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Abstract—This paper deals with the accurate and efficient been under investigation in both guided [6] and radiating appli-
modal analysis of arbitrarily shaped waveguides whose cross cations [7]. Another example of great practical interest is the
section is defined by a combination of straight, circular, and/or elliptical waveguide, which has found increasing application in

elliptical arcs. A novel technique for considering the pres- . ) t h dual de I8
ence of circular and/or elliptical segments within the frame of many passive microwave components, such as dual-mode [8]

the well-known boundary integral-resonant mode expansion and triple-mode [9] filters, circular waveguide polarizers [10],
(BI-RME) method is proposed. This new extended BI-RME radiators [11], resonators [12], and corrugated horns [13].

method will allow a more accurate solution of a wider number of Therefore, the electromagnetic-wave propagation in hollow
hollow conducting waveguides with arbitrary profiles, which are conducting waveguides of arbitrary cross section has become a

usually present in most modern passive waveguide components. . ) . .
To show the advantages of this new extended technique, theProblem of considerable practical interest, and many different

modal chart of canonical (circular and elliptical) waveguides, as approaches dealing with the calculation of the full modal
well as of irises with great practical interest (i.e., cross-shaped spectrum of such waveguides have been published in the

irises with rounded corners) has been first successfully solved. technical literature. A very early contribution can be found in
Next, a computer-aided-design software package based on suchry 41 \vhere a conformal transformation technique is proposed

a novel modal analysis tool has first been validated with the for th tud f t | id ith t idal
accurate analysis of a referenced complex dual-mode filter, and '0F € Study O rectanguiar waveguides with trapezolda

then applied to the complete design of a novel twist component for and semicircular ridges. Over the following years, several
K-band application based on circular and elliptical waveguides. techniques were introduced in order to cope with the efficient
A prototype of this novel device has been manufactured and modal computation of particular arbitrarily shaped waveguides
measured for verification purposes. such as nonsymmetric uniform waveguides or triangular- and

Index Terms—Green functions, integral equations, waveguide star-shaped guides. An interesting review of such techniques
components, waveguides. can be found in [15] and [16].

In the decade of the 1980s, several new techniques for
solving the modal problem under consideration were proposed.
) _ They can be grouped into two main categories: the first one
O VER THE LAST two decades, an increasing numbe&ased upon the solution of integral equations through different

of passive waveguide devices have been made of waygethods (see, for instance, [17]-[19]) and the second one
guides with an arbitrary cross section defined by linear, Cil’CUl%’@nSiSting of meshing techniques such as the transmission-line

and/or elliptical arcs. For instance, ridged rectangular [1] a’Pﬁ‘odeIing method [20] and the finite-element method [21]. Even
ridged circular [2] waveguides, as well as cross-shaped irises {§}gh the first group of techniques has recently been revisited
are frequently found in dual-mode empty or dielectric-loadegith the proposition of novel methods, e.g., the generalized
resonator filters. Multiridged rectangular waveguides ha‘é%ectral-domain method [22] and boundary integral-equation

been also employed as tuning elements in reentrant coaxi@lthod [23], they lead to the solution of small-size nonalge-
filters [4], as well as key elements in doubly corrugated chokggaic eigenvalue problems, which, in some cases, do require
[5]. Recently, and due to the mechanization effects of moghe-consuming procedures for searching the required cutoff
common manufacturing techniques of waveguide componenfgquencies. On the other hand, the meshing methods lead to
the presence of rounded corners in rectangular waveguides 8gser |arge-size standard eigenvalue matrix problems or mul-
tistep iterative strategies, thus demanding high computational

. . . . efforts and/or large computer memory resources.
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of step discontinuities involving arbitrarily shaped waveguides yi
(see [25] and [26]), which has eased its practical integration into
modern computer-aided design (CAD) tools [27]. Nevertheless,
despite these recent efforts devoted to improving the BI-RME
method, all practical implementations of such a technique use @)
only straight segments for describing the arbitrarily shaped con-
tours, even though they are composed of circular and/or ellip-
tical arcs. This simple approach, which usually requires a higher
number of straight segments to define the arbitrary profiles, does
not provide enough accurate results for some restrictive prac-
tical applications. <
Within the context of this high demanding scenario, this
paper is essentially aimed at describing a rigorous method thigr 1. Waveguide with an arbitrary cross sectibanclosed within a standard
. . . . rectangular waveguide.
allows the accurate consideration of linear, circular, and/or
elliptical arcs by the BI-RME formulation, as well as the
appropriate connection of such types of segments. To fullyA practical procedure for efficiently solving the connection
validate the new theory proposed in this paper, two simptéthe two new kinds of arcs introduced (i.e., the circular and el-
canonical examples have first been considered. One of thentipsical ones) with the standard straight segments used up to now
a circular waveguide and the other is an elliptical guide, whosgthe classical BI-RME implementation will also be outlined.
modal charts are either analytically or numerically well known. Once the modal chart of an arbitrarily shaped waveguide in-
After this successful preliminary verification, the new theorgluding straight, circular, and/or elliptical arcs is solved, the ef-
proposed has been applied to the complete modal analysis fit@nt and accurate procedures described in [25] and [26] can
commonly used iris, i.e., the cross-shaped iris, but considerialgo be followed in order to easily compute the modal coupling
rounded corners due to mechanization effects. Next, the neeefficients of such modes with those of the standard rectan-
modal analysis tool developed has been integrated into a CADlar waveguide enclosing the arbitrary profile (see Fig. 1).
software package of complex passive waveguide devices.
Such CAD package has been first verified with the accurafe Extension of the TM Case

analysis of a dual-mode filter involving circular and elliptical \yhen computing the TM modes of an arbitrarily shaped
waveguides. Finally, making use of the validated CAD t00}y5,equide using the BI-RME method originally described in

a novel topology for ak-band 90-twist component based 54) the most crucial task is related to the accurate evaluation
on circular and elliptical waveguides has been proposed. he following matrix elements:

simulated results of this new component have been successfully

compared with measurements of a manufactured prototype. ;o , , ,

The computational efficiency of the novel modal analysis tool, Lij = / / ui(l)g(s,s")u; (l')dldl @
as well as of the CAD software package based on such a tool, oo

has been revealed as being very good.

where the functions;; andu; are the basis and testing func-
tions related to the implementation of the well-known method of
Il. THEORY moments (MoM). Typically [24], such functions are piece-wise
parabolic splines defined in two or three segments of the arbi-
The structure under investigation is the arbitrarily shapgghry contour, which, in our case, can be straight, circular, and/or

waveguide shown in Fig. 1, whose cross sectidrean be gljiptical arcs. In each of these segments, these functions have
defined by a combination of linear, circular, and/or ellipticahe following simple expression:

arcs. As can be seen in this figure, the arbitrary cross section

is enclosed within a standard rectangular Wavegﬂjdand its u(l) = al®> + bl + ¢ (2)
arbitrary contours is defined by the tangent vectérand the
suitable abscisataken on the contour line. where the coefficients, b, andc are explicitly reported in [27]

In order to obtain the modal chart of such arbitrary wavder the cases of straight and circular segments. If an elliptical
guides, the already cited BI-RME method, first describeakc is involved, these coefficients must be computed following
in [24], is proposed. The practical implementations of thithe procedure described at the end of this section.
classical technique, as well as of further revisited versions ofIn (1), s ands’ are, respectively, the source and field vectors
the method (see, for instance, [27]), always have the arbitragidressing points of the arbitrary conteyrwhich can be de-
profile o segmented into smaller straight arcs. In this sectiofined asoc = s(l), andg is the scalar two-dimensional Green
we will only present the new theoretical aspects related tonction for the Poisson equation [24].
the BI-RME method implementation that are needed to alsoWheni # j, the double integral defined in (1) can be per-
consider circular and/or elliptical arcs when segmenting tliermed numerically in a very easy way, for instance, using a
arbitrarily shaped contours. A detailed explanation of th@auss quadrature rule. However, such an approach cannot be
generic BI-RME method formulation, and also of its classicdbllowed with the diagonal elements of thé matrix (i.e., when
implementation, can be found in [24] and [27]. 1 = j) sinceg is singular whers = s'.
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A rapidly convergent expression for such a Green function y‘
can be found in [28], which has the following aspect:

1« T
9= Z 1nTooTll ®)

m=—oo

where
TP? =1 — 2™ cos% (y — (=1)%) + 2™ (4a)

Tmp = — |z — (—=1)P2’ + 2am| % (4b)

It should be noticed that the singularity of théunction is due (5, 50) .
to theln 73° term, which tends to infinity when the field point > X
s(z,y) approaches the source po#ifz’, y’). Under such cir-
cumstances, thi 73° behaves like the singular functidn R,

whereR denotes the Cartesian distance between the aforemen- =~~~ . . .
tioned field and source points. contribution independent of the kind of arcs under consideration

In order to treat the singular behavior of thefunction (straight, circular, and elliptical ones), such integration will be

the singular term of such a function already detected m(¥ays performed in the same interyal).5,0.5] of a dummy
first be isolated. Next, to simplify the expression of thigarametet to be suitably defined in each case. In fact, the only

problematic term, a well-known technique for solving generf@tegral tq t_)e solved analytica!ly will be the inner one, Wh_ereas
integral equations with singularities will be followed [29].th? remaining O:Jter one will finally be clomputed numerically
This classical technique, which essentially consists of addiff§owing a S'Trp efGa;]Jss quaﬁrature ruled. | dina th
and subtracting a canonical function with the same kind of V€Xt. we offer further mathematical details regarding the
singularity behavior to the singular term, has already be@factical application of the above-described technique to the
successfully used together with the MoM approach [30]. partlcul.ar cases ofIC|rcu.Iar and elliptical arcs. .
Therefore, making use of such a classical technique, our orig-2) Circular Arcs: Afcwcular arc (see Fig. 2) Carr]‘ be easnly
inal scalar two-dimensional Green functiog) can be split as d€Scribed in terms of a-parameter running in the interva

Fig. 2. Arbitrarily oriented circular arc with radiusand lengthrA¢.

[-0.5,0.5] as follows:

follows:
xr =x9+ rcosp(t
9=gr + gra + g (5) o cos p(1)
Yy =Yy + rsinp(t) (8)
with h
1w , TR7T0 1 TROT! wnere
Ir = ar Z In TOOTIT T T (62) @(t) =1+ Ap(t +0.5) (9a)
(m#0) Ap =p2 — 1 (9b)
1 TOO
s == 1 In % (6b) andr is the constant radius of the circular arc.
17r Inserting these previous equations within the definition of the
95 = = 1o In R (6c) singular term(g,) of the Green function in (6), such a term can
In (5) and (6), the subscriptdenotes the completely regularnow be easily divided into the following two components:
contribution of the scalar Green function, the compound sub- Js = Jsr + Gss (10)

scriptrs indicates that the singular term73° has been regu-

larized using the well-known technique just previously outlineef\,'h('}re )
and finally, the subscript refers to the isolated singular term of Gor = — s In R (11a)
theg function, which is expressed as a canonical function whose " dr T Ap2(t —t)”
singularity can be analytically treated. B 1 9 N2
With regard to the regularized term, of the scalar Green gss = = 3 [A‘p (t=1) } : (11b)

function, its regular value when the field and source points areyngw g+ Can also be treated as a regular function because
very close to each other can be easily obtained by expanding

2
the Tg(_) fur_mt?on as a Ta_lylor series and thglj ta_king the corre- lim In R s =Inr? (12)
sponding limit. Proceeding in such a way, it is finally obtained o APt =)
that

and, therefore, the contribution of such a term tothematrix
lim T30 _ <7r> 2 e elements will be alsq compyted nu_merically. .
ool (g — x/)2 +(y— y/>2 ‘ With regard to the inner singular integral of thg matrix el-
v ements related to the term, just outlined in (11), an analytical
The only contribution to thé., matrix elements that remainssolution is explicitly detailed in (38) of the Appendix .
to be treated is then the one related to the singular {gcmof 2) Elliptical Arcs: In this case, an elliptical arc, shown in
the Green function. With the aim of making such double-integrglg. 3, must be described in terms afparameter running in the

b
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A obtained for the circular case. For instance, using the expres-
sions collected in (13) and (14), the length differentilafor an
elliptical arc is defined as follows:

dl = aAn+/1 — e? cos? n(t)dt (29)

(%00 ). %a ------ wheree is the eccentricity of the ellipse where the elliptical arc
‘ > is integrated.
\ If this definition of the length differential is considered within
' the generic expression of g, matrix elements, the following
double integral is finaIIy obtained:

0.5 .5

Fig. 3. Arbitrarily oriented elliptic arc defined by the anghkesand. of an L/iz' _ aQAn2 / uz g(s S )u]( ) ( )dtdt

ellipse with major and minor semiaxesandb.
interval[—0.5, 0.5]. First, the elliptic arc is described in terms of (20)
a more suitable local coordinate system (see Fig. 3) as followgherey(t) = /1 — €2 cos? n(t).
Now, we can make use of the decomposition of the scalar

u = acosn(t) Green functiong previously proposed in this section. Pro-
v =bsinn(?) (13) ceeding in this way, the computation of (20) can be split into
the following two terms:
where
LI = LILLT + L:/ZS (21)
n(t) =m + An(t + 0.5)
where
An=mn9 — 1. (14) 05 05
Next, the local coordinate system chosen before must bg, =a*An? wi() () (gr+grs+gsr)uj(t )y (t)dtdt!
related to the global Cartesian system defined byattend y _0.5-05
coordinates. To do so, the following relationship between both (22a)
coordinate systems must be considered: 0.5 0.5
P\ _ (), (cosa —sima) (u L =aAr / (079 (1. s (¢ ¢l
= + . . : (15) e
Y Yo sina  cosa v .5—-0.5
(22b)

Introducing all these previous relations within the expression ) )
of the singular termy, outlined in (6), such a term can now be N expressions (21) and (22), the subscripteans a regular

eas”y divided aga|n into the fo||0W|ng two new Components contribution to theL matrix e|ementS, which can, therefor:e,
be computed numerlcally. On the other hand, the subseript

gs = gsr + Gss (16) makes reference to the fact that the related integral is singular,
thus needing a special treatment.

where now For solving the singular integral;,,, a second subdi-
1 R? vision level is required, thus giving place to the following
9sr = — 7 In 2 (173.) PSR
A An2(t —t) decomposition:
1
Jss — — 4— ln [An2(t — tl)2:| . (17b) L;,zs = L;zsr + L’LlSS (23)
™

The g, term can be considered again as a regular functiéere now

[=)
(3}
[=}

.5

since, in this case, ' v (t)
R2 L:mr - CLZAT]Z / ul(t)’Y(t) (1 - (t/)>
lim In 5T = In [a2 sin? (t)4b* cos? n(t)] (18) ~0.5-0.5 7
oy Ar(t=t) X gus (b, )y (1 )y (¢ dtdt! (24a)
5 0.5

and, therefore, the contribution of such a term to&hematrix
elements can also be performed numerically. L., =a?An?
With regard to the inner singular integral of tfié, matrix

wi (£)Y2 () ges (t, 1 Yuy () dtdt!

—0.5-0.5
elements related to the terg; just presented above in (17), a 0.5
fL_thher rgﬂned tre_atment is needed in order to reach a kind of a2 An? it / Gus(t, s (') dtdt’.
singular integral like the one solved in (38). .

—0.5 —0.5

Such further refined treatment is needed due to the fact that
the expressions for the length differentials presedt;jmmatrix (24b)
elements, i.e.dl anddl’ in (1), do have more complicated ex- The second subscript of this new subdivision again gives a
pressions in terms of the dummy parameteaindt’ than those clear explanation of the new terms generated. The first new
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term L/, ., has now turned into a regular one singe,_,,/(1 — terms must be performed, thus giving place to the following two
(v(t)/y(t')) = 0, gss has a singularity of a logarithmic kind, types of functions:

and as is well knownlim,_.o z® In2z = 0 for any value ofa ( ,)2
r—T

greater than zero. On the contrary, the second new féymis o= : 5 (27)
still a singular contribution, but, in this case, the inner integral of (v —2')" +(y—vy)
such a term is identical to the one derived for the circular case, (z— 2" )y —v)

. . - U= ) (28)
whose analytical solution can be found again in (38). (z— z/)Q +(y— y/)Z

Itis interesting to notice that the new definitions for the length ) _
differentialsdl anddl’ must also be introduced into (1) when_ 1he @ function appears when the terms of t6&;,, and
computing thel.;; matrix elements. However, in such case, n§ sty COMPponents are expanded into the Taylor series, whereas
singularity is arisen and, therefore, the double integration f&€ ¥ function comes from the Taylor-series expansion of the

quired to compute such matrix elements can be easily perfornié&gected terms of the',.., andGy,, components. Itis inter-
in a numerical way. esting to remark that two such functions are not singular, but dis-

continuous, which means that their limit values when the field
and source points are close enough depend on the kind of seg-
B. Extension of the TE Case ment they belong to (in our case, a straight, circular, or elliptical

o . arc).
For the TE case, the critical issues related to the applicationha arcis a straight one, the limits of (27) and (28) are easily

of the original BI-RME formulation (see [24]) are related to th%alculated, thus giving place to the following values for fhe
accurate computation of the following matrix elements: and ¥ functions:

o (1) Noui(l) lim ® = cos” 0 (29)
Ci; = // 5l g(s,s") o0 dldl (25) e 1
o A - A lim ¥ = —sin(26) (30)
Lij = //ui(l)t(l)-Gst(s,s’)~t(l')uj(l’)dldl'. (26) =e 2

whered is the slope of the straight arc.

] ) _ _ For a circular arc, the limit values of thie and ¥ functions
If the first expression of the last two is compared with thge the following:

definition of theL, matrix elements presented in (1), it can be

easily noticed that both are very similar, and the only difference lim & = sin® [ (t)] (31)
is related to the presence of the piecewise parabolic functions y—y/
or their first denvatl\{es. Therefor_e, th_e singularity p_rok_JIems re lim ¥ = — = sin [Zgo(t)]. (32)
lated to the evaluation of (25) with circular and elliptical seg- @—w

y—y’

ments can be solved in the same way proposed earlier for the o )
TM case. Note that, for the TE case, the coefficierin (38) For an elliptical arc, th& and ¥ functions do have the fol-
should be set equal to zero. lowing limit values:

With regard to the computation of the diagonal elements of [a cos asing(t) + bsin acosn(t)] 2

the L matrix, a new procedure for dealing with the new singu- ~ lim ® = P P (33)
» . ; N o a! a? sin” n(t) + b2 cos? n(t)

larities appearing must be developed since, in this case, such v—v’

singularities are due to the solenoidal dyadic Green function (., _ 1 x(t) sin 2a — absin 27 cos 2a (34)

G ;. This dyadic function is composed of four components, i.e., <=/ 2 a2sin? n(t) + b2 cos?n(t)

Gatonr Gatrys Gotyn, andGy,, Whose compact expressions  °

are explicitly detailed in [24]. wherex(t) is defined as follows:
The singularities introduced by th&,;,, and G4, com- x(t) = a2 sin2 n(t) — b2 cos? n(t). (35)

ponents are of the same kind (logarithmic one) considered for

the TM case. Therefore, the same procedure for the accurate

management of such singularities described earlier can nowGe Solving the Connection of Straight, Circular, and

also followed. Nevertheless, it must be taken into account tHgiptical Arcs

the presence of the unitary vectarsn (26) introduce addi- A further step to be studied is the connection of the different
tional sine andcosine terms in the inner singular integrals tokinds of segments considered in this paper (i.e. rectangular, cir-
be solved analytically. The explicit analytical solutions for thigular, and elliptical) for defining the contourof the arbitrarily
new inner singular integrals are presented in (39) and (40). shaped waveguides.

In the TE case, an additional problem appears when com-The connection of two straight segments with different orien-
puting the diagonal elements of thematrix, which is related to tations, as well as the connection of one straight segment with
the fact that some terms of the four components of the solenoidatircular one or of two circular segments, can be easily imple-
dyadic Green function do have an unknown value when the figldented since the relationship between the length and arc values
and source points approach each other. To determine theseisistraightforward for the circular case. The problem arises when
known values, a Taylor-series expansion of each one of theseelliptical arc is to be connected with the two other kinds of
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arcs. Such difficulty is due to the fact that the length of an el- TABLE |

Pt ; : ; i RELATIVE ERROR IN THE CUTOFF FREQUENCIES OF ACIRCULAR WAVEGUIDE
liptical arc is not analytically known and, of course, its value |§(OF DIAMETER 9,525 mm) @MPUTED USING THE BI-RME METHOD WITH

not directly related to the elliptical aun. ONLY STRAIGHT SEGMENTS ANDWITH ONLY CIRCULAR ARCS
As was already explained earlier in this section, the unknown

current of the modal problem to be solved by the BI-RME Mode | Error BLRME | Error BLRME

method is reconstructed using piecewise parabolic functions. In

[24], it is proposed that the support of such piecewise functions Type || (straight segments) | (circular arcs)

is defined by two or three segments of the original arbitrary
contour, and that the area of such functions over its entire
domain (the two or three segments considered) must be equal TMn 0.206 % 0.009 %
to one in order to guarantee more stable numerical results.
Let us suppose, without any loss of generality, that one
segment of a piecewise parabolic function is an elliptical one, TMo2 0.320 % 0.011 %
whose length{!) is usually fixed by the segmentation procedure

TMox 0.160 % 0.002 %

TMa1 0.207 % 0.004 %

of the arbitrarily shaped contour. A typical value for such fixed ™1 0.439 % 0.013 %
length is chosen to be equal #o/4, where ). is the cutoff TMi2 0.585 % 0.015 %
wavelength of the highest order mode of interest belonging to
the arbitrary waveguide [27]. For an elliptical segment, it is not T™aq 0.284 % 0.021 %
so simple to define the elliptical arc with only such information TMas 0.526 % 0.012 %
about the arc length.

To avoid this situation, the following approach has been TEn -——- 0.035 %
adopted. If the elliptical arc belongs to an ellipse of major semi- TEs o 0.054 %

axisa, we propose to choose a value for the elliptical arc length
An equal to the quotient of the proposed fixed lengmnda
(i-e., An = I/a). It must be noticed that this choice of the; i pe smaller, thus giving way to a finer segmentation that wil
value will not provide a real length for the elllp_tlc_al arc eq“%rovide more accurate results.
to the wanted valué Nevertheless, once the elliptical segment
is defined, the coefficient values of the two or three parabolic
functions defining the whole piecewise function are easily
determined following a standard normalization procedure (for In this section, the new above-described theory is completely
instance, the one described in [27]). The real area of the whaRified with several examples of great practical interest. The re-
piecewise function must then be determined as follows: sults presented have been grouped into two main blocks: the first
one dealing with the modal analysis of arbitrarily shaped wave-
I= / un(1)dl = /us)(l)dl+/ug)(l)dl-l-/uﬁf)(l)dl guides and the second one related to the analysis and design
1513 i i is of modern passive devices involving such kind of waveguides.
(36) In all the example cases considered, the simulated results have
whereu,, means the total piecewise basis function to be builbeen successfully compared with either numerical and experi-
andu! are the parabolic functions defined on each segment (imental data available in the technical literature or with own mea-
this particular case, we have considered three segments to defunements of manufactured prototypes.
the support of the complete basis function). In our particular In order to show the efficiency of the novel modal analysis
example, the third integral in (36) corresponds to the ellipticadol developed, as well as of the CAD software packages based
arc, and will have the following aspect: on this tool, CPU times have been included in most of the exam-
. 0.5 ples considered. Such computational efforts have been always
/u,(f)(l)dl N / (ant2+bnt+cn) 1—e2 cos2 n(t)dt. determined on a Pentium IV platform at 2.4 GHz with 1-GB
double date rate random access memory (DDRAM).

Ill. V ALIDATION RESULTS

t

—0.

" 37)

Once (36) is solved, we will see how the value obtained for
is not equal to one due to the fact that the length of the real ellip-To fully validate the new theory developed for circular arcs,
tical arc builtis not, as has already been explained. The solutias well as its supposed improved accuracy, we have first per-
is quite simple: the final coefficient values of all the parabolitormed the modal analysis of a canonical waveguide, i.e., a cir-
functions used to define the total piecewise basis function arelar waveguide of diameter 9.525 mm, whose cutoff frequen-
obtained by simply dividing the ones previously determined kgtes are analytically known. To make use of the new theory,
the I value just computed. such a circular waveguide has been defined as a tubular sheet

Finally, it is interesting to remark that proceeding in this wafsees in Fig. 1) perturbing a standard square wavegufdén(
with the construction of the elliptical arcs, their lengths will b&ig. 1) of size 9.525 mm. In Table I, a comparison between
different depending on the position of such segments within thige relative errors of the first TM and TE cutoff frequencies
ellipse. In fact, if the elliptical arc is placed where the tangewf the circular waveguide modes, computed using the classical
unitary vector to the ellipse has a higher variation, its leng{lusing only straight segments) and the new extended (using, in

A. Modal Analysis of Arbitrarily Shaped Waveguides



2384 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 12, DECEMBER 2003

TABLE I
CUTOFF WAVELENGTHS OF AN ELLIPTICAL WAVEGUIDE (¢ = 10.0 mm AND
e = 0.5) USING THE BI-RME METHOD WITH ELLIPTICAL ARCS THE
REFERENCEVALUES ARE COLLECTED FROM [31]

Order | Mode Type Ac (cm) Ac (cm) Relative error
(TE/TM) ref. [31] | (elliptical arcs) (%)
1 TE 3.394477 3.394426 0.0015
5 TE 1.907950 1.907890 0.0030 ) » . ) .
Fig. 4. Cross-shaped iris with rounded corners of different radius
10 TE 1.397907 1.397804 0.0073 (R: = 0,0.01,0.1,0.2,0.5and1.0 mm). The other dimensions are
az = 15.3mm,b =17.3 mm,w = 2 mm, andR; = 12.0 mm. To solve this
20 TE 0.916070 0.915912 0.0170 example, a square box @f = 25 mm has been used.
30 ™ 0.775601 0.775505 0.0120 TABLE 1l
FIRST CUTOFF WAVENUMBERS (mm~!) AND COUPLING COEFFICIENTS OF THE
50 ™ 0.592145 0.592021 0.0200 CROSSSHAPED IRIS WITH RIGHT-ANGLE CORNERS(R5 = ) mm) SHOWN IN
FIG. 4. THE RESULTS ARECOMPARED WITH THOSE PROVIDED BY [25]
70 TE 0.494025 0.493878 0.0290
90 ™ 0.434155 0.433990 0.0380 TE: TE2 TE3
100 TE 0.416163 0.415935 0.0540 k. = 0.18762 k. =0.21136 k. = 0.21305
Err =0.021% Err =0.03% Err =0.01%

this case, only circular arcs) BI-RME technique, is presented. In

both cases, the circular contour has been divided into only ten
segments. As can be seen in Table |, an important accuracy im-
provement is obtained with the new theory proposed for circular

arcs.

The next canonical example considered has been an ellip-
tical waveguide with major semiaxis = 10.0 mm and ec-
centricity e = 0.5 since results for the cutoff frequencies of
such waveguides have been extensively reported in the liter-
ature. In order to apply the extended BI-RME technique pro-
posed in this paper, the ellipse under consideration has been
defined within a rectangular waveguide of dimensions 21 mm
x 18 mm, and has been segmented using 176 smaller elliptical
arcs. Using this technique, the first 181 modes of the considered
elliptical waveguide have been computed (100 TE modes and 81

0.32821 (TE110)

—0.21689 (TEz21s)

0.31893 (TE11s)

0.32817" —0.21687" 0.31892"
—0.37204(TM11,) | —0.04555 (TEo1) | 0.36430 (TMi1c)
—0.37234" —0.04556" 0.36469"

—0.08293 (TEs1c)

—0.08490"

—0.35096 (TM21c)

—0.35523"

0.06622 (TE31s)

0.06829"

0.16007 (TE21c)

0.16012"

0.01694 (TE41s)

0.01688"

0.20223 (TE12s)

0.20216"

0.17295 (TMs1,)

0.17080"

—0.20719 (TEz22s)

—0.20726™

0.14331 (TMs10)

0.14110"

TM solutions). Table Il successfully compares the cutoff wave-
lengths for the first 100 modal solutions with results from [31],
where a completely different approach for solving the mod#dbrication costs and development times of such complex
problem was proposed. The total CPU time required to soldevices.
this example has been of 47 s, which is rather well comparedrirst, for verification purposes, we have considered a cross-
with the 167 s related to the method proposed in [31] and tbRaped iris with straight-angle corners since numerical results
303 s (also reported in [31]) of a standard package for solviffigr this simpler case can be found in the technical literature [25].
the well-known Mathieu functions. These last two CPU timeBhe structure under study can be seen in Fig. 4, wiikrbas
have been obtained using an IBM RISC-6000 workstation. been obviously chosen to be equal to 0 mm (right-angle cor-
Once the new theory proposed has been successfully vakrs),as = 15.3 mm,b = 17.3 mm, andw = 2 mm. To apply
dated, we considered a final example of great practical interasie BI-RME method, a square surrounding bax & 25 mm)
i.e., the cross-shaped iris shown in Fig. 4. As already explainkds been chosen. Table Il reports the cutoff wavenumbers (in
in Section 1, this coupling iris is commonly used in circulamm~!) provided by our BI-RME implementation for the first
waveguide dual-mode filters, which are widely used for spatieree TE modes of the described iris, as well as the relative
applications. Furthermore, most of the modern low-cost fabe¥ror (Err) between such results and those collected in [25].
cation techniques of these irises, such as computer-controlleble 11l also provides the values of the coupling coefficients
milling, spark eroding, electro-forming, or die casting, usuallgmong the computed modes of the cited cross-shaped iris and
introduce rounded corners, as shown in Fig. 4. The accur#ie first TE and TM modes of a standard circular waveguide
consideration of such a mechanization effect by the future CA® radius R; = 12.0 mm, also shown in Fig. 4. Our results
tools of dual-mode filters would extremely reduce the curreare those next to the parenthesis enclosing the standard circular
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TABLE IV
CUTOFF WAVENUMBERS OF THE THREE LOWEST ORDER MODES OF THECROSSSHAPED IRIS WITH ROUNDED CORNERS
(R; = 0.01,0.1,0.2,0.5, AND 1.0 mm) SHOWN IN FIG. 4
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Mode ke (mm™1) ke (mm™1) ke (mm™1) ke (mm™?Y) ke (mm™1)
(TE/TM) || Rz =0.01mm | R, =0.1mm | R, =02mm | R, =05 mm | R, =1.0 mm
TE; 0.18762 0.18766 0.18781 0.18882 0.19253
TE2 0.21136 0.21142 0.21160 0.21289 0.21761
TEs 0.21305 0.21311 0.21330 0.21461 0.21940
waveguide modes considered, whereas those marked with an as- Wav?;‘:fi’é‘;
terisk have been obtained from [25]. As can be observed, an ex- Output Iris

cellent agreement between both results is obtained.

Next, the new theory developed in Section Il has been used
to solve the modal chart of the previous cross-shaped
iris, but now considering different curvature radius
(Ry = 0.01,0.1,0.2,0.5 and1.0 mm) for the rounded corners
shown in Fig. 4. The evolution of the cutoff wavenumbers (in
mm~1) for the first three TE modes of the perturbed iris, in
terms of the different radius values chosen for the rounded
corners, is offered in Table IV. As can be seen in this table, even
for small values of the rounded corners radii® = 1.0 mm), Fig. 5. Four-pole dual-mode filter with elliptical waveguide resonators in

_ ; ndard WR-75 rectangular waveguides= 19.050 mm,b = 9.525 mm).
the CUtoﬁ Wavenumbefr,s of the Yery IQW order modes t,’eg'n f#e dimensions are: input iris (9.91 mm 2.0 mm) of length 2.0 mm, first
be considerably modified (relative differences approximateliptical cavity (major semiaxis of 11.0 mm, minor semiaxis of 10.50 mm, and

3%). Therefore, the inclusion of these effects in the moderetation angle of 81.49 of length 16.62 mm, coupling central iris (3.5 mw
CAD tools is revealed as being rather necessary, especially 3¢t T & 28t Jod T o R e, T o saiengtn
machined components to operate in the higher microwave aj#h2 mm, and output iris (9.91 mm 2.0 mm) of length 2.0 mm.
millimeter-wave bands. For the example we have just studied,

the arbitrarily shaped contour has been divided into 164 arcs o
(straight and circular ones), and the first 16 modes (15 TE and
1 TM) of the strongly perturbed iris have been computed, thus
requiring a total CPU effort of only 30 s.

Second Cavity =3,
Coupling Iris

First Cavity-- -3,
Input Iris

Input--__
Waveguide

|
(=]

B. Analysis and Design of Complex Passive Waveguide
Devices

|
[\
=

Once the novel theory proposed has been previously
validated with several benchmark tests, its direct application
to the analysis and design of modern complex passive wave-
guide devices is faced. For that purpose, we have integratedq“’_4o
the new BI-RME extended technique proposed in this paper
within a CAD software package based on the integral-equa- +
tion method fully described in [32]. As indicated in [32], this 8 118 119 1195 12 1205 121
efficient full-wave analysis method requires the knowledge frequency (GHz)
of the mOdaI chart relat_ed to_a" the waveguides included ,'-rl] . 6. Magnitude of the reflectiofiS; ) and transmissiofiS,, ) coefficients
the devices under consideration. In order to solve the mo@glthe four-pole dual-mode filter with elliptical cavities shown in Fig. 5. The
chart of the arbitrarily shaped waveguides that can be presewihors’ results are denoted by the solid line. Crosses denote the numerical
in modern passive waveguide devices, we have made usd®sf!ts collected from [8].
the efficient and accurate modal analysis tool developed in
the context of this study. use for narrow-band applications. As can be seen in Fig. 5, this

Before using the new CAD software package developed foriginal structure is composed of two elliptical cavities coupled
the design of novel components, we have tested its accuracy gmdugh a rectangular iris, which allows the avoidance of the
efficiency with a complex passive waveguide device involvintypical presence of tuning and coupling elements in these types
circular and elliptical waveguides, which has been recenthf devices. The geometric parameters of this structure can also
reported in the literature. This complex device is a four-polee found in Fig. 5. The simulated reflection and transmission
dual-mode filter successfully designed in [8], which is of greatoefficients of this compact device are compared in Fig. 6

&
S

flection/transmission (dB)

theory
reference
T

12.15

12.2
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(C) (b)

Fig. 7. Photographs of the manufactured 8@ist component prototype. (a) Complete view of the twist manufactured in standard WR-34 rectangular waveguides
(¢ = 8.636 mm,b = 4.318 mm). (b) General view of all the waveguide pieces that integrate the component. (c) More detailed view of the internal pieces of
the device, i.e., the two square waveguides of size 8.636 mm and length 1.80 mm, and a central piece with two circular waveguides of radius 6.1@thm and len
1.60 mm and an inner elliptical iris (major semiaxis of 6.0 mm, minor semiaxis of 3.90 mm and rotation angle’p4fetgth 0.30 mm.

with the numerical results provided by [8]. A very good
agreement between both results can be observed, even tho
a slight difference is noticed in the lower rejected frequenc
band. However, the experimental results of a manufactur@'lo’
prototype in such a low-frequency band, also reported in [€2
fit better with our simulated results. To reach our converget§
results, seven accessible modes, 20 basis functions, and -2
kernel terms in the integral equations were required. Due
the great complexity of this device, the complete simulati
of its electrical response has taken a CPU effort of 7.2 s p.
frequency point.
Finally, making use of the CAD software package produce &
we have designed a new9tvist component fo -band appli-
cations. Up to now, 90twist components have been designe:
using L-shaped rectangular waveguides (see, for instance, [3. s ‘ J ,
Here, we propose an alternative compact geometry for su %2 24 26 28 30
components based on a soft rotation of #yield through suc- frequency (GHz)
cessive square, circular, and elliptical waveguides. A prototyp . 8. Magnitude of the reflectiort(,) and transmission%.:) coefficients
of such a device, which is intended to operate at 26.3 GHz withthe 90-twist component fok -band applications shown in Fig. 7. Solid line
a wide bandwidth of approximately 2 GHz, has been designé@fmtes the authors’ results. Crosses denoted the authors’ measurements.
and manufactured. Photographs of this prototype, as well as of
their integrating pieces, are displayed in Fig. 7, where the gesemponent, convergent simulation results were obtained using
metric dimensions of all such pieces are also collected. The sig® accessible modes, 50 basis functions, and 400 kernel terms
ulated scattering parameters of this novel two-port device arethe integral equations. These simulating parameters only in-
shown in Fig. 8, where they are successfully compared with atelved a total computational effort of 0.54 s per frequency point,
thors’ measurements. During the design procedure of the twigtich is appropriate for design purposes.

SS

Fﬂ' ansm

=30

101,

t

flec

—40¢

— theory
+ measurements
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IV. CONCLUSIONS

/2 / 2 N2, 3¢

Arbitrarily shaped waveguides, composed of circular and e_l[ (a£ +b¢ +C) cos(p¢’+po)ln [q) (€=¢) ]df
liptical arcs, are increasingly used in modern passive waveguide
components. This p.aper has described an efficient wgy for the = (a[§+b[f+c]5)cos(¢0)_ (a[§+b[f+c]§)sin(<p0).
very accurate consideration of such types of arcs within the (39b)
classical well-known BI-RME formulation, which, up to now,
has always been implemented considering only straight segThe integralsls, I7, I, I, I, andIs, which have been in-
ments for defining the arbitrary profiles. The new theory prdroduced in the previous expressions, are defined as follows:
posed has been extensively verified through several application
examples of great practical interest. First, the modal chart 9
canonical circular and elliptical waveguides have been succeglﬁ- / sin(z) ln(k — =)"dz
fully computed. Next, the new extended method has been ap- -
plied to the accurate modal analysis of widely used cross-shaped 2 ©
irises, where completely new results considering the presence of = {COS (5) 1 %fk
rounded corners due to undesirable mechanization effects have
also been offered. Finally, the new modal analysis technique de- + cosk [(h(k — —) - Ci (k: + f)]
veloped has been used together with a CAD software package 2

(MY

ol

§+k‘

for advanced analysis and design purposes. After validating this +sink {81 (k — _> —Si (k + f)] } (40a)
powerful CAD tool with the analysis of a complex waveguide 2 2
device involving circular and elliptical waveguides, a novel twist %

component fork-band applications has been successfully ders — 1 / zsin(z) In(k—2z)%dz
signed, manufactured, and measured. CPU times for the pre- >
vious examples have been included to prove the good numerical

efficiency of the new modal analysis tool developed. _ 32 sin (2)=Loeos (PN m|(2=k)(E+k
© 2/) 2 2 2 2
APPENDIX | +(k cos k—sin k) [Ci (k—%) —Ci <k+§>}
ANALYTICAL EXPRESSIONS FORSINGULAR INTEGRALS
H{ksin k-+cos k) [Si<k-—f> —Si<k+f>] }
Here, the analytical expressions for all of the singular inte- 2 2
grals appearing in Section Il are collected. [y
The integral of a parabolic spline multiplied by a logarithmic +2sin (40b)
singular term has the following analytical solution: 2
1
1 I =— / z?sin(z) In(k — z)%dx
2 (2
[ (a¢™ 40 +c)m[o2(e-€)"] a¢ %
. 2 2 2 -k
-3 =— ¢ |psin Y (& —2)cos(Z2)|m|2
- 1 o3 2 4 2 5+ k
= {1—2 [8a&” +12b€* +24c€+a—3(b—4c)] In |26 +1| + [(k* = 2) cos k — 2k sin k]
1 . P ., P
T [8a£3+12b£2+24c£—a—3(b+4c)] In|2¢—1] x [Cl<k - 5) - Cl<k + 5)}

+(%+2c> m 12a£2—|—18b£+a—|—36c)} + [(K ~ 2)sink + 2k cos k]
. @ . ®
(38) X |:Sl<k‘—§> —Sl<k+§>:|}

. s . . P
For the TE case and circular/elliptic arcs, the unitary tangent ~ + 2k sin <§> (40c)
vector to circular and elliptical arcs is pre- and post-multiplying
the solenoidal dyadic functio6,;, thus giving rise to the fol-

lowing two singular integrals whose analytical solutions are alséy = cos(z) In(k — z)*dzx
offered: =

(@l

(€ +b¢'+¢) sin(w€ +po)in | @2 ~¢)°] de’ .
—sink [Cl(k‘ — 5) — Cl(k + 5)}

€l
\Nlﬂ

(MY

|«
S
S

= (al3+bl]+clf)cos(po)+ (als+bI{+cl§)sin(yp
( ? ! 0) (10) ( ? ! 0) (0)(39a) +cosk[Si<k—f)_Si<k+g>}}
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[ V)

() s (5)]e

— (ksink + cosk)

fofe-5) e

+ (kcosk — sin k)
(o350 1)

/ 22 cos(z) In(k — z)%dx

() (2l
(% - k> <§ + k>’
+ pcos <§> ~Osm <§>

— [(k* — 2)sink + 2k cos k]

fofe5) (e 5)

+ [(k* — 2) cos k — 2k sin k]

<[e8) ()l

In the expressions collected in (4@)=,¢ and

=
ek

X

(40e)

w

X In

(40f)

& (-1)”1’2”—"_1

oy [sin(T)
Si(e) = / DY (2n+ 1)(2n + 1)!

0 n=0

cos(T > (=1)"z2n
Ci(z) = /¥d7’ =~+In(z) + Z %

(41)

(42)

n=1

where~ is the Euler’s constant.
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