas-
ingly heavy burden upon their query optimizers. Relational
database systems are increasingly being used to execute
complex decision support queries. In addition, commercial
vendors are all scrambling to add object-relational features

*This research was supported by NASA under contracts NAGW-
3895 and NAGW-4229.

Permission to make digital or hard copies 01 all or part of this work for

personal or classroom we is granted without fee provided that

copies ara not made or distributed for profit or commercial advan-

tage and that cop& bear this notice and the full citation on the first Page.

To copy otherwise, to republish. to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGMOD ‘98 Seattle, WA, USA

8 1999 ACM 0.69791-995-5/96/006...55.00

David J. Dewitt
Computer Sciences Department
University of Wisconsin, Madison

dewitt @cs.wisc.edu

to their database systems. Unfortunately optimizer tech-
nology has not kept pace with these advances, and a num-
ber of the inadequacies of traditional query optimizers have
become obvious. Due to the inability of query optimizers
to accurately estimate the cost of executing complex query
evaluation plans, they often produce sub-optimal plans.

There are a number of reasons why estimating the cost of
query execution is difficult. Query optimizers use statistics
stored in the system catalogs to estimate sizes and cardinal-
ities of tables that participate in the query. This introduces
an error in the estimates either due to the approximations
involved, or because statistics are not kept up-to-date. As
the number of joins in the query increases, these errors mul-
tiply and grow exponentially [9]. Another source of errors
is the lack of sufficient information about the run-time sys-
tem at query optimization time. The amount of available
resources (especially memory), the load on the system, and
the values of host language variables are things that differ
for every execution of the query, and, in some cases, change
in the middle of query execution.

The problem is further aggravated in the case of object-
relational database systems that allow users to define data-
types, methods, and operators. Collection and storage of
statistics (for example, histograms) for user-defined data-
types (for example, spatial data-types like polygon, point)
is an area that has not yet been addressed by the database
research community. There are some primitive methods that
have been proposed to deal with the estimation of the cost
of execution for user defined functions/methods written in
an external language (like C++) [23], but these are far from
adequate. Similarly, selectivity estimation for predicates in-
volving user-defined methods/functions is another area that
is poorly understood. All of this makes it really difficult
to properly estimate the cost of executing object-relational
queries. Although recent advances in estimation techniques
(for example, the histograms of [19] and [ll]) and the param-
eterized/dynamic query evaluation plans of [lo, 8, 71 address
some of the issues, many problems still remain to be solved.

In this paper, we describe Dynamic Re-Optimization, an al-
gorithm that can detect the sub-optimality of a query execu-
tion plan while executing the query in order to re-optimize
it and improve its performance. During query optimiza-
tion, the plan produced by the query optimizer is annotated
with the various estimates and statistics used by the op-
timizer. Actual statistics are collected at query execution
time. These observed statistics are compared against the
estimated statistics and the difference is taken as an indica-
tor of whether the query-execution plan is sub-optimal. The
new statistics (much more accurate than the initial optimizer
estimates) can now be used to optimize the execution of the
remainder of the query.

106

Collection of statistics at run-time can significantly slow
down the execution of a query. Further, re-optimizating
part of the query and modifying the query execution plan at
run-time also incurs overheads. This can actually cause the
performance of a query to deteriorate instead of improving.
To prevent such problems, we use hints from the optimizer
to determine the most strategic places in the query where
statistics should be collected, and to determine the condi-
tions under which to re-optimize a query.

Our approach is quite different from the competition model
proposed by Antoshenkov [2, 31, the dynamic query plans
of [8] and [7], or the parametric query optimization algo-
rithms proposed in [lo]. The differences between these algo-
rithms and our approach are further described in Section 4
when we discuss related work.

The remainder of this paper is organized as follows. In Sec-
tion 2 we describe the details of our algorithm. In Section 3,
we describe an implementation of the algorithm in the Par-
adise database system, and report the results of a perfor-
mance study that validates our algorithm. In Section 4, we
contrast our approach with previous work described in the
database literature. Section 5 presents our conclusions and
directions of future research.

2 Algorithm Overview

The Dynamic Re-Optimization algorithm tries to detect sub-
optimality of a query execution plan while the query is being
executed. If a query execution plan is believed to be sub-
optimal, it dynamically changes the execution plan of the
remainder of the query (the part that hasn’t been executed
yet) leading to an improvement in performance.

These are the salient features of the algorithm:

1. (Annotated) Query Execution Plans: We assume
that a conventional query optimizer is used to produce a
query execution plan for a given query. The only require-
ment, on the plan generated by the query optimizer is that
the plan produced by the optimizer should include informa-
tion about the optimizer’s estimates of the sizes of all the in-
termediate results in the query, and the execution cost/time
for each operator in the query. We refer to such a plan as
an annotated query execution plan in the remainder of this
paper.

2. Runtime Collection of Statistics: At specific inter-
mediate points in the query, various statistics are collected
during query execution. These statistics are used to obtain
improved estimates of the sizes of intermediate results and
execution costs. These improved estimates can be compared
against the optimizer’s estimates to detect sub-optimality of
the query execution plan.

3. Dynamic Resource Re-allocation: The improved esti-
mates are used to improve the allocation of shared resources
(like memory) to the various operators of the query, leading
t,o improved performance.

4. Query Plan Modification: The improved estimates are
also used to determine whether the remainder of the query
execution plan would benefit from re-optimization. If so,
then the remainder of the query is re-optimized.

5. Keeping Overheads Low: Collection of statistics at
query execution time can result in a significant overhead if

Select avg (Rell .selectattrl)

avg (Ffell.selactattR)

Reli .groupattr

from Rell, Rel2. FM3

where Rell .selectattrl -C wluel

and Rell.selectattr2 c :value2

Aggregate
1 Group by Rell .groupattr

Indexed-Join
/ Rell .joinattr3 = ReEi.foinattrB

Hash-Join
\

and Ret1 Joinattr2 = RelP.joinattrB
/ Rell .joQttr2 = Rel2.joinattR

Rel3
and Rell .joinattr3 = RelSjoinattr3

group by Rell.groupattr

VekZectattr l -z :valuel

‘Rel2

/ Rell selectattr2 -Z xalue2

Rell

(a) W

Figure 1: A query and its query execution plan

used indiscriminately. To prevent this from happening, at
query optimization time, the most effective points to col-
lect statistics are determined, and statistic collection opera-
tors are inserted into the query execution plan at only those
points.

In the remainder of this section, we describe each of the
above items in detail. We end the section with an overview
of the whole dynamic re-optimization process, and how it all
fits together.

2.1 Query Execution Plans

The job of a query optimizer in a database system is to take
as input a query (which is declarative) and produce an execu-
tion plan for that query. Figure l(a) shows an example SQL
query. We will use this query as a running example through-
out this section for illustrative purposes. Figure l(b) shows
a possible execution plan for this query that might be pro-
duced by a query optimizer. An execution plan is essentially
a tree in which each node represents some database operator
(like hash-join, indez-scan) being applied to its inputs.

During the course of optimization, the query optimizer es-
timates the sizes of various intermediate results that might
be produced, and the cost/time taken by each operator. As
part of the Dynamic Re-Optimization algorithm, we modify
the query optimizer so that these estimates are included in
the query evaluation plan that it produces, and are sent to
the database execution engine. In the remainder of this pa-
per, we refer to such a plan as an annotated query ezxcution
plan. The kind of estimates we expect the plan to be anno-
tated with are sizes and cardinalities of intermediate results,
selectivities of selection and join predicates, and estimates
of the number of groups in case of aggregate operators.

2.2 Run-time Collection of Statistics

In this sub-section, we describe how statistics can be col-
lected at specific points during the execution of a query
plan. We describe the kinds of statistics that we can col-
lect, and how this can be done without any I/O overhead.
These statistics can then be used to get improved estimates
for intermediate result sizes and operator execution costs.
In this section, we deal only with the method of collecting
the statistics. The question of determining what statistics
to collect and at what points in the query execution plan is
deferred to a later section,

107

Aggregate
Group by Rell .groupattr

/

I
ndexedJoin
Relljoinattr3 = Rel3.joinattr3

Hash-Join \

/
Rell .joinattrZ = RelP.joinattR Rel3

Statistics Collector
\

Hstogram: Rell .joinattr3 Rel2

/

Unique values: Rell .groupattr

Filter
Rell selectattrl < :valuet

/
Rell selectatir2 < .value2

Rell

Figure 2: Collection of Statistics at run-time

We now describe how statistics can be collected for an inter-
mediate result of a query without any I/O overhead. Con-
sider Figure 2. There is a filter operation that applies se-
lection predicates to the Rell relation. Just after the filter
operation, a statistics collector operator is inserted into the
query execution plan. As the tuples are being produced
by the filter operator, they can be examined by a statistics
collection routine, and the required statistics can be gath-
ered without interrupting the normal execution of the query.
Thus, for example, the cardinality of the result of the filter
operation can be computed by keeping a running count of
the number of tuples that stream past the statistics collec-
tion routine, and the average tuple size can be computed by
keeping a running average.

There are two limitations of this approach. First, this ap-
proach cannot be used to collect any statistics that cannot
be gathered in just one pass of the input. This is not a severe
limitation because, the statistics that we need to gather for
Dynamic Re-Optimization can be computed with reasonable
accuracy using this approach. To compute cardinality and
average tuple-size of a relation, a single pass is obviously
enough. Using reservoir sampling [24], histograms can also
be computed with reasonable accuracy [19]. The number
of unique values of a particular attribute (or a set of at-
tributes) can be computed using the bitmap approach of [6]
or reservoir sampling ([24] as described in [ZO]).

The second limitation of this approach has to do with the
pipelining of operators in a query execution. If statistics
collection is being done in the middle of a pipelined execu-
tion of a row of operators, then none of the operators in the
pipeline can benefit from those statistics. This is because
all the operators in the pipeline are executing concurrently
with the statistics collection routine. Hence, the statistics
will not be ready until all the operators in the pipeline have
completed a significant portion of their execution’. This
problem is inherent in our approach, but we will see that, in
spite of this limitation, Dynamic Re-Optimization performs
well in practice.

An alternative to this would be to actually break the
pipeline, and force materialization of intermediate results

‘It should be noted that a blocking operator, like hash-loin, acts
as a natural break in a pipeline, because it consumes all of its first
input before producing any tuples of output.

at points where statistics need to be collected. This, how-
ever, can significantly slow down the execution of a query,
and we consider this to be too high a price to pay.

It should be noted that there is a significant difference be-
tween conventional statistics that are computed and stored
in system catalogs, and the statistics gathered for the Dy-
namic Re-Optimization algorithm. Conventional statistics
need to be rather general in the sense that they are com-
puted once and then used for estimations in various differ-
ent types of queries. Consider a histogram built on an at-
tribute a of relation R. This same histogram might be used
to estimate the selectivity of an equality predicate of the
form ‘R.a = lo’, a range predicate of the form ‘R.a between
10 and loo’, a join operation such as ‘R.a = S.b’ and to
estimate the number of unique values of R.a (for aggrega-
tion). By contrast, histograms constructed for the Dynamic
Re-Optimization algorithm can be very specific because the
exact purpose for which the statistics are being computed
is known. This can be exploited to increase the accuracy of
the estimates. [19] indicates that different histograms are
suited for different purposes. Hence, the type of histogram
and method of computation can be adapted to the problem
at hand.

After statistics are gathered in this fashion during query
execution, they can be used to obtain new estimates for in-
termediate result sizes and operator execution costs for the
remainder of the query. We note that the statistics collected
at run-time are actually observed statistics, as opposed to
estimates (which the optimizer uses). Further, as described
in the previous paragraph, these statistics can be “specific”
to the query being executed. Due to this, the new estimates
can be a significant improvement over the optimizer’s esti-
mates that are included in the annotated query execution
plan. We refer to these estimates as the improved estimates
in the remainder of this paper. In the next two sub-sections,
we describe exactly how these improved estimates can be
used to improve the execution of the query.

2.3 Dynamic Resource Re-allocation

In this sub-section, we describe how improved estimates can
be used to improve the allocation of shared resources to a
query, leading to an improvement in performance. We first
briefly comment upon resource allocation algorithms, and
then discuss how they can benefit from improved estimates.

Most of the state-of-the-art algorithms for basic relational
operators like sort, join and aggregate require a large amount
of main memory to perform well with large datasets. The
performance of these algorithms depends critically upon the
actual amount of memory allocated. Assuming a work-
load of complex queries consisting of a number of memory-
consuming operations, it is unrealistic to expect that the
memory requirements of all the queries can be satisfied. This
gives rise to the problem of deciding how to divide available
memory among different queries in the system, and different
operators in the query.

Memory allocation strategies for complex queries can be
classified into two categories. The memory allocation is
either decided at query optimization time by the opti-
mizer [22, 41, or it is determined at execution time based
upon estimated memory characteristics of the query [14, 261
(or individual operators of the query [15]). In either case,

108

Aggregate
Group by Rell.groupattr

/

I
ndexed-Join
Rdl .joinatrr3 = Rs13 pinattr3

Hash-Join \

/
Rell.joinaW2 = Ael2.joinattR Rel3

15K tuples

3~18 ~ /His;-Jot ” _
Rell pnattr3 - Rel3 jomama

,,

r

15000 tupies
\“----. 4OK luples

3MB
Hash-Join 8MBA

/ Rell .joinattrZ = RelZ.joinattR Rel3
/ \”

Filter 5000 tuples
40K tuples Rell seleclatlrl < value1 Rel2 iMB
8MB d / Rell .selectatiR < value2

Rell

Figure 3: Use of improved statistics to improve

memory allocation

these algorithms estimate the memory requirements using
statistics, and decide upon an allocation of memory based
on the trade-offs involved. Allocating too little memory to
a particular query or operation implies that it has to do
more I/O to make up for the lack of memory, and its per-
formance suffers. On the other hand, allocating too much
memory results in under-utilization of memory (which could
have been better used by another operator), again leading
to sub-optimal performance. The discussion of actual algo-
rithms for memory management and allocation is beyond
the scope of this paper, but we note that any memory man-
agement algorithm that intelligently allocates memory based
on estimated memory requirements runs into the same prob-
lems that face a conventional query optimizer: i.e. inaccu-
rate estimates.

As discussed in the previous sub-section, during the course of
query execution, statistics about intermediate query results
can be gathered and used to improve upon the estimates
of the query optimizer. These improved estimates can be
used to improve the allocation of memory to the various op-
erators of the query. Specifically, when improved estimates
are available, the memory management module can be re-
invoked and supplied with the new estimates. The memory
management module uses these new estimates to produce
a new memory allocation for the remainder of the query.
Overall performance is expected to improve since the new
memory allocation is based on improved estimates.

Consider for example the query execution plan in Figure 3.
We now describe how this actually works in a specific
database system (such as Paradise [17]). In this plan the
filter operator produces 15000 tuples that require 3MB of
memory. Based on this estimate, the maximum memory
requirement for each join is estimated at 4.2 MB (size of
left input plus overhead), and the minimum requirement is
250KB. Let us assume that at run-time only 8MB of memory
is available for this query. In this case the Memory Man-
ager believes that the maximum memory requirement for
both joins cannot be satisfied. Hence, it allocates 4.2 MB
to the first hash-join (its maximum memory requirement),
allocates only 250KB to the second hash-join (its minimum
memory requirement), and allocates the left over memory to
the aggregate operator. This causes the second hash-join to
execute in two passes.

If a statistics collector operator is now inserted into the
query execution plan just after the filter operator, (as shown
in Figure 2), the exact number of tuples resulting from the

,

Statistics Collector
Hislogram: Ml .jolnsttrS

\

Ret2

/
Unique values: Rell .groupattr

Filter
Rell .selectattrl < :vaIuel

/
Rell.selectattR < :value2

Ret1

Figure 4: A potentially sub-optimal query plan

filter operation can be observed. Let us assume that the
actual number of tuples satisfying the selection predicate is
7500, and not 15000. Now, the maximum memory require-
ment for the second hash-join is re-computed and is found to
be 2.05MB. The Memory Manager can satisfy this require-
ment. Using the new memory allocation, the hash- join of
Rel3 can be completed in one pass, resulting in a significant
improvement of performance.

In this paper, we assume that once an operator starts exe-
cuting, its memory allocation cannot be changed. In other
words, improved statistics can only be used to improve the
memory allocation for operators that have not begun exe-
cuting. If, however, the operators in the database system
have been implemented in such a manner that they can re-
spond to changes in memory allocation in mid-execution,
our algorithm can be extended to take advantage of this.

Throughout this paper, we have concentrated only on dy-
namically improving the memory allocation for a query.
However, similar techniques can be applied to handle the
allocation of any shared resources (e.g. processors in an
SMP).

2.4 Query Plan Modification

In the previous sub-section, we described a relatively simple
change to improve the execution of a query. The allocation
of memory to the various operators in the query was mod-
ified without actually modifying the query execution plan.
While that can result in significant savings in some cases,
a much more serious problem with query execution is that
the query execution plan itself might be sub-optimal. For
example, the join order might be sub-optimal, or the choice
of algorithms (e.g. hash-join VS. indexed nested-loops join)
could be improved. In this case, tremendous savings can be
achieved by modifying the query execution plan.

Consider the query execution plan shown in Figure 4. Let us
assume that the query optimizer’s estimate for the number
of tu

P
les resulting from the filter operation has a significant

error . Since the remainder of the query plan is based on

‘There are a number of reasons why this can happen even if there
are state-of-the-art histograms on the base relation. The histograms
might be out-of-date. The filter might involve two different correlated
attributes of the relation (e.g. ‘R1.a = 10 and R1.b = 20’) and the
histograms do not capture the correlation. Or, the selection predicate
might have a user-defined function in a external language, in which
case there is no way for the database system to estimate the selectivity
of the filter.

109

Agg”gate

Group by Rell.groupatlr

I

Aggregate

Group by Rell.groupallr

IndexedJoIn
Rell.joinallr3 i RelJ.joinallr3

I

’

Hash&in

Hash-Join ’ ttd3

Rell.joinatlrJ jl Rel3.joinallr3

Rell joinallti E Rel2./ainallr2

/ \

’ Hash-Join ’ Rel3
/ Rell.joinallR E Ael?.joinallR

Statistics Collector
Histogram: Reii.joinaltr3R~~2

/ \

I
Unique values: Rell.groupallr

Statistics Collector

. Hisloaram: Rell.ioinallr3 Rd2
I

Filter

Rell .seleclallrl < :vaIuel

/ Rell.seleclallr2 < xalue2

/ Unique values: dell.groupallr

Filter

Relf.seledallrl < :valuel

Ml
/ Rell.seleclallf2 < :value2

i?rM

Figure 5: Re-optimization of a plan without discard-

ing any work

this estimate, it is quite possible that the plan might be
sub-optimal. At this point it is possible to use the new
statistics to re-invoke the query optimizer and generate a
better execution plan for the query.

We note that at the time the new statistics for the result of
the filter become available, the filter operation has already
completed execution, and the build phase of the hash-join
algorithm is also complete. However, the probe phase of the
hash-join has not yet started, and the none of the other oper-
ators have even started execution. Under the circumstances,
there are three options that the re-optimization algorithm
might consider.

The simplest course of action is to completely discard the
current execution, generate a completely fresh new execu-
tion plan for the query, and execute it from the beginning.
This approach has the major disadvantage that it completely
discards a significant amount of work that has been already
performed and starts out afresh. For this approach to suc-
ceed, the combined amount of work done by the new query
execution plan and the work that was discarded should be
less than the work that would have been done by the pre-
vious plan. It is conceivable that this could be the case for
some query plans, especially if the sub-optimality is detected
early. However, we believe that this approach is too risky,
and we do not consider it further in the remainder of this
paper.

The second option is to suspend execution of the query,
and only re-optimize those parts of the query that have not
started executing. In the example above, the filter opera-
tion is already complete and hash-join is also partially done.
However, the indexed nested-loops join and aggregate have
not yet begun execution. Hence, a plan involving these two
operators can be modified without having to discard any
work. Specifically, the query optimizer is re-invoked with
new statistics. It is also given the information that the fil-
ter and the build phase of the hash-join is done. The query
optimizer then produces a new plan in which the filter and
the hash-join are left as they are, but the remainder of the
plan is re-optimized. This situation is pictured in Figure 5.

While we believe that this approach is the best under the
circumstances, it does require significant modifications to
the query scheduler of the database system to make it work.
Specifically it requires the ability to suspend a query in mid-

select avg (Templ.seleclaltrl), Aggregate

avg (Tempt .seleclatlR). Group by Templ .groupallr

Ter%pl .groupallr
from Templ. Rel3 I
where Templ .joinallr3 = Rel3.joinaltr3

group by Templ.groupallr
Hash-Join

f

Templ .joinallr3 = Rel3.joinallr3

/ \

Output to Templ l
/

/
“‘Temp4

Hash-Join
, Rell.joinattrZ = RelP.joinattrl

/ \
statistic5 Collector Rel2

Histogram: Rell.joinattr3

/ Unique values: Rell.groupattr

Filter

/
Rall.selectattrl < :valuel
Rell.selectettrP < :value2

Rell

3Ge13

Figure 6: Re-optimization of a plan by materializing
intermediate results

execution, and to modify the query execution plan of the
remainder of the query (without the knowledge of the oper-
ators that are already halfway through their execution) and
to resume execution using the new plan. While this concept
is easy to grasp, actually implementing it in a real system
can be a problem, especially if the scheduler was not initially
designed to handle situations like this.

To tackle this problem, we modified the algorithm slightly
to get a new algorithm that is less efficient, but is much eas-
ier to implement. Figure 6 shows how this works. In this
approach, we do not suspend the execution of the query, but
let the currently executing operators (i.e. the hash-join in-
volving Rel2) run to completion. However, instead of piping
output to the next operator in the query execution plan, it
is re-directed to a temporary file on disk. Now, SQL cor-
responding to the remainder of the query is generated in
terms of this temporary file. This modified query is then
re-submitted to the parser/optimizer like a regular query3.

When to re-optimize: Re-optimizing a query has a signif-
icant overhead associated with it. First, there is a non-trivial
cost associated with re-parsing and re-optimizing a query.
Second, if the re-optimization forces an extra materializa-
tion of an intermediate result, the cost of writing and read-
ing that result is incurred. For this reason, re-optimization
of a query is not triggered every time the statistics of an
intermediate result are observed to be different from the
optimizer’s estimates. Instead, this decision is made using
some heuristics based on the (estimated) costs involved.

Let Tcup- plon,optmtrer be the optimizer estimate for the
time required to execute the current plan. Let

TCW- p~an,tmp,.oue~ be the improved estimate for the same. Let
T mntenalile,estirnated be the estimated overhead for materializ-
ing (writing and reading) the intermediate relation. Let us
assume that the optimizer is actually re-invoked and it pro-
duces a new plan for the remainder of the query. In this
case, let Topt,actua~ be the time that would be required to
re-parse and re-optimize (the remainder of) the query. Let
I”,,,- plan,total be the total estimated time for executing the
new plan (including the time for work already completed,
the time for optimization, the time for materialization, and
the time to execute the remainder of the query using the

30f course, care has to be taken to ensure that the new query
executes in the same transaction context as the previous one.

110

new plan).

Obviously, re-optimization should be considered only if

TCW- ,hn,mproved > Tmw-pian,total.
Unfortunately, is not

known until the optimizer is actually re-invoked. Let US,

for the moment, assume that Topt,actual is always negligi-
bly small. In that case, the solution is easy. When observed
statistics are found to be different from the estimated statis-
tics, the optimizer is invoked to produce a new plan (since
this step is considered negligibly cheap) and an estimated

TIWL- plan,total’ Now, if Tnew--p~an,tota~ < Tc..-ph,lmproved,
the new plan is accepted and we take the steps required for
dynamic modification of the plan (i.e. materializing the in-
termediate result, and then executing the new plan using the
materialized result). If, however, this is not the case, then
we reject the new plan, and continue execution as before. In
this case, no materialization of the intermediate result needs
to be done, and the only overhead incurred is the Topt,actual
required to getting an estimate for Tnew--plan,total.

Unfortunately, Topt,actua[is not always negligibly small and
overhead can be significant. We note that it is not too dif-
ficult to get a conservative estimate for Topt,actual. Let us
call this estimate Topt,estzmated. The time taken to optimize
a query does not depend upon the sizes of the datasets in-
volved. Rather, it depends upon the number of operators
in the query. Mainly, the cost is dominated by the cost of
enumerating the various join orders for the query. Assuming
the worst case, a query containing n joins requires the most
time for optimization if it is a star-join query [16]. The time
taken to optimize a star-join query containing n joins is usu-
ally rather stable for a given optimizer and database system.
Hence, an optimizer for a particular database system can be
calibrated to obtain these estimates.

Now, we use a couple of heuristics to determine whether it is
worth spending Topt,esttmatrd time to re-invoke the optimizer.
First, we note that re-optimizing is probably not worth the
trouble unless the query execution time is much higher than
the optimization time. Specifically, we use the heuristic,

T opt,estrmated

TCW-
> 01 (1)

plan,zmproved

In this equation 8, is a parameter for the Dynamic Re-
Optimization algorithm, and should be a small quantity like
0.05. The optimizer is not re-invoked if equation 1 holds.

Another point to be noted is that re-optimization is probably
not worthwhile unless there is reason to believe that the cur-
rent plan might be sub-optimal. To model this, we use the

difference between Tcur--plan,opt2m,zer and Tcur--plan,,mproved as
an indicator of whether the current plan is likely to be sub-
optimal. Specifically we re-optimize only if

Tcw- pinn,mproved - Tcw- pion,optzmtrer

TCUV

> o2
(2)

plon,optim,zer

In this equation Oz is another parameter for the algorithm,
and is set at approximately 0.2.

2.5 Keeping overheads low

So far in this section, we have described the Dynamic
Re-Optimization algorithm, based on the assumption that
“statistics” are collected at “key” points during the execu-
tion of a query. In this sub-section, we describe exactly what
“statistics” are collected, and what are the “key” points in
the query.

Obviously, the decision about what statistics to collect needs
to be made at query optimization time. After a conventional
optimizer has produced a query execution plan, we process
this plan and insert statistics-collection operators at various
points in the query execution plan. We will refer to this al-
gorithm as the statistics-collectors insertion algorithm. This
algorithm determines what are the “most effective” statistics
to collect, and produces a plan containing the appropriate
statistics collection operators. A simple solution would be to
measure cardinalities, sizes, and histograms at all intermedi-
ate points during the execution of the query. As described in
Section 2.2, collection of statistics at query execution time
is relatively cheap since there is no I/O overhead. Neverthe-
less, the CPU overhead itself can be significant in some cases.
For the queries that benefit from Dynamic Re- Optimiaatiorb,
the savings achieved by re-optimization out-weigh the over-
heads associated with statistics collection, but for queries
that do not get re-optimized, the overhead actually results
in an increase in the query execution time.

The Dynamic Re-Optemizate’on algorithm is useful for de-
tecting certain kinds of sub-optimalities in complex queries.
However, there are a number of queries for which Dynamic
Re-Optimization does not help. Obviously, if the plan pro-
duced for a particular query is already optimal, or close to
optimal, re-optimization does not help. Another possibility
is that the query might be too simple (for example, con-
sisting of just one join). In this case, even if the query
plan produced by the optimizer is sub-optimal, Dynamic
Re-Optimization is not useful, because by the time collec-
tion of statistics is complete, most of the query is also done
executing. Thus, even though the new statistics may indi-
cate that the query plan was sub-optimal, it is too late to
do anything about it.

The Dynamic Re-Optimization algorithm is not targeted to-
wards these queries. However, it is important that their
performance does not suffer if the Dynamic Re-Optimization
algorithm is used. If possible, statistics collection should be
entirely avoided for such queries. If not, steps should be
taken to ensure that the overhead introduced is kept accept-
ably low.

Due to these considerations, it becomes important to care-
fully choose what statistics are collected at query execution
time. There is an important trade-off to be considered here.
Collecting statistics at too many points in the query can
lead to an unacceptably high overhead. On the other hand,
if statistics are collected at too few points in the query, some
of the sub-optimalities in the query execution plan might not
get detected, leading to the loss of some optimization oppor-
tunities.

We now describe the statistics-collectors insertion algorithm
that is used to determine what statistics to collect during
query execution. For the remainder of this paper, we assume
that the time required for measurement of cardinality and

111

size (in pages) of a table, and the minimum and maximum
values for its attributes, is negligible. Hence, we assume that
these statistics are measured for all intermediate results in
a query. The statistics-collectors insertion algorithm will be
restricted only to computations of histograms and estima-
tions of number of unique values of a particular attribute (or
set of attributes). If, however, in a particular database sys-
tem, measuring cardinality/size has a significant overhead
associated with it, the same techniques can be applied to
them as well.

The statistics-collectors insertaon algorithm starts by mak-
ing a list of all the potentially useful statistics that can be
computed. For a given intermediate table, a histogram on
a particular attribute is potentially useful if that attribute
is part of a join predicate or a selection predicate later on
in the query execution plan. Similarly, computing the num-
ber of unique values of an attribute (or set of attributes)
is potentially useful if that attribute (or set) is part of a
group-by clause of an aggregate operation later in the query
execution plan. Given this list of potentially useful statis-
tics, we need to determine which ones should be discarded,
and which ones computed.

The maximum acceptable overhead, p (specified as a fraction
of the total execution time of the query), is an external pa-
rameter supplied to the algorithm. Thus, if Tcur-p~an,op~lmrler
is the optimizer’s estimate of the query execution time, then

CL x Tcur-.pian,optrmrrer is the maximum time that can be al-
located to the collection of statistics. Now, we need to
determine a subset of the potentially useful statistics that
take less than ,U x Tc,,r--p~an,optrmlzer time to compute, and
which are “most effective” in detecting the sub-optimality
of a plan. To be able to do this, we need to estimate two
things. First, we need to estimate the cost of computing each
of the statistics. This can be easily estimated using the opti-
mizer’s estimates of the sizes of intermediate results. Second,
we need some measure of the LLeffectiveness” of a particular
statistic in detecting sub-optimality of a plan.

Two key factors are considered while deciding the effective-
ness of statistics in detecting sub-optimality of a query ex-
ecution plan. The first factor is the probability that the
corresponding optimizer estimates are inaccurate. If there
is a high probability that the optimizer’s estimates are accu-
rate, then there is not much reason to actually observe the
statistics at run-time. The second factor is the fraction of
the query execution plan that is affected by that particular
statistic. The larger the fraction of the query that might be
affected by a statistic, the more effective is the statistic at
detecting sub-optimality of a plan.

The first question that we ask is what are the chances that
the optimizer’s estimates corresponding to that attribute are
inaccurate? For example, if there is an equality selection on
a particular attribute of a base table, and there exists a serial
histogram on that attribute, then chances are very high that
the optimizer’s estimates for the result of the selection op-
erator are very accurate [19]. On the other hand, if there is
neither a histogram nor an index on that attribute, chances
are very high that the optimizer’s estimates are rather inac-
curate. In that case, computing a histogram on the result
at run-time is likely to be very useful.

The statistics-collectors insertion algorithm assigns an inac-
curucy potential level of low, medium or high to the various

optimizer estimates in a query execution plan using the fol-
lowing rules. An inaccuracy potential of high for a particu-
lar statistic indicates that there is a high possibility of the
corresponding optimizer estimate being inaccurate. We first
assign inaccuracy potential levels to the statistics on base ta-
bles found in catalogs. Then the inaccuracy potential levels
are propagated upwards in the query execution plan. The
following are a set of rules for determining the inaccuracy
potentials:

l The inaccuracy potential for a histogram on an attribute
of a base table is low if it has a serial histogram, medium for
equi-width and equi-depth histograms, and high if there is
no histogram.

l If the system catalogs contain estimates for the number of
unique values of a particular attribute of a base table, the
inaccuracy potential for this estimate is low. The inaccuracy
potential for the number of unique values of an attribute (or
set) at any intermediate point in a query execution plan is
always high. (In other words, the inaccuracy potential for
number of unique values is low only for attributes in a base
table, and is high in all other cases.)

l Some database systems have information available about
the update activity on a table since the last time statistics
were updated. In this case, the inaccuracy potential level for
all statistics is increased one level if there has been significant
update activity since the last time statistics were collected.

l The inaccuracy potential for the output of a selection op-
erator involving a simple predicate is the same as the in-
accuracy potential of its input. In other words, inaccuracy
potential is low if there exists a serial histogram on the in-
put, medium for equi-width and equi-depth histograms and
high when there are no histograms.

l If a selection predicate involves two or more attributes
of the relation, then inaccuracy potential of the output is
one level higher than the inaccuracy potential of the input.
In other words, if the inaccuracy potential for input is low,
then inaccuracy potential for output is medium, and if the
input is medium or high, inaccuracy potential is high. This
increase in inaccuracy potential is due to the possibility of
correlations that are not captured by the histograms.

l If a selection predicate involves user-defined methods, the
inaccuracy potential of output is always high.

l Consider an equi-join where the join attributes are keys
for the corresponding tables. In this case, the output can be
estimated rather accurately if the input is known. Due to
this, the inaccuracy potential for the output of an equi-join
on key attributes is the same as the maximum inaccuracy
potential of its inputs. If the equi-join is on a non-key at-
tribute, then the inaccuracy potential is one level higher than
the inaccuracy potential of its inputs.

l The inaccuracy potential for non-equi-joins is always high.

l The inaccuracy potential for the output of an aggregate
operator is the same as the inaccuracy potential with which
the number of unique values for the grouping columns is
known in the input.

The other factor in determining effectiveness of computing a
particular statistic is the fraction of a query execution plan
that is affected by that statistic and has not yet executed.
Consider Figure 7. This figure shows two statistics being
collected at query execution time. One is a histogram on

112

,.,‘,,.....,.,.......................... *.....--**-
.,.... *..... Aggregate

Group by Relt.g,oupatt,

: ,.......‘............................. *
i i

,/ncl+ecl-Jo:
Rell jolnattr3 = Rel3.joinattr3

: i ; : Hash-join : :
; ; / Re~l.ioinatlR = y L3

i i
i ! Statistics Collector

Rel2

i
L..........

Histogram: Rell.joinattr3

/

Unique Values: Ret1 .groupattr

Filter
Rell.selectattrl c ‘YaIueI

, Reli.selectattR .z :v?duez

Rell

Figure 7: Fraction of a query affected by statistics

the attribute Rell.joznattrd in the output of the filter oper-
ation, and the other is the number of unique values of of the
Rell.groupattr attribute. Now the joinattr3 attribute is part
of the join predicate in the zndexed nested-loops join pic-
tured in the figure, and hence the corresponding histogram
is useful in estimating the cost of that join and the size of
its output. Hence, the portion of the query execution plan
affected by the histogram on the joinattr3 attribute consists
of all t,he operators after that join. On the other hand, the
number of unique values for the groupattr attribute is only
useful for the aggregate operation. Hence the portion of the
query execution plan affected by this statistic consists only
of the aggregate operation.

Now the relative effectiveness of two different statistics is
compared as follows. If one statistic has a higher inaccuracy
potential, then that statistic is considered to be more effec-
tive in detecting sub-optimality of a plan. If the inaccuracy
potentials for two statistics are the same, then the statistic
that affects a larger portion of the query execution plan is
considered more effective. Using these rules, the list of all
potentially useful statistics is ordered according to increas-
ing effectiveness. Now, we begin deleting the least effective
statistics from this list one by one until the total estimated
time for computing all the statistics drops below the maxi-
mum acceptable overhead (Tcur-plan,optlnlre~).

2.6 Summary

To summarize, this is how the entire Dynamic Re-
Optimization algorithm works. First a conventional opti-
mizer is used to generate a conventional query execution
plan for a query. Then the statistics-collectors insertion al-
gorithm is invoked to insert statistics-collection operators
into the query execution plan. The statistics-collectors in-

sertion algorithm ensures that the statistics-collection opera-
tors inserted into the query plan do not slow down the query
by more than a fraction CL. The output of the statistics-
collectors insertion algorithm is the final static plan for the
query that can be stored in the database system. We note
that this plan contains all the optimizer’s estimates for the
sizes of various intermediate results and the execution times
for the operators in the query.

At query execution time, the statistics-collector operators
that have been inserted into the query gather statistics on
the intermediate results of the query execution. These statis-
tics are then used to obtain improved estimates for the exe-

Figure 8: Query Execution in Paradise

cution times for the remaining operators of the query. These
estimates are compared with the optimizer estimates that
are stored as a part of the query plan. If the estimates are
significantly different, and the query is expensive enough
to warrant re-optimization, then the query optimizer is re-
invoked to obtain a new plan for the remainder of the query.
If the estimated total execution time for the new plan (in-
cluding overhead of re-optimization and materialization of
intermediate results) is less than the estimated execution
time of the old plan, then the execution plan for the remain-
der of the query is replaced with the new plan.

3 Implementation and Performance

As an experimental validation of the Dynamic Re-
Optimization algorithm we implemented it in the Paradise
database system [17]. In this section, we report some of the
results of our experiments. First we describe the details of
the actual implementation of the Dynamic Re-Optimization
algorithm in the context of Paradise, and its interactions
with the memory management module of Paradise. Then
we study the performance of the Dynamic Re-Optimization
algorithm using datasets and queries based upon the TPCD
benchmark specification [21]. We also performed some ex-
periments using skewed datasets to measure the effect of
skew on performance.

3.1 Implementation in Paradise

Paradise is a database system designed to handle rich data-
types through the use of Abstract Data Types (ADTs) and
provides scalability through the use of parallelism. In our
experiments, we concentrated mainly on the relational fea-
tures of Paradise.

Figure 8 shows some of the components of the Paradise sys-
tem that are involved in optimizing and executing a query.
The query optimizer is built using the OPT++ architec-
ture [13], and uses a conventional dynamic programming
algorithm based on the System-R optimizer [22]. The cost
estimates in the optimizer are based on histograms stored in
the system catalogs. The system uses MaxDiff histograms
as described in [19]. This produces a static plan that con-
tains the query execution strategy as well as the optimizer’s
estimates of the sizes of intermediate query results. This an-
notated plan is submitted to the database engine for query
execution.

At query execution time, the Memory Manager of the
database engine determines the allocation of memory to the
various operators of the query. It determines the memory
requirements (minimum and maximum memory demands)
of each operator using the estimates provided by the opti-
mizer. Based on the memory requirements of each operator,
and by considering the trade-offs involved, it allocates some
amount of memory to each operator. The amount of mem-
ory thus allocated to an operator represents the maximum
memory that the operator is allowed to use during execu-

113

Figure 9: Query Execution with Dynamic Re-
Optimization

tion. If all the data required by the operator does not fit
into the allocated amount of memory, it has to spill some
of the data to disk. Details of the Memory Management
module of Paradise are described in [15].

The Memory Manager annotates a query execution plan
with memory allocation values, and hands over the plan to
the query scheduler and dispatcher for execution. The query
scheduler and dispatcher executes a complex query execution
plan in phases by partitioning it into a number of segments.
Each segment is a subset of the operators in the query exe-
cution plan that can be executed concurrently. Typically, a
segment consists of a set of consecutive operators that can
be executed in a pipelined fashion. The different segments of
a query execution plan are executed one after another in se-
quence. The dispatcher dispatches a segment of operators to
the data-servers and waits for them to complete execution.
When all the operators of a segment complete execution, a
message is sent to the dispatcher, and it advances to the
next segment in the execution plan.

Figure 9 shows how we modified Paradise to incorporate Dy-
namic Re-Optimization. First, the statistics-collectors in-
sertion algorithm (SCIA) was added as a post-processing
phase after the query optimizer. This takes the query ex-
ecution plan produced by the optimizer and inserts statis-
tics collection operators in it as described in Section 2.5.
The scheduler-dispatcher is modified to take into account
the Dynamic Re-Optimization algorithm. As in the previ-
ous design, after the Memory Manager is done with memory
allocation, it hands over the plan to the scheduler and dis-
patcher. This partitions the plan into segments and begins
dispatching each segment in sequence.

In the new scheme, when a segment is dispatched to the
data-servers to be executed, it might contain statistics-
collector operators. As far as the data-servers are concerned,
these are regular operators similar to hash-join or indez-
stun. The only difference is that when a statistics-collector
completes execution, it sends back to the dispatcher a mes-
sage containing the statistics collected. At this point, the
Dynamic Re-Optimization algorithm in the dispatcher is in-
voked. This can do one of three things at this point. First,
it uses Equation 1 and Equation 2 (discussed in Section 2.4)
to determine whether to consider re-optimizing the query. If
the answer is yes, it invokes the query optimizer and obtains
a new plan for the remainder of the query, using the new
statistics. Then it uses the optimizer estimate of the cost of
execution of the new plan to determine whether the cost of
the new plan is actually less than the estimate for the old
plan in spite of the re-optimization overhead. If this is true,
the Dynamic Re-Optimization algorithm instructs the data-
server to finish execution of the last operator and write the
result to a temporary file. It deletes all the state informa-
tion for the old plan from the dispatcher data-structures and

then submits the new query plan for execution. If the new

plan is not cheaper than the old plan, then the dynamic re-
optimizer continues working with the old plan. However, it
uses the new estimates to invoke the Memory Manager again
to obtain an improved memory allocation for the plan based
on the improved statistics. This process continues until the
query completes execution.

In addition to implementing the Dynamic Re-Optimization
and the statistics-collectors insertion algorithms in the sys-
tem, we had to add the statistics-collector operator to the
data-server. The statistics-collector operator was added as
a regular streamed operator (similar to the filter operator).
It took a stream of tuples as its input and produced exactly
the same stream of tuples as its output. Since this opera-
tor just needs to examine the tuples without modifying or
discarding any of them, it can be implemented without re-
quiring an extra copy. To compute the size of the relation,
the number of tuples, and the minimum and maximum value
for an attribute, we maintain a single value that is updated
after each tuple is examined. For computing a histogram,
one database page is allocated to hold a reservoir sample [24]
for the histogram. As each tuple is examined, the value of
the corresponding attribute is copied into the reservoir ac-
cording to the sampling technique described in [19]. When
all the tuples from the input are exhausted, the reservoir is
examined to build the histogram.

3.2 Experimental Results

To study the effect of Dynamic Re-Optimization on real
queries, we performed experiments using some TPC-D
queries. The TPC-D dataset generator was used with a
scale factor of 3 to generate a 3GB database. Using this
database, we ran queries Ql, Q3, Q5, 26, Q7, Q8, Ql.0
described in the TPC-D specification [21] All the experl-
ments were run on a cluster of 4 PCs each configured with
dual 133 Mhz Pentium processors, 128 MB of memory, dual
fast and wide SCSI-2 adapters (Adaptec 787OP), and one
Seagate Barracuda 2.1 GB disk drive (ST32500WC). So-
laris 2.5 was used as the operating system. The processors
were connected using lOOMbit/second ethernet and a Cisco
Catalyst 5000 switch that has an internal bandwidth of 1.2
GB/second. The buffer pool was kept at 32MB at each node
of the system. We purposely chose not to have a larger buffer
pool since we wanted to study the effect of memory manage-
ment techniques on query optimization. Refer to [21] for the
specifications of the queries. We ran each query with and
without the use of Dynamic Re-Optimization. Each query
was executed 5 times and the average execution time was
reported.

In all these quer’ies, we set the value of ,u (maximum allow-
able overhead) to 0.05 ensuring that none of the queries ever
performed 5% worse than normal. The parameters 81 and
02 were kept. at 0.05 and 0.2 respectively. An analysis of the
sensitivity of the Dynamic Re-Optimization algorithm to the
values of b, 81, and 02 is contained in [12].

4The other queries in the TPC-D benchmark specification were
not included in our experiments because some of the necessary fea-
tures were not supported by Paradise. For the same reason, minor
modifications were made to the queries that where included. In all
cases where a query contained aggregates over expressions (e.g. SUM
(L-EXTENDEDPRICE*(l-L-DISCOUNT))) we replaced it with a
simpler aggregate expression (e.g. SUM (L-EXTENDEDPRICE)).

114

120

100

60

60

40

20

0

WNomml /

URe-Oplimized /

01 a6 Q3 010 a5 07 a8

Simple Medium Complex

Figure 10: Performance of Dynamic Re-Optimization

% 100 120

60 100 j 8 Mamxy h4anagemfmr only 60
80

m Ran tvbdifkation Only

60

40

20

0

a a3 010 Q5 Q7 Q8

Medium Complex

Figure 11: Isolating the effect of improvements due to memory management and plan modification

z i: 0.3 Z E 0.6

03 a10

Medium

05 Q7 Q8 Q3 a10 05 Q7 06

Complex Medium Complex

Figure 12: Effect of skew

Based on the expected effects of Dynamic Re-Optimization
on different types of queries, we can classify all queries into
three categories. Queries that contain zero or one joins will
never get re-optimized. We refer to such queries as sim-
ple queries. Queries containing two or three joins will usu-
ally not benefit much from plan modification, but might see
some benefits from improved memory management. We re-
fer to this category of queries as medium queries. Finally, all
queries containing four or more joins are the primary targets
for which Dynamic Re-Optimization is designed. We will re-
fer to them as complex queries. In the query set that we
used, Ql and QS are simple, Q3 and QlO are medium, while
Q5, Q7 and Q8 axe complex.

Figure 10 shows the results of our experiments. We see
that queries Ql and QS do not benefit at all from Dynamic
Re-Optimization. This is an expected result, since these are
simple queries. We see a small increase in the execution time
for Ql, indicating the overhead of statistics collection. Q3
and QlO show modest improvements (upto 5%) in perfor-
mance, while the complex queries show larger improvements
(10 to 30%).

From the previous experiment, it is unclear how much of
the performance improvement is due to improvements in
the memory allocation for the query and how much is due
to plan modification. To isolate these effects we performed

another experiment in which the Dynamic Re-Optimization
was run in two different modes. In one mode, the improve-
ments in statistics were used solely for improving the mem-
ory management of the query, and plan modification was
turned off. In the second mode, dynamic re-allocation of
memory was turned off and only plan modification was used
to improve the performance of the query. The results of this
experiment are shown in Figure 11. A couple of interest-
ing observations can be made about these results. First, we
see that all the medium queries benefit only from improved
memory management. Second, the complex queries benefit
from both, improved memory management, as well as plan
modification. They see a small improvement (5 to 10%) due
to memory management and a larger one (10 to 20%) due
to plan modification. Since the simple queries are not really
affected by Dynamic Re-Optimization we have not included
them in this or later experiments.

We also ran some experiments to study the effect of skew on
the performance of Dynamic Re-Optimization. For this, we
used the same queries with skewed data. Instead of generat-
ing TPC-D data with uniform distributions, we modified the
data generator to skew all non-key using generalized Zipfian
distribution ([27] as described in [18]). We ran two sets of
experiments with values for the Zipf factor (z) value set at
0.3 and 0.6. The results of these experiments are plotted
in Figure 12. Comparing these charts with the charts for

115

the uniform data (Figure 10) we see that the relative per-
formance of Dynamic Re-Optimization improves slightly as
more skew is introduced in the system. In some cases the
benefit from re-optimization actually decreases when skew
increases (for example QlO). This can be attributed to the
fact that in some cases, the accuracy of serial histograms
actually increases when skew is increased.

4 Related Work

One of the earliest query optimizers [25] was, in some sense,
a dynamic query optimizer. However, after the publication
of [22], most of the work on query optimization has focussed
on optimization of a query at compile time. Since the late
8Os, however, the limitations of this approach have begun
to be felt, and there has been an emergence of a number
of different query optimization schemes in which some of
the optimization decisions are postponed to query execution
time.

[5] describes a scheme in which query execution plans gen-
erated by an optimizer are re-optimized just before query
execution time if they are believed to be sub-optimal. At
query optimization time, the statistics used by the optimizer
to generate the optimal plan are stored with the plan in
the database system. At query execution time, the actual
statistics from the system catalogs are compared against the
statistics stored in the plan. If they are found to differ sig-
nificantly the query is re-optimized before execution. This
differs significantly from our approach. First, the query
is only re-optimized before execution begins. In their ap-
proach, there is no collection of statistics, or modification of
the plan in the middle of query execution.

The competition model of Antoshenkov [2, 31 represents an-
other way of dynamically determining the plan of a query.
In his approach, competing executions start executing using
different plans. After a while, it becomes clear that one of
the plans is better than the others, and the execution of the
sub- optimal plan is stopped. While this approach might
work well for determining which access method to use for
a particular table-scan, or which join algorithm to use for
executing a particular join, it cannot be extended easily to
the case where the join order for a complex query might
be sub-optimal. Further, the competition model cannot be
used for dynamically improving the resource allocation of a
query.

Query Scrambling described in [I] also does some dynamic
re-optimization of a queries but it is directed towards a
very different problem. Execution of queries that access
data from widely distributed data sources can get stalled
if the data from some data source is arrives very slowly.
Query Scrambling dynamically re-schedules operators to
tackle such unexpected delays, and in some cases, adds new
operators. This is a very specific technique to tackle a spe-
cific problem found in distributed databases. Unlike our
algorithm, Query Scrambling is not intended to be a gen-
eral algorithm for dynamic re-optimization of sub-optimal
queries

One important reason for sub-optimality of query execution
plans is that a lot of information about the run-time system
(availability of memory, bindings of host language variables,
existence of indices) is not available at query compile time.

The dynamic execution plans of (8, 71, and the parametric
query optimization algorithm of [lo] try to tackle this prob-
lem. Their approach is to produce a composite plan that is
in effect a combination of a number of different plans, each
of which is optimal for a given set of values of run-time pa-
rameters. One of the problems with this approach is that
as the number of things that are unknown at query opti-
mization time increases, the space/time complexity of the
optimization algorithm, and the complexity of the parame-
terized/dynamic plan produced by the algorithm increases.
Given the limited amount of time that is available for query
optimization, these approaches either have to resort to the
use of randomization for exploring the vast search space [lo],
or to make simplifying assumptions [7]. Another shortcom-
ing of these approaches is that they do not address the issue
of statistical and propagational errors in estimates. Thus, if
a histogram-based estimate of the selectivity of a predicate is
inaccurate, the corresponding sub-optimality in a plan can-
not be detected using these approaches. However, they do
have an advantage over Dynamic Re-Optimization in that
they do not impose any overheads on query execution at
run-time.

A hybrid algorithm that combines the parametric/dynamic
query plans approach and the Dynamic Re-Optimization al-
gorithm could possibly combine the best features of both
approaches. The query optimizer can try to anticipate the
most common cases that might arise at run-time and pro-
duce a parameterized plan that covers these possibilities. At
query execution time, statistics can be observed/collected
to determine which plan to choose for query execution. If a
situation arises at run-time that is not covered by the com-
mon cases anticipated by the query optimizer, dynamic re-
optimization can be used. This approach suggests a possible
direction of future research.

5 Conclusions

In this paper, we have described an algorithm that can de-
tect sub-optimalities in query execution plans for complex
queries, and improve the performance of such queries by
dynamically re-optimizing the execution plan. Strategically
placed statistics collectors are inserted into query execution
plans to observe sizes and data distributions of intermediate
query result sizes at run-time. These run-time statistics are
used for improving the allocation of shared resources (mem-
ory) to the query, and for modifying the query execution
plan if need be. We also describe how this can be done
efficiently without placing too much of an overhead on the
execution of the query. We have demonstrated experimental
results to support our claim that Dynamic Re-Optimization
can significantly improve the performance of complex queries
if their query execution plans are sub-optimal without signif-
icantly slowing down the queries whose plans do not benefit
from re-optimization.

As emerging new applications force databases to support
complex decision support queries, complex data-types and
user-defined methods, it will become more and more diffi-
cult for query optimizers to statically produce good query
execution plans. Some form of re-optimization of query exc-
cution plans at run-time will become necessary in such cases.
We believe that the techniques we have presented, possibly
in combination with parameterized plans will form the ba-
sis for the future evolution of query optimizers to meet this

116

challenge.

Declarative query languages and automatic query optimiza-
tion were an important reason for the success of relational
database systems. Lack of good query optimizers could very
well lead to the downfall of the next wave of innovations
in database system technology. In this paper, we have ex-
amined the inadequacies of traditional query optimizers in
dealing with issues raised by modern database systems and
demonstrated ways to overcome them. We believe that the
ideas contained in this paper represent an important step
in ensuring that query optimizers keep up with the other
advances in database systems.

Acknowledgements

We would like to thank the Paradise team for their help with
the use of the Paradise Database System. We would also like
to thank Yannis Ioannidis and Joseph Hellerstein for useful
discussions, and the anonymous referees for their comments
on drafts of this paper.

References

PI

[31

141

PI

[61

171

PI

191

[lOI

AMSALEO, L., FRANKLIN, M. J., TOMASIC, A., AND

URHAN, T. “Scrambling Query Plans to Cope with
Unexpected Delays”. In The 4th International Confer-
ence on Parallel and Distributed Information Systems
(PDIS) (Miami Beach, Florida, Dec. 1996).

ANTOSHENKOV, G. “Dynamic Query Optimization in
Rdb/VMS”. In In Proceedings of the IEEE Conference
on Data Engineering (1993), pp. 538-547.

ANTOSHENKOV, G. “Dynamic Optimization of Index
Scan Restricted by Booleans”. In In Proceedings of the
IEEE Conference on Data Engineering (1996), pp. 430-
440.

CHEN, M. S., ET AL. “Using Segmented Right-Deep
Trees for Execution of Pipelined Hash Joins”. In Proc.
of the 18th VLDB Conf. (1992).

DERR, M. A., MORISHITA, S., AND PHIPPS, G. “Adap-
tive Query Optimization in a Deductive Database Sys-
tem”. In In Proceedings of the Proceedings of the Second
International Conference on Information and Knowl-
edge Management (Washington D. C., USA, 1993).

FLAJOLET, P., AND MARTIN, G. N. “Probabilis-
tic Counting Algorithms for Database Applications”.
In Journal of Computer and System Sciences (1985),
vol. 31(2), pp. 182-209.

GRAEFE, G., AND COLE, R. “Optimization of Dynamic
Query Evaluation Plans”. In Proceedings of the 1994
ACM-SIGMOD Conference (1994).

GRAEFE, G., AND WARD, K. “Dynamic Query Eval-

uation Plans. In SIGMOD Proceedings (June 1989),
ACM, pp. 377-388.

IOANNIDIS, Y., AND CHRISTODOULAKIS, S. “On the
Propogation of Errors in the Size of Join Results”.
In Proceedings of the 1991 ACM-SIGMOD Conference
(Denver, Colorado, May 1991).

IOANNIDIS, Y., NG, R. T., SHIM, K., AND SELLIS, T.
“Parametric Query Optimization”. In Proc. of the 18th
VLDB Conf. (1992).

[121

PI

[I41

P51

P61

P71

P81

P91

PO1

Pll

[221

1231

1241

P51

[261

1271

IOANNIDIS, Y., AND POOSALA, V. “Balancing His-
togram Optimality and Practicality for Query Result
Size Estimation”. In Proceedings of the 1995 ACM-
SIGMOD Conference (San Jose, California, May 1995).

KABRA, N. “Query Optimization for Relational and
Object-Relational Database Systems”. PhD thesis, Uni-
versity of Wisconsin, Madison, 1998.

KABRA, N., AND DEWITT, D. J. ‘LOpt++: An Ob-
ject Oriented Implementation for Extensible Database
Query Optimization”. In to appear in The VLDB Jour-
nal (1998).

MEH’TA, M., AND DEWITT, D. J. “Dynamic Memory
Allocation for Multiple Query Workloads”. In Proc. of
the 19th VLDB Conf. (Dublin, Ireland, 1993).

NAG, B., AND DEWITT, D. J. “Memory Alloca-
tion Strategies for Complex Decision Support Queries”.
Submitted for publication.

ONO, K., AND LOHMANN, G. “Extensible Enumeration
of Feasible Joins for Relational Query Optimization”.
In Proc. of the 16th VLDB Conf. (Aug. 1990).

PATEL, J. M., ET AL. “Building a Scalable Geo-Spatial
DMBS: Technology, Implementation, and Evaluation”.
In Proceedings of the 1997 ACM-SIGMOD Conference
(Tuscon, Arizona, May 1997).

POOSALA, V. “Zipf’s Law”. Tech. rep., University of
Wisconsin, Madison, 1995.

POOSALA, V., AND IOANNIDIS, Y. “Histogram-Based
Solutions to Diverse Database Estimation Problems”.
In Data Engineering Bulletin (1995), vol. 18(3), pp. lo-
18.

POOSALA, V., IOANNIDIS, Y., HAAS, P. J., AND

SHEKITA, E. “Improved Histograms for Selectivity Es-
timation of Range Predicates”. In Proceedings of the
1996 ACM-SIGMOD Conference (Montreal, Canada,
June 1996).

RAAB, F. “TPC Ben&ma& D - Standard Specifi-
cation, Revision 1.0”. Transaction Processing Perfor-
mance Council, May 1995.

SELINGER, P., ASTRAHAN, M., CHAMBERLIN, D., Lo-
RIE, R., AND PRICE, T. “Access Path Selection in a

Relational Database Management System”. In Proceed-
ings of the ACM SIGMOD Conference on Management
of Data (May 1979).

STONEBRAKER, M., ANTON, J., AND HIROHAMA, M.
“Extendability in POSTGRES”. In Data Engineering
Bulletin (1987), vol. 10(2), pp. 16-23.

VI’YTER, J. S. “Random Sampling with a Reservoir”. In
ACM nansactions on Mathematical Software (1985),
vol. 11, pp. 37-57.

WONG, E., AND YOUSSEFI, K. “Decomposition - A
Strategy for Query Processing”. In ACM Z’ransactions
on Database Systems (Sept. 1976).

Yu, P. S., AND CORNELL, D. W. “Buffer Management
Based on Return on Consumption in a Multi-Query En-
vironment”. In VLDB Journal (Jan. 1993), vol. 2(l).

ZIPF, G. K. “iHumnn Behavior and the Principle
of Least Resistance”. Addison-Wesley, Reading, MA,
1949.

117

