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Abstract 
 

In-depth analysis of network security vulnerability 
must consider attacker exploits not just in isolation, but 
also in combination.  The general approach to this 
problem is to compute attack paths (combinations of 
exploits), from which one can decide whether a given set 
of network hardening measures guarantees the safety of 
given critical resources.  We go beyond attack paths to 
compute actual sets of hardening measures (assignments 
of initial network conditions) that guarantee the safety of 
given critical resources.  Moreover, for given costs 
associated with individual hardening measures, we 
compute assignments that minimize overall cost.  By 
doing our minimization at the level of initial conditions 
rather than exploits, we resolve hardening irrelevancies 
and redundancies in a way that cannot be done through 
previously proposed exploit-level approaches.  Also, we 
use an efficient exploit-dependency representation based 
on monotonic logic that has polynomial complexity, as 
opposed to many previous attack graph representations 
having exponential complexity. 

 

1. Introduction 

In the analysis of network vulnerability to attack, 
considering vulnerabilities in isolation is insufficient.  
This is because attackers often combine exploits against 
multiple vulnerabilities in order to reach their goals.  
While a single vulnerability may not pose a significant 
threat to a network, a combination of vulnerabilities may.  
Thus even well administered networks can be vulnerable 
to attacks, because of the security ramifications of 
offering a variety of combined services. 

An approach to this problem is to build a model of 
global network security, e.g., as a state machine with 
security conditions as variables and attacker exploits as 
transitions.  Various methods have been proposed for 
finding attack paths (sequences of exploit state 
transitions) in such models, including symbolic model 
checker (logic-based) approaches [1][2][3][4], and graph-
based approaches [5][6][7][8][9].  However, such 
methods generally have serious scalability problems, 

since they must contend with the exponential complexity 
of the full security state search space. 

More recently [10][11], it has been recognized that 
under an assumption of monotonic logic, it is not 
necessary to represent attack paths (usually organized as 
graphs) explicitly.  Instead, the dependencies among 
exploits and security conditions encode the same 
information provided by attack graphs.  Monotonic logic 
leads to an efficient (low-order polynomial) exploit 
dependency graph representation that scales well.  
Semantically, monotonic logic simply means that the 
attacker need not relinquish resources already gained in 
order to further advance the attack.  This is a valid 
modeling decision, corresponding to the observation that 
the control that attackers exert over networks effectively 
increases monotonically over time. 

Attack graphs (and even exploit dependency graphs) 
show sequences of exploits, which may be useful for 
applications that focus on the attacks themselves.  But 
network administrators usually don’t care about exploit 
sequences – they just want to know the best way to 
harden their network.  What is needed is an explicit and 
manageable set of network hardening options that provide 
a guarantee for the safety of given network resources. 

In this paper, we go beyond attack paths and exploit 
dependency graphs to compute actual network hardening 
options.  In addition to guaranteeing safety, these 
hardening options incur minimal overall cost, assuming 
relative costs have been given for individual hardening 
measures.  Previous approaches have addressed this 
problem by computing minimal critical sets of exploits 
[3][4][10].  But such approaches ignore the generally 
complex relationships among exploits and elements of the 
network configuration.  Our approach works directly with 
configuration elements, resolving hardening irrelevancies 
and redundancies in a way that cannot be done through 
exploit-level approaches.   

While the possible number of hardening options can 
be large, we greatly reduce the number of choices by 
selecting only those with minimal impact on the network.  
In particular, a “minimal” safe network configuration, in 
which a given set of components are hardened, allows us 
to ignore all other configurations in which supersets of 
these same components are hardened. 



These minimal-impact configurations lead directly to 
minimum-cost hardening options.  That is, the only costs 
incurred are those associated with hardened network 
components, and our minimal-impact configurations 
correspond to fewer numbers of such components.  Given 
that the network administrator assigns relative costs for 
individual hardening measures, we select the 
configuration with the lowest total cost. 

As we describe in subsequent sections, we use an 
efficient exploit dependency graph representation in 
computing network hardening measures.  In building the 
exploit dependency graph, we resolve cycles and other 
redundancies via the graph distance from initial 
conditions, as consistent with monotonic logic. 

From the exploit dependency graph, we compute an 
expression of the safety of given network resources, in 
terms of possible assignments of initial network 
conditions.  We then compute minimal-impact network 
configurations via the minimal elements of the 
conjunctive-normal-form partial ordering.  From these 
minimal-impact configurations, we then find the 
configuration with minimum total cost. 

2. Problem 

We consider the problem of computing minimum-
cost hardening measures that guarantee network safety.  
In this problem, we model the presence of a network 
security condition as a Boolean variable.  For example, if 
some condition represents a vulnerable version of a 
software component on a particular machine, the 
condition being true means the component is present and 
the condition being false means it is not present.  Under 
the assumption of monotonicity, a condition may go from 
false to true, but may not go from true to false.  That is, 
once a condition contributes to the success of an exploit 
(or overall attack), it will continue to do so. 

Next, we model the success of an attacker exploit as a 
Boolean function of some set of conditions.  While it is 
possible for such an exploit to take on a general Boolean 
form, for simplicity we constrain it to a conjunction 
(Boolean ANDs).  There is no loss of generality here, 
since if an exploit requires disjunction (e.g. more than one 
version of a vulnerable program), we simply divide the 
disjunctive portions into separate (conjunctive) exploits 
and consider them separately. 

The success of an exploit then causes another set of 
conditions to become true.  In other words, an exploit is a 
mapping from its preconditions to its postconditions, such 
that if all its preconditions are true then all its 
postconditions become true. 

Given a network-attack model, the next step is to 
determine how the application of exploits impacts 
network vulnerability.  As described in Section 1, 
previous work in this area has generally focused on 

generating attack paths that lead to compromise of a given 
critical resource.  That is, some set of conditions is 
designated as the goal of the attack.  Distinct sequences of 
exploits (attack paths) are then generated such that each 
sequence leads to the attack goal becoming true. 

The general idea is that one could use attack paths 
(arranged as a graph) to determine network-hardening 
measures.  However, such attack graph representations 
have high complexity, so that this approach does not scale 
well. 

In this paper, we go beyond attack graphs, computing 
sets of network hardening measures via efficient exploit 
dependency graphs.  That is, given a set of initial 
conditions, we wish to compute assignments of those 
conditions that guarantee the safety of a set of attack goal 
conditions.  Moreover, we wish to compute hardening 
measure assignments that have minimum cost, 
corresponding to minimizing assignments of false to 
initial conditions, i.e., minimizing the number of 
hardening measures to be taken. 

Here it is important to distinguish between two types 
of network security conditions.  One type of condition 
appears as an exploit precondition only.  The only way 
that such conditions can be true is if they are true initially, 
since they are postconditions of no exploit.  These initial 
conditions are precisely the ones we must consider for 
network hardening measures. 

The other type of condition appears as both exploit 
preconditions and postconditions.  We cannot consider 
such conditions for network hardening, since they are not 
under our strict control, i.e. attacker exploits can 
potentially make them true despite our hardening 
measures. 

In computing minimal-impact hardening sets, one set 
can be chosen over another if all its assignments of false 
also appear in the other set.  This is true because the 
selected set represents a safe assignment with fewer 
hardened network components.  By retaining only these 
minimal-impact hardening sets, we minimize hardening 
cost and greatly reduce the number of sets to consider.  

If the network administrator has no a priori way to 
assign individual hardening costs, we could simply 
compute all possible minimal-impact sets.  Armed with 
all possible sets, the administrator could then select the 
best one.  If we further assume that individual hardening 
costs are equal, we could reduce the set of all possible 
minimal-impact assignments to a single best minimal-
impact assignment.  This assignment would thus be the 
one with the fewest hardening measures, i.e., the one with 
the fewest assignments of false initial conditions. 

We can also consider the more realistic scenario that 
different hardening measures incur different costs 
(although it is not always trivial to assign such costs).  
Assuming that costs are independent and combine 
linearly, the overall cost of a particular hardening 



assignment is just the sum of the costs of the individual 
hardening measures taken.  In this way, from among all 
minimal-impact hardening sets, we choose the single set 
whose total cost is lowest. 

3. Approach 

We begin with a set of exploits in terms of security 
conditions.  We then build a directed graph of the 
dependencies among exploits and conditions, via exploit 
preconditions and postconditions. 

We build the dependency graph through a multi-step 
process, implemented through a custom Java application.  
We first build a dependency graph starting from an 
“initial conditions” exploit, i.e., an exploit with the initial 
network conditions as its postconditions (and null 
preconditions).  The resulting graph represents forward 
dependencies from the initial conditions. 

In building the forward-reachable dependency graph, 
we resolve cycles through the graph distances (number of 
vertices in shortest path) that given conditions are from 
the initial conditions.  That is, preference is given to 
dependency edges that are closer to the initial conditions.  
Because such a resolved dependency graph is sufficiently 
well behaved, we can use it to construct a closed-form 
expression for the attack goal in terms of the initial 
conditions. 

Actually, the resolution of cycles is part of a more 
general resolution of postcondition redundancies.  That is, 
there is no reason to cycle among exploits if their 
postconditions remain true after an initial exploit 
execution, neither is there reason to execute exploits 
whose postconditions have already been met.  Cycles and 
other redundancies are common in real networks, and are 
violations of monotonicity that must be resolved.  Indeed, 
in the real world, attackers themselves would avoid such 
redundancies. 

Next we do a backward traversal of the forward-
reachable dependency graph, starting from the “attack 
goal” exploit, i.e., an exploit with the attack goal(s) as its 
preconditions (and null postconditions).  The resulting 
dependency graph includes exploits that are not only 
reachable from the initial conditions, but are also relevant 
to (i.e. backward reachable from) the attack goal.  In fact, 
this dependency comprises the necessary and sufficient 
set of exploits with respect to the initial and goal 
conditions, i.e., all exploits can actually be executed, and 
all exploits contribute to the attack goal.  This represents 
the set of minimal attack paths, in which no exploit can be 
removed without impacting the overall attack. 

Given an exploit dependency graph, we then 
construct an expression for the goal conditions in terms of 
the initial conditions.  This involves the recursive 
algebraic substitution of dependency terms in a backward 
direction, starting from the goal-condition exploit.  That 

is, we start from the goal exploit, and algebraically 
substitute it with the conjunction of its preconditions. 

We then substitute each of the goal-condition 
preconditions with the exploit that yields it as a 
postcondition, since these are logically equivalent.  In the 
event that more than one exploit yields this postcondition, 
we form the disjunction of all such exploits, since 
logically any one of them could provide the postcondition 
independent of the others. 

We continue in a recursive fashion, substituting the 
newly generated exploit expressions in exactly the same 
way we treated the goal-condition exploit expression.  In 
doing this recursive algebraic substitution, we make direct 
use of the exploit dependency graph by traversing it 
breadth-first.  Recursion must end when the initial-
condition exploit is encountered.  It is precisely at this 
point that an initial condition has been added to the 
expression.  Once the dependency graph has been fully 
traversed, the result is an expression for the safety of the 
attack goal in terms of the initial conditions. 

The resulting expression for the attack goal allows us 
to decide if the goal is safe for a particular assignment of 
initial conditions.  But we are concerned about the 
assignment version of this problem, i.e., actually finding 
sets of initial conditions that guarantee safety.  This is 
much more useful from the standpoint of network 
vulnerability analysis, since it provides explicit sets of 
safe network configurations. 

To solve the assignment problem, we rely on 
properties of the conjunctive normal form [12].  The 
canonical conjunctive normal form yields the attack goal 
written as a uniquely determined conjunction of 
maxterms, where each maxterm is a disjunction that 
contains all initial conditions. 

Each maxterm corresponds to an assignment of initial 
conditions such that the attack goal is safe.  In particular, 
if each non-negated initial condition in a maxterm is false, 
the attack goal is false (safe), independent of any other 
maxterm.  The set of all maxterms thus represents all 
possible safe assignments. 

To minimize hardening costs, we choose assignments 
with minimal hardening measures.  More formally, we 
choose one maxterm over another if all of its non-negated 
conditions also appear non-negated in the other.  In other 
words, we choose one maxterm over another if the non-
negated conditions in the first are a (proper) subset of the 
non-negated conditions in the second. 

Not all maxterms can be ordered according to this 
property, i.e., one maxterm’s non-negated conditions may 
not be a subset of another’s, so this is a partial order.  In 
terms of this partial ordering of maxterms, we then choose 
minimal maxterms, i.e. those that are greater than no other 
maxterm.  We choose these precisely because they 
correspond to minimal hardening measures. 



While the total number of maxterms can potentially 
grow exponentially with the number of initial conditions, 
choosing only minimal-impact maxterms drastically 
reduces the number of sets to consider.  Actually, the 
number of maxterms is critically dependent on the exact 
form of the attack goal expression.  At one extreme, for a 
purely conjunctive expression, there is only one maxterm.  
At the other extreme, for a purely disjunctive expression 
with n  initial conditions, there are 12 −n  maxterms.  But 
in general, there can be large numbers of maxterms, so it 
is crucial to reduce them in the way we describe. 

If there are no known criteria for assigning individual 
hardening costs, we can simply stop after computing the 
full set of minimal-impact hardening options.  The 
network administrator can then compare the various 
options and select the one that offers the best combination 
of offered services.  We could go further by assuming that 
all hardening measures are equally costly.  From this, we 
could simply choose the minimal-impact maxterm with 
the smallest number of unprimed (non-negated) terms. 

However, we go even further in trying to capture the 
least costly set of hardening measures.  In particular, the 
network administrator could assign costs to individual 
hardening measures.  We then assume that the overall cost 
of a set of hardening measures can be accurately modeled 
as the sum of the individual costs.  Thus we write the total 
cost ( )imp  of maxterm im  as 

( ) ∑=
j

i
j

i
ji awmp , 

with i
ja  being a primed (negated) initial condition within 

maxterm im  with cost i
jw .  We then select the maxterm 

with the smallest total cost as the single best choice for 
network hardening. 

4. Examples 

In this section, we provide some example 
applications of our approach.  We first work through a 
small example that has been described in previous work, 
which demonstrates each aspect of our approach.  We 
then consider a slightly more elaborate example that 
underscores how our approach yields concise sets of 
hardening measures with minimal cost (e.g., minimal 
impact on network service availability), eliminating 
irrelevant security conditions in a way not possible 
through previous exploit-level approaches. 

In the first example, the attacker’s machine is 
denoted machine 0, and the two victim machines are 
denoted 1 and 2, respectively.  The details of the attack 
scenario (such as network topology, available services, 
operating systems, etc.) are not needed here, although the 
interested reader can refer to [3] and [10] for such details.  
For the purpose of describing our approach, all that is 

really needed is the exploit dependency graph as 
described in the previous section. 

Figure 1 shows the full attack dependency graph for 
this example, before applying the analysis described in 
the previous section.  In the figure, exploits appear as 
ovals, and conditions appear as plain text (except the goal 
condition, which is marked with a triple octagon).  
Numbers in parenthesis identify associated machines.  For 
example, root(2) denotes root privilege on machine 2, and 
rsh(2,1) denotes the execution of the rsh exploit from 
machine 2 to machine 1. 

 
Figure 1:  Exploit dependency graph for first 

example. 

In comparison to the original examples in [3] and 
[10], one may notice that some exploit preconditions are 
missing.  This is because we make some modeling 
changes to eliminate redundancy, which in turn reduces 
model complexity.  For example, without loss of 
generality, we model the combination of transport-layer 
ftp connectivity, physical-layer connectivity, and the 
existence of the ftp daemon as simply transport-layer ftp 
connectivity (see [13] for details).  Similarly, we model 
the combination of application-layer trust and physical-
layer connectivity as simply application-layer trust.  Also, 
we represent the privilege level of “none” implicitly, i.e. 
as the absence of a defined level. 

The dependency graph in Figure 1 shows all exploits 
that can possibly be executed1.  In the analysis of 
                                                
1 Note that Figure 1 omits exploits in which the attacker’s own machine 
is the victim.  That is, no exploits need be launched against the attacker’s 



hardening measures, we first remove initial condition 
user(0) from the graph, since this is the attacker’s initial 
privilege on his own machine, which the network 
administrator cannot control.  The forward analysis pass 
(described in the previous section) then detects 2 cycles: 

1. user(1)→ rsh(1,2)→ user(2)→  
ftp_rhosts(2,1) → trust(1,2) → rsh(2,1) 
→ user(1) 

2. user(1) → rsh(1,2) → user(2) 
→ sshd_bof(2,1) → user(1) 

The postconditions user(1) of rsh(2,1) and user(1) of 
sshd_bof(2,1) are removed from the graph, since they 
have the highest graph distances within their respective 
cycles. 

In the subsequent backward phase of analysis, the 
condition root(1) and the exploit local_bof(1) are 
removed from the graph, since they are not backward-
reachable from the goal (i.e., they are a “dead end” in 
terms of the attack).  Also, exploit sshd_bof(2,1) is 
removed in the backward pass since its remaining 
postcondition user(1) was removed in the forward pass 
because of a cycle.  Similarly, exploits ftp_rhosts(2,1) and 
rsh(2,1) are removed in the backward pass because of the 
pruning of postcondition user(1) of exploit rsh(2,1) in the 
forward pass. 

Figure 2 shows the exploit dependency graph 
resulting from the forward and backward analysis phases.  
As a comparison, note that the attack graph in [3] for this 
same example is considerably more complex (25 vertices 
and 43 edges), even though it uses an ordered binary 
decision diagram as a way to make the graph more 
compact.  This is evidence in support of our position that 
exploit dependency graphs scale much better than 
traditional attack graphs.  The reason is that the space of 
exploit dependencies (low-order polynomial) is much less 
complex than the space of security states (exponential). 

For this example, we now construct an expression for 
the goal condition g in terms of the initial conditions, via 
traversal of the exploit dependency graph: 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )[ ]
( ) ( ) ( )
( ) ( )

qsqrp
sshdcftpc

ftpcftpcftpc
bofsshdrshftpcftpc

useruserftpcftpc
userrhostsftprhostsftp

rshrshrootg

++≡
⋅

+⋅+=
+⋅+=

⋅⋅+=
⋅+=

+==

1,0_2,1_
1,0_2,1_2,0_

1,0_1,02,1_2,0_
112,1_2,0_

12,1_2,0_
2,12,02

 

                                                                            
own machine, since all attacker capabilities can simply be modeled as 
initial conditions.  The figure also omits the initial-condition and goal-
condition exploits described in the previous section, which are 
algorithmically convenient but have little value for attack graph 
visualization. 
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Figure 2:  Resolved exploit dependency graph 
for first example. 

Here, the plus symbol denotes disjunction (Boolean OR) 
and the dot symbol denotes conjunction (Boolean AND).  
Also, for notational simplicity we rename the initial 
conditions as p ≡  ftp(0,2), q ≡  ftp(1,2), r≡  ftp(0,1), 
s ≡ sshd(0,1), and the goal condition as g ≡ root(2). 

Given the expression qsqrpg ++=  for the attack 
goal in terms of initial conditions, we then convert g  to 
canonical conjunctive normal form.  This yields the attack 
goal as a conjunction of maxterms, each maxterm 
representing a safe assignment of initial conditions.  That 
is, the set of maxterms represents all possible safe 
assignments.  For network hardening, each non-negated 
initial condition in a maxterm must be assigned false to 
provide safety. 

Thus for the first example we have 

( ) ( ) ( )
( ) ( )srqpsrqp

srqpsrqpsrqp
qsqrpg

++′+⋅′+′++
⋅+′++⋅′+++⋅+++=

++=
 

Here the prime symbol denotes negation (Boolean NOT).  
In principle, we could then harden the network by 
selecting one of the maxterms, and take hardening 



measures that eliminate the vulnerability associated with 
each unprimed initial condition. 

However, it is apparent that among the maxterms, not 
all are equally desirable.  Generally speaking, there is 
some cost associated with each network hardening 
measure.  We therefore seek maxterms that have minimal 
impact on the network (involve fewer hardening 
measures), which corresponds to minimizing unprimed 
initial conditions. 

Thus, between a pair of maxterms, we choose one 
over another if all of the unprimed conditions in one also 
appear unprimed in the other.  We can partially order 
maxterms in this fashion.  Figure 3 shows the partial order 
of maxterms for this example. 

( )srqp ′+′++

( )srqp ++′+ ( )srqp ′+++

( )srqp +++

( )srqp +′++

( )srqp ′+′++

( )srqp ++′+ ( )srqp ′+++

( )srqp +++

( )srqp +′++

 
Figure 3: Partial order of maxterms for minimal-
impact hardening measures (for first example). 

For minimal-impact network hardening, we select the 
minimal maxterms in the partial order, i.e. those that have 
no maxterm below them.  For this example, we select the 
2 maxterms ( )srqp ′+′++  and ( )srqp ++′+ .  These 2 
maxterms correspond to 2 minimal-impact hardening 
options: 

1. Harden ftp(0,2) and ftp(1,2), or 
2. Harden ftp(0,2), ftp(0,2), and sshd(0,1) 

The remaining maxterms, while still providing safety, 
have a greater impact on the network in terms of 
hardening measures. 

In choosing among hardening options, our approach 
is for the network administrator to assign a cost to each 
individual hardening measure (initial condition).  We then 
select the maxterm with the lowest total cost, where we 
sum only the costs for non-negated (unprimed) initial 
conditions. 

In this example, since ftp(0,2) occurs unprimed in 
both maxterms, we can disregard it in comparing total 
costs.  We must therefore compare the cost of hardening 
ftp(1,2) (Option 1) to the combined cost of hardening 
ftp(0,1) and sshd(0,1) (Option 2). 

Since sshd represents a version of secure shell 
vulnerable to a buffer overflow attack, we might assume 
that its hardening cost is relatively low, e.g., installing a 
vendor patch.  On the other hand, ftp represents the 
existence of a properly functioning ftp service, which is 

simply used by the attacker in a clever way.  Thus the 
only way to harden this “vulnerability” is to block the 
service between the respective machines.  In this case, the 
hardening cost is relatively high, i.e., the lack of service 
availability.  So overall, the choice is dominated by the 
relative importance of offering the ftp service from 
machine 1 to machine 2 (Option 1) versus offering it from 
machine 0 to machine 1 (Option 2), perhaps with a slight 
bias toward Option 1, since Option 2 includes the low-
cost patch to sshd. 

We now consider a slightly more elaborate example 
of our approach, e.g., with attacks at multiple layers of the 
TCP/IP stack.  While the purpose of the first example was 
to show each step of the process, this example focuses on 
the resulting hardening measures and how a complicated 
set of exploits can be resolved to a simple set of 
hardening measures.  Through this example we also 
explain how previously proposed exploit set minimization 
approaches [3][4][10] are insufficient for network 
hardening, providing additional motivation for our 
approach. 
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Figure 4: Network for second example. 

Figure 4 shows the network for the second example.  
An Ethernet switch provides connectivity at the link layer.  
At the transport layer, unused services have been 
removed, secure shell replaces FTP, telnet and other 
cleartext password-based services, and there is 
tcpwrapper protection on RPC services.  Application-
layer trust relationships further restrict NFS and NIS 
domain access.  The exploits and security conditions for 
this example are described in Table 1 and Table 2. 

Table 1: Exploits for second example 

Exploit Description 

arp_spoof Spoof (impersonate) machine identity 
via ARP poison attack 

ypcat_passwd Dump encrypted NIS password file 

crack_passwd Crack encrypted user password(s) 

scp_upload_pw Secure shell copy, upload direction, 
using password authentication 



Exploit Description 

scp_download_pw Secure shell copy, download direction, 
using password authentication 

ssh_login_pw Secure shell login using password 
authentication 

rh62_glibc_bof Red Hat 6.2 buffer overflow in glibc 
library 

create_nfs_home_ss
h_pk_su 

Exploit NFS home share to create 
secure shell key pair used for superuser 
authentication 

ssh_login_pk_su Secure shell login using public key 
authentication 

Table 2: Security conditions for second example 

Exploit Description 

link_arp Attacker shares link-level connectivity 
with victim (both on same LAN) 

trans_yp Transport layer connectivity to NIS server 

trans_ssh_pw Transport layer connectivity to secure shell 
server that supports password 
authentication 

trans_ssh_pk Transport layer connectivity to secure shell 
server that supports public key 
authentication 

trans_nfs Transport layer connectivity to NFS server 

app_nfs_home_su Application “connection” representing 
sharing superuser’s home directory 

app_yp_domain Application “connection” representing NIS 
domain membership 

app_yp_passwd Application “connection” representing 
acquisition of encrypted NIS password 
database 

app_pwauth Application “connection” representing 
acquisition of unencrypted user password 

app_ssh_pk_su Application “connection” representing 
acquisition/creation of key pair used for 
superuser authentication 

pgm_glibc_bof Program used to exploit glibc library 
buffer overflow vulnerability 

execute Execute access obtained 

superuser Superuser privilege obtained 
 
Figure 5 shows the resulting exploit dependency 

graph.  In this graph, we have removed initial conditions 
that the network administrator cannot control, and applied 
the forward and backward graph analysis passes, as 
described in the previous section. 

As before, we traverse the exploit dependency graph 
to construct an expression for the attack goal g  (execute 

access and superuser privilege on machine homer) in 
terms of the initial conditions: 

( ) ( ) ( )
αβχφγη

ηαβχφγαβχδεαβχ
=

⋅⋅⋅+=g
 

The exploit dependency graph has been reduced to an 
expression that leads to simple choices for network 
hardening.  Note here that 2 initial conditions in the 
dependency graph do not appear in the expression for 
goal g : 

1. ( )attackbartpwsshtrans ,__≡δ , and 
2. ( )attackbartpwauthapp ,_≡ε . 

These drop out in this fashion: 

( )
( )

αβχ
δεαβχ

αβχδεαβχ
+=

+=
1

,__62 bartbartbofglibcrh
 

Through our approach, such irrelevant conditions as δ  
and ε  do not get considered for network hardening.   
That is, the goal expression contains the necessary and 
sufficient set of initial conditions needed for network 
hardening decisions. 

This kind of sufficiency is not present in previously 
proposed approaches to network hardening via proposed 
exploit set minimization [3][4][10].  These approaches 
search for minimal sets of (generic) exploits, where a 
minimal set is one in which every exploit is needed in 
reaching the goal. 

In this example, there are 2 such minimal sets of 
exploits: 

1. The set of all exploits except 
scp_upload_pw(attack,bart), and 

2. The set of all exploits except 
scp_download_pw(bart, attack) 

For network hardening using these minimal exploit sets, 
given no other information, one must assume that all 
exploits in the union of the minimal exploit sets must be 
stopped.  In this example, one would conclude that the 
exploit scp_download_pw(bart,attack) must be stopped 
(via either δ  or ε  false in the initial conditions), even 
though stopping it has no effect on the attacker reaching 
the goal.  Indeed, one could imagine that this exploit was 
the final one in a long chain of exploits, so that the entire 
chain would erroneously be considered critical to the 
attack. 
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Figure 5: Exploit dependency graph for second example. 

Another observation is that assigning false 
to initial condition trans_ssh_pw(attack,bart) 
simultaneously stops 2 exploits, i.e., 

1. scp_upload(attack,bart), and 
2. ssh_login_pw(attack, bart) 

This would not be apparent by looking at 
minimal exploit sets only.  In other words, a 
single initial condition could control many 
exploits.  General relationships among initial 
conditions and exploits can be many-to-many 
and arbitrarily complex.  To solve the network-
hardening problem, analysis must be at the level 
of initial conditions, as in our approach, and not 
at the level of exploits, as previously proposed. 

Proceeding with our approach for this 
example, the attack goal expression αβχφγη=g  
leads to the following 6 minimal-impact 
hardening options: 

1. Harden link_arp(attack,bart), or 
2. Harden trans_yp(attack,homer), or 
3. Harden trans_ssh_pw(attack,bart), or 
4. Harden app_nfs_home_su(bart,homer), or 

5. Harden trans_nfs(bart,homer), or 
6. Harden trans_ssh_pk(bart,homer) 

Among these options, we can make some 
assumptions about the relative costs of individual 
hardening measures.  For Option 1, link_arp 
involves the application of ARP (address 
resolution protocol) to map IP addresses to 
hardware (MAC) addresses.  To harden link_arp, 
the network administrator could hard-code 
IP/MAC address and switch port relationships 
throughout the network.  However, this has 
associated management overhead costs. 

Option 4 app_nfs_home_su(bart,homer) is 
an application layer “connection” representing 
the sharing of the superuser home directory.  
This is a poor practice from a security standpoint 
(e.g., in this example it allows the overwriting of 
a secure shell authentication key pair), though 
the share was presumably created to make 
administration easier.  It is easy to harden this by 
simply removing the file share. 

For Option 3, trans_ssh_pw(attack,bart) 
could be hardened by modifying bart’s sshd 
configuration to use public key authentication 



only (disable password authentication).  This is a 
relatively low-cost option.  In fact, this is already 
being done for homer. 

The hardening measures for the remaining 
options (Options 2, 5, and 6) would make critical 
network services unavailable, i.e., their cost is 
too high.  So overall, the choice comes down to 
hard-coding IP/MAC address relationships 
(Option 1), removing the superuser home 
directory file share (Option 4), and relying on 
secure shell public key authentication on bart 
(Option 3).  Here Option 3 is the best (lowest 
cost) choice.  This example illustrates how our 
approach can determine the best combination of 
lower-level vulnerabilities to harden for overall 
security. 

5. Related Work 

There are a number of tools available for 
vulnerability scanning, e.g. Nessus, Computer 
Oracle and Password System (COPS), McAfee 
CyberCop ASaP, and SAINT™ Scanning 
Engine.  But no commercially available tools 
consider how attackers could combine low-level 
vulnerabilities to carry out an overall attack 
against specified network targets. 

On the research front, model checking has 
been applied to the analysis of single hosts [1] as 
well as network wide [2].  In related work [14], 
model checking was used to discover attacks that 
could thwart intrusion detection systems.  More 
recently [3][4], the NuSMV model checker was 
modified to compute all attack paths (organized 
as a graph), rather than a single path. 

However, model checkers have known 
scalability problems, a consequence of the 
exponential complexity of the general state space 
they consider.  Indeed, model checkers 
performed poorly for the network attack models 
we experimented with in our early work, leading 
us toward the approach we describe in this paper. 

For example, the work in [3][4] attempts to 
reduce attack graph size using ordered binary 
decision diagrams.  But the resulting graphs are 
still complex, even for the small examples 
described.  Moreover, since the complexity of 
the algorithm for computing minimal critical 
attack sets is linear with the size of the attack 
graph, it again suffers from scalability problems.  
The work in [3][4] also computes minimal 
critical exploit sets via model checking.  
However, as we have argued, such exploit sets 
are insufficient for network hardening.  At any 
rate, we are able to compute the same minimal 
critical sets with our low-order polynomial 

exploit dependency representation, rather than 
with the exponential attack graph representation. 

Graph-based approaches for analyzing 
attack combinations [5][6][7][8] have generally 
suffered the same exponential state space 
problem.  More recently, a scalable graph-based 
approach based on monotonic logic has been 
proposed [10][11].  Our approach can be 
considered an extension of that work.  That is, 
we apply the representation for the purpose of 
computing safe network configurations.  To 
some extent, [10] does address network 
hardening by describing an algorithm for 
computing a minimal critical set of exploits.  
However, as we have argued, such exploit-level 
approaches are insufficient for network 
hardening. 

In related work [15], graph-based attack 
models have been proposed for computing the 
likelihood of attacks.  Also, there has been work 
that emphasizes the modeling rather than the 
analysis of attacks [16][17].  The notion of 
modeling exploit sequences has been proposed 
for intrusion detection alert correlation [18].  
Also, in [11], we describe a method for 
generating elements of network attack models 
automatically via the Nessus vulnerability 
scanner. 

6. Summary and Conclusions 

In this paper, we go beyond traditional 
attack paths to compute network configuration 
hardening options that guarantee the safety of 
given network resources.  Assuming that relative 
costs have been assigned for individual 
hardening measures, the hardening options we 
compute minimize overall cost. 

The network hardening solutions we provide 
are in terms of network configuration elements 
rather than exploits.  We can therefore take into 
account the often-complex relationships among 
exploits and configuration elements.  In this way, 
we can resolve hardening irrelevancies and 
redundancies that cannot be resolved through 
exploit-only approaches. 

We greatly reduce the number of hardening 
options to consider by selecting only those with 
minimal impact on the network.  That is, we are 
able to ignore options that contain supersets of 
the same hardened components, since they incur 
additional cost but offer no additional safety. 

Our approach extends a recently proposed 
graph-based representation of exploit 
dependencies, based on monotonic logic.  This 
representation has low-order polynomial 



complexity, as opposed to the exponential 
complexity generally found in earlier work.  The 
assumption of monotonic logic also allows us to 
resolve cycles and other redundancies in the 
dependency graph via the graph distance from 
initial conditions. 

From the resolved exploit dependency 
graph, we compute an expression for the safety 
of given network resources, in terms of initial 
network conditions.  We then assign minimal-
impact safe values of the initial conditions, via 
the minimal elements of the partial ordering of 
conjunctive normal form terms.  From these 
minimal-impact assignments, we find the safe 
network configuration with minimum total cost. 

Because attackers often reach their goals 
through multiple exploits, network vulnerability 
analysis must consider the effects of combined 
vulnerabilities.  The analysis of exploit 
sequences is a good first start.  But what is really 
needed are explicit and manageable network 
hardening options that provide guarantees of 
safety, as we describe here. 
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