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Abstract

We present a novel approach to automatically find spa-

tial configurations of local features occurring frequently on

instances of a given object class, and rarely on the back-

ground. The approach is based on computationally effi-

cient data mining techniques and can find frequent con-

figurations among tens of thousands of candidates within

seconds. Based on the mined configurations we develop a

method to select features which have high probability of ly-

ing on previously unseen instances of the object class. The

technique is meant as an intermediate processing layer to

filter the large amount of clutter features returned by low-

level feature extraction, and hence to facilitate the tasks of

higher-level processing stages such as object detection.

1. Introduction

Local features are at the heart of the most successful

approaches to object class detection and image classifica-

tion [2, 6, 7, 9, 11, 17, 21]. After learning a class model

from training images, these methods are capable of detect-

ing whether a novel object instance is present in a previ-

ously unseen test image [7, 11]. Several recent methods

go even a step further by localizing novel objects up to a

bounding-box [2, 6, 17] or their very outlines [20]. These

methods are robust to clutter, scale changes, and missing

object parts - properties which stem from the advantageous

characteristics of local features. However, these advantages

come at a price. The local feature extractor is run before-

hand and without prior knowledge of the object class. As a

result, on a typical image it returns a large number of fea-

tures, out of which only some fraction lie the object of inter-

est. Especially when the object appears small in the image,

the total set of features has a low signal-to-noise ratio. This

imposes a great burden on object detectors and other higher-

level processes, as they have to find their way to the object

through a sea of background features.

In this paper we propose a novel method to filter this

large mass of features. It selects features which have high

probability of lying on instances of the object class of inter-

->Motorbike

-> Background

Figure 1. Example of mined rules: on the left a frequent configura-

tion which infers background, on the right a configuration which

infers the object motorbike.

est. Our technique is intended as an intermediate layer be-

tween feature extraction and object detection. The filtered

set of features our method delivers can then be fed into a

higher-level object detector. Thanks to this, it starts from

a much higher signal-to-noise ratio, and its performance is

likely to improve. We expect our method to lead to lower

false-positive rates, and possibly also higher detection rates.

Besides, starting from a cleaner set of features is likely to

benefit other tasks as well, such as segmenting objects from

the background, or determining their pose.

Our method is based on data mining rather than learn-

ing techniques more popular in Computer Vision, such as

SVMs. It inputs a set of positive training images, con-

taining different instances of the object class, and a set of

negative background images. We organize local features in

semi-local neighborhoods and express these in a way suit-

able for data mining. We adopt a Frequent Itemset Min-

ing algorithm [3], which efficiently analyzes the large set

of all neighborhoods and returns spatial configurations of

local features frequently re-occurring over the training im-

ages. From these frequent spatial configurations we col-

lect discriminative Association Rules [3]. These rules in-

fer the presence of the object in positive images with high

confidence and fire only rarely on background images. Fig-

ure 1 shows two typical feature configurations and the cor-
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responding rules produced by our miner. One rule infers the

presence of the motorbike, while the other corresponds to a

feature configuration mined from the background. When

given a novel image, we first match the mined configura-

tions to it, and then we associate a confidence value to each

feature expressing how likely it is to lie on an instance of

the object class. This is obtained by accumulating the ac-

tivation scores of all matched configurations involving the

feature.

Our approach has several advantages. First of all, the

mining algorithm is designed for scalability and allows to

process large training sets rapidly. Moreover, the set of

rules collected from the data in this fashion are discrimi-

native and easy to interpret. Indeed, by considering spatial

configurations of neighboring features we gain higher dis-

criminative power compared to individual features. A sin-

gle local feature, even from an informative configuration,

might not be distinctive enough and occur frequently also

on the background. In addition, the rules often capture con-

figurations of local features corresponding to semantic ob-

ject parts, such as motorbike wheels (figure 3). The per-

feature confidence values produced by our approach effec-

tively prune away the majority of background features, and

therefore act as a valuable focus-of-attention mechanism for

the benefit of subsequent object detectors, e.g. [2, 11, 17].

Related works. Our work relates to two strands of re-

search: object recognition in computer vision, and data min-

ing.

The idea of using spatial configurations of local features

is widely used in object class recognition. The constellation

model [10] models the spatial arrangement of local features

as a joint probability distribution. Inference in this fully

connected model has high computational complexity and

thus supports only a few features in practice. Fergus et al.

thus suggest a simplified and more efficient star topology

in [11].

Closer to our approach is the work of Lazebnik et al.,

who propose semi-local arrangements of affine features for

object detection [16]. Their method builds directly on fea-

tures, without vector quantization, and starts by detecting

geometrically stable triples of regions in pairs of images.

The candidate pairs are summarized by a description which

averages over their geometric arrangement. This descrip-

tion is validated on other examples and, if found repeat-

edly, used for recognition. Our approach instead, builds

on vector-quantized features, defines a scale invariant tiled

neighborhood, and employs established data mining tech-

niques to find recurring neighborhoods. In addition to being

computationally much more efficient, this allows for more

variability in the feature appearances. We avoid search-

ing over pairs of images, and mine the whole, large dataset

globally at once.

The video mining method proposed by Sivic and Zis-

serman [21] is the most similar work to ours, in that they

also build on local neighborhoods of quantized local fea-

tures. However, the neighborhoods are in their case always

of fixed size (e.g. the 20 nearest neighbors to a feature).

Each neighborhood is expressed as a simple, orderless bag-

of-words, represented by a binary indicator vector. Mining

proceeds by computing the dot-product between all pairs of

neighborhoods and setting a threshold on the resulting num-

ber of quantized features they have in common. Our work

has several advantages over [21]. First, the neighborhood

sizes are based on the scale of the local features, and hence

adapt to the image content. Second, by tiling the neighbor-

hood we also include information about feature locations.

Third, our mining method avoids the inefficient pairwise

matching of neighborhoods over the whole dataset. Fourth,

we mine neighborhoods which are distinctive against back-

ground images, in addition to occurring frequently over the

target objects as those of [21]. Finally, we demonstrate our

method on object classes rather than specific objects.

The data mining community employed frequent itemset

mining and association rules mostly on text data. Only very

few approaches have tried to adapt these techniques to vi-

sual data. [23] mines databases of annotated images using

a diverse set of features such as keywords, file type, and

global color and texture features. The focus is on finding

hidden correlations between the different modalities of the

data, rather than on the visual data itself. In [22] an ex-

tended association rule mining algorithm was used to mine

spatial associations between texture tile classes in aerial im-

ages (e.g. forest, city). In this paper, we bring these promis-

ing techniques to the domain of object class detection.

The remainder of this paper is organized as follows. Sec-

tion 2 describes our approach to mining frequent spatial

configurations of local features from training images. In

section 3 we determine the confidence that features appear-

ing in new images cover an instance of the object class. An

extensive experimental evaluation is reported in section 4,

demonstrating our approach primes features lying on class

instances and discards background ones.

2. Frequent Feature Configurations

Our technique for mining frequent feature configurations

can be summarized as follows. The training set is com-

posed of positive images, containing object instances an-

notated by a bounding-box, and of negative images, which

do not contain any instance of the class of interest. First, a

large number of spatial configurations of local image fea-

tures are collected from all training images. An efficient

mining algorithm is then used to select frequently occurring

configurations from this large set. The next step transforms

these frequent spatial configurations into association rules.

These rules are built by selecting frequent spatial configu-

rations which imply the presence of the object class with

high confidence, while at the same time are discriminative



against clutter (i.e. they occur rarely on the negative im-

ages or on non-object areas of the positive images). These

discriminative rules are the building blocks for a generating

class-specific confidence values for features of novel im-

ages. These convey the probability that each feature belongs

to an instance of the object class (section 3).

The following sections give a detailed description of the

individual layers of the our mining system. We start by sum-

marizing the most important concepts and the terminology

of association rule mining.

2.1. Frequent Itemsets and Association Rules

Frequent Itemsets. Originally, frequent itemset mining

algorithms were developed to solve problems in market bas-

ket analysis. The task consists of detecting rules in large

amounts (millions) of customer transactions, where the

rules describe the probability that a customer buys item(s)

B, given that he has already item(s) A in his shopping bas-

ket. More precisely, as shown in [3] the problem can be

formulated as follows.

Let I = {i1 . . . ip} be a set of p items. We call m-itemset

a subset A of I with m items. A transaction is an item-

set T ⊆ I with a transaction identifier tid(T ). A trans-

action database D = {T1 . . . Tn} is a set of transactions

with unique identifiers tid {Ti}. We say that a transaction

T supports an itemset A, if A ⊆ T . We can now define the

support of an itemset A ∈ D in the transaction database D
as follows:

supp(A) =
|{T ∈ D|A ⊆ T}|

|D|
∈ [0, 1]

An itemset A is called frequent in D if supp(A) ≥ smin

where smin is a threshold for the minimal support. Fre-

quent itemsets are subject to the monotonicity property: all

m-subsets of frequent (m + 1)-sets are also frequent. The

APriori algorithm [3] takes advantage of the monotonicity

property to find frequent itemsets very quickly.

Association rules. An association rule is an expression

A → B where A and B are itemsets (of any length) and

A ∩ B = ∅. The quality of a rule can be described in the

support-confidence framework. The support of a rule

supp(A → B) = supp(A∪B) =
|{T ∈ D|(A ∪ B) ⊆ T}|

|D|

measures the statistical significance of a rule.
The confidence of a rule

conf (A → B) =
supp(A ∪ B)

supp(A)
=

|{T ∈ D|(A ∪ B) ⊆ T}|

|{T ∈ D|A ⊆ T}|
(1)

is a measure of the strength of the implication A → B.

The left-hand side of a rule is called antecedent, the right-

hand side is the consequent. Note that the confidence can

be seen as a maximum likelihood estimate of the conditional

probability that B is true given that A is true [14].

Association rules have several desirable properties.

Thanks to the efficient frequent itemset mining method they

can be extracted even from very large bodies of data (see

section 4). The rule notation is easily interpretable and can

be used to gain global insights into large datasets or can be

analyzed by experts. These properties have led to their ap-

plication in several fields such as web usage mining [5] or

document analysis [15]. In this paper, we extend the rule-

based approach to visual data, and in particular to object

detection.

2.2. Local Features and Appearance Codebooks

The lowest layer of our system is built on a set of lo-

cal features extracted in each image. We use a Difference

of Gaussian (DoG) detector to extract regions and the SIFT

descriptor [18] to describe their appearance. The SIFT fea-

ture vectors are clustered into an appearance codebook (or

visual vocabulary) with a hierarchical agglomerative clus-

tering method [2]. The use of a codebook representation has

recently become very popular [2, 7, 17, 21], since it allows

efficient feature matching and captures the variability of a

particular feature type (often called visual word). Neverthe-

less, such a description is usually not semantic: it does not

entail a segmentation of the appearance space into mean-

ingful and distinct object parts (e.g. car wheels, or mug

handles).
In order to cope with the inherent uncertainty of the un-

supervised clustering process, we soft-match each feature
by assigning it to all codebook clusters whose center c is
closer than a distance threshold dmin. This yields a descrip-
tion of each region Ri by a set of codebook labels

ζi = {cj | d(Ri, cj) < dmin , j ∈ 1 . . . N} (2)

where N is the total number of appearance clusters.

2.3. Neighborhood-based Image Description

The second layer of our system builds an image repre-

sentation from the codebook labels. The simplest represen-

tation would be a global histogram, i.e. a bag of features [7].

However, we aim at unsupervised mining and at learning

useful representations for object classes. In this setting, a

more informative description is necessary. Encoding not

only the presence of visual words, but also their spatial ar-

rangement yields a much stronger descriptor. Thus, we de-

scribe each image as a set of semi-local neighborhoods.

Several methods have been proposed to sample spatial

neighborhoods from an image. In [6] a sliding-window

mechanism samples windows at fixed location and scale

steps, followed by a spatial tiling of the windows. The very

different approach [21] defines a neighborhood around each

region Rc. This is represented as the unordered set of the

k nearest regions, without storing any spatial information

(k-neighborhoods).



Figure 2. (a) An example neighborhood with 9 tiles and 10 ap-

pearance clusters. Circles represent local features, and numbers

indicate the appearance cluster(s) they are assigned to. (b) Acti-

vation vector. (c) Transaction.

Our approach tries to combine the best of both. We rely

on the sampling of the feature extractor to define the lo-

cations Rc of the neighborhood centers. However, instead

of using a k-neighborhood we use the scale of the central

region Rc to define the size of the neighborhood. More

precisely, all regions falling within a square of side propor-

tional to the scale of Rc are inside the neighborhood. Sub-

sequently, each neighborhood is split into Q tiles as shown

in Figure 2a. For each tile we create an activation vector

indicating which visual words it contains1. The resulting

Q activation vectors are concatenated to form the neighbor-

hood descriptor: a (N ∗ Q)-dimensional sparse binary vec-

tor. Figure 2b shows a neighborhood descriptor for N = 10
and Q = 9. Note how in this example the top-left region is

soft-matched to appearance clusters 2 and 5. The activation

vector can equivalently be written as a list of non-zero in-

dices – or, in itemset mining terminology, as a transaction

(figure 2c). Note how neighborhoods can be made rotation

invariant by aligning the tile grid with the dominant orien-

tation of Rc.

Since we form a neighborhood for every region in every

training image, this results in a very large number of neigh-

borhoods (or transactions). The training sets in section 4

have between 26000 and 74000 transactions.

2.4. Mining Frequent and Distinct Configurations

Equipped with the tools introduced in the previous sec-

tions, we can now find frequent configurations of visual

words efficiently. We are especially interested in mining

distinctive configurations, which appear frequently on the

object and rarely on the background.

As discussed above, each neighborhood is described by

a list of non-zero indices, and generates a transaction. The

input to the mining algorithm (section 2.1) is the database

containing all transactions. In order to discriminate against

background data, we add transactions from the negative

training set to the database. All transactions originating

from instances of the object class are assigned the label

”object” as an additional item, while we append the item

”background’ to background transactions. For example, the

complete transaction for the neighborhood in figure 2 is

{2, 5, 62, 88, object} (assuming it lies on an object).

1We do not count multiple occurrences of the same visual word in a

particular tile, i.e. we work with sets instead of bags.

We run the APriori [3] algorithm on the transaction
database in order to mine frequent itemsets and association
rules. We filter the resulting rules to keep only those which
infer the object label with high confidence, i.e.

conf (C → object) > confmin (3)

where the antecedent C is a frequent configuration and

confmin is a confidence threshold. Notice how a rule does

not have a high confidence if it appears frequently on both

objects and background. This can be understood by inspect-

ing equation (1), where confidence expresses the strength of

the implication C → object (see section 2.1). Hence, our

approach finds frequent and distinctive feature configura-

tions. Moreover, frequent itemset mining finds these pro-

totypical configurations very efficiently from the immense

search space of all 2N∗Q possible configurations (typically

N ≃ 3000 and Q ≃ 16; see section 4 for computation

times).

As additional advantage, many of the mined rules have

semantic qualities, as shown in figure 3. The top left im-

age shows activations of one particular rule on the Caltech-

4 set [10] used to mine rules for motorbikes. Activations

on two novel test images are shown in the second and third

row (see next section for how to match the mined configura-

tions to new images). The regions matching the antecedent

C of the rule are marked in yellow. The central region Rc

defining the neighborhood P is shown in white2. Notice

the variability in the shape and appearance of the motor-

bikes, and the different scales of the neighborhoods (auto-

matically adapting to the image data). The rule in the fig-

ure is {32909, 34622, 46292} → motorbike with s = 3%
support and c = 100% confidence. This rule is one of the

most discriminant found for motorbike. This makes sense,

as wheels are its most characteristic parts. Similar observa-

tions can be made for the giraffes in the right column.

3. Determining class-specific feature confi-

dences in novel images

The frequent feature configurations C mined from the

neighborhoods in the training images represent frequent and

discriminant fragments of an object class. They describe

neighborhoods characteristic for the object class.
Given a new test image, we can now match the mined

configurations to it, and hence discover features lying on
instances of the object class. To achieve this, we start by
generating all neighborhoods P of the new image (one for
each region, as described in section 2.3). Every mined con-
figuration C is now matched to each image neighborhood P
as follows. A configuration can be written as a sparse acti-
vation vector. Hence, the test image neighborhoods can be
matched efficiently by a sparse dot-product:

m(C,P) =



1 if C ∗ P = |C|
0 if C ∗ P 6= |C|

(4)

2Rc is not part of the rule. In this example the rule consists of the

yellow regions only.



Figure 3. Discriminant Frequent Spatial Configurations. First

row: examples from training set. Second/third row: examples of

activations on the test-set. Note: Rc (white) is not part of the rule.

where |C| is the number of features in C, and m(C,P) = 1
indicates a match. In other words, a frequent configuration

C matches a candidate neighborhood P if their dot product

equals the number of visual words in C.

From matched neighborhoods of the test image we can
derive a measure of the probability for a feature to lie on
an instance of the object class. This measure effectively en-
ables to pre-select features lying on the object, and hence
it can substantially ease the life of a subsequent object de-
tector. Thanks to this, the latter can focus on higher level
tasks, such as localizing the object up to a bounding-box,
determining its precise extent (outlines), its pose, a part de-
composition, and so on. We compute this class-specific fea-
ture confidence measure as follows. For each feature in the
image, we count how often it is part of a matched neighbor-
hood. The more matched configurations a features partic-
ipates into, the more it is likely to cover part of an object
instance. More precisely, the confidence measure for each
feature Ri is defined as:

conf(Ri) =
1

M ∗ V

X

C

X

{P|Ri∈P}

1

k
∗ m(C,P) (5)

where M is the number of configurations mined on the

training data, V is the number of neighborhoods in the test

image, k is the number of appearance clusters to which Ri

was soft-assigned (equation (2)).

4. Results

We present results on four diverse object classes. Af-

ter discussing the quality of the results via some visual ex-

amples, we perform a quantitative performance evaluation.

The experiments are conducted on the following datasets.

The objects in the positive training images were annotated

by a bounding-box, except for the TUD Motorbikes where

full images without bounding box were used for training.

ETHZ Giraffes. Training was conducted on 93 images

of giraffes we downloaded from Google Images. No back-

ground training data was used in this case. The positive test

images are the 87 Giraffes from the ETHZ Shape Classes

dataset [12]. All 168 images of the other classes from [12]

are used as negative test set (as done for object detection

from hand-drawings by [12]).

GRAZ Bikes. All training data and the positive test set

are as defined in the paper which originally proposed this

dataset [19]. As negative test set we took the first 200 im-

ages from the CALTECH-101 background [8] class. This

negative test set is used as well with all following datasets.

TUD Motorbikes. The TUD Motorbikes dataset [1] con-

sists of 115 images containing 125 motorbikes, which we

used as positive test set. The positive training images are

the Caltech-4 motorbikes [10] (no bounding-boxes given).

As background training set we randomly picked 200 images

from the CALTECH-256 [13] background class.

CALTECH Cars Rear. This dataset features 126 rear-

views of cars and 1155 street scenes without cars, used as

training set. Moreover, the dataset also provides a test set of

526 images containing cars, as described in [10].

The first three datasets are particularly challenging, as

objects appear in severely cluttered images, and present

scale and intra-class variations. Moreover, the GRAZ Bikes

and TUD Motorbikes are partially occluded in several im-

ages. The CALTECH Cars are somewhat easier, in that they

appear rather centered in the images and vary only moder-

ately in scale.

4.1. Visual Examples

We present here visual examples to demonstrate the

quality of the mined feature configurations (section 2), and

of features selected based on the confidence values our ap-

proach delivers (section 3). Figure 4 shows several test im-

ages, with all overlaid features having a confidence (equa-

tion 5) above 20% of the maximum possible value. These

features belong to configurations deemed frequent and dis-

criminative by our method. The brighter the color of a fea-

ture, the higher its confidence.

The large majority of features are systematically selected

on the object, in spite of scale changes, clutter, and intra-

class variations. It is particularly interesting to notice how



the selected features adapt to the class so as to cover its most

discriminative parts. For bikes, the rather structural con-

figurations of frame parts and wheel fragments dominate,

whereas for giraffes the pattern of the fur is selected (i.e.

the miner adapts to behave like a texture detector). Besides,

notice how our measure effectively selects object features,

and discards background ones. These results confirm that

our approach effectively primes object features while prun-

ing away the majority of background ones. Hence, it is a

valuable intermediate step before applying higher-level pro-

cessing such as object localization algorithms. This is par-

ticularly interesting for the motorbikes set, where we trained

without bounding boxes directly from the CALTECH im-

ages. This shows that we can mine relevant rules without

bounding boxes, when the training objects are rather cen-

tered and there is limited background clutter.

4.2. Quantitative Evaluation of Feature Selection

We quantify the performance of our method for assign-

ing class-specific confidences to features, based on two ex-

periments. In the first experiment we measure bounding box

hit rate (BBHR) over the positive test sets. A bounding-

box hit is counted if more than k features selected by our

method lie on the object (inside the bounding box). Hence,

BBHR is the number of BBH divided by the total number

of object instances in the positive test set. To perform this

evaluation we use ground-truth bounding-box annotations

available for the test images (these were not used to pro-

duce the results). The rationale behind the BBHR measure

is that the later processes our method is intended to aid, need

at least a certain number of features to operate reliably (e.g

recognition - deciding whether the object is actually present

in the image, or localization - determining a bounding-box

framing the object). We set BBHR in relation with the false

positive rate (FPR). This is the number of selected features

lying outside the bounding box, divided by the total number

of selected features in the image (averaged over all posi-

tive test images). Essentially FPR measures the (inverse)

signal-to-noise ratio output by our method, i.e. the propor-

tion of irrelevant features it delivers (the lower the better).

We compare our method against a baseline, where the con-

fidence for a feature is computed as follows. For each visual

word in the codebook we count how many times it occurs

inside the bounding-box annotations of the training data.

This way a visual word, which appears often on the training

objects is weighted higher. On a test image, we match fea-

tures to the codebook and define BBHR by summing up the

weighted matches for each feature. That is, instead of using

configurations of features like our system does, the baseline

consists of weighted single feature matches – essentially a

bag-of-words scheme. This allows to compare our method

to the default input to an object recognition system.

Figure 5 shows FPR on the y-axis and BBHR on the x-

axis, for k = 5 and for each dataset. The error bars show

the standard deviation of the FPR at a given BBHR. Curves

are generated by varying the selection threshold over the

feature confidences. As the plots show, our feature selec-

tion method is very precise, in that it consistently delivers

a low FPR (always below 20%, but for high BBHR on the

Cars Rear dataset, where it grows to a moderate 35%). This

is an important characteristic, because it enables later pro-

cesses to rely on a clean input, composed of a large major-

ity of features on the object. This appears especially valu-

able when compared to the low signal-to-noise ratio of the

initially extracted features (there are typically 500 − 1000
features in an image, out of which about 10 − 200 lie on

the object). The experiments also reveal the substantial per-

formance improvement over the baseline, which we outper-

form substantially.

The feature selection ability comes at a low price in

terms of missed objects: on three of the datasets our method

selected at least 5 features (typically many more, as in fig-

ure 4) on about 90% of the object instances. The lower

BBHR on the TUD Motorbikes might be due to an exces-

sively high support threshold for mining or a bad visual vo-

cabulary, and is be the subject of further investigation.

The second experiment evaluates our method on the neg-

ative test sets (i.e. on image without any instance of the

object class). The idea is to measure how distinctive the

method is: does it select very few features on negative im-

ages? This is relevant because the number of features se-

lected on negative images relates to the computational re-

sources the later processing stages will waste on irrelevant

data (and to the chances they will get confused and produce

wrong results). Figure 6 reports the percentage of negative

images (y-axis) where at most v features are selected (x-

axis). The feature selection threshold is left fixed for each

curve, to the one yielding 70%/90% BBHR on the positive

dataset (a sensible operating point). As the plots show, at

70% BBHR the method returns extremely few features on

the negative images of giraffes and bikes (on 90% of the

images it returns less than 3 features). As in the previous

experiment, the performance is lower on Motorbikes, but it

remains good (in 70% of the images it returns less than 8

features). As expected, at the challenging operating point

of 90% BBHR the method returns more features. Neverthe-

less, it remains distinctive even in this case: 1 in 3 negative

images have no selected features, and 70% of the images

have less than 10 (remember, we start from 500 − 1000).

The baseline is evaluated in the same manner as for the

BBHR plots, and it performs considerably worse than our

method.

4.3. Computation times

The CPU-time measurements are given in table 1. The

time is measured for the frequent itemset mining stage in-

cluding rule creation, but after feature extraction and neigh-

borhoods construction. This because the required process-



Figure 4. Results: Visual Examples. (See text for discussion.)

Data T suppmin/conf min Q t CPU

Giraffes 26054 0.20% / 100% 9 2.58 s
Bikes 42390 0.25% / 95% 9 0.91 s
Motorbikes 29001 0.28% / 100% 9 0.90 s
Cars Rear 74296 0.1% / 90% 9 53.02 s

Table 1. Statistics for the mining experiments. Columns: Num-

ber of Transactions T , minimal support and confidence thresholds,

number of tiles Q, CPU time (in seconds).

ing can be done offline and the required time scales lin-

early with the number of images. For the mining we use

an implementation of the APriori algorithm from [4]. All

experiments were done on a modern PC. These measure-

ments demonstrate the scalability of our mining approach,

where the most characteristic feature configurations can be

extracted from tens of thousands of candidates in a matter

of seconds. The mined configurations might be used read-

ily within other frameworks. Table 1 also summarizes the

mining parameters used for each dataset.

Conclusions We have presented an efficient data mining

approach to detect frequent and distinctive feature config-

urations, representative for an object class. Moreover, we

have shown how to exploit the mined configurations to

measure how likely it is for features of novel test images

to lie on an instance of the object class. Through exper-

imental evaluation we have demonstrated that this class-

specific confidence measure acts as a good feature selec-

tor. Hence, our technique offers a valuable intermediate

layer between feature extraction and object detection or

other higher-level processes. Future work includes evalu-

ation on larger datasets and the extension of the rule mining

approach to less-supervised scenarios (e.g. training images

without bounding-box annotation).
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Figure 5. Bounding box hit rates for Giraffes, Bikes, Motorbikes, and Cars Rear Views (lower is better, baseline with diamond marker).
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Figure 6. False positives on negative test images for Giraffes, Bikes, Motorbikes, Cars Rear View (higher is better). For the motorbikes we

show the experiment for the threshold at 68% BBHR since this is the maximum we reached.
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