
Citation: Bharany, S.; Kaur, K.;

Badotra, S.; Rani, S.; Kavita; Wozniak,

M.; Shafi, J.; Ijaz, M.F. Efficient

Middleware for the Portability of

PaaS Services Consuming

Applications among Heterogeneous

Clouds. Sensors 2022, 22, 5013.

https://doi.org/10.3390/s22135013

Academic Editor: Shih-Chia Huang

Received: 22 May 2022

Accepted: 30 June 2022

Published: 2 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Efficient Middleware for the Portability of PaaS Services
Consuming Applications among Heterogeneous Clouds
Salil Bharany 1 , Kiranbir Kaur 1, Sumit Badotra 2, Shalli Rani 3 , Kavita 4 , Marcin Wozniak 5,* , Jana Shafi 6

and Muhammad Fazal Ijaz 7,*

1 Department of Computer Engineering and Technology, Guru Nanak Dev University,
Amritsar 143005, Punjab, India; salil.bharany@gmail.com (S.B.); kiran.dcse@gndu.ac.in (K.K.)

2 Department of Computer Science and Engineering, Lovely Professional University,
Jalandhar 144001, Punjab, India; sumit.26152@lpu.co.in

3 Chitkara University Institute of Engineering and Technology, Chitkara University,
Rajpura 140401, Punjab, India; shalli.rani@chitkara.edu.in

4 Department of Computer Science, Engineering Chandigarh University, Mohali 140413, Punjab, India;
kavita@ieee.org

5 Faculty of Applied Mathematics, Silesian University of Technology, 44-100 Gliwice, Poland
6 Department of Computer Science, College of Arts and Science, Prince Sattam bin Abdul Aziz University,

Wadi Ad-Dawasir 11991, Saudi Arabia; j.jana@psau.edu.sa
7 Department of Intelligent Mechatronics Engineering, Sejong University, Seoul 05006, Korea
* Correspondence: marcin.wozniak@polsl.pl (M.W.); fazal@sejong.ac.kr (M.F.I.)

Abstract: Cloud providers create a vendor-locked-in environment by offering proprietary and non-
standard APIs, resulting in a lack of interoperability and portability among clouds. To overcome this
deterrent, solutions must be developed to exploit multiple clouds efficaciously. This paper proposes
a middleware platform to mitigate the application portability issue among clouds. A literature
review is also conducted to analyze the solutions for application portability. The middleware
allows an application to be ported on various platform-as-a-service (PaaS) clouds and supports
deploying different services of an application on disparate clouds. The efficiency of the abstraction
layer is validated by experimentation on an application that uses the message queue, Binary Large
Objects (BLOB), email, and short message service (SMS) services of various clouds via the proposed
middleware against the same application using these services via their native code. The experimental
results show that adding this middleware mildly affects the latency, but it dramatically reduces the
developer’s overhead of implementing each service for different clouds to make it portable.

Keywords: platform as a service; vendor lock-in; multi-clouds; middleware; platform services

1. Introduction

The cloud computing paradigm has revolutionized the IT world with inherent advantages
like scalability and cost savings. However, a few issues such as security and vendor lock-in, hinder
its growth. The lack of interoperability and portability is the sole reason for vendor lock-in [1]. The
platform-as-a-service (PaaS) layer constitutes the middle layer of the cloud computing stack, with
the infrastructure-as-a-service (IaaS) layer being the bottom layer and the software-as-a-service
(SaaS) layer the topmost layer. PaaS is the layer for software developers who need to use the
services for their applications, and the provider is responsible for the infrastructure or the network
for the operations. Application portability is the primary concern of the PaaS layer [1,2]. However,
an application developed on one PaaS is not easily ported to another PaaS, leading to a situation
known as vendor lock-in. The vendor lock-in problem is more prominent in the PaaS layer
than in other layers. According to [3–7], the vendor lock-in situation, which is a consequence
of the deficiency of interoperability among cloud vendors, refers to a “lack of ability to migrate
application components and associated workloads from cloud provider A to cloud provider B.”
Therefore, tackling vendor lock-in is very important; otherwise, using clouds can hinder the benefits

Sensors 2022, 22, 5013. https://doi.org/10.3390/s22135013 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22135013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-2282-0419
https://orcid.org/0000-0002-8474-9435
https://orcid.org/0000-0001-5422-1659
https://orcid.org/0000-0002-9073-5347
https://orcid.org/0000-0001-6859-670X
https://orcid.org/0000-0001-5206-272X
https://doi.org/10.3390/s22135013
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22135013?type=check_update&version=2

Sensors 2022, 22, 5013 2 of 21

and savings [1,2]. We propose a middleware class library developed in .NET Core to create an
application that uses any of the supported services (message queue service, BLOB service, email
service, and SMS) of any cloud (Google Cloud Platform, Amazon Web Services, and Microsoft
Azure) and that can be easily ported into another supported cloud without any significant changes
to the application source code [4]. A literature review was also conducted to gain insight into
the approaches undertaken by researchers and the industry to deal with portability, especially
application portability [5]. The solution approaches in the literature include standards, open
libraries, common application programming interfaces (APIs), middleware, and model-based
strategies. We chose the middleware approach as a solution for vendor lock-in as it is easy and
efficient to integrate a middleware class library in new and existing applications.

Application Portability among Interconnected Clouds

As there are numerous benefits of connecting clouds in various forms (federated clouds,
multi-clouds, inter clouds, hybrid clouds) [2], applications developed targeting these collabora-
tions also have inherent benefits:

(i) The ability to switch providers for better quality assurance if the provider cannot
comply with the agreed service level agreement;

(ii) The ability to substitute another provider in case of an abrupt increase in the
services’ prices or workloads;

(iii) Service providers may be selected in the heterogeneous geographical region due to
legal constraints.

The authors of [2] categorized interconnected clouds into 25 categories. Interconnecting the
clouds leads to the issue of interoperability and portability among heterogeneous clouds. Solving
this issue of interoperability and portability breaks the vendor lock-in. There is some confusion
about the interoperability and portability of clouds [1,3–9], and these terms are considered
substitutes for each other, but [3,10] distinguished them. According to them, interoperability is
defined as the capability of diverse systems to exchange information or work together seamlessly,
whereas portability is the capability of moving a component from one provider to another
without tampering with its usability. Portability is further divided into two types [11]:

(i) “Cloud data portability is the ability to easily transfer data from one cloud service
to another cloud service, without being required to re-enter the data.”

(ii) “Application portability is the ability to easily transfer an application or application
components from one cloud service to a comparable cloud service and run the application in
the target cloud service [12–19].”

The focus of this paper is “application portability” and middleware to facilitate it. In
addition, a survey of the different approaches to tackle this issue was conducted.

Defining “application portability” is essential before finding any solutions for it. There-
fore, the literature was explored to retrieve the most appropriate definitions, which also
revolve around PaaS portability [20–28] (although PaaS portability may involve much more
than application portability). “Application portability” is the ease with which an application
developed on one platform may be transferred and reused on another forum or different
infrastructures within a cloud. In other words, a cloud-based application should be simply
transferable and reused on another cloud system or infrastructure [29–37] (IaaS).”

2. Background and Related Work

The PaaS layer alleviates the developers’ burden of setting and maintaining the programming
environment and the required infrastructure for the execution of an application [12]. However, there
is considerable heterogeneity among disparate application platform offers, making it necessary
to re-engineer an application before deploying it in a different environment [37–43]. A specific
vendor provides proprietary services for developing applications, making them dependent upon
the provider [13,14]. Moreover, one platform could supply some assistance that is not offered by
another platform [10,43–49]. So, application portability among different clouds or from legacy
enterprises to the cloud becomes essential to preclude users from vendor lock-in [50–55]. A vast

Sensors 2022, 22, 5013 3 of 21

amount of the literature on application portability solutions was reviewed, and a comparative
analysis is presented in Table 1.

Sensors 2022, 22, 5013 4 of 21

Table 1. Comparative analysis of solutions for application portability.

Reference Approach Focused Technique Followed Platforms Used Tools Used for
Implementation Work Done

[15] Cloud to cloud A common set of PaaS
providers’ capabilities

Categorization of PaaS
portability problems 68 PaaS offerings JSON

A standard architecture for heterogeneous
platform-as-a-service platforms is proposed in this

work to address the issue of application portability by
identifying three layers: infrastructure, platform, and

management.

[16] Cloud to cloud DevOps automation Unified interface and adapters
Cloud Foundry,

Heroku, CloudControl,
OpenShift

RESTful API
and a Ruby wrapper library

As a result of this article, the user may easily select the
best cloud platform and manage and deploy cloud

applications across several platforms.

[37] Cloud to cloud BLOB storage Generic API and adapters Microsoft Azure and Google
App Engine

Jena API and SPARQL query
language

An API that is semantically annotated for the
automated construction of an adapter for a certain

provider is proposed in this work.

[17] Legacy to cloud Cloud distribution of an
application Meta model Sample application JEE Café framework

In this article, a method for partitioning an app for
cloud deployment (manually or with the help of

optimization algorithms) is described.

[14] Hybrid clouds

Flexibility of choosing a
platform

at deployment time rather than
after deployment

Software architecture and
security among applications’

different modules
- -

Developing an application with certain components
distributed on a cloud platform and others remaining
on-premises raises several design difficulties, some of

which are discussed in this article (on-premises).

[18] Hybrid clouds
NoSQL

storage, BLOB storage, and
asynchronous task processing

Middleware (uniform API) JBoss AS Cluster, GAE, RedHat,
Openshift JAVA APIs Using middleware architecture, this study proposes a

method for enabling hybrid cloud environments.

[19] Cloud to cloud Deployment, migration, and
monitoring of applications Abstraction layer Cloud Bees, Cloud Foundry,

Iron Foundry, Heroku RESTful APIs

An abstraction of cloud providers’ differences in
application deployment and lifecycle management is

proposed in this study. An API was created by
grouping together several core actions into a single set.

[35] Cloud to cloud Service-oriented architecture
API Standardized API Private PaaS (PTIN Portugal

Telecom Inovacao) WSDL, SOAP/REST
Using industry-standard APIs, this paper outlines a
distributed architecture for building and presenting

services.

[20] Cloud to cloud Application and data
portability

Semantic, model-driven,
domain-specific language

(DSL)

Android, Blackberry, Amazon
EC2, GAE

Scalable Cloud Application
Generator (SCALE), Modi

Cloud

Semantics and domain-specific language (DSL) are
leveraged for application portability in these studies

from a user’s point of view.

[22] Cloud to cloud Integration of applications at
PaaS level Semantic and model-driven -

Web
Ontology Language (OWL) and

DSL

The semantic technologies presented in this study
serve as the foundation for a sophisticated application

interoperability language.

[9] Multi-cloud, legacy to
cloud, cloud to cloud

Cloud-based application
development

Common cloud API, semantic,
and adapters All major PaaS providers RESTful implementation

To address the semantic interoperability challenges at
the PaaS layer, this paper describes the Cloud4SOA

project, which is built on a broker architecture.

[23] Cloud to cloud, legacy
to cloud Application portability Semantics and cloud patterns Windows Azure ODOL, OWL- S, SWRL

Cloud application portability is addressed in this study
through the use of design principles and semantic

technologies.

[24]
Cross-cloud (enterprise
to cloud, enterprise to

cloud to enterprise)

Storage, databases, and
notification services Common API and middleware Google, Amazon, Azure,

Rackspace
Java Persistence API (JPA),
JAVA, XMPP, RESTful API

The service delivery cloud platform (SDCP) described
in this article is a cloud middleware infrastructure that
makes use of resources from a variety of different cloud

service providers to deliver a wide range of services.

[40] Cloud to cloud Database Containers Amazon EC2 and Microsoft
Azure

Runc Open Container, Flocker,
Weave

The transfer of a Linux Container across a network is
used for live application migration. Data and

application states were tested across many cloud
platforms in order to establish that they could be

transferred across them.

Sensors 2022, 22, 5013 5 of 21

Table 1. Cont.

Reference Approach Focused Technique Followed Platforms Used Tools Used for
Implementation Work Done

[25] Cross-cloud

Multi-cloud
application deployment

(virtual machines, network,
storage)

Middleware software Open Nebula, OpenStack
clouds Java, MySql, OVF format

Disparate cloud environments can be alleviated via the
virtual execution platform (VEP) service, which this

article describes. VEP automatically deploys the OVF
packages on the IaaS clouds mentioned in the OVF

files.

[26] Cross-cloud, cloud to
cloud

On-demand
grouping of services of several

clouds

Open source deployable
cloudware (mOSAIC) Most PaaS providers Java, Python

European Union research project mOSAIC, a
middleware framework for designing

provider-agnostic, scalable cloud applications, is
described in this article.

[33] Legacy to cloud Migration of different parts of
an application Cloud data patterns Local company to cloud -

This article discusses the process of moving on-premise
software to the cloud, which necessitates various levels
of re-engineering, depending on the kind of migration.

[39] Cloud to cloud Cloud-based application
development

Software design patterns, API
unification, adapters

Eucalyptus and OpenStack
clouds .NET, Java

This article discusses the process of moving on-premise
software to the cloud, which necessitates various levels
of re-engineering, depending on the kind of migration.

[34] Cloud to cloud NoSQL databases Ontologies Salesforce, Google App Engine
(GAE), Microsoft Azure

Protégé, OWL, Resource
Description Framework (RDF)

This research focuses on the semantic annotation of
APIs and web services so that applications may be

easily transferred across service providers. A variety of
interoperability issues were discovered using a variety
of ontologies and artificial intelligence (AI) planning.

[27] Cloud to cloud
Customer resource

management (CRM) software
applications

MDE and DSL - AHEAD
Composer, Eclipse framework

DSkyL, an Eclipse plugin that uses MDE for the
building of customer relationship management (CRM)

SaaS applications, is the subject of this publication.

[36] Cloud to cloud
Monitoring cloud resources,

storage accounts (BLOB, table,
queue, etc.)

Model-driven engineering
(MDE) Microsoft Azure, GAE -

In this research, a meta-model for cloud applications is
provided that captures the essential elements of a

cloud application.

[28] Cross-cloud Email, message queue,
payment service

MDE (template-based
approach) and code generation

Google,
Amazon, Heroku Eclipse

framework, Xpand

An MDE-based approach is used in this study to make
it possible to build cloud applications that can use
services from several provider platforms at once.

[29] Cloud to cloud NoSQL MDE and DSL GAE and Microsoft Azure Xtend, Xtext

Platform-independent DSLs are created in this study
using MDE approaches. By utilizing this DSL, an
application might be created that uses the specific

cloud platform code.

[30] Cloud to cloud Discovery, transformation, and
migration MDE and DSL IBM PaaS, GAE MoDISCO, TXL

Using the model-driven architecture and refactoring
technique, this article examines the high-level notion of

an application’s migration between
platform-as-a-service providers in three phases:

discovery, transformation, and migration.

[31] Cloud to cloud
SQL, BLOB, NoSQL,

task queue, message queue,
memcache, mailing

CPIM(a Java Library) and a
common API GAE and Microsoft Azure Design Patterns (Abstract

Factory Pattern)

PaaS-level services are encapsulated by a cloud
provider independent model (CPIM) in this article to
provide a mediation layer that hides the differences

among multiple PaaS providers.

[13] Hybrid and multi-cloud BLOB storage service MDE and adaptation Microsoft Azure and Amazon
S3 (Simple Storage Service)

Java, UML, XML, ATL,
Maven

To generate platform-specific applications, the
MULTICLAPP framework contains a transformation
mechanism for mapping cloud artifacts to the target

platforms.

[32] Cloud to cloud, legacy
to cloud

REST
resources (message queues,

object
storage, etc.)

Abstraction and model-driven
(DSL)

Microsoft Azure, Google, and
AWS

Models, mapping, and
generators

For a legacy or new application that uses REST APIs in
the cloud, this article presents a hybrid strategy

(abstraction and model-based) that would allow for the
re-use of the same services on a different cloud.

Sensors 2022, 22, 5013 6 of 21

3. PaaS Cloud Application Portability Middleware

Although the portability of applications in the context of infrastructure-as-a-service
(IaaS) is also possible with the help of virtual machines (VMs), mainly the portability
of PaaS applications is covered in this article. Our objective here was to use the cloud-
specific services so that the application remained portable without the intervention of the
VM approach. We used .NET Core as our implementation platform, as it is open source
and operating system-independent. Application portability does not only mean that the
application is migrated or ported from one cloud to another cloud [21], although it is a
possible case of application portability. It could involve the following scenarios, which our
proposed solution is capable of handling:

(i) An application is migrated from Cloud A to Cloud B along with the application’s
used PaaS services. Here, we assumed that Cloud B supported all the PaaS services used in
Cloud A. This scenario can be classified as cloud-to-cloud portability.

(ii) The PaaS services used by the application are migrated from Cloud A to Cloud B,
but the application remains on Cloud A. Either all PaaS services are ported to Cloud B, or
some of the PaaS services are ported, depending on the PaaS services supported by Cloud
B. In both cases, this migration falls under the classification of multi-cloud interoperability.

(iii) The application is hosted on a private cloud (or another hosting service) but uses
PaaS services from Cloud A and B. One PaaS service is finished from Cloud A, and the
other PaaS service is destroyed from Cloud B. This scenario is an example of a hybrid cloud.

The authors of [12,32] identified possible incompatibility impediments when attempt-
ing the portability of a PaaS application from one cloud platform to another.

a. Programming languages and frameworks: The programming languages supported
by cloud platforms are limited. If an application developed in one platform using a
specific language needs to be ported, that language should also be kept in the new
cloud platform. The proposed middleware was created in the .NET Core framework
for console and web applications. .NET Core is supported by most cloud platforms.

b. Proprietary platform services: To facilitate developers in reducing the application’s
development time, mainly the platform providers offer certain services via specific
APIs. These services can be integrated into the applications by adding the cloud-
specific software development kit (SDK) and implementing the platform-specific
service by adding extra lines of code. Now there could be two possible scenarios:

1. The specific service used by the application on one platform may not be avail-
able on the other.

2. The new platform supports the specific service but offers a different interface.
The proposed middleware mitigates these restrictions by allowing the user to
keep using the service from the previous platform while the ported application
is on the new platform.

c. Data Storage: Database storage and file storage are required by most applications.
There could be discrepancies due to different data storage types (e.g., SQL and
NoSQL), additional data structures, and query languages. We covered data portabil-
ity in another paper [41–43].

d. Platform-specific configuration: Clouds use different variables to configure their
platform services [44–47]. We defined the structure of our configuration file so that
the middleware layer handles and implements the cloud services even with the
different designs of the configuration variables. The configuration is not hardcoded
in the middleware code [48–51]. Instead, it is provided in a JSON file that can be
changed to alter the design even if the application runs. The middleware code does
not need to be changed to facilitate the change in the configuration file. The modified
configuration variables are loaded into the middleware directly via dependency
injection [52–54].

Sensors 2022, 22, 5013 7 of 21

3.1. Proposed Methodology Overview

This middleware is designed for .NET Core developers who want to develop a new
application using PaaS services from the Microsoft Azure, Amazon Web Services, and
Google Cloud platforms. It is also helpful for the developers who have already developed
applications in .NET Core and want to integrate PaaS services into the existing applica-
tion. Our library aims to provide application developers with an easy way to deploy
their applications within different clouds without making any changes or making only
minimal changes to the source code. Application migration becomes problematic when
the developer uses any cloud-specific services, such as message queues, storage services,
email services, etc., in their application. The difficulty arises when they need to migrate
their application to another cloud. Now, either those services are not present in the cloud
to which they are switching, or they have to make significant changes to their source code
to accommodate the migration and functionality of the new cloud services.

We aimed to solve this problem by developing middleware (Figure 1) that supports
various clouds and their services under one hood. The developer needs to specify the
settings in the configuration file and is provided with an API to interact with our mid-
dleware abstraction layer to interact with the cloud services. In contrast, our middleware
handles all the actual interactions with the cloud. The developer will interact with our
middleware layer, and our middleware will further interact with the cloud service. This
results in no changes to the source codes of developers’ applications, and they are free to
move among the cloud platforms (Microsoft Azure, Amazon Web Services, and Google
Cloud Platform). For every PaaS service of each cloud, the main issue for a common
middleware library is that of creating a common configuration that can work for every
cloud PaaS implementation without changing the source code in the middleware library
as well as in the actual application in which the middleware library is going to be used.
We developed the middleware and configuration file in such a way that developers do not
need to change the source code for their applications in case they want to use another PaaS
(supported by our middleware). They need to change the configuration file only and restart
the application, and the application will adapt according to the new configuration file.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 27

Figure 1. Architecture diagram of the proposed middleware.

3.1.1. Application Types Supported
Most legacy apps were developed using the monolithic approach, but nowadays, ap-

plications are produced using the microservices architecture. In a monolithic application,
the complete functionality of a project exists in a single codebase. In contrast, micro-
services are an architectural pattern in which a single application is developed as a suite
of small services. Each of these services runs in its process and communicates with a light-
weight mechanism such as a HyperText Transfer Protocol (HTTP) resource API. Our mid-
dleware supports both the approaches, monolithic and microservices, and thus can be
used for both kinds of applications. Although for the existing applications, some code
changes are required to use our middleware, those are only one-time changes. After in-
corporating the changes, only minimal configuration changes are required if the devel-
oper wants to switch the data storage or other supported services.

3.1.2. The Supported Services
The platform basic services provided by the PaaS platform providers and supported

by our middleware are discussed in this section.

Email Service
Email service in our middleware is created using the classes named “MailMessage”

and “SmtpClient” provided in the .NET Core framework. An email service made using
these classes requires Simple Mail Transfer Protocol (SMTP) server settings in the appli-
cation’s configuration file. The email service has a method named Send() that needs the
object of EmailModel class defined in our middleware. The middleware handles the de-
livery of email using the SMTP settings provided in the application’s configuration file.
Since email service uses SMTP client of .NET Core and not any cloud service, it becomes
cloud-independent. Thus, it mitigates any special migration requirements for the cloud.

Figure 1. Architecture diagram of the proposed middleware.

3.1.1. Application Types Supported

Most legacy apps were developed using the monolithic approach, but nowadays,
applications are produced using the microservices architecture. In a monolithic application,

Sensors 2022, 22, 5013 8 of 21

the complete functionality of a project exists in a single codebase. In contrast, microservices
are an architectural pattern in which a single application is developed as a suite of small
services. Each of these services runs in its process and communicates with a lightweight
mechanism such as a HyperText Transfer Protocol (HTTP) resource API. Our middleware
supports both the approaches, monolithic and microservices, and thus can be used for
both kinds of applications. Although for the existing applications, some code changes are
required to use our middleware, those are only one-time changes. After incorporating the
changes, only minimal configuration changes are required if the developer wants to switch
the data storage or other supported services.

3.1.2. The Supported Services

The platform basic services provided by the PaaS platform providers and supported
by our middleware are discussed in this section.

Email Service

Email service in our middleware is created using the classes named “MailMessage”
and “SmtpClient” provided in the .NET Core framework. An email service made using
these classes requires Simple Mail Transfer Protocol (SMTP) server settings in the appli-
cation’s configuration file. The email service has a method named Send() that needs the
object of EmailModel class defined in our middleware. The middleware handles the de-
livery of email using the SMTP settings provided in the application’s configuration file.
Since email service uses SMTP client of .NET Core and not any cloud service, it becomes
cloud-independent. Thus, it mitigates any special migration requirements for the cloud.

Sensors 2022, 22, x FOR PEER REVIEW 12 of 27

SMS Service
SMS service is configured to use a third-party SMS service known as Webaroo [1]

(now known as GupShup). It provides a uniform resource locator (URL) that is hit to send
an SMS. It requires a phone number, a message, and a GupShup account’s credentials.
The developer is provided with a Send() method that requires a letter and a phone number
to which the SMS will be sent. The credentials are provided in the configuration file. The
service is bound to a single SMS service provider for now but can be enhanced to use with
other SMS service providers. The following code snippet is an excerpt from the implemen-
tation of the SMS service:

SMS Service

SMS service is configured to use a third-party SMS service known as Webaroo [1] (now
known as GupShup). It provides a uniform resource locator (URL) that is hit to send an
SMS. It requires a phone number, a message, and a GupShup account’s credentials. The
developer is provided with a Send() method that requires a letter and a phone number
to which the SMS will be sent. The credentials are provided in the configuration file. The
service is bound to a single SMS service provider for now but can be enhanced to use
with other SMS service providers. The following code snippet is an excerpt from the
implementation of the SMS service:

Sensors 2022, 22, 5013 9 of 21

Sensors 2022, 22, x FOR PEER REVIEW 12 of 27

SMS Service
SMS service is configured to use a third-party SMS service known as Webaroo [1]

(now known as GupShup). It provides a uniform resource locator (URL) that is hit to send
an SMS. It requires a phone number, a message, and a GupShup account’s credentials.
The developer is provided with a Send() method that requires a letter and a phone number
to which the SMS will be sent. The credentials are provided in the configuration file. The
service is bound to a single SMS service provider for now but can be enhanced to use with
other SMS service providers. The following code snippet is an excerpt from the implemen-
tation of the SMS service:

3.1.3. Message Queue

A message queue is used to store messages used by applications to propagate messages
between the presentation and business logic layers. It can be used for sending messages
about tasks and orchestrating their execution. A message queue works in the first in, first
out (FIFO) manner. The developer is provided with the middleware’s Send() and Receive()
methods. The settings in the configuration file decide upon the platform’s message queue
to be used: Azure Service Bus [1], Amazon Simple Queue Service (SQS) [2], or Google
Pub/Sub4. The developer sets the settings in the application’s configuration file and
interacts with the middleware using the abovementioned methods. Our middleware
contains the implementation of the message queue services of all the three clouds and
interacts with the relevant cloud according to the settings in the configuration file. If the
developer changes the scenes from Azure to AWS, they do not have to change any code in
their application. The middleware will detect the change in the configuration file and start
using the message queue service of the new cloud. The developer will pass the message in
the Send() method as shown below:

Sensors 2022, 22, 5013 10 of 21

Sensors 2022, 22, x FOR PEER REVIEW 13 of 27

3.1.3. Message Queue
A message queue is used to store messages used by applications to propagate mes-

sages between the presentation and business logic layers. It can be used for sending mes-
sages about tasks and orchestrating their execution. A message queue works in the first
in, first out (FIFO) manner. The developer is provided with the middleware’s Send() and
Receive() methods. The settings in the configuration file decide upon the platform’s mes-
sage queue to be used: Azure Service Bus [1], Amazon Simple Queue Service (SQS) [2], or
Google Pub/Sub4. The developer sets the settings in the application’s configuration file
and interacts with the middleware using the abovementioned methods. Our middleware
contains the implementation of the message queue services of all the three clouds and
interacts with the relevant cloud according to the settings in the configuration file. If the
developer changes the scenes from Azure to AWS, they do not have to change any code
in their application. The middleware will detect the change in the configuration file and
start using the message queue service of the new cloud. The developer will pass the mes-
sage in the Send() method as shown below:

Similarly, we have also implemented Send () methods for Azure Service Bus and

Google Pub/Sub.

3.1.4. BLOB Storage
A BLOB storage system stores unstructured text and binary data as BLOBs that can

be accessed by an HTTP(S) path. BLOB stands for Binary Large Object. It also provides
security mechanisms to control access to data. Azure provides scalable, cost-effective, geo-
redundant cloud storage, known as Azure Blob storage [1], for users’ unstructured data.
Azure Blob storage handles trillions of stored objects for customers worldwide, with an
average of millions of requests per second. Amazon Simple Storage Service [2] (Amazon

Similarly, we have also implemented Send () methods for Azure Service Bus and
Google Pub/Sub.

3.1.4. BLOB Storage

A BLOB storage system stores unstructured text and binary data as BLOBs that can
be accessed by an HTTP(S) path. BLOB stands for Binary Large Object. It also provides
security mechanisms to control access to data. Azure provides scalable, cost-effective, geo-
redundant cloud storage, known as Azure Blob storage [1], for users’ unstructured data.
Azure Blob storage handles trillions of stored objects for customers worldwide, with an
average of millions of requests per second. Amazon Simple Storage Service [2] (Amazon S3)
is an object storage service offering industry-leading scalability, data availability, security,
geo-redundancy, and performance. This means that customers of all sizes and industries
can use it to store and protect any amount of data for a range of use cases, such as websites,
mobile applications, backup and restore, archive, enterprise applications, IoT devices, and
big data analytics. Google Cloud Storage [3] is object storage for organizations that provide
unlimited storage with no minimum object size, worldwide accessibility with low latency,
and high durability. It also easily provides a transition to lower-cost tiers and storage
classes for any workload. The developer is provided with the CreateFolder(), UploadFile(),
ListFiles(), DownloadFile(), DeleteFile(), and DeleteFolder() methods of the middleware.
These methods help them create/delete folders (Containers in Azure Blob Storage, Buckets
in Amazon S3 and Google Cloud Storage) and upload/download/delete files (Blobs in
Azure Blob Storage, Objects in Amazon S3 and Google Cloud Storage). For example, if the
developer wants to upload a file, they need to call the following method:

Sensors 2022, 22, 5013 11 of 21

Sensors 2022, 22, x FOR PEER REVIEW 14 of 27

S3) is an object storage service offering industry-leading scalability, data availability, se-
curity, geo-redundancy, and performance. This means that customers of all sizes and in-
dustries can use it to store and protect any amount of data for a range of use cases, such
as websites, mobile applications, backup and restore, archive, enterprise applications, IoT
devices, and big data analytics. Google Cloud Storage [3] is object storage for organiza-
tions that provide unlimited storage with no minimum object size, worldwide accessibil-
ity with low latency, and high durability. It also easily provides a transition to lower-cost
tiers and storage classes for any workload. The developer is provided with the Create-
Folder(), UploadFile(), ListFiles(), DownloadFile(), DeleteFile(), and DeleteFolder() meth-
ods of the middleware. These methods help them create/delete folders (Containers in Az-
ure Blob Storage, Buckets in Amazon S3 and Google Cloud Storage) and upload/down-
load/delete files (Blobs in Azure Blob Storage, Objects in Amazon S3 and Google Cloud
Storage). For example, if the developer wants to upload a file, they need to call the follow-
ing method:

Similarly, we have implemented UploadFile() and other methods for Amazon S3 and
Google Cloud Storage.

3.2. Implementation of Message Queue Service in Our Middleware
The developer needs to create an application using the .NET Core framework and

add our middleware as a dependency package. Our middleware provides an interface
named IMessageQueue that provides the developer with the Send() and Receive() meth-
ods. When the user passes a message to the Send() process, our middleware checks the
cloud service used by reading the settings from the configuration file and loads the mes-
sage queue service implementation of that specific cloud.

Similarly, we have implemented UploadFile() and other methods for Amazon S3 and
Google Cloud Storage.

3.2. Implementation of Message Queue Service in Our Middleware

The developer needs to create an application using the .NET Core framework and
add our middleware as a dependency package. Our middleware provides an interface
named IMessageQueue that provides the developer with the Send() and Receive() methods.
When the user passes a message to the Send() process, our middleware checks the cloud
service used by reading the settings from the configuration file and loads the message
queue service implementation of that specific cloud.

Algorithm 1 presents the pseudo-code for the implementation of the message queue service.
Algorithm 2 presents the pseudo-code for the implementation of the BLOB storage service.
Then it sends a message to that specific cloud using the connection settings provided

by the user in the configuration file. Similarly, when the Receive() method is called, the
middleware checks the cloud service being used by the user’s application and loads the
required message service [55,56]. Then it reads all the messages that are present in the
cloud’s message queue and returns to the developer’s business logic layer, where they can
perform their logic on the messages.

3.3. Implementation of Blob Storage Service in Our Middleware

Our middleware provides an interface named IBlobStorage that provides the devel-
oper with UploadFile() and DownloadFile() methods. When the user passes a file to the
UploadFile() method, our middleware checks the cloud service being used by reading the
settings from the configuration file and loads the implementation of the BLOB storage
service of that specific cloud. Then it uploads the file to that particular cloud using the
connection setting provided by the user in the configuration file. Similarly, when the

Sensors 2022, 22, 5013 12 of 21

DownloadFile() method is called, the middleware checks the cloud service being used by
the user’s application and loads the required BLOB storage service. Then it downloads the
file . Class diagram of the proposed methodology can be seen in Figure 2.

Algorithm 1. Pseudo-code for sending and receiving the messages from the message queue service.

//Method called by developer for sending messages
MessageQueueService.Send(messages)

//Implementation in Abstraction layer
If cloud == ‘AWS’

settings = AwsSettings //From configuration file Create AwsMessageClient
AwsMessageClient.Send(messages)

If cloud == ‘Azure’
settings = AzureSettings //From configuration file Create AzureMessageClient

AzureMessageClient.Send(messages)
If cloud == ‘Google’

settings = GoogleSettings //From configuration file Create GoogleMessageClient

GoogleMessageClient.Send(messages)
//Method called by developer for receiving messages
messages = MessageQueueService.Receive(
//Implementation in Abstraction layer
If cloud == ‘AWS’

settings = AwsSettings //From configuration file Create AwsMessageClient
return AwsMessageClient.Receive() //returns messages received from AWS cloud

If cloud == ‘Azure’
settings = AzureSettings //From configuration file Create
AzureMessageClient

return AzureMessageClient.Receive() //returns
messages received from Azure cloud

If cloud == ‘Google’
settings = GoogleSettings //From configuration file Create GoogleMessageClient

return GoogleMessageClient.Receive() //returns
messages received from Google cloud

Algorithm 2. Pseudo-code for uploading and downloading a file to/from the BLOB storage service.

//Method called by developer for uploading file
BlobService.UploadFile(fileName, folderName, localPath)

//Implementation in Abstraction layer
If cloud == ‘AWS’

settings = AwsSettings //From configuration file Create AwsBlobService
AwsBlobService.UploadFile(fileName, folderName, localPath)

If cloud == ‘Azure’

settings = AzureSettings //From configuration file Create AzureBlobService
AzureBlobService.UploadFile(fileName, folderName, localPath)

If cloud == ‘Google’
settings = GoogleSettings //From configuration file Create GoogleBlobService
AwsBlobService.UploadFile(fileName, folderName, localPath)

//Method called by developer for downloading files
File = BlobService.DownloadFile(fileName, folderName, localPath)
//Implementation in Abstraction layer

If cloud == ‘AWS’
settings = AwsSettings //From configuration file Create AwsBlobService
return AwsBlobService.DownloadFile(fileName, folderName, localPath)
//returns messages received from AWS cloud
If cloud == ‘Azure’
settings = AzureSettings //From configuration file Create AzureBlobService
return AzureBlobService.DownloadFile(fileName, folderName, localPath) //returns messages received from Azure cloud

If cloud == ‘Google’
settings = GoogleSettings //From configuration file Create GoogleBlobService

return GoogleBlobService.DownloadFile(fileName, folderName, localPath) //returns messages received from
Google cloud

Sensors 2022, 22, 5013 13 of 21

Sensors 2022, 22, x FOR PEER REVIEW 17 of 27

Figure 2. Class diagram for proposed methodology. Figure 2. Class diagram for proposed methodology.

Sensors 2022, 22, 5013 14 of 21

4. Experimentation and Evaluation

We created two similar prototype applications in the .NET Core framework for the
experimentation. We hosted the applications on Azure App Service. Azure App Service
provides one free hosting with limited computing time. We used the free hosting slot. For
implementing the platform services, one of the applications used the native code of the
supported platform services, and the other application used our proposed middleware. The
latency time was calculated as the time to perform the operations of send/receive messages
by the message queue service, upload/download files in the BLOB storage service, send
an email via the email service, and send an SMS via the SMS of the two applications. The
overhead ∆ is defined as the ratio of the difference between the time taken to perform the
various operations by the middleware and the native APIs and the time taken by the native
APIs of the three clouds. To calculate the overhead percentage, we used the formula given
in Equation (1).

∆ % =
(middleware time – native time)

native time
× 100 (1)

Tables 2 and 3 shows the values of latency (in milliseconds) for the two applications
using different services through the proposed middleware and the native code of various
clouds. Figures 3 and 4 report the graphs of the average performance overhead of these
services. Our middleware performed extra operations compared to the native APIs of
the PaaS services used, which led to a mild increase in the latency of the procedures
performed. However, the overhead incurred by our middleware is justified due to the
following reasons:

• Ease of use for the developer implementing the PaaS services in their application;
• Incorporating various PaaS services into a single middleware.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 27

Figure 3. Performance overhead of BLOB storage service and message queue service.

Figure 4. Performance overheads of email service and SMS service.

The performance overhead graph (Figure 3) shows the average differences in the
times taken in uploading/downloading 100, 500, and 1000 files (1MB each) to/from the
BLOB storage and sending/reading 100, 500, and 1000 messages to/from the message
queue on all the three clouds using native code versus using our proposed middleware.
These average overhead percentages in both the implemented services are minimal except

Figure 3. Performance overhead of BLOB storage service and message queue service.

Sensors 2022, 22, 5013 15 of 21

Table 2. Values of latency times. Values of latency times for BLOB storage and message queue service.

Time Taken For
AZURE

∆(%)
AWS

∆(%)
GOOGLE

∆(%)
Middleware Native Middleware Native Middleware Native

BL
O

B
St

or
ag

e
Se

rv
ic

e

100 files uploaded 251,206 235,784 6.54 134,892 125,673 7.34 412,879 386,791 6.74

500 files uploaded 1,414,289 1,327,463 6.54 759,441 707,538 7.34 2,324,508 2,177,633 6.74

1000 files uploaded 2,745,681 2,577,119 6.54 1,474,369 1,373,605 7.34 4,512,767 4,227,625 6.74

Average Overhead 6.54 Average Overhead 7.34 Average Overhead 6.74

100 files downloaded 60,879 53547 13.69 61,505 57,296 7.35 200,543 189,562 5.79

500 files downloaded 342,748 301,469 13.69 346,273 322,576 7.35 1,129,057 1,067,234 5.79

1000 files downloaded 765,407 585,268 30.78 672,249 626,245 7.35 2,191,934 2,071,912 5.79

Average Overhead 19.38 Average Overhead 7.35 Average Overhead 5.79

M
es

sa
ge

Q
ue

ue
Se

rv
ic

e 100 messages uploaded 13,967 12,846 8.73 10,484 9627 8.90 6135 5683 7.95

500 messages uploaded 62,412 60569 3.04 48,783 44,200 10.37 2500 1995 12.71

1000 messages uploaded 116,025 84406 37.46 110,353 105,223 4.88 3999 3115 28.38

Average Overhead 16.41 Average Overhead 8.05 Average Overhead 16.34

100 messages downloaded 67 43 55.81 1574 1457 8.03 7575 6721 12.71

500 messages downloaded 5 5 0.00 6659 6202 7.37 6721 6439 5.86

1000 messages downloaded 9 7 28.57 18,594 15,925 16.76 6393 5980 6.90

Average Overhead 28.12 Average Overhead 10.72 Average Overhead 8.49

Sensors 2022, 22, 5013 16 of 21

Table 3. Values of the Latency Times for Email and SMS service.

Time Taken For Middleware Native ∆(%)

Email Service

10 emails sent 155,367 136,127 14.13

50 emails sent 808,640 693,836 16.55

100 emails sent 1,560,560 1,415,639 10.24

Average Overhead 13.64

SMS Service

20 SMS sent 6512 5286 23.19

100 SMS sent 37,430 25,540 46.55

200 SMS sent 69,165 53,190 30.03

Average Overhead 33.25
The values of the latency times mainly depended on the user’s network speed, location of the cloud data center,
and configuration of the server where the application was hosted.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 27

Figure 3. Performance overhead of BLOB storage service and message queue service.

Figure 4. Performance overheads of email service and SMS service.

The performance overhead graph (Figure 3) shows the average differences in the
times taken in uploading/downloading 100, 500, and 1000 files (1MB each) to/from the
BLOB storage and sending/reading 100, 500, and 1000 messages to/from the message
queue on all the three clouds using native code versus using our proposed middleware.
These average overhead percentages in both the implemented services are minimal except

Figure 4. Performance overheads of email service and SMS service.

The middleware reads/writes the data in data stored in the native format and converts
the fetched data into C# objects when brought into the code. This conversion of the data
in C# objects leads to the ease of transformation of the data into various supported data
storage formats.

The performance overhead graph (Figure 3) shows the average differences in the times
taken in uploading/downloading 100, 500, and 1000 files (1MB each) to/from the BLOB
storage and sending/reading 100, 500, and 1000 messages to/from the message queue
on all the three clouds using native code versus using our proposed middleware. These
average overhead percentages in both the implemented services are minimal except for the
Azure cloud’s message queue “download” operation, thus proving that our middleware’s
performance is optimal for real-world scenarios. If we consider the fact that the time taken
to perform these operations is in milliseconds, then these times taken by the middleware
and Azure cloud’s native API are extremely small (67, 43, 5, 9, and 7 milliseconds), and
the differences among the values are also minimal. The performance of the middleware is
quite close to that of the native API of the cloud. The efficiency of the BLOB storage service
dramatically depends on the network stability of the user. The more stable the network
is, the more efficient the BLOB storage service will be. For the BLOB storage service, the
middleware’s implementation of the Azure cloud performed the best for the “file upload”

Sensors 2022, 22, 5013 17 of 21

operation. In contrast, Google Cloud performed with the most negligible overhead for the
“file download” process.

A similar comparison is made in Figure 4 for email and SMS service in the sending
of 10, 50, and 100 emails and 20, 100, and 200 SMSs using native code and our proposed
middleware. The values of these overheads are also nominal and acceptable. Other
portability scenarios were also successfully tested using the proposed middleware [43].
These scenarios were deployed with the following configurations (dashed lines show the
previously supported clouds and services; solid lines show the new supported clouds
and services):

Scenario (i): The application is hosted on Azure App Service and uses Azure Service
Bus (message queue) and Azure Blob Storage. Then it is migrated to Amazon Elastic
Beanstalk, and the PaaS services are migrated to Amazon Simple Queue Service (SQS) and
Amazon Simple Storage Service (S3), as shown in Figure 5.

Sensors 2022, 22, x FOR PEER REVIEW 22 of 27

for the Azure cloud’s message queue “download” operation, thus proving that our mid-
dleware’s performance is optimal for real-world scenarios. If we consider the fact that the
time taken to perform these operations is in milliseconds, then these times taken by the
middleware and Azure cloud’s native API are extremely small (67, 43, 5, 9, and 7 millisec-
onds), and the differences among the values are also minimal. The performance of the
middleware is quite close to that of the native API of the cloud. The efficiency of the BLOB
storage service dramatically depends on the network stability of the user. The more stable
the network is, the more efficient the BLOB storage service will be. For the BLOB storage
service, the middleware’s implementation of the Azure cloud performed the best for the
“file upload” operation. In contrast, Google Cloud performed with the most negligible
overhead for the “file download” process.

A similar comparison is made in Figure 4 for email and SMS service in the sending
of 10, 50, and 100 emails and 20, 100, and 200 SMSs using native code and our proposed
middleware. The values of these overheads are also nominal and acceptable. Other port-
ability scenarios were also successfully tested using the proposed middleware [43]. These
scenarios were deployed with the following configurations (dashed lines show the previ-
ously supported clouds and services; solid lines show the new supported clouds and ser-
vices):

Scenario (i): The application is hosted on Azure App Service and uses Azure Service
Bus (message queue) and Azure Blob Storage. Then it is migrated to Amazon Elastic Bean-
stalk, and the PaaS services are migrated to Amazon Simple Queue Service (SQS) and
Amazon Simple Storage Service (S3), as shown in Figure 5.

Figure 5. Cloud-to-cloud scenario.

Scenario (ii): The application is hosted on Azure and remains there. The message
queue service is migrated from Azure Service Bus to Amazon SQS. The BLOB storage
service remains at Azure Blob Storage, as shown in Figure 6.

Figure 5. Cloud-to-cloud scenario.

Scenario (ii): The application is hosted on Azure and remains there. The message
queue service is migrated from Azure Service Bus to Amazon SQS. The BLOB storage
service remains at Azure Blob Storage, as shown in Figure 6.

Sensors 2022, 22, x FOR PEER REVIEW 23 of 27

Figure 6. Multi-cloud scenario.

Scenario (iii): The application is hosted on the local ASP.Net Core server (Kestrel).
Amazon SQS is used for the message queue and Azure Blob Storage is used for the BLOB
storage, as shown in Figure 7.

Figure 7. Hybrid cloud scenario.

5. Conclusions and Future Work
The benefits of using clouds, such as cost savings, improved agility while managing

the computing infrastructure, and the enhanced speed of system realization, lure consum-
ers into migrating their services, data, and applications to a cloud. PaaS is the cloud com-
puting paradigm layer where software developers primarily work on their applications
as operations teams are responsible for infrastructure and hosting (IaaS layer). However,
porting an application developed on one platform to another is not a trivial task. Middle-
ware has been proposed in this paper to provide the developer with the facility to create
a platform-independent cloud application. Microsoft Azure, Amazon Web Services, and
Google Cloud Platform have currently supported cloud platforms. Developers can focus
on their business logic rather than implementing the services for different clouds. Alt-
hough the middleware does add mild latency to the services, it saves developers time by
handling the implementations under the hood of abstraction of the services in the middle-
ware. Our primary performance focus includes BLOB service and message queue service,

Figure 6. Multi-cloud scenario.

Scenario (iii): The application is hosted on the local ASP.Net Core server (Kestrel).
Amazon SQS is used for the message queue and Azure Blob Storage is used for the BLOB
storage, as shown in Figure 7.

Sensors 2022, 22, 5013 18 of 21

Sensors 2022, 22, x FOR PEER REVIEW 23 of 27

Figure 6. Multi-cloud scenario.

Scenario (iii): The application is hosted on the local ASP.Net Core server (Kestrel).
Amazon SQS is used for the message queue and Azure Blob Storage is used for the BLOB
storage, as shown in Figure 7.

Figure 7. Hybrid cloud scenario.

5. Conclusions and Future Work
The benefits of using clouds, such as cost savings, improved agility while managing

the computing infrastructure, and the enhanced speed of system realization, lure consum-
ers into migrating their services, data, and applications to a cloud. PaaS is the cloud com-
puting paradigm layer where software developers primarily work on their applications
as operations teams are responsible for infrastructure and hosting (IaaS layer). However,
porting an application developed on one platform to another is not a trivial task. Middle-
ware has been proposed in this paper to provide the developer with the facility to create
a platform-independent cloud application. Microsoft Azure, Amazon Web Services, and
Google Cloud Platform have currently supported cloud platforms. Developers can focus
on their business logic rather than implementing the services for different clouds. Alt-
hough the middleware does add mild latency to the services, it saves developers time by
handling the implementations under the hood of abstraction of the services in the middle-
ware. Our primary performance focus includes BLOB service and message queue service,

Figure 7. Hybrid cloud scenario.

5. Conclusions and Future Work

The benefits of using clouds, such as cost savings, improved agility while managing
the computing infrastructure, and the enhanced speed of system realization, lure con-
sumers into migrating their services, data, and applications to a cloud. PaaS is the cloud
computing paradigm layer where software developers primarily work on their applications
as operations teams are responsible for infrastructure and hosting (IaaS layer). However,
porting an application developed on one platform to another is not a trivial task. Middle-
ware has been proposed in this paper to provide the developer with the facility to create
a platform-independent cloud application. Microsoft Azure, Amazon Web Services, and
Google Cloud Platform have currently supported cloud platforms. Developers can focus
on their business logic rather than implementing the services for different clouds. Although
the middleware does add mild latency to the services, it saves developers time by handling
the implementations under the hood of abstraction of the services in the middleware. Our
primary performance focus includes BLOB service and message queue service, which are
commonly used cloud platform services. Email service can be implemented using the
email functionality of the .NET Core framework. Every SMS provider has its own API,
so creating a single generic solution is challenging. However, we implemented the SMS
for one provider, i.e., Webaroo. Analysis of the significant work conducted on application
portability was also performed in the study. We will be adding more cloud support (like
Rackspace and IBM) and more PaaS services (such as Key Vault, Authentication, and Event
Grid) so that developers will have more options to migrate. We will be optimizing the
middleware so that its performance becomes as close as possible to that of the native code.
We will also compare our approach with similar frameworks proposed in the literature.

Author Contributions: Conceptualization, S.B. (Salil Bharany), K.K., S.B. (Sumit Badotra), S.R. and
K.; Methodology, S.B. (Salil Bharany), K.K., M.W., J.S. and M.F.I.; Validation, K.K., S.B. (Salil Bharany),
S.B. (Sumit Badotra), S.R., K. and M.W.; Formal Analysis S.B. (Salil Bharany), K.K., S.R., M.W., J.S.
and M.F.I.; Investigation, K.K., S.B. (Salil Bharany), K., S.B. (Sumit Badotra) and S.R.; Resources,
M.W. and M.F.I.; Data Curation, K.K., S.B. (Salil Bharany), S.B. (Sumit Badotra), K. and S.R.; Writing—
Original Draft, K.K., S.B. (Salil Bharany), K., S.B. (Sumit Badotra) and M.W.; Writing—Review Editing,
S.B. (Salil Bharany), K.K., S.R., M.W., J.S. and M.F.I.; Supervision, M.W., J.S. and M.F.I.; Project
Administration, M.W., J.S., M.F.I. and S.R. All authors have read and agreed to the published version
of the manuscript.

Funding: The authors would like to acknowledge the contribution to this research from the Rector of
the Silesian University of Technology, Gliwice, Poland under pro-quality grant no. 09/010/RGJ22/0068.

Institutional Review Board Statement: Not applicable.

Sensors 2022, 22, 5013 19 of 21

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: J.S. would like to thank the Deanship of Scientific Research, Prince Sattam bin
Abdul Aziz University, for supporting this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Kostoska, M.; Gusev, M.; Ristov, S. An overview of cloud portability. In Future Access Enablers of Ubiquitous and Intelligent

Infrastructures, Proceedings of the FABULOUS 2015, Ohrid, Republic of Macedonia, 23–25 September 2015; Springer: Cham, Switzerland,
2015; Volume 159, pp. 248–254. [CrossRef]

2. Petcu, D. Consuming Resources and Services from Multiple Clouds: From Terminology to Cloudware Support. J. Grid Comput.
2014, 12, 321–345. [CrossRef]

3. Kolb, S.; Wirtz, G. Towards Application Portability in Platform as a Service. In Proceedings of the 2014 IEEE 8th International
Symposium on Service Oriented System Engineering, Oxford, UK, 7–11 April 2014; pp. 218–229.

4. Gonidis, F.; Paraskakis, I.; Kourtesis, D. Addressing the Challenge of Application Portability in Cloud Platforms. In Proceedings
of the 7th South-East European Doctoral Student Conference, Thessaloniki, Greece, 24–25 September 2012; pp. 565–576.

5. Bojanova, I. Cloud Interoperability and Portability II; IEEE Computer Society: Washington, DC, USA, 2013.
6. Stravoskoufos, K.; Preventis, A.; Sotiriadis, S.; Petrakis, E.G.M. A Survey on Approaches for Interoperability and Portability

of Cloud Computing Services. In Proceedings of the 4th International Conference on Cloud Computing and Services Science
(CLOSER-2014), Barcelona, Spain, 3–5 April 2014; pp. 112–117.

7. Markoska, E.; Chorbev, I.; Ristov, S.; Gušev, M. Cloud portability standardization overview. In Proceedings of the 2015 38th
International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Opatija,
Croatia, 25–29 May 2015; pp. 286–291.

8. Lewis, G.A. The Role of Standards in Cloud-Computing Interoperability. In Proceedings of the 46th Hawaii International
Conference on System Sciences, Maui, HI, USA, 7–10 January 2012; pp. 1652–1661.

9. Kamateri, E.; Loutas, N.; Zeginis, D.; Ahtes, J.; D’Andria, F.; Bocconi, S.; Gouvas, P.; Ledakis, G.; Ravagli, F.; Lobunets, O.; et al.
Cloud4SOA: A Semantic-Interoperability PaaS Solution for Multi-cloud Platform Management and Portability. In Service-Oriented
and Cloud Computing, Proceedings of the ESOCC 2013, Málaga, Spain, 11–13 September 2013; Springer: Cham, Switzerland, 2013;
pp. 64–78.

10. Singh, P.; Singh, S.; Sohal, M.; Dwivedi, Y.K.; Kahlon, K.S.; Sawhney, R.S. Psychological fear and anxiety caused by COVID-19:
Insights from Twitter analytics. Asian J. Psychiatry 2020, 54, 102280. [CrossRef]

11. Baudoin, C.; Dekel, E.; Edwards, M. Interoperability and Portability for Cloud Computing: A Guide Cloud Stand. Cust. Counc.
2014, 1, 1–20.

12. Gonidis, F.; Simons, A.J.; Paraskakis, I.; Kourtesis, D. Cloud Application Portability: An Initial View. In Proceedings of the 6th
Balkan Conference in Informatics, online, 19 September 2013; pp. 275–282.

13. Guillén, J.; Miranda, J.; Murillo, J.M.; Canal, C. Developing migratable multicloud applications based on MDE and adaptation
techniques. In Proceedings of the Second Nordic Symposium on Cloud Computing & Internet Technologies, online, 2 September
2013; pp. 30–37.

14. Jonnalagedda, M.; Jaeger, M.C.; Hohenstein, U.; Kaefer, G. Application Portability for Public and Private Clouds. In Proceedings
of the 1st International Conference on Cloud Computing and Services Science (CLOSER-2011), Noordwijkerhout, Netherlands,
7–9 May 2011; pp. 484–493.

15. Kaur, K.; Sharma, S.; Kahlon, K.S. Interoperability and Portability Approaches in Inter-Connected Clouds : A Review. ACM
Comput. Surv. 2017, 50, 40. [CrossRef]

16. Kolb, S.; Rock, C. Unified Cloud Application Management. In Proceedings of the 2016 IEEE World Congress on Service
Computing, San Francisco, CA, USA, 27 June 2016–2 July 2016; pp. 1–8.

17. Leymann, F.; Fehling, C.; Mietzner, R.; Nowak, A.; Dustdar, S. Moving applications to the cloud: An approach based on
application model enrichment. Int. J. Cooperative Inf. Syst. 2011, 20, 307–356. [CrossRef]

18. Rafique, A.; Walraven, S.; Lagaisse, B.; Desair, T.; Joosen, W. Towards portability and interoperability support in middleware for
hybrid clouds. In Proceedings of the 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS),
Toronto, ON, Canada, 27 April 2014–2 May 2014; pp. 7–12.

19. Cunha, D.; Neves, P.; Sousa, P. PaaS manager: A platform-as-a-service aggregation framework. Comput. Sci. Inf. Syst. 2014, 11,
1209–1228. [CrossRef]

20. Ranabahu, A.; Sheth, A. Semantics Centric Solutions for Application and Data Portability in Cloud Computing. In Proceedings
of the 2010 IEEE Second International Conference on Cloud Computing Technology and Science, Indianapolis, IN, USA, 30
November–3 December 2010; pp. 234–241.

21. Ranabahu, A.; Maximilien, E.M.; Sheth, A.; Thirunarayan, K. Application Portability in Cloud Computing: An Abstraction-Driven
Perspective. IEEE Trans. Serv. Comput. 2013, 8, 945–957. [CrossRef]

http://doi.org/10.1007/978-3-319-27072-2
http://doi.org/10.1007/s10723-013-9290-3
http://doi.org/10.1016/j.ajp.2020.102280
http://doi.org/10.1145/3092698
http://doi.org/10.1142/S0218843011002250
http://doi.org/10.2298/CSIS130828028C
http://doi.org/10.1109/TSC.2013.25

Sensors 2022, 22, 5013 20 of 21

22. Jiménez-Domingo, E.; Gómez-Berbís, J.M.; Colomo- Palacios, R.; García-Crespo, Á. CARL: A complex applications interoperability
language based on semantic technologies for platform-as-a-service integration and cloud computing. J. Res. Pract. Inf. Technol.
2011, 43, 227–245.

23. Cretella, G.; Di Martino, B. Towards a Semantic Engine for Cloud Applications Development. In Proceedings of the 2012 Sixth
International Conference on Complex, Intelligent, and Software Intensive Systems, Palermo, Italy, 4–6 July 2012; pp. 198–203.

24. Silva, L.A.B.; Costa, C.; Oliveira, J.L. A common API for delivering services over multi-vendor cloud resources. J. Syst. Softw.
2013, 86, 2309–2317. [CrossRef]

25. Cascella, R.G.; Costache, S.; Dudouet, F.; Gaudenzi, F.; Jégou, Y.; Morin, C. Multi-Cloud Portable Application Deployment
with VEP. 2014. Available online: https://www.researchgate.net/publication/281598437_Multi-Cloud_Portable_Application_
Deployment_with_VEP (accessed on 21 May 2022).

26. Petcu, D.; Martino, B.D.; Venticinque, S.; Rak, M.; Máhr, T.; Lopez, G.; Brito, F.; Cossu, R.; Stopar, M.; Šperka, S.; et al. Experiences
in building a mOSAIC of clouds. J. Cloud Comput. Adv. Syst. Appl. 2013, 2, 12. [CrossRef]

27. Vijaya, A.; Neelanarayanan, V. A Model Driven Framework for Portable Cloud Services: Proof of Concept Implementation. Int. J.
Educ. Manag. Eng. 2015, 5, 27–35. [CrossRef]

28. Gonidis, F.; Paraskakis, I.; Simons, A.J.H. A Development Framework Enabling the Design of Service-Based Cloud Applications.
In Proceedings of the In European Conference on Service-Oriented and Cloud Computing, Taormina, Italy, 15–17 September 2015;
Volume 508, pp. 139–152.

29. Da Silva, E.A.N.; da Silva, V.G.; Lucrédio, D.; de Mattos Fortes, R.P. Towards a model-driven approach for promoting cloud PaaS
portability. In Proceedings of the 2013 XXXIX Latin American Computing Conference (CLEI), Caracas (Naiguata), Venezuela,
7–11 October 2013.

30. Beslic, A.; Bendraou, R.; Sopenal, J.; Rigolet, J.Y. Towards a solution avoiding vendor lock-in to enable migration between cloud
platforms. Proceeding of the 2nd International Workshop on Model-Driven Engineering for High Performance and Cloud
computing (MDHPCL 2013), Miami, FL, USA, 29 September 2013; pp. 5–14.

31. Giove, F.; Longoni, D.; Yancheshmeh, M.S.; Ardagna, D.; Di Nitto, E. An Approach for the Development of Portable Applications
on PaaS Clouds. In Proceedings of the 3rd International Conference on Cloud Computing and Services Science (CLOSER 2013),
Aachen, Germany, 8–10 May 2013; pp. 591–601. [CrossRef]

32. Munisso, R.; Chis, A. CloudMapper: A Model-Based Framework for Portability of Cloud Applications Consuming PaaS Services.
In Proceedings of the 2017 25th Euromicro International Conference on Parallel, Distributed and Network-based Processing
(PDP), St. Petersburg, Russia, 6–8 March 2017; pp. 132–139. [CrossRef]

33. Andrikopoulos, V.; Binz, T.; Leymann, F.; Strauch, S. How to adapt applications for the Cloud environment: Challenges and
solutions in migrating applications to the Cloud. Computing 2012, 95, 493–535. [CrossRef]

34. Andročec, D. Application Programming Interfaces (APIs) Based Interoperability of Cloud Computing. Doctoral Dissertation,
University of Zagreb, Zagreb, Croatia, 2015.

35. Cunha, D.; Neves, P.; Sousa, P. Interoperability and portability of cloud service enablers in a PaaS environment. In Proceedings of
the 2nd International Conference on Cloud Computing and Services Science (CLOSER 2012), Porto, Portugal, 18–21 April 2012;
pp. 432–437. [CrossRef]

36. Hamdaqa, M.; Livogiannis, T.; Tahvildari, L. A Reference Model for Developing Cloud Applications. In Proceedings of the 1st
International Conference on Cloud Computing and Services Science (CLOSER), Noordwijkerhout, The Netherlands, 7–9 May
2011; pp. 98–103. [CrossRef]

37. Hossny, E.; Khattab, S.; Omara, F.A.; Hassan, H.A. Towards a standard PaaS implementation API: A generic cloud persistentstorage
API. In Proceedings of the 3rd International IBM Cloud Academy Conference, Budapest, Hungary, 21–23 May 2015.

38. Singh, P.; Sawhney, R.S.; Kahlon, K.S. Sentiment analysis of demonetization of 500 & 1000 rupee banknotes by Indian government.
ICT Express 2018, 4, 124–129.

39. Kaur, K.; Sharma, S.; Kahlon, K.S. A Middleware for Polyglot Persistence and Data Portability of Big Data PaaS Cloud Applications.
CMC-Comput. Mater. Contin. 2020, 65, 1625–1647. [CrossRef]

40. Markoska, E.; Ackovska, N.; Ristov, S.; Gusev, M.; Kostoska, M. Software design patterns to develop an interoperable cloud
environment. In Proceedings of the 2015 23rd Telecommunications Forum Telfor (TELFOR), Belgrade, Serbia, 24–26 November
2015; pp. 986–989. [CrossRef]

41. Polo Sony, I. Inter-Cloud Application Migration and Portability Using Linux Containers for Better Resource Provisioning and
Interoperability. Doctoral Dissertation, National College of Ireland, Dublin, Ireland, 2015.

42. Zhang, W.G.; Berre, A.J.; Roman, D.; Huru, H.A. Migrating Legacy Applications to the Service Cloud. In Proceedings of the
14th Conference Companion on Object Oriented Programming Systems Languages and Applications, Orlando, FL, USA, 25–29
October 2009; pp. 59–67.

43. Bharany, S.; Sharma, S.; Badotra, S.; Khalaf, O.I.; Alotaibi, Y.; Alghamdi, S.; Alassery, F. Energy-Efficient Clustering Scheme for
Flying Ad-Hoc Networks Using an Optimized LEACH Protocol. Energies 2021, 14, 6016. [CrossRef]

44. Talwar, B.; Arora, A.; Bharany, S. An Energy Efficient Agent Aware Proactive Fault Tolerance for Preventing Deterioration of
Virtual Machines Within Cloud Environment. In Proceedings of the 2021 9th International Conference on Reliability, Infocom
Technologies and Optimization (Trends and Future Directions) (ICRITO), Noida, India, 3–4 September 2021; pp. 1–7. [CrossRef]

http://doi.org/10.1016/j.jss.2013.04.037
https://www.researchgate.net/publication/281598437_Multi-Cloud_Portable_Application_Deployment_with_VEP
https://www.researchgate.net/publication/281598437_Multi-Cloud_Portable_Application_Deployment_with_VEP
http://doi.org/10.1186/2192-113X-2-12
http://doi.org/10.5815/ijeme.2015.04.04
http://doi.org/10.5220/0004511605910601
http://doi.org/10.1109/pdp.2017.94
http://doi.org/10.1007/s00607-012-0248-2
http://doi.org/10.5220/0003959204320437
http://doi.org/10.5220/0003393800980103
http://doi.org/10.32604/cmc.2020.011535
http://doi.org/10.1109/telfor.2015.7377630
http://doi.org/10.3390/en14196016
http://doi.org/10.1109/icrito51393.2021.9596453

Sensors 2022, 22, 5013 21 of 21

45. Misra, S. A Step-by-Step Guide for Choosing Project Topics and Writing Research Papers in ICT Related Disciplines. In Information
and Communication Technology and Applications, Proceedings of the ICTA 2020, Minna, Nigeria, 24–27 November 2021; Springer: Cham,
Switzerland, 2021; pp. 727–744. [CrossRef]

46. Rana, N.; Latiff, M.S.A.; Abdulhamid, S.M.; Misra, S. A hybrid whale optimization algorithm with differential evolution
optimization for multi-objective virtual machine scheduling in cloud computing. Eng. Optim. 2021, 1–18. [CrossRef]

47. Olokunde, T.; Misra, S.; Adewumi, A. Quality Model for Evaluating Platform as a Service in Cloud Computing. In International
Conference on Information and Software Technologies, Proceedings of the ICIST 2017, Druskininkai, Lithuania, 12–14 October 2017;
Springer: Cham, Switzerland, 2017; pp. 280–291. [CrossRef]

48. Radanliev, P.; De Roure, D.; Burnap, P.; Santos, O. Epistemological Equation for Analysing Uncontrollable States in Complex
Systems: Quantifying Cyber Risks from the Internet of Things. Rev. Socionetwork Strat. 2021, 15, 381–411. [CrossRef]

49. Radanliev, P.; de Roure, D. Review of Algorithms for Artificial Intelligence on Low Memory Devices. IEEE Access 2021, 9,
109986–109993. [CrossRef]

50. Bharany, S.; Sharma, S.; Bhatia, S.; Rahmani, M.K.I.; Shuaib, M.; Lashari, S.A. Energy Efficient Clustering Protocol for FANETS
Using Moth Flame Optimization. Sustainability 2022, 14, 6159. [CrossRef]

51. Gebrealif, Y.; Mubarkoot, M.; Altmann, J.; Egger, B. AI-Based Container Orchestration for Federated Cloud Environments. In
Proceedings of the 30th International Symposium on High-Performance Parallel and Distributed Computing, online, 25 June 2020.
[CrossRef]

52. Lăcătus, u, M.; Ionita, A.D.; Anton, F.D.; Lăcătus, u, F. Analysis of Complexity and Performance for Automated Deployment of a
Software Environment into the Cloud. Appl. Sci. 2022, 12, 4183. [CrossRef]

53. Tomarchio, O.; Calcaterra, D.; Di Modica, G. Cloud resource orchestration in the multi-cloud landscape: A systematic review of
existing frameworks. J. Cloud Comput. Adv. Syst. Appl. 2020, 9, 1–24. [CrossRef]

54. Bharany, S.; Sharma, S.; Khalaf, O.I.; Abdulsahib, G.M.; Al Humaimeedy, A.S.; Aldhyani, T.H.H.; Maashi, M.; Alkahtani, H. A
Systematic Survey on Energy-Efficient Techniques in Sustainable Cloud Computing. Sustainability 2022, 14, 6256. [CrossRef]

55. Mustafa, S.; Sattar, K.; Shuja, J.; Sarwar, S.; Maqsood, T.; Madani, S.A.; Guizani, S. SLA-Aware Best Fit Decreasing Techniques for
Workload Consolidation in Clouds. IEEE Access 2019, 7, 135256–135267. [CrossRef]

56. Shuja, J.; Mustafa, S.; Ahmad, R.W.; Madani, S.A.; Gani, A.; Khan, M.K. Analysis of Vector Code Offloading Framework in
Heterogeneous Cloud and Edge Architectures. IEEE Access 2017, 5, 24542–24554. [CrossRef]

http://doi.org/10.1007/978-3-030-69143-1_55
http://doi.org/10.1080/0305215X.2021.1969560
http://doi.org/10.1007/978-3-319-67642-5_23
http://doi.org/10.1007/s12626-021-00086-5
http://doi.org/10.1109/ACCESS.2021.3101579
http://doi.org/10.3390/su14106159
http://doi.org/10.1145/3452369.3463818
http://doi.org/10.3390/app12094183
http://doi.org/10.1186/s13677-020-00194-7
http://doi.org/10.3390/su14106256
http://doi.org/10.1109/ACCESS.2019.2941145
http://doi.org/10.1109/ACCESS.2017.2713818

	Introduction
	Background and Related Work
	PaaS Cloud Application Portability Middleware
	Proposed Methodology Overview
	Application Types Supported
	The Supported Services
	Message Queue
	BLOB Storage

	Implementation of Message Queue Service in Our Middleware
	Implementation of Blob Storage Service in Our Middleware

	Experimentation and Evaluation
	Conclusions and Future Work
	References

