
Efficient Minimization of Decomposable Submodular Functions
Peter Stobbe and Andreas Krause

Structures in Optimization

◮ Convexity useful for continuous functions
◮ f (x + θh)− f (x) ≤ θ (f (x + h)− f (x))
◮ Minimization tractable if convex.

◮ Similar Submodular discrete functions:
◮ Domain of f : subsets of finite set E
◮ f (A ∪ B ∪ C)− f (A ∪ B) ≤ f (A ∪ C)− f (A)
◮ Minimization tractable if submodular.

Submodular Minimization Examples

Many important Machine Learning
problems require A∗ ∈ arg minA⊂E f (A)

◮ Maximum A Posteri Inference of Hidden Variables

for Markov Random Field [Kolmogorov et al 2004]

◮ Factorizing random

variables.

[Narasimhan and Bilmes 2004]

◮ Clustering [Narasimhan et al 2005]

Mutual Information is

submodular:

f (A) = I(XA;XE\A)

Algorithms

◮ General case: O∗(n5) function evaluations. [Iwata Orlin 2009]

◮ Min-norm algorithm. Often practical, unknown

complexity. [Fujishige et al]

◮ More efficient special cases:
◮ Pairwise potentials

◮ eg. MAP for Ising model.

◮ Fast mincut algorithms O∗(n2)

◮ Queyranne’s algorithm.
◮ Only symmetric functions f (A) = f (E \ A).
◮ Running time O∗(n3)

◮ Sum of Submodular Functions [Kolmogorov 2010]

◮ Each term in sum must be relatively low-order (function of few

elements).

◮ Our work: Decomposable functions!

Decomposable submodular functions

◮ Definition:

f (A) =
∑

j

φj(w j · eA)

φj concave, w j ≥ 0, and eA[k ] =

{

0 if k /∈ A

1 if k ∈ A
.

◮ Key example - Threshold Potentials:

f (A) = min(y ,w · eA)

◮ All decomposable functions can be expressed as a

modular part plus a sum/integral of threshold

potentials.

Example concave function as a sum of linear plus thresholds

◮ Concave cardinality functions: A strict subclass of

decomposable functions:

f (A) =
∑

j

φj(|Rj ∩ A|)

◮ Higher Order Potentials for MAP inference
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◮ Set cover functions: f (A) = |∪i∈ABi| where

Bi ⊂ F , ∀i ∈ E . Let

wk [i ] =

{

0 k /∈ Bi

1 k ∈ Bi

,

then f (A) =
∑

k∈F min(1,wk · eA).

◮ Example from queuing systems [Itoko 2007]. If u, v ≥ 0, φ
nonincreasing concave

f (A) = (u · eA)φ(v · eA)

Overview of method and contributions

◮ Reformulate as (nonsmooth) convex minimization

problem

◮ Use modern technique of smooth minimization of

nonsmooth functions

◮ Novel stopping criterion

Able to solve problems with 10, 000

variables in a minute.

Convex reformulation

◮ Key Properties of Lovász extension: f̃ : [0, 1]n → R

◮ Convex
◮ Agrees with f at corners: f̃ (eA) = f (A)
◮ A corner is optimal: {eA : A ⊂ E} ∩ arg minx∈[0,1]n f̃ (x) 6= ∅.

◮ Definition, assuming f (∅) = 0.

f̃ (x) = sup
v∈Pf

v · x .

Pf = {v ∈ R
n : v · eA ≤ f (A), for all A ∈ 2E}.

Pf is Submodular polyhedron associated with f .

Example Pf with E = {1, 2}.

f̃ (e{1,2}) = supv∈Pf
v · e{1,2} = 0 = f ({1, 2})

General 2-D formula:

f̃ (x1, x2) = a|x1 − x2| +
bx1 + cx2 with a ≥ 0.
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General Lovász Extension Properties

◮ Piecewise linear.

◮ Nonsmooth at points with equal components. (eg.

all corners)

◮ Defined by LP with exponentially many constraints.

◮ Computable in O∗(n) time: Sort x components.

Choose σ: x [σ(1)] ≥ . . . ≥ x [σ(n)]. Let

Sk = {σ(1), . . . , σ(k)}.

f̃ (x) =

n
∑

k=1

x [σ(k)](f (Sk)− f (Sk−1)).

◮ Can compute extension and also a subgradient in

linear time:

∂ f̃ (x) ∋
n

∑

k=1

eσ(k)(f (Sk)− f (Sk−1)).

◮ Can use projected subgradient descent, but slow

convergence O
(

1
ǫ2

)

iterations to achieve ε accuracy.

Impractical.

Smooth Minimization of Nonsmooth

Functions

◮ Groundbreaking work by Nesterov [2004]

◮ Solves nonsmooth problems in O
(

1
ε

)

iterations

◮ Each iteration neglibly more work than gradient

descent

◮ Not black-box solver; requires problem to have

exploitable structure (often true)

◮ Example: h(x) = supy∈C x · y . If C easy to project

onto, then h can be smoothed and an accelerated

gradient descent scheme can be applied.

Smoothed Lovász Extension

f̃ µ(x) = max
v∈Pf

v ·x−
µ

2
‖v‖2.

Computing General

Smoothed Lovász

Gradient ↔
Submodular

Minimization Problem.

[Bach 2010] (Just as hard as

orginal problem.)
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2-D Example

Key Insight: Smoothed Lovász Gradient for a

decomposable function is easily computed!

Computation of Smoothed Gradient

◮ Since all decomposable functions will be linear

combinations of threshold potentials, here assume

f (A) = min(w · eA, y)

◮ For x in unit cube:

f̃ (x) = max
0≤v≤w , v ·1=y

v · x

◮ Smoothed gradient:

∇f̃ µ(x) = arg min
0≤v≤w , v ·1=y

‖v − x/µ‖

= min(max((x − t∗1)/µ, 0),w).

With t∗ chosen so ∇f̃ µ(x) · 1 = y

Find root of monotonic

continuous piecewise

linear function. No

explicit closed form

expression, but simple

to compute.
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Smoothed Lovász Gradient (SLG)

Algorithm

◮ Input: Accuracy ε; decomposable function

f (A) = c · eA +
∑

j dj min(w j · eA, yj).

◮ D =
∑

j dj‖w j‖∞, µ = ε
2D

, L = D
µ , x−1 = z−1 = 1

2
1

◮ For t = 0, 1, 2, . . .
◮ gt = ∇f̃ µ(x t−1)/L

◮ z t = P[0,1]n

(

z−1 −
∑t

s=0

(

s+1
2

)

gs

)

◮ y t = P[0,1]n(x t − gt)
◮ If gapt ≤ ε/2 stop.
◮ x t = (2z t + (t + 1)y t)/(t + 3)

◮ xε = y t

◮ Output: ε-optimal xε to minx∈[0,1]n f̃ (x)

Theorem

SLG is guaranteed to provide an ε-optimal solution

after running for O(D
ε ) iterations.

Given ε-optimal xε ∈ [0, 1]n, can round to find

corresponding ε-optimal set:

◮ Input: x ∈ [0, 1]n; submodular function f (A).

◮ Choose σ: x [σ(1)] ≥ . . . ≥ x [σ(n)].

◮ Sk = {σ(1), . . . , σ(k)}.

◮ k∗ = arg mink f (Sk), A = Sk∗

◮ Output: Set A satisfying f (A) ≤ f̃ (x)

Early Stopping

◮ By rounding, may find optimal set before continous

convergence.

◮ Use g ∈ ∂ f̃ (eA) to bound optimality gap of A:

f (A)− f ∗ ≤
∑

k∈A

max(0,g[k ]) +
∑

k∈E\A

max(0,−g[k ])

◮ If g[k ] ≤ 0 for k ∈ A and g[k ] ≥ 0 for k ∈ E \ A, then

A is optimal!

◮ Choose g ∈ ∂ f̃ (eA) from smoothed gradient

Lemma

mink∈A,l∈E\A x [k ]− x [l ] ≥ 2µ ⇒ ∇f̃ µ(x) ∈ ∂ f̃ (eA)

Example 2-D negative gradients:
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Synthetic Results Comparision
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Comparision of running times with general submodular minimization algorithms.

Segmentation Results

Textonboost classification, regularized with

submodular potential functions:

Original

Pairwise Potentials

Ground Truth

H. O. Potentials

No Potentials

Final x iterate.

Original

Pairwise Potentials

Ground Truth

H. O. Potentials

No Potentials

Final x iterate.

Minimization of H. O. Potentials takes 70 sec. with

SLG algorithm vs. 2 hrs. for min-norm.

Conclusions

◮ A new class of submodular functions that can be

efficiently minimized

◮ Apply Nesterov smoothing technique to Lovász

extension

◮ Novel way to stop early

◮ Can solve larger-scale problems than previously

possible
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