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Abstract

We present a novel solution to the problem of recovering and tracking the 3D po-

sition, orientation and full articulation of a human hand from markerless visual obser-

vations obtained by a Kinect sensor. We treat this as an optimization problem, seeking

for the hand model parameters that minimize the discrepancy between the appearance

and 3D structure of hypothesized instances of a hand model and actual hand observa-

tions. This optimization problem is effectively solved using a variant of Particle Swarm

Optimization (PSO). The proposed method does not require special markers and/or a

complex image acquisition setup. Being model based, it provides continuous solutions

to the problem of tracking hand articulations. Extensive experiments with a prototype

GPU-based implementation of the proposed method demonstrate that accurate and ro-

bust 3D tracking of hand articulations can be achieved in near real-time (15Hz).

1 Introduction

The 3D tracking of articulated objects is a theoretically interesting and challenging problem.

One of its instances, the 3D tracking of human hands has a number of diverse applications [6,

14] including but not limited to human activity recognition, human-computer interaction,

understanding human grasping, robot learning by demonstration, etc. Towards developing

an effective and efficient solution, one has to struggle with a number of complicating and

interacting factors such as the high dimensionality of the problem, the chromatically uniform

appearance of a hand and the severe self-occlusions that occur while a hand is in action. To

ease some of these problems, some very successful methods employ specialized hardware

for motion capture [21] or the use of visual markers as in [25]. Unfortunately, such methods

require a complex and costly hardware setup, interfere with the observed scene, or both.

Several attempts have been made to address the problem by considering markerless vi-

sual data, only. Existing approaches can be categorized into model- and appearance-based.

Model-based approaches provide a continuum of solutions but are computationally costly

and depend on the availability of a wealth of visual information, typically provided by a
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Figure 1: Graphical illustration of the proposed method. A Kinect RGB image (a) and

the corresponding depth map (b). The hand is segmented (c) by jointly considering skin

color and depth. The proposed method fits the employed hand model (d) to this observation

recovering the hand articulation (e).

multicamera system. Appearance-based methods are associated with much less computa-

tional cost and hardware complexity but they recognize a discrete number of hand poses that

correspond typically to the method’s training set.

In this paper, we propose a novel model-based approach to the problem of 3D tracking

of hand articulations which is formulated as an optimization problem that minimizes the

discrepancy between the 3D structure and appearance of hypothesized 3D hand model in-

stances, and its actual visual observations. Observations come from an off-the-shelf Kinect

sensor [13]. Optimization is performed with a variant of an existing stochastic optimization

method (Particle Swarm Optimization - PSO). The most computationally demanding parts

of the process have been implemented to run efficiently on a GPU. Extensive experimental

results demonstrate that accurate and robust tracking is achievable at 15Hz. Thus, to the best

of our knowledge, the proposed method is the first that simultaneously (a) provides accurate,

continuous solutions to the problem of 3D tracking of hand articulations (b) does not require

a complex hardware setup (c) relies solely on markerless visual data (d) is rather insensitive

to illumination conditions and (e) runs in near real-time.

1.1 Related work

Moeslund et al. [14] provide a thorough review covering the general problem of visual hu-

man motion capture and analysis. Human body and human hand pose recovery are problems

sharing important similarities such as the tree-like connectivity and the size variability of the

articulated parts. A variety of methods have been proposed to capture human hand motion.

Erol et al. [6] present a review of such methods. Based on the completeness of the output,

they differentiate between partial and full pose estimation methods, further dividing the last

class into appearance- and model-based ones.

Appearance-based methods typically establish a mapping from a set of image features

to a discrete, finite set of hand model configurations [3, 19, 20, 22, 26]. The discriminative

power of these methods depends on the invariance properties of the employed features, the

number and the diversity of the postures to be recognized and the method used to derive the

mapping. Due to their nature, appearance-based methods are well suited for problems such

as hand posture recognition where a small set of known target hand configurations needs

to be recognized. Conversely, such methods are less suited for problems that require an

accurate estimation of the pose of freely performing hands. Moreover, generalization for

such methods is achieved only through adequate training. On the positive side, training is
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performed offline and online execution is typically computationally efficient.

Model-based approaches [5, 7, 15, 16, 18, 23, 24] generate model hypotheses and eval-

uate them on the available visual observations. Essentially, this is performed by formulating

an optimization problem whose objective function measures the discrepancy between the

visual cues that are expected due to a model hypothesis and the actual ones. The employed

optimization method must be able to evaluate the objective function at arbitrary points in

the multidimensional model parameters space, so, unlike appearance-based methods, most

of the computations need to be performed online. The resulting computational complexity

is the main drawback of these methods. On the positive side, such methods do not require

training and are also more easily extendable.

Another categorization can be defined, based on how partial evidence regarding the indi-

vidual rigid parts of the articulated object contributes to the final solution. We differentiate

among disjoint evidence methods that consider individual parts in isolation prior to evalu-

ating them against observations [7, 18, 22, 24] and joint evidence methods [3, 5, 15, 16,

19, 20, 23, 26] that consider all parts in the context of full object hypotheses. Disjoint evi-

dence methods usually have lower computational requirements than joint-evidence ones, but

need to cope explicitly with the difficult problem of handling part interactions such as col-

lisions and occlusions. In joint-evidence methods, part interactions are effortlessly treated

but their computational requirements are rather high. Until recently, the only available joint-

evidence methods were appearance-based. As an example, Shotton et al. propose in [22] an

appearance-based, disjoint evidence method for human body pose estimation with remark-

able computational performance.

This paper presents a model-based method that treats 3D hand pose recovery as a mini-

mization problem whose objective function is the discrepancy between the 3D structure and

appearance of hypothesized 3D hand model instances, and visual observations of a human

hand. Observations come from an off-the-shelf Kinect sensor. Optimization is performed

through a variant of PSO tailored to the needs of the specific problem. Other versions of

PSO have been employed in the past for human body pose tracking [9] and multicamera-

based hand pose estimation [15].

Under the taxonomy of [6], the present work is a full, model-based pose estimation

method that employs a single hypothesis. Furthermore, according to the categorization in-

troduced earlier, it is a joint-evidence method. From a methodological point of view, the

mostly related existing method [15] treats the problem of 3D hand pose estimation as an op-

timization problem that is solved through canonical PSO. However, the observations in [15]

are 2D silhouettes of a hand extracted from a multicamera system. In the present work, the

observation is the RGB plus depth images provided by a Kinect sensor. As a direct conse-

quence, the objective function is different, the computational requirements are much smaller,

the required camera setup is greatly simplified and the resulting system can be operational in

situations where illumination conditions may vary substantially.

Another closely related work is that of Hamer et al. [7]. In both works the input is range

data and a model-based approach is adopted. Hamer employs Belief Propagation which

is well-suited for specific interdependency patterns among the parameters: the dependency

graph must be a tree. Since the fingers usually interact (occlude or touch) with each other,

special, explicit handling of such interactions is required. In our work, self-occlusions are

naturally and effortlessly treated since we adopt a joint-evidence approach.
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2 Tracking hand articulations based on the Kinect

The input to the proposed method (see Fig.1) is an image acquired using the Kinect sensor,

together with its accompanying depth map. Skin color detection followed by depth segmen-

tation is used to isolate the hand in 2D and 3D. The adopted 3D hand model comprises of a

set of appropriately assembled geometric primitives. Each hand pose is represented as a vec-

tor of 27 parameters. Hand articulation tracking is formulated as the problem of estimating

the 27 hand model parameters that minimize the discrepancy between hand hypotheses and

the actual observations. To quantify this discrepancy, we employ graphics rendering tech-

niques to produce comparable skin and depth maps for a given hand pose hypothesis. An

appropriate objective function is thus formulated and a variant of PSO is employed to search

for the optimal hand configuration. The result of this optimization process is the output of

the method for the given frame. Temporal continuity is exploited to track the hand articula-

tion in a sequence of frames. The remainder of this section describes these algorithmic steps

in more detail.

2.1 Observing a hand

The input to the method is a 640× 480 RGB color image of a hand and a corresponding

depth image, as these are provided by the Kinect sensor [13]. Skin color is detected as in [2]

and the resulting largest skin colored blob is kept for further consideration. A conservative

estimation of the hands spatial extend is computed by dilating this blob with a circular mask

of radius r = 5. Given the estimation of the 3D position of the tracked hand for the pre-

vious frame, skin colored 3D points that are within a preset depth range (25cm) from that

estimation are kept, whereas the remaining depth map is set to zero. The observation model

O = (os,od) that feeds the rest of the process consists of the 2D map os of the segmented

skin color and the corresponding depth map od .

2.2 Modeling a hand

The employed hand model consists of a palm and five fingers. The palm is modeled as an

elliptic cylinder and two ellipsoids for caps. Each finger consists of three cones and four

spheres, except for the thumb which consists of an ellipsoid, two cones and three spheres.

Similarly to [15] we build all the necessary geometric primitives for the hand using two

basic 3D geometric primitives, a sphere and a cylinder, enabling a high degree of computa-

tional parallelism (see Sec. 2.5). The hand model is depicted in Fig. 1(d) with color-coded

geometric primitives (yellow: elliptic cylinders, red: ellipsoids, green: spheres, blue: cones).

The kinematics of each finger is modeled using four parameters encoding angles, two

for the base of the finger and two for the remaining joints. Bounds on the values of each

parameter are set based on anatomical studies [1]. The global position of the hand is rep-

resented using a fixed point on the palm. The global orientation is parameterized using the

redundant representation of quaternions. The resulting parameterization encodes a 26-DOF

hand model with a representation of 27 parameters.

2.3 Evaluating a hand hypothesis

Having a parametric 3D model of a hand, the goal is to estimate the model parameters that

are most compatible to the visual observations (Sec. 2.1). To do so, given a hand pose
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hypothesis h and camera calibration information C, a depth map rd(h,C) is generated by

means of rendering. By comparing this map with the respective observation od , a “matched

depths” binary map rm(h,C) is produced. More specifically, a pixel of rm is set to 1 if the

respective depths in od and rd differ less than a predetermined value dm or if the observation

is missing (signified by 0 in od), and 0 otherwise. This map is compared to the observation

os, so that skin colored pixels that have incompatible depth observations do not positively

contribute to the total score (Sec. 2.3, Eq.( 2)).

A distance measure between a hand pose hypothesis h and the observation maps O is

established. This is achieved by a function E(h,O) that measures the discrepancy between

the observed skin and depth maps O computed for a given frame and the skin and depth maps

that are rendered for a given hand pose hypothesis h:

E(h,O) = D(O,h,C)+λk · kc(h). (1)

In Eq.(1), λk is a normalization factor. The function D in Eq.(1) is defined as

D(O,h,C) =
∑min(|od − rd |,dM)

∑(os ∨ rm)+ ε
+λ

(

1−
2∑(os ∧ rm)

∑(os ∧ rm)+∑(os ∨ rm)

)

. (2)

The first term of Eq.(2) models the absolute value of the clamped depth differences between

the observation O and the hypothesis h. Unless clamping to a maximum depth dM is per-

formed, a few large depth discrepancies considerably penalize an otherwise reasonable fit.

This fact, in turn, creates large variations of the objective function’s value near the optimum,

hindering the performance of any adopted optimization strategy. A small value ε is added

to the denominator of this term to avoid division by zero. The second term of Eq.(2) models

the discrepancies between the skin-colored pixels of the model and the observation. λ is a

constant normalization factor. The sums are computed over entire feature maps.

The function kc in Eq.(1) adds a penalty to kinematically implausible hand configura-

tions. An elaborate collision scheme was considered for kc, taking into account all pos-

sible pairs of relatively moving hand parts. Experimental results have demonstrated that

for the majority of encountered situations, it suffices to penalize only adjacent finger inter-

penetration. Thus, in the current implementation: kc(h) = ∑p∈Q−min(φ(p,h),0), where Q

denotes the three pairs of adjacent fingers, excluding the thumb, and φ denotes the difference

(in radians) between the abduction-adduction angles of those fingers in hypothesis h. In all

experiments, λ was set to 20 and of λk to 10. The depth thresholds were set to dm = 1cm and

dM = 4cm.

2.4 Stochastic optimization through particle swarms

Particle Swarm Optimization (PSO) was introduced by Kennedy and Eberhart in [10, 11].

PSO is a stochastic, evolutionary algorithm that optimizes an objective function through the

evolution of atoms of a population. A population is essentially a set of particles that lie in

the parameter space of the objective function to be optimized. The particles evolve in runs

which are called generations according to a policy which emulates “social interaction”.

Every particle holds its current position (current candidate solution and kept history) in

a vector xk and its current velocity in a vector vk. Vector Pk stores the position at which each

particle achieved, up to the current generation k, the best value of the objective function.

Finally, the swarm as a whole, stores in vector Gk the best position encountered across all

particles of the swarm. Gk is broadcast to the entire swarm, so every particle is aware of the
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global optimum. The update equations that reestimate each particle’s velocity and position

in every generation k are

vk+1 = w(vk + c1r1(Pk − xk)+ c2r2(Gk − xk)) (3)

and

xk+1 = xk + vk+1, (4)

where w is a constant constriction factor [4]. In Eq. (3), c1 is called the cognitive component,

c2 is termed the social component and r1,r2 are random samples of a uniform distribution in

the range [0..1]. Finally, c1 + c2 > 4 must hold [4]. In all performed experiments the values

c1 = 2.8, c2 = 1.3 and w = 2/
∣

∣

∣
2−ψ −

√

ψ2 −4ψ
∣

∣

∣
with ψ = c1 + c2 were used.

Typically, the particles are initialized at random positions and zero velocities. Each di-

mension of the multidimensional parameter space is bounded in some range. If, during the

position update, a velocity component forces the particle to move to a point outside the

bounded search space, a handling policy is required. A variety of alternative policies have

been proposed in the relevant literature [8]. The “nearest point” method was chosen in our

implementation. According to this, if a particle has a velocity that forces it to move to a point

po outside the bounds of the parameter space, that particle moves to the point pb inside the

bounds that minimizes the distance |po − pb|.
In this work, PSO operates in the 27-dimensional 3D hand pose parameter space. The

objective function to be optimized (i.e., minimized) is E(O,h) (Eq. 1) and the population

is a set of candidate 3D hand poses hypothesized for a single frame. Thus, the process

of tracking a human hand requires the solution of a sequence of optimization problems,

one for each acquired frame. By exploiting temporal continuity, the solution over frame

Ft is used to generate the initial population for the optimization problem for frame Ft+1.

More specifically, the first member of the population hre f for frame Ft+1 is the solution for

frame Ft ; The rest of the population consists of perturbations of hre f . The variance of these

perturbations is experimentally determined as it depends on the anticipated jerkiness of the

observed motion and the image acquisition frame rate. The optimization for frame Ft+1 is

executed for a fixed amount of generations. After all generations have evolved, the best

hypothesis hbest is dubbed as the solution for time step t +1.

The above described PSO variant successfully estimates the 6D global pose of the hand.

However, the estimation of the 20 remaining parameters that are related to finger angles

is not equally satisfactory. The swarm quickly converges to a point close to the optimum

in a behavior that in the relevant literature [11] is termed “swarm collapse”. However the

estimation of the parameters for the fingers often gets stuck to local minima. To overcome

this problem and increase accuracy, we employed a PSO variant that performs randomization

on the 20 dimensions corresponding to finger joint angles, similar to that suggested in [27].

More specifically, every ir generations, half of the particles are disturbed, each in a different,

randomly chosen finger joint dimension dr. The value that is assigned to xt [dr] is a sample of

the uniform distribution in the permitted range for dr. The value of ir was set to 3 generations

in all experiments.

2.5 GPU acceleration

The most computationally demanding part of the proposed method is the evaluation of a

hypothesis-observation discrepancy E(h,O) and, especially, its term D. The computation of
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Figure 2: Quantitative evaluation of the performance of the method with respect to (a) the

PSO parameters (b) the distance from the sensor (c) noise and (d) viewpoint variation.

D involves rendering, pixel-wise operations between an observation and a hypothesis map

and summation over the results. We exploit the inherent parallelism of this computation

by performing these operations on a GPU. Furthermore, by evaluating simultaneously the

function D for many hypotheses hi (i.e., for all the particles of a PSO generation), we mini-

mize the overhead of communication between the CPU and the GPU. Hardware instancing

is employed to accelerate the rendering process, exploiting the fact that the hand model is

made up of transformed versions of the same two primitives (a cylinder and a sphere). The

pixel-wise operations between maps are inherently parallel and the summations of the maps

are performed efficiently by employing a pyramidal scheme. More details on the GPU im-

plementation are provided in [12].

3 Experimental evaluation

The experimental evaluation of the proposed method was based on synthetic data with

ground truth information and on real-world sequences obtained by a Kinect sensor. The

proposed method runs on a computer equipped with a quad-core Intel i7 950 CPU, 6 GBs

RAM and an Nvidia GTX 580 GPU with 1581GFlops processing power and 1.5 GBs mem-

ory. On this system, the average frame rate is 15Hz. As discussed in [12] there is still room

for performance improvements.

Synthetic data were used for the quantitative evaluation of the proposed method. This is

a common approach in the relevant literature [7, 15] because ground truth data for real-world

image sequences is hard to obtain. The employed synthetic sequence consists of 360 consec-

utive hand poses that encode everyday hand motions as simple as waving and as complex as

object grasping. Rendering was used to synthesize the required input O for each considered

hand pose. To quantify the accuracy in hand pose estimation, we adopt the metric used in [7].
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More specifically, the distance between corresponding phalanx endpoints in the ground truth

and in the estimated hand model is measured. The average of all these distances over all the

frames of the sequence constitutes the resulting error estimate ∆.

Several experiments were carried out to assess the influence of several factors to the per-

formance of the method. Figure 2(a) illustrates the behavior of the method with respect to

the PSO parameters (number of generations and particles per generation). The product of

these parameters determines the computational budget of the proposed methodology, as it

accounts for the number of objective function evaluations. The horizontal axis of the plot

denotes the number of PSO generations. Each plot of the graph corresponds to a different

number of particles per generation. Each point in each plot is the median Md of the error

∆ for 20 repetitions of an experiment run with the specific parameters. A first observation

is that Md decreases monotonically as the number of generations increase. Additionally, as

the particles per generation increase, the resulting error decreases. Nevertheless, employing

more that 25 generations and more than 64 particles results in insignificant improvement of

the method’s accuracy. The gains, if any, are at most 0.5mm. For this reason, the configura-

tion of 64 particles for 25 generations was retained in all further experiments.

Another investigation considered the effect of varying the distance of the hand from the

hypothesized sensor. This explores the usefulness of the method in different application

scenarios that require observations of a certain scene at different scales (e.g., close-up views

of a hand versus distant views of a human and his/her broader environment). To do this,

we generated the same synthetic sequences at different average depths. The results of this

experiment are presented in Fig. 2(b). At a distance of half a meter the error is equal to 5mm.

As the distance increases, the error also increases; Interestingly though, it doesn’t exceed

7.5mm even at an average distance of 2.5m.

The method was also evaluated with respect to its tolerance to noisy observations. Two

types of noise were considered. Errors in depth estimation were modeled as a Gaussian dis-

tribution centered around the actual depth value with the variance controlling the amount of

noise. Skin-color segmentation errors were treated similarly to [19], by randomly flipping

the label (skin/non-skin) of a percentage of pixels in the synthetic skin mask. Figure 2(c)

plots the method’s error in hand pose estimation for different levels of depth and skin seg-

mentation error. As it can be verified, the hand pose recovery error is bounded in the range

[5mm..25mm], even in data sets very heavily contaminated with noise.

We also assessed the accuracy in hand pose estimation with respect to viewpoint varia-

tions. This was achieved by placing the virtual camera at 8 positions dispersed on the surface

of a hemisphere placed around the hypothesized scene. The data points of Fig. 2(d) demon-

strate that viewpoint variations do not significantly affect the performance of the method.

Several long real-world image sequences were captured using the PrimeSense Sensor

Module of OpenNI [17]. The sequences exhibit hand waving, palm rotations, complex finger

articulation as well as grasp-like hand motions. The supplemental material accompanying

the paper1 provides videos with the results obtained in two such sequences (1341 and 1494

frames, respectively). Indicative snapshots are shown in Fig. 3. As it can be observed, the

estimated hand model is in very close agreement with the image data, despite the complex

hand articulation and significant self occlusions.

Finally, besides tracking, we tested the capability of the proposed method to perform

automatic hand model initialization, i.e., single-frame hand pose estimation. Essentially, this

boils down to the capability of PSO to optimize the defined objective function even when

1Also available at http://www.youtube.com/watch?v=Fxa43qcm1C4
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Figure 3: Indicative results on real-world data.
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Figure 4: Performance of single-frame hand pose estimation.

parameter ranges are very broad. To do so, the proposed algorithm run many times, each

initialized at different hand positions and orientations close to the observed hand (the largest

skin color blob). The best scoring hypothesis of this process was kept as the recovered pose.

To assess the method, a set of 45 frames was selected at regular intervals from a real-world

sequence and each hand pose recognition was performed 20 times. For the quantitative

assessment of the hand pose recognition accuracy, we used as a reference the hand model

parameters that were recovered from an experiment that tracked the hand articulation over the

whole sequence. Figure 4 shows the histogram of estimation error Md for all the performed

(20× 45) experiments. As it can be verified, in 74% of them, the estimated pose deviated

4cm or less from the tracked pose. The secondary histogram peak around 8cm corresponds

to some ambiguous poses for which sometimes the mirrored pose was estimated.

4 Discussion

We proposed a novel model-based method for efficient full DOF hand model initialization

and tracking using data acquired by a Kinect sensor. The combination of (a) a careful model-

ing of the problem (b) a powerful optimization method (c) the exploitation of modern GPUs

and, (d) the quality of the data provided by the Kinect sensor, results in a robust and efficient

method for tracking the full pose of a hand in complex articulation. Extensive experimental

results demonstrate that accurate and robust 3D hand tracking is achievable at 15Hz. Thus,
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it is demonstrated that model-based joint-evidence tracking is feasible in near real-time. It is

important to note that there is no inherent limitation that prevents the proposed method to be

used on any other type of depth images resulting, for example, from standard dense stereo

reconstruction methods.
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