
Efficient Minimum-Cost Network Hardening
Via Exploit Dependency Graphs

Steven Noel, Sushil Jajodia, Brian O’Berry, Michael Jacobs
Center for Secure Information Systems, George Mason University

{snoel, jajodia, boberry, mjacobs1}@gmu.edu

Abstract

In-depth analysis of network security vulnerability
must consider attacker exploits not just in isolation, but
also in combination. The general approach to this
problem is to compute attack paths (combinations of
exploits), from which one can decide whether a given set
of network hardening measures guarantees the safety of
given critical resources. We go beyond attack paths to
compute actual sets of hardening measures (assignments
of initial network conditions) that guarantee the safety of
given critical resources. Moreover, for given costs
associated with individual hardening measures, we
compute assignments that minimize overall cost. By
doing our minimization at the level of initial conditions
rather than exploits, we resolve hardening irrelevancies
and redundancies in a way that cannot be done through
previously proposed exploit-level approaches. Also, we
use an efficient exploit-dependency representation based
on monotonic logic that has polynomial complexity, as
opposed to many previous attack graph representations
having exponential complexity.

1. Introduction

In the analysis of network vulnerability to attack,
considering vulnerabilities in isolation is insufficient.
This is because attackers often combine exploits against
multiple vulnerabilities in order to reach their goals.
While a single vulnerability may not pose a significant
threat to a network, a combination of vulnerabilities may.
Thus even well administered networks can be vulnerable
to attacks, because of the security ramifications of
offering a variety of combined services.

An approach to this problem is to build a model of
global network security, e.g., as a state machine with
security conditions as variables and attacker exploits as
transitions. Various methods have been proposed for
finding attack paths (sequences of exploit state
transitions) in such models, including symbolic model
checker (logic-based) approaches [1][2][3][4], and graph-
based approaches [5][6][7][8][9]. However, such
methods generally have serious scalability problems,

since they must contend with the exponential complexity
of the full security state search space.

More recently [10][11], it has been recognized that
under an assumption of monotonic logic, it is not
necessary to represent attack paths (usually organized as
graphs) explicitly. Instead, the dependencies among
exploits and security conditions encode the same
information provided by attack graphs. Monotonic logic
leads to an efficient (low-order polynomial) exploit
dependency graph representation that scales well.
Semantically, monotonic logic simply means that the
attacker need not relinquish resources already gained in
order to further advance the attack. This is a valid
modeling decision, corresponding to the observation that
the control that attackers exert over networks effectively
increases monotonically over time.

Attack graphs (and even exploit dependency graphs)
show sequences of exploits, which may be useful for
applications that focus on the attacks themselves. But
network administrators usually don’t care about exploit
sequences – they just want to know the best way to
harden their network. What is needed is an explicit and
manageable set of network hardening options that provide
a guarantee for the safety of given network resources.

In this paper, we go beyond attack paths and exploit
dependency graphs to compute actual network hardening
options. In addition to guaranteeing safety, these
hardening options incur minimal overall cost, assuming
relative costs have been given for individual hardening
measures. Previous approaches have addressed this
problem by computing minimal critical sets of exploits
[3][4][10]. But such approaches ignore the generally
complex relationships among exploits and elements of the
network configuration. Our approach works directly with
configuration elements, resolving hardening irrelevancies
and redundancies in a way that cannot be done through
exploit-level approaches.

While the possible number of hardening options can
be large, we greatly reduce the number of choices by
selecting only those with minimal impact on the network.
In particular, a “minimal” safe network configuration, in
which a given set of components are hardened, allows us
to ignore all other configurations in which supersets of
these same components are hardened.

These minimal-impact configurations lead directly to
minimum-cost hardening options. That is, the only costs
incurred are those associated with hardened network
components, and our minimal-impact configurations
correspond to fewer numbers of such components. Given
that the network administrator assigns relative costs for
individual hardening measures, we select the
configuration with the lowest total cost.

As we describe in subsequent sections, we use an
efficient exploit dependency graph representation in
computing network hardening measures. In building the
exploit dependency graph, we resolve cycles and other
redundancies via the graph distance from initial
conditions, as consistent with monotonic logic.

From the exploit dependency graph, we compute an
expression of the safety of given network resources, in
terms of possible assignments of initial network
conditions. We then compute minimal-impact network
configurations via the minimal elements of the
conjunctive-normal-form partial ordering. From these
minimal-impact configurations, we then find the
configuration with minimum total cost.

2. Problem

We consider the problem of computing minimum-
cost hardening measures that guarantee network safety.
In this problem, we model the presence of a network
security condition as a Boolean variable. For example, if
some condition represents a vulnerable version of a
software component on a particular machine, the
condition being true means the component is present and
the condition being false means it is not present. Under
the assumption of monotonicity, a condition may go from
false to true, but may not go from true to false. That is,
once a condition contributes to the success of an exploit
(or overall attack), it will continue to do so.

Next, we model the success of an attacker exploit as a
Boolean function of some set of conditions. While it is
possible for such an exploit to take on a general Boolean
form, for simplicity we constrain it to a conjunction
(Boolean ANDs). There is no loss of generality here,
since if an exploit requires disjunction (e.g. more than one
version of a vulnerable program), we simply divide the
disjunctive portions into separate (conjunctive) exploits
and consider them separately.

The success of an exploit then causes another set of
conditions to become true. In other words, an exploit is a
mapping from its preconditions to its postconditions, such
that if all its preconditions are true then all its
postconditions become true.

Given a network-attack model, the next step is to
determine how the application of exploits impacts
network vulnerability. As described in Section 1,
previous work in this area has generally focused on

generating attack paths that lead to compromise of a given
critical resource. That is, some set of conditions is
designated as the goal of the attack. Distinct sequences of
exploits (attack paths) are then generated such that each
sequence leads to the attack goal becoming true.

The general idea is that one could use attack paths
(arranged as a graph) to determine network-hardening
measures. However, such attack graph representations
have high complexity, so that this approach does not scale
well.

In this paper, we go beyond attack graphs, computing
sets of network hardening measures via efficient exploit
dependency graphs. That is, given a set of initial
conditions, we wish to compute assignments of those
conditions that guarantee the safety of a set of attack goal
conditions. Moreover, we wish to compute hardening
measure assignments that have minimum cost,
corresponding to minimizing assignments of false to
initial conditions, i.e., minimizing the number of
hardening measures to be taken.

Here it is important to distinguish between two types
of network security conditions. One type of condition
appears as an exploit precondition only. The only way
that such conditions can be true is if they are true initially,
since they are postconditions of no exploit. These initial
conditions are precisely the ones we must consider for
network hardening measures.

The other type of condition appears as both exploit
preconditions and postconditions. We cannot consider
such conditions for network hardening, since they are not
under our strict control, i.e. attacker exploits can
potentially make them true despite our hardening
measures.

In computing minimal-impact hardening sets, one set
can be chosen over another if all its assignments of false
also appear in the other set. This is true because the
selected set represents a safe assignment with fewer
hardened network components. By retaining only these
minimal-impact hardening sets, we minimize hardening
cost and greatly reduce the number of sets to consider.

If the network administrator has no a priori way to
assign individual hardening costs, we could simply
compute all possible minimal-impact sets. Armed with
all possible sets, the administrator could then select the
best one. If we further assume that individual hardening
costs are equal, we could reduce the set of all possible
minimal-impact assignments to a single best minimal-
impact assignment. This assignment would thus be the
one with the fewest hardening measures, i.e., the one with
the fewest assignments of false initial conditions.

We can also consider the more realistic scenario that
different hardening measures incur different costs
(although it is not always trivial to assign such costs).
Assuming that costs are independent and combine
linearly, the overall cost of a particular hardening

assignment is just the sum of the costs of the individual
hardening measures taken. In this way, from among all
minimal-impact hardening sets, we choose the single set
whose total cost is lowest.

3. Approach

We begin with a set of exploits in terms of security
conditions. We then build a directed graph of the
dependencies among exploits and conditions, via exploit
preconditions and postconditions.

We build the dependency graph through a multi-step
process, implemented through a custom Java application.
We first build a dependency graph starting from an
“initial conditions” exploit, i.e., an exploit with the initial
network conditions as its postconditions (and null
preconditions). The resulting graph represents forward
dependencies from the initial conditions.

In building the forward-reachable dependency graph,
we resolve cycles through the graph distances (number of
vertices in shortest path) that given conditions are from
the initial conditions. That is, preference is given to
dependency edges that are closer to the initial conditions.
Because such a resolved dependency graph is sufficiently
well behaved, we can use it to construct a closed-form
expression for the attack goal in terms of the initial
conditions.

Actually, the resolution of cycles is part of a more
general resolution of postcondition redundancies. That is,
there is no reason to cycle among exploits if their
postconditions remain true after an initial exploit
execution, neither is there reason to execute exploits
whose postconditions have already been met. Cycles and
other redundancies are common in real networks, and are
violations of monotonicity that must be resolved. Indeed,
in the real world, attackers themselves would avoid such
redundancies.

Next we do a backward traversal of the forward-
reachable dependency graph, starting from the “attack
goal” exploit, i.e., an exploit with the attack goal(s) as its
preconditions (and null postconditions). The resulting
dependency graph includes exploits that are not only
reachable from the initial conditions, but are also relevant
to (i.e. backward reachable from) the attack goal. In fact,
this dependency comprises the necessary and sufficient
set of exploits with respect to the initial and goal
conditions, i.e., all exploits can actually be executed, and
all exploits contribute to the attack goal. This represents
the set of minimal attack paths, in which no exploit can be
removed without impacting the overall attack.

Given an exploit dependency graph, we then
construct an expression for the goal conditions in terms of
the initial conditions. This involves the recursive
algebraic substitution of dependency terms in a backward
direction, starting from the goal-condition exploit. That

is, we start from the goal exploit, and algebraically
substitute it with the conjunction of its preconditions.

We then substitute each of the goal-condition
preconditions with the exploit that yields it as a
postcondition, since these are logically equivalent. In the
event that more than one exploit yields this postcondition,
we form the disjunction of all such exploits, since
logically any one of them could provide the postcondition
independent of the others.

We continue in a recursive fashion, substituting the
newly generated exploit expressions in exactly the same
way we treated the goal-condition exploit expression. In
doing this recursive algebraic substitution, we make direct
use of the exploit dependency graph by traversing it
breadth-first. Recursion must end when the initial-
condition exploit is encountered. It is precisely at this
point that an initial condition has been added to the
expression. Once the dependency graph has been fully
traversed, the result is an expression for the safety of the
attack goal in terms of the initial conditions.

The resulting expression for the attack goal allows us
to decide if the goal is safe for a particular assignment of
initial conditions. But we are concerned about the
assignment version of this problem, i.e., actually finding
sets of initial conditions that guarantee safety. This is
much more useful from the standpoint of network
vulnerability analysis, since it provides explicit sets of
safe network configurations.

To solve the assignment problem, we rely on
properties of the conjunctive normal form [12]. The
canonical conjunctive normal form yields the attack goal
written as a uniquely determined conjunction of
maxterms, where each maxterm is a disjunction that
contains all initial conditions.

Each maxterm corresponds to an assignment of initial
conditions such that the attack goal is safe. In particular,
if each non-negated initial condition in a maxterm is false,
the attack goal is false (safe), independent of any other
maxterm. The set of all maxterms thus represents all
possible safe assignments.

To minimize hardening costs, we choose assignments
with minimal hardening measures. More formally, we
choose one maxterm over another if all of its non-negated
conditions also appear non-negated in the other. In other
words, we choose one maxterm over another if the non-
negated conditions in the first are a (proper) subset of the
non-negated conditions in the second.

Not all maxterms can be ordered according to this
property, i.e., one maxterm’s non-negated conditions may
not be a subset of another’s, so this is a partial order. In
terms of this partial ordering of maxterms, we then choose
minimal maxterms, i.e. those that are greater than no other
maxterm. We choose these precisely because they
correspond to minimal hardening measures.

While the total number of maxterms can potentially
grow exponentially with the number of initial conditions,
choosing only minimal-impact maxterms drastically
reduces the number of sets to consider. Actually, the
number of maxterms is critically dependent on the exact
form of the attack goal expression. At one extreme, for a
purely conjunctive expression, there is only one maxterm.
At the other extreme, for a purely disjunctive expression
with n initial conditions, there are 12 −n maxterms. But
in general, there can be large numbers of maxterms, so it
is crucial to reduce them in the way we describe.

If there are no known criteria for assigning individual
hardening costs, we can simply stop after computing the
full set of minimal-impact hardening options. The
network administrator can then compare the various
options and select the one that offers the best combination
of offered services. We could go further by assuming that
all hardening measures are equally costly. From this, we
could simply choose the minimal-impact maxterm with
the smallest number of unprimed (non-negated) terms.

However, we go even further in trying to capture the
least costly set of hardening measures. In particular, the
network administrator could assign costs to individual
hardening measures. We then assume that the overall cost
of a set of hardening measures can be accurately modeled
as the sum of the individual costs. Thus we write the total
cost ()imp of maxterm im as

() ∑=
j

i
j

i
ji awmp ,

with i
ja being a primed (negated) initial condition within

maxterm im with cost i
jw . We then select the maxterm

with the smallest total cost as the single best choice for
network hardening.

4. Examples

In this section, we provide some example
applications of our approach. We first work through a
small example that has been described in previous work,
which demonstrates each aspect of our approach. We
then consider a slightly more elaborate example that
underscores how our approach yields concise sets of
hardening measures with minimal cost (e.g., minimal
impact on network service availability), eliminating
irrelevant security conditions in a way not possible
through previous exploit-level approaches.

In the first example, the attacker’s machine is
denoted machine 0, and the two victim machines are
denoted 1 and 2, respectively. The details of the attack
scenario (such as network topology, available services,
operating systems, etc.) are not needed here, although the
interested reader can refer to [3] and [10] for such details.
For the purpose of describing our approach, all that is

really needed is the exploit dependency graph as
described in the previous section.

Figure 1 shows the full attack dependency graph for
this example, before applying the analysis described in
the previous section. In the figure, exploits appear as
ovals, and conditions appear as plain text (except the goal
condition, which is marked with a triple octagon).
Numbers in parenthesis identify associated machines. For
example, root(2) denotes root privilege on machine 2, and
rsh(2,1) denotes the execution of the rsh exploit from
machine 2 to machine 1.

Figure 1: Exploit dependency graph for first

example.

In comparison to the original examples in [3] and
[10], one may notice that some exploit preconditions are
missing. This is because we make some modeling
changes to eliminate redundancy, which in turn reduces
model complexity. For example, without loss of
generality, we model the combination of transport-layer
ftp connectivity, physical-layer connectivity, and the
existence of the ftp daemon as simply transport-layer ftp
connectivity (see [13] for details). Similarly, we model
the combination of application-layer trust and physical-
layer connectivity as simply application-layer trust. Also,
we represent the privilege level of “none” implicitly, i.e.
as the absence of a defined level.

The dependency graph in Figure 1 shows all exploits
that can possibly be executed1. In the analysis of

1 Note that Figure 1 omits exploits in which the attacker’s own machine
is the victim. That is, no exploits need be launched against the attacker’s

hardening measures, we first remove initial condition
user(0) from the graph, since this is the attacker’s initial
privilege on his own machine, which the network
administrator cannot control. The forward analysis pass
(described in the previous section) then detects 2 cycles:

1. user(1)→ rsh(1,2)→ user(2)→
ftp_rhosts(2,1) → trust(1,2) → rsh(2,1)
→ user(1)

2. user(1) → rsh(1,2) → user(2)
→ sshd_bof(2,1) → user(1)

The postconditions user(1) of rsh(2,1) and user(1) of
sshd_bof(2,1) are removed from the graph, since they
have the highest graph distances within their respective
cycles.

In the subsequent backward phase of analysis, the
condition root(1) and the exploit local_bof(1) are
removed from the graph, since they are not backward-
reachable from the goal (i.e., they are a “dead end” in
terms of the attack). Also, exploit sshd_bof(2,1) is
removed in the backward pass since its remaining
postcondition user(1) was removed in the forward pass
because of a cycle. Similarly, exploits ftp_rhosts(2,1) and
rsh(2,1) are removed in the backward pass because of the
pruning of postcondition user(1) of exploit rsh(2,1) in the
forward pass.

Figure 2 shows the exploit dependency graph
resulting from the forward and backward analysis phases.
As a comparison, note that the attack graph in [3] for this
same example is considerably more complex (25 vertices
and 43 edges), even though it uses an ordered binary
decision diagram as a way to make the graph more
compact. This is evidence in support of our position that
exploit dependency graphs scale much better than
traditional attack graphs. The reason is that the space of
exploit dependencies (low-order polynomial) is much less
complex than the space of security states (exponential).

For this example, we now construct an expression for
the goal condition g in terms of the initial conditions, via
traversal of the exploit dependency graph:

() () ()
() () ()

() () () ()
() () () ()[]
() () ()
() ()

qsqrp
sshdcftpc

ftpcftpcftpc
bofsshdrshftpcftpc

useruserftpcftpc
userrhostsftprhostsftp

rshrshrootg

++≡
⋅

+⋅+=
+⋅+=

⋅⋅+=
⋅+=

+==

1,0_2,1_
1,0_2,1_2,0_

1,0_1,02,1_2,0_
112,1_2,0_

12,1_2,0_
2,12,02

own machine, since all attacker capabilities can simply be modeled as
initial conditions. The figure also omits the initial-condition and goal-
condition exploits described in the previous section, which are
algorithmically convenient but have little value for attack graph
visualization.

s

r

p q

g

s

r

p q

s

r

p q

g

Figure 2: Resolved exploit dependency graph
for first example.

Here, the plus symbol denotes disjunction (Boolean OR)
and the dot symbol denotes conjunction (Boolean AND).
Also, for notational simplicity we rename the initial
conditions as p ≡ ftp(0,2), q ≡ ftp(1,2), r≡ ftp(0,1),
s ≡ sshd(0,1), and the goal condition as g ≡ root(2).

Given the expression qsqrpg ++= for the attack
goal in terms of initial conditions, we then convert g to
canonical conjunctive normal form. This yields the attack
goal as a conjunction of maxterms, each maxterm
representing a safe assignment of initial conditions. That
is, the set of maxterms represents all possible safe
assignments. For network hardening, each non-negated
initial condition in a maxterm must be assigned false to
provide safety.

Thus for the first example we have

() () ()
() ()srqpsrqp

srqpsrqpsrqp
qsqrpg

++′+⋅′+′++
⋅+′++⋅′+++⋅+++=

++=

Here the prime symbol denotes negation (Boolean NOT).
In principle, we could then harden the network by
selecting one of the maxterms, and take hardening

measures that eliminate the vulnerability associated with
each unprimed initial condition.

However, it is apparent that among the maxterms, not
all are equally desirable. Generally speaking, there is
some cost associated with each network hardening
measure. We therefore seek maxterms that have minimal
impact on the network (involve fewer hardening
measures), which corresponds to minimizing unprimed
initial conditions.

Thus, between a pair of maxterms, we choose one
over another if all of the unprimed conditions in one also
appear unprimed in the other. We can partially order
maxterms in this fashion. Figure 3 shows the partial order
of maxterms for this example.

()srqp ′+′++

()srqp ++′+ ()srqp ′+++

()srqp +++

()srqp +′++

()srqp ′+′++

()srqp ++′+ ()srqp ′+++

()srqp +++

()srqp +′++

Figure 3: Partial order of maxterms for minimal-
impact hardening measures (for first example).

For minimal-impact network hardening, we select the
minimal maxterms in the partial order, i.e. those that have
no maxterm below them. For this example, we select the
2 maxterms ()srqp ′+′++ and ()srqp ++′+ . These 2
maxterms correspond to 2 minimal-impact hardening
options:

1. Harden ftp(0,2) and ftp(1,2), or
2. Harden ftp(0,2), ftp(0,2), and sshd(0,1)

The remaining maxterms, while still providing safety,
have a greater impact on the network in terms of
hardening measures.

In choosing among hardening options, our approach
is for the network administrator to assign a cost to each
individual hardening measure (initial condition). We then
select the maxterm with the lowest total cost, where we
sum only the costs for non-negated (unprimed) initial
conditions.

In this example, since ftp(0,2) occurs unprimed in
both maxterms, we can disregard it in comparing total
costs. We must therefore compare the cost of hardening
ftp(1,2) (Option 1) to the combined cost of hardening
ftp(0,1) and sshd(0,1) (Option 2).

Since sshd represents a version of secure shell
vulnerable to a buffer overflow attack, we might assume
that its hardening cost is relatively low, e.g., installing a
vendor patch. On the other hand, ftp represents the
existence of a properly functioning ftp service, which is

simply used by the attacker in a clever way. Thus the
only way to harden this “vulnerability” is to block the
service between the respective machines. In this case, the
hardening cost is relatively high, i.e., the lack of service
availability. So overall, the choice is dominated by the
relative importance of offering the ftp service from
machine 1 to machine 2 (Option 1) versus offering it from
machine 0 to machine 1 (Option 2), perhaps with a slight
bias toward Option 1, since Option 2 includes the low-
cost patch to sshd.

We now consider a slightly more elaborate example
of our approach, e.g., with attacks at multiple layers of the
TCP/IP stack. While the purpose of the first example was
to show each step of the process, this example focuses on
the resulting hardening measures and how a complicated
set of exploits can be resolved to a simple set of
hardening measures. Through this example we also
explain how previously proposed exploit set minimization
approaches [3][4][10] are insufficient for network
hardening, providing additional motivation for our
approach.

Ethernet
switch

attack

bart

NIS client

ssh (password auth)
homer:/home autofs

homer

NIS server

ssh (RSA key auth)
/home nfs export to bart

/home/root/.ssh for RSA keys

Ethernet
switch

attack

bart

NIS client

ssh (password auth)
homer:/home autofs

homer

NIS server

ssh (RSA key auth)
/home nfs export to bart

/home/root/.ssh for RSA keys

Figure 4: Network for second example.

Figure 4 shows the network for the second example.
An Ethernet switch provides connectivity at the link layer.
At the transport layer, unused services have been
removed, secure shell replaces FTP, telnet and other
cleartext password-based services, and there is
tcpwrapper protection on RPC services. Application-
layer trust relationships further restrict NFS and NIS
domain access. The exploits and security conditions for
this example are described in Table 1 and Table 2.

Table 1: Exploits for second example

Exploit Description

arp_spoof Spoof (impersonate) machine identity
via ARP poison attack

ypcat_passwd Dump encrypted NIS password file

crack_passwd Crack encrypted user password(s)

scp_upload_pw Secure shell copy, upload direction,
using password authentication

Exploit Description

scp_download_pw Secure shell copy, download direction,
using password authentication

ssh_login_pw Secure shell login using password
authentication

rh62_glibc_bof Red Hat 6.2 buffer overflow in glibc
library

create_nfs_home_ss
h_pk_su

Exploit NFS home share to create
secure shell key pair used for superuser
authentication

ssh_login_pk_su Secure shell login using public key
authentication

Table 2: Security conditions for second example

Exploit Description

link_arp Attacker shares link-level connectivity
with victim (both on same LAN)

trans_yp Transport layer connectivity to NIS server

trans_ssh_pw Transport layer connectivity to secure shell
server that supports password
authentication

trans_ssh_pk Transport layer connectivity to secure shell
server that supports public key
authentication

trans_nfs Transport layer connectivity to NFS server

app_nfs_home_su Application “connection” representing
sharing superuser’s home directory

app_yp_domain Application “connection” representing NIS
domain membership

app_yp_passwd Application “connection” representing
acquisition of encrypted NIS password
database

app_pwauth Application “connection” representing
acquisition of unencrypted user password

app_ssh_pk_su Application “connection” representing
acquisition/creation of key pair used for
superuser authentication

pgm_glibc_bof Program used to exploit glibc library
buffer overflow vulnerability

execute Execute access obtained

superuser Superuser privilege obtained

Figure 5 shows the resulting exploit dependency

graph. In this graph, we have removed initial conditions
that the network administrator cannot control, and applied
the forward and backward graph analysis passes, as
described in the previous section.

As before, we traverse the exploit dependency graph
to construct an expression for the attack goal g (execute

access and superuser privilege on machine homer) in
terms of the initial conditions:

() () ()
αβχφγη

ηαβχφγαβχδεαβχ
=

⋅⋅⋅+=g

The exploit dependency graph has been reduced to an
expression that leads to simple choices for network
hardening. Note here that 2 initial conditions in the
dependency graph do not appear in the expression for
goal g :

1. ()attackbartpwsshtrans ,__≡δ , and
2. ()attackbartpwauthapp ,_≡ε .

These drop out in this fashion:

()
()

αβχ
δεαβχ

αβχδεαβχ
+=

+=
1

,__62 bartbartbofglibcrh

Through our approach, such irrelevant conditions as δ
and ε do not get considered for network hardening.
That is, the goal expression contains the necessary and
sufficient set of initial conditions needed for network
hardening decisions.

This kind of sufficiency is not present in previously
proposed approaches to network hardening via proposed
exploit set minimization [3][4][10]. These approaches
search for minimal sets of (generic) exploits, where a
minimal set is one in which every exploit is needed in
reaching the goal.

In this example, there are 2 such minimal sets of
exploits:

1. The set of all exploits except
scp_upload_pw(attack,bart), and

2. The set of all exploits except
scp_download_pw(bart, attack)

For network hardening using these minimal exploit sets,
given no other information, one must assume that all
exploits in the union of the minimal exploit sets must be
stopped. In this example, one would conclude that the
exploit scp_download_pw(bart,attack) must be stopped
(via either δ or ε false in the initial conditions), even
though stopping it has no effect on the attacker reaching
the goal. Indeed, one could imagine that this exploit was
the final one in a long chain of exploits, so that the entire
chain would erroneously be considered critical to the
attack.

δ

α
β

χ

ε

χ

φ γ

η

g

δ

α
β

χ

ε

χ

φ γ

η

g

Figure 5: Exploit dependency graph for second example.

Another observation is that assigning false
to initial condition trans_ssh_pw(attack,bart)
simultaneously stops 2 exploits, i.e.,

1. scp_upload(attack,bart), and
2. ssh_login_pw(attack, bart)

This would not be apparent by looking at
minimal exploit sets only. In other words, a
single initial condition could control many
exploits. General relationships among initial
conditions and exploits can be many-to-many
and arbitrarily complex. To solve the network-
hardening problem, analysis must be at the level
of initial conditions, as in our approach, and not
at the level of exploits, as previously proposed.

Proceeding with our approach for this
example, the attack goal expression αβχφγη=g
leads to the following 6 minimal-impact
hardening options:

1. Harden link_arp(attack,bart), or
2. Harden trans_yp(attack,homer), or
3. Harden trans_ssh_pw(attack,bart), or
4. Harden app_nfs_home_su(bart,homer), or

5. Harden trans_nfs(bart,homer), or
6. Harden trans_ssh_pk(bart,homer)

Among these options, we can make some
assumptions about the relative costs of individual
hardening measures. For Option 1, link_arp
involves the application of ARP (address
resolution protocol) to map IP addresses to
hardware (MAC) addresses. To harden link_arp,
the network administrator could hard-code
IP/MAC address and switch port relationships
throughout the network. However, this has
associated management overhead costs.

Option 4 app_nfs_home_su(bart,homer) is
an application layer “connection” representing
the sharing of the superuser home directory.
This is a poor practice from a security standpoint
(e.g., in this example it allows the overwriting of
a secure shell authentication key pair), though
the share was presumably created to make
administration easier. It is easy to harden this by
simply removing the file share.

For Option 3, trans_ssh_pw(attack,bart)
could be hardened by modifying bart’s sshd
configuration to use public key authentication

only (disable password authentication). This is a
relatively low-cost option. In fact, this is already
being done for homer.

The hardening measures for the remaining
options (Options 2, 5, and 6) would make critical
network services unavailable, i.e., their cost is
too high. So overall, the choice comes down to
hard-coding IP/MAC address relationships
(Option 1), removing the superuser home
directory file share (Option 4), and relying on
secure shell public key authentication on bart
(Option 3). Here Option 3 is the best (lowest
cost) choice. This example illustrates how our
approach can determine the best combination of
lower-level vulnerabilities to harden for overall
security.

5. Related Work

There are a number of tools available for
vulnerability scanning, e.g. Nessus, Computer
Oracle and Password System (COPS), McAfee
CyberCop ASaP, and SAINT™ Scanning
Engine. But no commercially available tools
consider how attackers could combine low-level
vulnerabilities to carry out an overall attack
against specified network targets.

On the research front, model checking has
been applied to the analysis of single hosts [1] as
well as network wide [2]. In related work [14],
model checking was used to discover attacks that
could thwart intrusion detection systems. More
recently [3][4], the NuSMV model checker was
modified to compute all attack paths (organized
as a graph), rather than a single path.

However, model checkers have known
scalability problems, a consequence of the
exponential complexity of the general state space
they consider. Indeed, model checkers
performed poorly for the network attack models
we experimented with in our early work, leading
us toward the approach we describe in this paper.

For example, the work in [3][4] attempts to
reduce attack graph size using ordered binary
decision diagrams. But the resulting graphs are
still complex, even for the small examples
described. Moreover, since the complexity of
the algorithm for computing minimal critical
attack sets is linear with the size of the attack
graph, it again suffers from scalability problems.
The work in [3][4] also computes minimal
critical exploit sets via model checking.
However, as we have argued, such exploit sets
are insufficient for network hardening. At any
rate, we are able to compute the same minimal
critical sets with our low-order polynomial

exploit dependency representation, rather than
with the exponential attack graph representation.

Graph-based approaches for analyzing
attack combinations [5][6][7][8] have generally
suffered the same exponential state space
problem. More recently, a scalable graph-based
approach based on monotonic logic has been
proposed [10][11]. Our approach can be
considered an extension of that work. That is,
we apply the representation for the purpose of
computing safe network configurations. To
some extent, [10] does address network
hardening by describing an algorithm for
computing a minimal critical set of exploits.
However, as we have argued, such exploit-level
approaches are insufficient for network
hardening.

In related work [15], graph-based attack
models have been proposed for computing the
likelihood of attacks. Also, there has been work
that emphasizes the modeling rather than the
analysis of attacks [16][17]. The notion of
modeling exploit sequences has been proposed
for intrusion detection alert correlation [18].
Also, in [11], we describe a method for
generating elements of network attack models
automatically via the Nessus vulnerability
scanner.

6. Summary and Conclusions

In this paper, we go beyond traditional
attack paths to compute network configuration
hardening options that guarantee the safety of
given network resources. Assuming that relative
costs have been assigned for individual
hardening measures, the hardening options we
compute minimize overall cost.

The network hardening solutions we provide
are in terms of network configuration elements
rather than exploits. We can therefore take into
account the often-complex relationships among
exploits and configuration elements. In this way,
we can resolve hardening irrelevancies and
redundancies that cannot be resolved through
exploit-only approaches.

We greatly reduce the number of hardening
options to consider by selecting only those with
minimal impact on the network. That is, we are
able to ignore options that contain supersets of
the same hardened components, since they incur
additional cost but offer no additional safety.

Our approach extends a recently proposed
graph-based representation of exploit
dependencies, based on monotonic logic. This
representation has low-order polynomial

complexity, as opposed to the exponential
complexity generally found in earlier work. The
assumption of monotonic logic also allows us to
resolve cycles and other redundancies in the
dependency graph via the graph distance from
initial conditions.

From the resolved exploit dependency
graph, we compute an expression for the safety
of given network resources, in terms of initial
network conditions. We then assign minimal-
impact safe values of the initial conditions, via
the minimal elements of the partial ordering of
conjunctive normal form terms. From these
minimal-impact assignments, we find the safe
network configuration with minimum total cost.

Because attackers often reach their goals
through multiple exploits, network vulnerability
analysis must consider the effects of combined
vulnerabilities. The analysis of exploit
sequences is a good first start. But what is really
needed are explicit and manageable network
hardening options that provide guarantees of
safety, as we describe here.

7. References

[1] C. Ramakrishnan, R. Sekar, “Model-Based
Analysis of Configuration Vulnerabilities,” in
Proceedings of 7th ACM Conference on Computer and
Communication Security, November 2000.

[2] R. Ritchey, P. Ammann, “Using Model Checking
to Analyze Network Vulnerabilities,” in Proceedings
of IEEE Symposium on Security and Privacy,
Oakland, CA, 2000.

[3] O. Sheyner, J. Haines, S. Jha, R. Lippmann, J.
Wing, “Automated Generation and Analysis of Attack
Graphs,” in Proceedings of IEEE Symposium on
Security and Privacy, Oakland, CA, 2002.

[4] S. Jha, O. Sheyner, J. Wing, “Two Formal
Analyses of Attack Graphs,” in Proceedings of 15th
IEEE Computer Security Foundations Workshop,
Nova Scotia, Canada, June 2002.

[5] R. Baldwin, Kuang: Rule based security checking,
technical report, MIT Lab for Computer Science, May
1994.

[6] D. Zerkle, K. Levitt, “Netkuang – A Multi-Host
Configuration Vulnerability Checker,” in Proceedings
of the 6th USENIX Unix Security Symposium, San Jose,
CA, 1996.

[7] C. Phillips, L. Swiler, “A Graph-Based System for
Network-Vulnerability Analysis,” in Proceedings of
the New Security Paradigms Workshop,
Charlottesville, VA, 1998.

[8] L. Swiler, C. Phillips, D. Ellis, S. Chakerian,
“Computer-Attack Graph Generation Tool,” in
Proceedings of DARPA Information Survivability
Conference & Exposition II, June 2001.

[9] J. Dawkins, C. Campbell, J. Hale, “Modeling
Network Attacks: Extending the Attack Tree
Paradigm,” in Proceedings of Workshop on Statistical
and Machine Learning Techniques in Computer
Intrusion Detection, Johns Hopkins University, June
2002.

[10] P. Ammann, D. Wijesekera, S. Kaushik,
“Scalable, Graph-Based Network Vulnerability
Analysis,” in Proceedings of 9th ACM Conference on
Computer and Communications Security, Washington,
DC, November 2002.

[11] S. Jajodia, S. Noel, B. O’Berry, “Topological
Analysis of Network Attack Vulnerability,” in
Managing Cyber Threats: Issues, Approaches and
Challenges, V. Kumar, J. Srivastava, A. Lazarevic
(eds.), Kluwer Academic Publisher, 2003.

[12] E. Mendelson, Introduction to Mathematical
Logic, 4th ed., Chapman & Hall, 1997.

[13] R. Ritchey, B. O’Berry, S. Noel, “Representing
TCP/IP Connectivity for Topological Analysis of
Network Security,” in Proceedings of 18th Annual
Computer Security Applications Conference, Las
Vegas, Nevada, December 2002.

[14] G. Rohrmair, G. Lowe, “Using CSP to detect
Insertion and Evasion Possibilities within the Intrusion
Detection Area,” in Proceedings of BCS Workshop on
Formal Aspects of Security, 2002.

[15] R. Ortalo, Y. Deswarte, M. Kaâniche,
“Experimenting with Quantitative Evaluation Tools
for Monitoring Operational Security,” IEEE
Transactions on Software Engineering, 25(5):633-650,
September/October 1999.

[16] F. Cuppens, R. Ortalo, “LAMBDA: A Language
to Model a Database for Detection of Attacks,” in
Proceedings of Third International Workshop on
Recent Advances in Intrusion Detection, Toulouse,
France, October 2000.

[17] S. Templeton, K. Levitt, “A Requires/Provides
Model for Computer Attacks,” in Proceedings of New
Security Paradigms Workshop, Cork Ireland, 2000.

[18] P. Ning, Y. Cui, D. Reeves, “Constructing Attack
Scenarios through Correlation of Intrusion Alerts,” in
Proceedings of the 9th ACM Conference on Computer
& Communications Security, Washington D.C.,
November 2002.

