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Abstract— We present a new approach to the design of
smooth trajectories for quadrotor unmanned aerial vehicles
(UAVs), which are free of collisions with obstacles along their
entire length. To avoid the non-convex constraints normally
required for obstacle-avoidance, we perform a mixed-integer
optimization in which polynomial trajectories are assigned to
convex regions which are known to be obstacle-free. Prior
approaches have used the faces of the obstacles themselves to
define these convex regions. We instead use IRIS, a recently
developed technique for greedy convex segmentation [1], to
pre-compute convex regions of safe space. This results in
a substantially reduced number of integer variables, which
improves the speed with which the optimization can be solved to
its global optimum, even for tens or hundreds of obstacle faces.
In addition, prior approaches have typically enforced obstacle
avoidance at a finite set of sample or knot points. We introduce
a technique based on sums-of-squares (SOS) programming
that allows us to ensure that the entire piecewise polynomial
trajectory is free of collisions using convex constraints. We
demonstrate this technique in 2D and in 3D using a dynamical
model in the Drake toolbox for MATLAB [2].

I. INTRODUCTION

We consider the problem of planning a feasible trajectory
for a quadrotor UAV from an initial state to a goal state
while avoiding obstacles. Rather than explicitly considering
the full state of the quadrotor, including its pose, velocity,
and rotor thrusts, we rely on the recent results from Mellinger
and Kumar, who demonstrated that the quadrotor system is
differentially flat with respect to the 3D position and yaw of
the vehicle’s center of mass [3]. That is, the entire state of the
system can be expressed as a function of the instantaneous
value of the x, y, z positions of the CoM and the yaw of
the vehicle, along with their derivatives. As a result, any
smooth trajectory with sufficiently bounded derivatives can
be executed by the quadrotor. This means that we are free
to design smooth trajectories of the position and yaw of the
vehicle’s center of mass without explicitly considering the
dynamics.

We define a trajectory as a piecewise polynomial function
in time with vector-valued coefficients, mapping time to
position in 2D or 3D space. We choose the degree of the
polynomials and the number of pieces offline. Our optimiza-
tion problem is a matter of choosing the coefficients of each
polynomial in order to ensure that the trajectory reaches a
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Fig. 1. Fully collision-free trajectories for a quadrotor UAV in a simulated
forest and office environment, showing 1.6s of planned trajectory execution.

desired goal state, avoids collisions, and satisfies an objective
function of our choosing.

A. Avoiding Obstacles

The problem of obstacle avoidance is particularly chal-
lenging because the set of points outside a closed, bounded
obstacle is non-convex. As a result, we must generally add
non-convex constraints to an optimization in order to ensure
that our trajectory remains outside the set of obstacles. Such
constraints generally prevent us from finding guarantees of
completeness or global optimality in our program [4]. We
can avoid some of the problems of non-convex constraints
by adding a discrete component to our optimization. If



we model the non-convex set of obstacle-free states as the
union of finitely many convex regions, then we can perform
a mixed-integer convex optimization in which the integer
variables correspond to the assignment of trajectory seg-
ments to convex regions. This is not without consequences,
since even the addition of binary variables (that is, integer
variables constrained to take values of 0 or 1) turns linear
programming into mixed-{0, 1} linear programming, which
is known to be NP-complete [5]. However, excellent tools
for solving a variety of mixed-integer convex problems have
been developed in the past decade, and these tools can often
find globally optimal solutions very efficiently for mixed-
integer linear, quadratic, and conic problems [6], [7], [8].
These tools also offer some anytime capability, since they can
be commanded to return a good feasible solution quickly or
to spend more time searching for a provably global optimum.

Earlier implementations of mixed-integer obstacle avoid-
ance have typically used the faces of the obstacles themselves
to define the convex safe regions. The requirement that a
point be outside all obstacles is converted to the requirement
that, for each obstacle, the point must be on the outside
of at least one face of that obstacle. For convex obstacles
these conditions are equivalent [9]. This approach has been
successfully used to encode obstacle avoidance for UAVs as a
mixed integer linear program (MILP) by Schouwenaars [10],
Richards [11], Culligan [12], and Hao [13]. Mellinger et al.
add a quadratic cost function to turn the formulation into a
mixed-integer quadratic program (MIQP) [9]. However, this
approach requires separate integer variables for every face of
every obstacle, which causes the mixed-integer formulation
to become intractable with more than a handful of simple
obstacles.

Instead, we use our recent work developing IRIS, a greedy
tool for finding large convex regions of obstacle-free space
[1], to create a small number of convex regions to cover
all or part of the free space. These regions can be seeded
automatically based on heuristic methods or by an expert
human operator. We then need only one integer variable
for each region, rather than for each face of every obstacle.
We have previously demonstrated this approach for mixed-
integer footstep planning [14], and we show in Sect. III that it
allows us to handle environments with tens or even hundreds
of obstacle faces.

B. Safety of the Entire Trajectory

Our second contribution is the ability to ensure that the
polynomial trajectory for the UAV is obstacle-free over its
entire length, rather than at a series of sample points. Existing
mixed-integer formulations have chosen only to enforce the
obstacle-avoidance constraint at a finite set of points [9],
[10], [15]. This can result in the path between those sample
points cutting the corners of obstacles, or, more dangerously,
passing through very thin obstacles, as shown in Fig. 2. As
noted by Bellingham [16], the severity of the corner cuts
can be reduced by increasing the number of sample points
and limiting the total distance between adjacent samples,
but this also increases the complexity of the optimization

Fig. 2. A piecewise linear trajectory between two points, with obstacle
avoidance enforced only at 4 points along each trajectory. The continuous
trajectory through those points may cut corners or pass through thin
obstacles.

Fig. 3. A trajectory in which each linear segment is required to remain en-
tirely within one of the convex obstacle-free regions indicated by the colored
boxes. This requirement ensures that the entire trajectory is collision-free.

problem. Mellinger approaches this problem by requiring
that the bounding boxes of the UAV at adjacent sample points
must overlap [9]. This is sufficient to ensure that the UAV
never passes entirely through an obstacle, but it does not
necessarily prevent corner cutting.

Representing the environment with convex safe regions
allows us to completely eliminate the cutting of corners. If
we treat the problem as one of assigning entire segments
of trajectories, rather than points, to the safe regions, then
we can create a fully collision-free trajectory. For piecewise
linear trajectories, this is simply a matter of ensuring that, for
each linear segment, both endpoints must be contained within
the same convex safe region, as shown in Fig. 3. This de-
cision weakens our claim of optimality, since it requires the
breakpoints between trajectory segments to occur in the inter-
section of two convex regions, but it results in a formulation
that can be solved exactly with mixed-integer programming.
We enforce the constraint that each polynomial lie within a
convex region using a sums-of-squares (SOS) approach. In
this way, collision-free trajectories can be generated using
piecewise polynomials of arbitrary degree. Here we show
that, for trajectory segments defined by polynomials, we can
exactly enforce the constraint that each segment lies inside
a convex region by solving a small semi-definite program
(SDP).

This is somewhat similar to work by Flores, who uses
non-uniform rational B-splines to generate trajectories which
are completely contained within convex polytopes [17].
These polytopes must be given as an ordered union of only
pairwise adjacent sets, but the trajectories are guaranteed to
be contained within the polytopes by construction. Since the



polytopes must be pairwise adjacent, they must be laid out
along a single path from start to goal by some other planning
procedure, and the resulting trajectories may not leave this
path. On the other hand, by performing our mixed-integer
optimization, we are able to explore arbitrarily connected
polytopes which may admit many different possible paths
through them.

II. TECHNICAL APPROACH

The trajectory planning problem we propose has three
components: (1) generating convex safe regions, (2) assign-
ing trajectory segments to those convex regions and (3)
optimizing the trajectories while ensuring that they remain
fully within the safe regions. We perform step (1) as a pre-
processing stage, then solve (2) and (3) simultaneously in
a single mixed-integer convex optimization, which can be
solved to global optimality.

A. Generating Convex Regions of Safe Space

Our ability to efficiently segment the space into convex
regions relies on our recent development of IRIS (Iterative
Regional Inflation by Semidefinite programming) [1]. IRIS
alternates between two convex optimizations that (A) find a
set of hyperplanes which separate some ellipsoid from the
obstacles and (B) find the largest-volume ellipsoid within
those hyperplanes. Given an initial seed point in space,
around which the first ellipsoid is constructed, IRIS grows
the ellipsoid greedily at every iteration until it reaches a local
fixed point. The final set of separating hyperplanes forms a
(convex) polytope, which we take as our convex region of
obstacle-free space. Additional runs of IRIS with different
seed points produce additional obstacle-free regions.

Our initial applications of IRIS to the footstep planning
problem for walking robots relied on a human user to
choose the seed points for IRIS [14]. Human input was
valuable for that problem, since the choice of seed locations
allowed an expert operator to provide high-level input such
as which surfaces should be used for stepping. Manually
seeded regions are, of course, also possible in the case of an
aerial vehicle, and we expect that having an expert operator
choose the location of the seeds might be beneficial when
the environment is largely static and known beforehand.
However, this requirement is overly restrictive in the general
case.

For that reason, we have developed a simple heuristic for
automatically seeding IRIS regions with no human input.
First, the space is discretized into a coarse grid. We then
choose the grid cell which maximizes the distance to the
nearest obstacle and seed one IRIS region at that point.
We then repeat, choosing a new seed which maximizes the
distance to the nearest obstacle or existing IRIS region.
Currently, we terminate the algorithm when a pre-defined
number of regions have been generated, but we intend
to explore other stopping criteria, such as a threshold on
the volume of the space which is currently unoccupied by
obstacles or regions. Automatic seeding of IRIS regions is
shown in Sect. III.

B. Searching over Assignments of Polynomials to Regions

We encode the assignment of each polynomial piece of the
trajectory to a safe region using a matrix of binary integer
variables H ∈ {0, 1}R×N , where R is the number of regions
and N is the number of polynomial trajectory pieces. The
polynomial trajectory pieces are labeled as Pj(t) and the
convex regions as Gr. Thus, we have:

Hr,j =⇒ Pj(t) ∈ Gr ∀t ∈ [0, 1] (1)

We arbitrarily choose the range of [0, 1] for simplicity in this
discussion, but any desired time span can be chosen when
constructing the problem. The actual time spent executing
each trajectory segment can also be adjusted as a post-
processing step by appropriately scaling the coefficients.

Ensuring that polynomial j is collision-free is expressed
with a linear constraint on H:

R∑
r=1

Hr,j = 1 (2)

Note that we allow the regions to overlap, so it is possible
for a polynomial to simultaneously exist within multiple
regions Gr. Such a case is allowed by our formulation,
since the implication in (1) is one-directional (so polynomial
Pj(t) being contained in Gr does not necessarily require that
Hr,j = 1).

We show in Sect. II-C that the constraint Pj(t) ∈
Gr ∀t ∈ [0, 1] is convex, and we can use a standard big-M
formulation [18] to convert the implication in (1) to a linear
form.

C. Restricting a Polynomial to a Polytope

We represent our trajectories in n dimensions as piecewise
polynomials of degree d in a single variable, t. Each segment
j of the trajectory is parameterized by d + 1 vectors of
coefficients Cj,k ∈ Rn of a set of polynomial basis functions,
Φ1(t), . . . ,Φd+1(t). For each segment j, the trajectory can
be evaluated as

Pj(t) =

d+1∑
k=1

Cj,kΦk(t) t ∈ [0, 1] (3)

We restrict the R convex regions of safe space to be
polytopes, so for each region r ∈ 1, . . . , R we have some
Ar ∈ Rm×n and br ∈ Rm and the constraint that

Ar Pj(t) ≤ br (4)

if Hr,j is set to 1. To ensure that the trajectory remains
entirely within the safe region, we require that (4) hold for
all t ∈ [0, 1]

Ar

d+1∑
k=1

Cj,kΦk(t) ≤ br ∀t ∈ [0, 1]. (5)

Eq. 5 consists of m constraints of the form

a>r,`

d+1∑
k=1

Cj,kΦk(t) ≤ br,` ∀t ∈ [0, 1] (6)



where

Ar =


a>r,1
a>r,2

...
a>r,m

 and b =


br,1
br,2

...
br,m

 . (7)

We can redistribute the terms in (6) to get
d+1∑
k=1

(a>r,`Cj,k)Φk(t) ≤ br,` ∀t ∈ [0, 1] (8)

and thus

q(t) := br,` −
d+1∑
k=1

(a>r,`Cj,k)Φk(t) ≥ 0 ∀t ∈ [0, 1]. (9)

The condition that q(t) ≥ 0 ∀t ∈ [0, 1] holds if and only if
q(t) can be written as

q(t) =

{
tσ1(t) + (1− t)σ2(t) if d is odd
σ1(t) + t(1− t)σ2(t) if d is even

(10)

σ1(t), σ2(t) are sums of squares (11)

where σ1(t) and σ2(t) are polynomials of degree d − 1 if
d is odd and of degree d and d − 2 if d is even [19]. The
condition that σ1(t), σ2(t) are sums of squares requires that
each can be decomposed into a sum of squared terms, which
is a necessary and sufficient condition for nonnegativity for
polynomials of a single variable [19]. The coefficients of
the polynomials σ1 and σ2 are additional decision variables
in our optimization, subject to linear constraints to enforce
(10). The sum-of-squares constraints in (11) can be rep-
resented in general with a semidefinite program [20]. The
problem of assigning the trajectories to safe regions is thus
a mixed-integer semidefinite program (MISDP). This class
of problems can be solved to global optimality using, for
example, the Yalmip branch-and-bound solver [21] combined
with a semidefinite programming solver like Mosek [7] or
using the dedicated SDP package developed by Mars and
Schewe [22]. We have successfully applied this formulation
to polynomials of degree 1, 3, 5, and 7. For polynomials of
degree 7 and higher, we experienced numerical difficulties
which often prevented Mosek from solving the semidefinite
program. As a result, we have developed more numerically
stable exact reductions for lower degree polynomials.

For polynomials of degree 1, σ1 and σ2 are constants, and
the condition in (11) reduces to linear constraints

σ1 ≥ 0, σ2 ≥ 0, (12)

which reduces the problem to a mixed-integer quadratic
program (MIQP), given our quadratic objective function.

If the polynomials are of degree 3, then σi(t) is a quadratic
polynomial:

σi(t) = β1 + β2t+ β3t
2. (13)

Using the standard sum-of-squares approach, we rewrite
σi(t) as

σi(t) =
[
1 t

] [β1 β2

2
β2

2 β3

] [
1
t

]
. (14)

The condition that σ(t) is SOS is equivalent to the matrix
of coefficients in (14) being positive semi-definite:[

β1
β2

2
β2

2 β3

]
� 0, (15)

which is in turn equivalent to the following rotated second-
order cone constraint:

β2
2 − 4β1β3 ≤ 0 (16)

β1, β3 ≥ 0 (17)

We can thus write the problem of assigning degree-3 poly-
nomials to convex regions as a mixed-integer second-order
cone problem (MISOCP), which we can solve effectively
with Mosek [7], Gurobi [6], and other tools.

D. Choosing an Objective Function

Mellinger et al. relate the snap (that is, the fourth derivative
of position) to the control inputs of a quadrotor, and thus
choose an objective of the form:

minimize
N∑
j=1

∫ 1

0

∥∥∥∥ d4dt4Pj(t)
∥∥∥∥2 dt (18)

If pj(t) is of degree d ≥ 4 then we may do likewise, resulting
in a convex quadratic objective on the coefficients of the Pj .
We demonstrate this objective function in operation with 5th-
degree polynomials in Fig. 4.

However, to reduce our problem to a MISOCP and im-
prove the numerical stability of the solver, we found it
beneficial to restrict ourselves to 3rd-degree polynomials and
thus piecewise constant jerk. Our objective is

minimize
N∑
j=1

∥∥∥∥ d3dt3Pj(t)
∥∥∥∥2 . (19)

which is likewise convex and quadratic in the coefficients
of the Pj . We also add linear constraints on the position,
velocity, and acceleration of each trajectory piece to ensure
that they are continuous from one polynomial piece to the
next. Additional linear equality constraints require that the
position, velocity, and acceleration of the beginning of the
first trajectory piece and the end of the last piece match our
desired initial and final states.

E. Handling Lower-Degree Trajectories

Even if the mixed-integer optimization is done over the nu-
merically easier degree 3 polynomials, we can post-process
the resulting trajectories in order to successfully use the dif-
ferential flatness of the system to derive the full state and in-
put. A piecewise degree-3 trajectory has a piecewise constant
3rd derivative. It thus has delta functions for its 4th derivative,
which Mellinger relates directly to the rotor thrusts of the
UAV [3]. Since this is clearly undesirable, we proceed as
follows: First, we run the MISOCP to optimize our degree-3
polynomials and assign them to convex safe regions. Next,
we fix the resulting assignment of trajectories to safe regions
and then re-run the optimization for polynomials of degree
5 or higher while minimizing the squared norm of the snap.



Since all of the integer variables are fixed, we no longer have
a mixed-integer problem but instead a single semidefinite
program, which can be solved very efficiently. For example,
in the office environment shown in Fig. 1, computing the
smooth 5th-degree polynomial trajectory required only 1.5 s
in Mosek.

F. Complete Formulation

Our optimization problem can be written as follows for a
trajectory of N piecewise 3rd-degree polynomials:

minimize
P,H,σ

N∑
j=1

∥∥∥∥ d3dt3Pj(t)
∥∥∥∥2 (20)

subject to:

P1(0) = X0, Ṗ1(0) = Ẋ0, P̈1(0) = Ẍ0

PN (1) = Xf , ṖN (1) = Ẋf , P̈N (1) = Ẍf

Pj(1) = Pj+1(0), Ṗj(1) = Ṗj+1(0), P̈j(1) = P̈j+1(0)
(21)

Hr,j =⇒ br,` − a>r,`Pj(j) = tσ`,j,1(t) + (1− t)σ`,j,2(t)

∀j ∈ {1, . . . , N} ∀r ∈ {1, . . . , R}
where σ`,j,1(t), σ`,j,2(t) are sums of squares (22)

R∑
r=1

Hr,j = 1 ∀j ∈ {1, . . . , N} (23)

Hr,j ∈ {0, 1} (24)

where X0, Ẋ0, Ẍ0 are the initial position, velocity, and
acceleration of the vehicle and Xf , Ẋf , Ẍf are the final
values. All of the above conditions are linear constraints
on the coefficients C and β and the matrix H , except the
condition that σ1 and σ2 are sums of squares, which is a
rotated second-order cone constraint.

G. Trajectories Without Convex Segmentation

For the sake of comparison, we have included numerical
experiments for the proposed mixed-integer optimization
using the faces of obstacles instead of convex regions from
IRIS, just as Bellingham [16], Mellinger [9], and others have
done. Instead of a single matrix of binary variables H , we
have a matrix Ho for each obstacle. The m linear constraints
in (5) are replaced with a linear constraint for each face r
of obstacle o, and we constrain that

Nfaces∑
r=1

Ho,r,j = 1 ∀j ∈ {1, . . . , N} (25)

for every obstacle o ∈ {1, . . . , Nobstacles}. The disadvantage
of this formulation is the rapid increase in the number
of binary variables as the numbers of obstacles and faces
increase. This increases the time required to find the global
optimum, as shown in Fig. 6.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 4. Solving a simple environment with IRIS regions. We construct
an environment with obstacles and a start and goal pose (a), then generate
IRIS regions around the start (b) and goal (c). Next, we identify a point
far from the existing set of obstacles and IRIS regions and seed a new
region there (d), and repeat until we have 4 regions (e). Finally, we solve
for trajectories of 1st-degree polynomials minimizing squared velocity in
0.1s (f), 3rd-degree polynomials minimizing squared jerk in 1.3s (g), and
5th-degree polynomials minimizing squared snap in 4.0s (h). All trajectories
lie entirely within the convex regions shown.



Fig. 5. An environment consisting of 5 uniformly randomly placed convex
obstacles. Above: We generate 7 convex regions of free space using IRIS,
then solve for a piecewise 3rd-degree trajectory which is entirely contained
within those safe regions in 14.1s. Below: we also solve for a trajectory
of the same degree without the convex segmentation step, which results in
a 15% decrease in the optimal cost value but requires 27.5s to solve to
optimality.

III. RESULTS

We demonstrate the mixed-integer trajectory planning in a
variety of two- and three-dimensional environments. Figure
4 shows a simple 2D environment, in which we find four
convex safe regions with IRIS and then solve for several
trajectories through those regions. The arrangement of the
obstacles in the simple environment is such that only four
convex regions are needed to completely fill the space. For
more complex environments, such as that shown in Fig. 5,
more convex regions may be required, and those regions may
not cover the entire space.

In Fig. 5, we show a randomly generated environment
with five obstacles, a starting pose in the upper right, and
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Fig. 6. Comparison of our approach for various numbers of convex
safe regions, as well as the approach described in Sect. II-G, which does
not require convex segmentation. We show results for randomly generated
environments with 2, 4, or 6 obstacles. Above: the mean and std. dev. of
time required to solve the problem to within 1% of global optimality using
Mosek [7] on a 2.7 GHz 12-Core Intel Xeon E5 processor. For more than
4 obstacles, the solve time required increases dramatically if no convex
segmentation is performed. Middle: the fraction of environments for which
an optimal solution could be found. Reducing the number of IRIS regions
improves the speed of optimization but, by covering less of the free space,
it also decreases the likelihood of a feasible trajectory from start to goal
being found. Below: the final value of the objective function at optimality
in each case.

a goal pose in the lower left. We generate 7 convex safe
regions with IRIS, which do not entirely fill the obstacle-
free space. Within those 7 regions, we plan 6 polynomial
segments of degree 3 to form a smooth trajectory from the
start to the goal while minimizing the objective in (19).
This trajectory is shown in Fig. 5a. We can also avoid pre-
computing convex regions and use the faces of the obstacles
directly, as shown in Fig. 5b. This results in an optimal
solution with a 15% lower (i.e. better) objective function
value, but requires nearly double the solver time for the
example shown. The solutions in Figs. 5a and 5b are both



Fig. 7. Collision-free trajectory with very many obstacles. Five clusters
of 100 obstacles each were placed, and 6 convex regions were found with
IRIS in the free space. Solve time for this trajectory was 20s. Generating
IRIS regions required < 1s.

globally optimal with respect to the cost function in (19),
but they differ from one another because they are subject to
different safe region constraints. In Fig. 5a, each polynomial
must be contained entirely within one of the seven convex
safe regions shown, while in Fig. 5b, each polynomial must
lie on the outside of one face of every obstacle.

We compare the approach of generating convex safe
regions (which may fail to fill the entire free space) with
the approach of using the obstacle faces directly as our safe
regions (which may require a dramatically more complex
integer program) in Fig. 6. Environments consisting of 2, 4,
or 6 obstacles were generated, and 5, 7, or 9 IRIS regions
were automatically created using the heuristic described in
Sect. I-A. Time spent on IRIS segmentation is not included
in the table, but was less than 1 s in all cases. For each
environment, we optimized a trajectory of 6 polynomial
pieces of degree 3, while minimizing the objective in (19).
We also attempted to find a trajectory in each environment
using the method of Sect. II-G with no IRIS regions, which
tended to be much slower for more than 4 obstacles. One
such environment is shown in Fig. 5.

Substantially more complex environments can also be han-
dled by the technique introduced here. In Fig. 7, we generate
an environment of 500 obstacles in 5 clusters. Although we
cannot in general hope to fully explore all possible paths
through all 500 obstacles, our ability to quickly find large
open areas of space with IRIS allows us to find a collision-
free trajectory even in this extremely cluttered space.

We are by no means limited to problems in two dimen-
sions. In Fig. 1, we show trajectories generated in two differ-
ent 3D environments. For each environment, we generated 7
to 9 regions of safe space in 3D with IRIS, then planned a
trajectory consisting of 7 degree-3 polynomials assigned to
those safe regions. Each trajectory took approximately 200 s

Fig. 8. A virtual forest environment showing two obstacle-free IRIS regions
and a trajectory which passes through those regions. The UAV itself is
treated as a sphere to ensure that no part of the vehicle is allowed to exit
the set of obstacle-free regions.

to solve to within 1% of the globally optimal objective value
on an Intel i7 at 2.9GHz. The convex regions were generated
for the configuration space of a bounding sphere for the UAV
in order to ensure that the trajectory would be collision-free
for the whole vehicle. Figure 8 shows two of the convex
regions used in the forest environment, along with part of
the trajectory through those regions.

IV. CONCLUSION

We present a new method for optimal trajectory plan-
ning around obstacles which ensures that the entire path
is collision-free, rather than enforcing obstacle avoidance
only at a set of sample points. This method is formulated
as a mixed-integer convex program and can be directly used
with the mixed-integer obstacle avoidance approach which is
already common in the field. Performance of our approach
can be significantly improved by pre-computing convex
regions of safe space with IRIS, a tool for greedy convex
segmentation, which can allow us to solve for trajectories
even in very cluttered environments.

A. Limitations

By requiring that each polynomial trajectory piece lie
entirely within one convex safe region, we disallow trajec-
tories which may not intersect the obstacles but which pass
through several safe regions. Our claims of global optimality
are also limited to trajectories which obey this restriction.
This problem can be alleviated by increasing the number of
trajectory segments so that each segment can be assigned to
a single safe region, but doing so increases the complexity
of the mixed-integer program.

Successful trajectory generation is also dependent on the
particular set of convex regions which are generated. In the



environments shown in Figs. 4, 5, and 7 and in the forest
environment shown in Fig. 1, automatically finding regions
at points far from the obstacles was sufficient, but as the
environment becomes more complex, we may require a more
intelligent method of selecting the seed points at which the
IRIS algorithm begins. Input from a human operator can
be extremely helpful in this case: in the office environment
shown in Fig. 1, a human operator indicated the interiors
of the window and doorway as salient points at which to
generate convex regions, which allowed a feasible trajectory
to be found with less time spent blindly searching for good
region locations.

Finally, in order to ensure a smooth control input, we may
wish to constrain the derivatives of the snap of the trajectory,
which will require polynomials of degree 5 or higher. This
will require a more careful approach to ensure the numerical
stability of the mixed-integer semidefinite program. We are
not yet able to reliably solve these high-order problems
using Yalmip and Mosek without encountering numerical
difficulties. The choice of basis functions Φ in Eq. 3 is
likely to be a significant factor in the numerical stability
of the solver [9]. So far, we have experimented with the
Legendre basis suggested by Mellinger et al., but not with
other polynomial bases.

B. Future Work

In the future, we intend to explore additional constraints
and objectives, such as waypoints in space which must be
visited en route from the start to the goal. We also plan to
investigate more effective heuristics for choosing the seed
points for the convex safe regions, including seeding regions
based on the results of a sample-based motion planner like
RRT. Finally, we plan to bring these trajectories into the real
world with their stabilization and execution on hardware.
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VI. SOURCE CODE
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trajectories shown in this paper is included within
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https://github.com/RobotLocomotion/drake.
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