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ABSTRACT

We present a framework for automatically learning human
user models from joint-action demonstrations that enables
a robot to compute a robust policy for a collaborative task
with a human. First, the demonstrated action sequences
are clustered into different human types using an unsuper-
vised learning algorithm. A reward function is then learned
for each type through the employment of an inverse rein-
forcement learning algorithm. The learned model is then in-
corporated into a mixed-observability Markov decision pro-
cess (MOMDP) formulation, wherein the human type is a
partially observable variable. With this framework, we can
infer online the human type of a new user that was not in-
cluded in the training set, and can compute a policy for the
robot that will be aligned to the preference of this user. In
a human subject experiment (n = 30), participants agreed
more strongly that the robot anticipated their actions when
working with a robot incorporating the proposed framework
(p < 0.01), compared to manually annotating robot actions.
In trials where participants faced difficulty annotating the
robot actions to complete the task, the proposed framework
significantly improved team efficiency (p < 0.01). The robot
incorporating the framework was also found to be more re-
sponsive to human actions compared to policies computed
using a hand-coded reward function by a domain expert
(p < 0.01). These results indicate that learning human user
models from joint-action demonstrations and encoding them
in a MOMDP formalism can support effective teaming in
human-robot collaborative tasks.

1. INTRODUCTION
The development of new industrial robotic systems that

operate in the same physical space as people highlights the
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emerging need for robots that can integrate seamlessly into
human group dynamics. In order to be efficient and produc-
tive teammates, robotic assistants need to be able to adapt
to the personalized style of their human counterparts. This
adaptation requires learning a statistical model of human be-
havior and integrating this model into the decision-making
algorithm of the robot in a principled way.

In this paper, we describe a framework that allows for the
learning of human user models through joint-action demon-
strations. This framework enables the robot to compute a
robust policy for a collaborative task with a human, assum-
ing access to demonstrations of human teams working on
the task. We hypothesize that a limited number of “domi-
nant” strategies can capture the majority of demonstrated
sequences. Using this assumption, we denote the preference
of a human team member as a partially observable variable
in a mixed-observability Markov decision process (MOMDP)
[24] and constrain its value to a limited set of possible as-
signments. We chose the MOMDP formulation because the
number of observable variables for human-robot collabora-
tive tasks in a manufacturing setting is much larger than
that of partially observable variables. Denoting the human
preference for the action toward task completion as a hidden
variable naturally models human collaboration, since the in-
tentions of the participants can never be directly observed
during training, and must be inferred through interaction
and observation.

We start by describing the clustering of demonstrated ac-
tion sequences into different human types using an unsuper-
vised learning algorithm. These demonstrated sequences are
used by the robot to learn a reward function that is represen-
tative for each type, through the employment of an inverse
reinforcement learning algorithm. The learned models are
then incorporated as part of a MOMDP formulation. With
this framework, we can infer, either offline or online, the hu-
man type of a new user that was not included in the train-
ing set, and can compute a policy for the robot that will be
aligned to the preference of this new user. In a human sub-
ject experiment (n = 30), participants agreed more strongly
that the robot anticipated their actions when working with
a robot utilizing the proposed framework (p < 0.01), com-
pared to manually annotating robot actions. Additionally,
in trials where the sequence of robot actions toward task
completion was not trivially inferred by the participants, the
proposed framework significantly improved team efficiency
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(p < 0.01). Finally, the robot was found to be more respon-
sive to human actions with the learned policy, compared
with executing a policy from a reward function hand-coded
by a domain expert (p < 0.01).

First, we place our work in the context of other related
work in Section 2, and introduce the proposed framework in
Section 3. Next, we describe the clustering of demonstrated
action sequences in Section 4. The learned models are then
used as part of a MOMDP formulation (Section 5). We de-
scribe the human subject experiment in Section 6, discuss
the results in Section 7 and conclude with potential direc-
tions for future research in Section 8.

2. RELEVANT WORK
For a robot to learn a human model, a human expert is

typically required to explicitly teach the robot a skill or spe-
cific task [3, 4, 1, 21, 8, 2]. In this work, demonstrations
of human teams executing a task are used to automatically
learn human types in an unsupervised fashion. The data
from each cluster then serves as input for an inverse rein-
forcement learning algorithm. In the context of control the-
ory, this problem is known as inverse optimal control, origi-
nally posed by Kalman and solved in [6]. We follow the ap-
proach of Abbeel and Ng [1], and solve a quadratic program
iteratively to find feature weights that attempt to match the
expected feature counts of the resulting policy with those
of the expert demonstrations. There have also been game-
theoretic approaches [28, 30] that aim to model multi-agent
behavior. Recent state-of-the-art imitation learning algo-
rithms [15] have been shown to preserve theoretical guar-
antees of performance, while minimizing risk during learn-
ing. Through human demonstrations, our framework learns
a number of different human types and a reward function for
each type, and uses these as part of a MOMDP formulation.

Related approaches to learning user models include natu-
ral language interaction with a robot wheelchair [9], where
a user model is learned simultaneously with a dialog man-
ager policy. In this case, the system assumes that the model
parameters are initially uncertain, and improves the model
through interaction. More recently, humans and robots have
been able to learn a shared plan for a collaborative task
through a training process called “cross-training” [22]. Such
approaches do not have the limitation of a fixed set of avail-
able models; however, learning a good model requires a large
amount of data, which can be an issue when using the model
for large-scale, real-world applications. Rather than learning
a new model for each human user, which can be tedious and
time-consuming, we use demonstrations by human teams to
infer some“dominant”human types, and then associate each
new user to a new type.

Recent work has also inferred human intentions during
collaborative tasks for game AI applications. One such study
[20] focused on inferring the intentions of a human player,
allowing a non-player character (NPC) to assist the human.
Alternatively, [17] proposed the partially observable Monte-
Carlo cooperative planning system, in which human inten-
tion is inferred for a ”cops-and-robbers” turn-based game.
In both works, the model of the human type is assumed to
be known beforehand.

Partially observable Markov decision process (POMDP)
models have been used to infer human intention during driv-
ing tasks [7], as well. In this case, the user model is repre-
sented by the transition matrix of a POMDP and is learned

through task-specific action-rules. Recently, the mixed ob-
servability predictive state representation framework (MO-
PSR) [23] has been shown to learn accurate models of mixed
observability systems directly from observable quantities,
but has not yet been verified for task planning applications.
The MOMDP formulation [24] has been shown to achieve
significant computational efficiency, and has been used in
motion planning applications [5], with uncertainty about the
intention of the human over their own actions. In the afore-
mentioned work, the reward structure of the task is assumed
to be known. In our work, the reward function that corre-
sponds to each human type is learned automatically from
unlabeled demonstrations.

In summary, we present a pipeline to automatically learn
the reward function of the MOMDP through unsupervised
learning and inverse reinforcement learning. The proposed
framework enables the rapid estimation of a human user
model online, through the a priori unsupervised learning of
a set of “dominant models” encoded in a MOMDP formula-
tion. Using a human subject experiment, we show that the
learned MOMDP policies accurately represent the prefer-
ences of human participants and can support effective team-
ing for human-robot collaborative tasks. We describe the
proposed framework in the next section.

3. METHOD
Our framework has two main stages, as shown in Figure 1.

The training data is preprocessed in the first stage. In the
second stage, the robot infers the personalized style of a new
human teammate and executes its role in the task according
to the preference of this teammate.

Input DB of  

sequences 
Cluster sequences 

Learn a reward 

function per cluster 

Compute a 

MOMDP policy 

User type is 

inferred 

Human and robot 

do task actions 
Sequences of 

new user 

Training Data 

Preprocessing 

Online Task 

Execution 

Figure 1: Framework flowchart

When a robot is introduced to work with a new human
worker, it needs to infer the human type and choose ac-
tions aligned to the preference of that human. Additionally,
the robot should reason over the uncertainty on the type
of the human. The first stage of our framework assumes
access to a set of demonstrated sequences of actions from
human teams working together on a collaborative task, and
uses an unsupervised learning algorithm to cluster the data
into dominating human types. The cluster indices serve as
the values of a partially observable variable denoting hu-
man type in a mixed-observability Markov decision process.
Our framework then learns a reward function for each hu-
man type, which represents the preference of a human of
the given type on a subset of task-related robot actions. Fi-
nally, the framework computes an approximately optimal
policy for the robot that reasons over the uncertainty on
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the human type and maximizes the expected accumulated
reward.

In the second stage, a new human subject is asked to exe-
cute the collaborative task with the robot. The human can
then demonstrate a few sequences of human and robot ac-
tions, and a belief about his type can be computed according
to the likelihood of the human sequences belonging to each
cluster. Alternatively, if the human actions are informative
of his type, as in the human subject experiment described
in Section 6, the human type can be estimated online. The
robot then executes the action of the computed policy of the
MOMDP, based on the current belief of the human type at
each time step.

In the following section, we describe the first block of the
proposed framework: finding the number of dominating hu-
man types in a collaborative task by clustering the demon-
strated sequences.

4. CLUSTERING OF HUMAN TYPES
To improve a robot’s ability to adapt to human prefer-

ences, we first try to find human preferences using an un-
supervised clustering approach. In this problem, we have
a data set D = x1, ..., xn, where each xi is a demonstrated
sequence of alternating, discrete human and robot actions.
The robot actions are those that the human annotates for
the robot. The goal is to find the number of human types,
k, within this data and the assignment of each sequence of
actions xi to a type.

Previous work has approached this problem of clustering
sequential data through various methods. Murphy and Mar-
tin [19] clustered ranking or ordinal data through expectation-
maximization (EM) by learning distance-based models that
had two parameters: a central ranking and a precision pa-
rameter. The distance between rankings was defined using
Kendall’s, Spearman’s and Cayley’s distances, as specified
in [18]. In another work, Jääskinen [13] clustered DNA se-
quences modeled as Markov chains using a Dirichlet process
prior over the partitions. A greedy search of joining and
splitting partitions was used to determine the number of
clusters, and EM was used to learn transition probability
matrices and to correctly assign sequences to clusters. In
solving our clustering problem, we chose to use a hybrid ap-
proach combining these two methods. Similar to [13], our
framework learns transition matrices between human and
robot actions using EM, because this provides information
about how the human will act based on the actions of the
robot, and vice-versa.

We begin by using a hard variant of EM, similar to [13],
to cluster the data into a set of human preferences. In the
algorithm, we represent each preference or cluster by a tran-
sition matrix of size |A| x |A|, where |A| is the size of the
action space, A = {Ar, Ah}, which includes both robot ac-
tions Ar and human actions Ah. Since the data consists of
a sequence of actions in which the human and robot take
turns, the transition matrix encodes information about how
the human will act based on the previous robot action, and
vice-versa. We then define θ as the set of k representa-
tive transition matrices θ1, ..., θk that correspond to the k
clusters. Every sequence xi, each of length l, in the data
D = x1...xn must be assigned to one of these k clusters.
The assignments of these sequences to clusters can be de-
noted as Z = z1...zn, where each zi ∈ {1, ..., k} .

Algorithm: Cluster-Transition-Matrices (k)

1. Initialize θ̂ by randomizing θ̂1, ..., θ̂k

2. Initialize sequence assignments Z = z1, ..., zn

3. repeat

4. E-step: Compute assignments for each sequence zi

for i = 1, ..., n

zi = argmax
zi

(

l
∏

j=2

θ̂zi(x
j
i |x

j−1
i )

)

5. M-step: Update each transition matrix θ̂z

for z = 1, ..., k

ni|j : observed count of transitions from i to j

θ̂z,i|j =
ni|j

|A|∑

x=1

nx|j

for i, j = 1, ..., |A|

6. until Z converges to stable assignments

Figure 2: Cluster Transition Matrices using EM

The probability of one sequence xi parameterized by θ can
be represented as follows, where x

j
i denotes the jth element

of the ith demonstrated sequence:

P (xi;θ) =

k
∑

zi=1

P (zi)P (xi|zi;θ)

=

k
∑

zi=1

P (zi)

(

l
∏

j=2

θzi(x
j
i |x

j−1
i )

)
(1)

For all data points, the log-likelihood is:

l(D;θ) =

n
∑

i=1

logP (xi;θ)

=

k
∑

z=1

n
∑

i=1

δ(z|zi)log

(

P (zi)

l
∏

j=2

θzi(x
j
i |x

j−1
i )

) (2)

δ(z|zi) = 1 if z = zi and zero otherwise.
The cluster-transition-matrices EM algorithm learns the

optimal transition matrices θ̂1, ..., θ̂k by iteratively perform-
ing the E-step and the M-step. First, lines 1-2 randomly
initialize k transition matrices and sequence assignments;
then, lines 3 through 6 repeatedly execute the E-step and
M-step until the assignments Z converge to stable values. In
the E-step, we complete the data by assigning each sequence
to the cluster with the highest log-likelihood (line 4). In the
M-step, each cluster’s transition matrix is updated by count-
ing the transitions in all sequences assigned to that cluster
(line 5). These two steps are repeated until the assignments
z1, ..., zn do not change (line 6).

For the EM algorithm, we choose the number of clusters,
k, by calculating the within-cluster dispersion for a range
of values of k and selecting the value of k such that adding
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another cluster does not result in a significant decrease of
the within-cluster dispersion [29].

We then input the learned clusters into a mixed-observability
Markov decision process, as described in the next section.

5. MOMDP LEARNING AND PLANNING
The clusters of demonstrated action sequences represent

different types of humans. When a robot is introduced to
work with a new human worker, it needs to infer the human
type for that worker and choose actions that are aligned to
their preference. Additionally, the robot should reason over
the uncertainty on the type of the human. Therefore, the
cluster indices serve as the values of a partially observable
variable denoting the human type in a mixed-observability
Markov decision process (MOMDP).

Our framework learns a reward function for each human
type. We then compute an approximately optimal policy
for the robot that reasons over the uncertainty on the hu-
man type and maximizes the expected accumulated reward.
We describe the MOMDP formulation, the learning of the
reward function and the computation of an approximately
optimal policy, as follows:

5.1 MOMDP Formulation
We treat the unknown human type as a hidden variable

in a MOMDP, and have the robot choose actions accord-
ing to the estimated human type. The MOMDP framework
uses proper factorization of the observable and unobserv-
able state variables, reducing the computational load. The
MOMDP is described by a tuple, {X,Y, S,Ar, Tx, Ty, R,Ω, O},
so that:

• X is the set of observable variables in the MOMDP. In
our framework, the observable variable is the current
task-step among a finite set of task-steps that signify
progress toward task completion.

• Y is the set of partially observable variables in the
MOMDP. In our framework, a partially observable vari-
able, y, represents the human type.

• S : X × Y is the set of states in the MOMDP con-
sisting of the observable and non-observable variables.
The state s ∈ S consists of the task-step x, which we
assume is fully observable, and the unobservable type
of the human y.

• Ar is a finite set of discrete task-level robot actions.

• Tx : S × Ar −→ Π(X) is the probability of the fully
observable variable being x′ at the next time step if
the robot takes action ar at state s.

• Ty : S × Ar × X −→ Π(Y ) is the probability of the
partially observable variable being y′ at the next time
step if the robot takes action ar at state s, and the
next fully observable state variable has value x′.

• R : S × Ar −→ R is a reward function that gives an
immediate reward for the robot taking action ar at
state s. It is a function of the observable task-step x,
the partially observable human type y and the robot
action ar.

• Ω is the set of observations that the robot receives
through observation of the actions taken by the human
and the robot.

• O : S×Ar −→ Π(Ω) is the observation function, which
gives a probability distribution over possible observa-
tions for each state s and robot action ar. We write
O(s, ar, o) for the probability that we receive observa-
tion o given s and ar.

5.2 Belief-State Estimation
Based on the above, the belief update is then [24]:

by(y
′) = ηO(s′, ar, o)

∑

y∈Y

Tx(s, ar, x
′)Ty(s, ar, s

′)by(y) (3)

5.3 Inverse Reinforcement Learning
Given a reward function, an exact value function and an

optimal policy for the robot can be calculated. Since we
want the robot to choose actions that align with the human
type of its teammate, a reward function must be specified for
every value that the human type can take. Manually spec-
ifying a reward function for practical applications can be
tedious and time-consuming, and would represent a signifi-
cant barrier for the applicability of the proposed framework.
In this section, we describe the learning of a reward function
for each human type using the demonstrated sequences that
belong to the cluster associated with that specific type.

For a fixed human type y, we can reduce the MOMDP
into a Markov decision process (MDP). The MDP, in this
context, is a tuple: (X,Ar, Tx, R, γ), where X, Ar, Tx and
R are defined in the MOMDP Formulation section above.
Given demonstrated sequences of state-action pairs, we can
estimate the reward function of the MDP using the inverse
reinforcement learning (IRL) algorithm [1]. We assume the
human type to be constant in the demonstrated sequences.
To compute the reward function for each cluster, we first
assume that a feature vector ϕ exists for each state, and each
given policy has a feature expectation that represents the
expected discounted accumulation of feature values based
on that policy. Formally, we define the feature expectations
of a policy π to be:

µ(π) = E[

∞
∑

t=0

γ
t
ϕ(st)|π] (4)

We also require an estimate of the feature expectations
for each human type. Given a set of nz demonstrated state-
action trajectories per human type z, we denote the empir-
ical estimate for the feature expectation as follows:

µ̂z =
1

nz

nz
∑

i=1

∞
∑

t=0

γ
t
ϕ(s

(i)
t ) (5)

The IRL algorithm begins with a single random policy
and attempts to generate a policy that is a mixture of ex-
isting policies, with feature expectations that are similar to
those for the policy followed by the expert. In our case,
the “expert” demonstrations were those followed by all hu-
mans of a particular type. The algorithm terminates when
||µ̂z − µ(π̃)||2 ≤ ǫ, and is implemented as described in [1].

The output is a list of policies π(i) and corresponding re-
ward functions Ri(s), with mixture weights λi. We use the
reward function of the policy with the maximum weight λi.
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For each human type, the framework applies IRL, using
the demonstrated sequences of that type as input to calcu-
late an associated reward function. With a reward function
for any assignment of the partially observable human type
variable y, we can now compute an approximately optimal
policy for the robot, as described in the next section.

5.4 Policy Computation
We solve the MOMDP for a policy that takes into account

the uncertainty of the robot over the human type, while
maximizing the agent’s expected total reward. MOMDPs
are structured variants of POMDPs, and finding an exact
solution for a POMDP is computationally expensive [14].
Point-based approximation algorithms have greatly improved
the speed of POMDP planning [27, 16, 26] by updating se-
lected sets of belief points. In this work, we use the SARSOP
solver [16], which, combined with the MOMDP formulation,
can scale up to hundreds of thousands of states [5]. The
SARSOP algorithm samples a representative set of points
from the belief space that are reachable from the initial be-
lief, and uses this set as an approximate representation of
the space, allowing for the efficient computation of a satis-
factory solution.

6. HUMAN-ROBOT TEAMING

EXPERIMENT
We conducted a large-scale experiment to evaluate the

proposed framework. In particular, we were interested in
showing that the learned policies enabled the robot to take
anticipatory actions that matched the preference of a hu-
man worker, compared to policies computed using a reward
function hand-coded by a domain expert. We were also in-
terested in the quality of the learned reward function com-
pared to a hand-coded reward function, as well as in the
effect of the anticipatory actions on the task execution ef-
ficiency of the human-robot team. For conditions 2 and 3
below, 15 subjects provided demonstrations by annotating
human and robot actions.

6.1 Independent Variables
In our experiment, we controlled the robot decision-making

mechanism in a human-robot collaborative task. This inde-
pendent variable can have one of three values. which we refer
to as “Manual session,”“Auto1 session” and“Auto2 session.”

1. Manual Control - The subject annotates robot actions
by verbally commanding the robot.

2. Automatic Control with Manually Hand-coded Rewards
(Auto1) - A domain expert observed the demonstrated
sequences, manually specified the number of human
types and explicitly specified a reward function that
best explained the preference of each human type. A
MOMDP policy was then computed, as described in
Section 5.4. The robot automatically takes actions by
executing that policy. The expert experimented sev-
eral times by changing the reward function until the
resulting policy would be satisfactory.

3. Automatic Control with Learned Rewards (Auto2) -
We used clustering and inverse reinforcement learning
to learn the reward function of the MOMDP and com-
pute a policy, as described in sections 3, 4 and 5.

6.2 Hypotheses
H1 Participants will agree more strongly that the robot

takes anticipatory actions when working with the robot in the

Auto1 and the Auto2 conditions, compared to working with

the robot in the Manual condition. The learned MOMDP
policy enables the robot to infer online the preference of
the human participant, and take anticipatory actions that
match that preference. We expected the robot actions from
the second and third condition to match the goals of the
participants and to be strongly perceived as anticipatory,
compared with manually jogging the robot. In prior work
[5], MOMDPs have successfully been applied to recognizing
human intention and using that information for decision-
making.
H2 The robot performance as a teammate, as perceived

by the participants, will be comparable between the Auto1

and Auto2 conditions. We posited that the reward func-
tion learned by the proposed framework for each cluster of
demonstrated action sequences would accurately represent
the goals of participants with that preference, and would re-
sult in performance similar to that achieved using a reward
function carefully annotated by a domain expert.
H3 The team efficiency and fluency of human-robot teams

of the Auto1 and Auto2 condition will be better than of the

teams of the Manual condition. We posited that the robot
anticipatory actions of the learned MOMDP policy, as well
as of the MOMDP policy from the hand-coded reward, would
result in faster task execution and better team fluency com-
pared with manually annotating robot actions. Automating
robot behaviors [11] and, in particular, enabling anticipa-
tory actions [12] has previously resulted in significant im-
provements in team efficiency and fluency in manufacturing
applications.

6.3 Experiment Setting
We conducted a large-scale experiment of 36 human sub-

jects to test the three hypotheses mentioned above, using a
human-robot collaborative task. The human’s role was to
refinish the surface of a box attached to an ABB industrial
robot. The robot’s role was to position the box in a posi-
tion that matches the human preference. All participants
executed the task from four different positions, as shown in
Figure 3. Each position required the participant to think of a
different configuration for the box; therefore, the preference
of the participant for the robot actions was dependent on his
position. Our experiments used a within-subject design to
mitigate the effects of inter-subject variability. We divided
the subjects into balanced groups for each of the k! = 6 or-
derings of our k = 3 conditions. All experiment sessions were
recorded. After each condition, all participants were asked
to answer a post-session survey that used a five-point Likert
scale to assess their responses to working with the robot. At
the end of the experiment, participants also responded to an
open-ended post-experimental questionnaire.

For the robot in the second and third conditions, the ob-
servable state variables x of the MOMDP framework were
the box position along the horizontal and vertical axis, as
well as the tilt angle of the box. The size of the observable
state-space X was 726. The starting configuration of the
box was specified by a small initial rotation and displace-
ment from the center and level position. The demonstra-
tion data used to learn the MOMDP was provided prior to
the experiment by 15 participants who were different than
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(a) (b)

(c) (d)

Figure 3: Execution of a hand-finishing task by a
human worker and an industrial robot. All par-
ticipants were asked to execute the task from four
different positions: (a) middle-left, (b) far-left, (c)
middle-right and (d) far-right. In the first two po-
sitions (top), participants were asked to refinish the
left surface of the box; in the other two (bottom),
they were asked to refinish the right surface.

the 36 subjects. For the second condition, a domain expert
grouped the participants into four types based on their final
position. For the third condition, the clustering algorithm
of the proposed framework identified four clusters based on
whether the box was moved to the left or right side, as well
as whether it was tilted and moved down or not. Therefore,
including the partially observable variables, the total size of
the state-space of the MOMDP was 4 × 726 = 2904 states.
The robot actions corresponded to discrete changes in po-
sition and orientation of the box along three different axes.
The human actions corresponded to the discretized motion
of the human hand in the horizontal plane. To recognize
the actions of the human, we used a Phasespace motion
capture system consisting of eight cameras [25] that tracked
the motion of a Phasespace glove worn by the participant.
Measurements of the hand position were averaged in fixed
intervals, and an action was detected when the difference
between two consecutive averages exceeded a set threshold.
Additionally, an oscillating hand-motion with a brush, sim-
ulating a surface refinishing, was recorded as the final action
that ended the task. For both the second and third condi-
tions, the observation function for the MOMDP was empir-
ically specified. We leave learning an observation function
from the demonstrated sequences for each cluster for future
work.

7. RESULTS AND DISCUSSION

7.1 Subjective Measures
Two participants belonging to different groups did not an-

swer the questions on the second page of their post-session

Table 1: P-Values for three-way and pairwise com-
parisons (n=30). Statistically significant values are
shown in bold.

Question Omnibus Auto2 v. Auto2 v. Auto1 v.
Auto1 Man Man

Q1 p < 0.01 p = 0.01 p = 0.20 p = 0.01
Q2 p < 0.01 p = 0.34 p < 0.01 p < 0.01

Q1: “The robot was responsive to me.”

Q2: “The robot anticipated my actions.”

surveys, and were therefore not taken into consideration. To
maintain an equal number of participants per group, we ran-
domly removed one participant from each of the remaining
four groups, resulting in a final number of n = 30 partici-
pants.

As shown in Table 1, a three-way Friedman’s test con-
firmed a statistically significant difference for question Q2.
A pairwise Wilcoxon signed rank test with Bonferroni cor-
rection showed that, compared with manually annotating
robot actions, participants agreed more strongly that the
robot anticipated their actions when utilizing the proposed
framework, Auto2 (Q2, p < 0.01), as well as when working
with the robot in condition Auto1 (Q2, p < 0.01). These
results follow from the fact that the MOMDP formulation
allows the robot to reason over its uncertainty on the hu-
man type. Once the robot has enough information on the
human type or preference, it will take actions toward task
completion that follow that preference. Interestingly, the
generated robot behavior emulates behavior frequently seen
in human teams, where one member may let his teammate
start working on a task, wait until he has enough informa-
tion to confidently associate his teammates’ actions with a
familiar pattern based on prior experience, and then move
onto task execution himself. This supports hypothesis H1
of Section 6.2.

Recall our second hypothesis H2: that the robot perfor-
mance as perceived by the participants would be compara-
ble between conditions Auto1 and Auto2. We performed a
TOST equivalence test, similarly to [10], and showed that
participants rated robot intelligence (p < 0.01), accuracy of
robot actions (p = 0.02), the robot’s anticipation of partic-
ipants’ actions (p = 0.03), the trustworthiness of the robot
(p < 0.01) and the smoothness of the robot’s trajectories
(p = 0.04) similarly between the two conditions. Interest-
ingly, results from a pairwise Wilcoxon signed rank test indi-
cated that participants agreed more strongly that the robot
was responsive to them when working with the robot of the
proposed framework (Auto2), compared with the robot that
executed the MOMDP policy with the hand-coded reward
function (Q1, p = 0.01). We believe that this is a result of
the quality of the clustering algorithm: Whereas the domain
expert grouped human subjects according to their final po-
sition upon completing the task, (Figure 3), our algorithm
clustered subjects based on demonstrated human and robot
action sequences. Therefore, when the robot of the proposed
framework inferred the human preference and took anticipa-
tory actions, it was perceived as more responsive.

194



7.2 Quantitative measures
Here, we consider the total task completion time and hu-

man idle time for each condition of the experiment. As Fig-
ure 4 shows, participants executed the task faster, on aver-
age, when working with the robot of the proposed framework
(Auto2: M = 102.8, SD = 8.33), compared with the other
two conditions (Auto1: M = 111.4, SD = 8.85 and Man-
ual: M = 107.4, SD = 33.0). Furthermore, the human idle
time was shorter when working with the robot of the pro-
posed framework (Auto2: M = 85.2, SD = 8.3) compared
with the other two conditions (Auto1: M = 92.9, SD = 7.67
and Manual: M = 89.8, SD = 33.7). (All units are in sec-
onds.) A repeated-measure analysis of variance did not find
the differences between the conditions in task execution and
human idle time to be statistically significant. Additionally,
no learning effects were observed as a function of session
number.

Whereas this result does not provide adequate support for
hypothesis H3 of section 6.2, we observed that the variance
of the task completion and human idle time between the
subjects was much smaller when working with the robot of
the proposed framework, compared to when manually anno-
tating human and robot actions. We attribute this to the
large variation in the amount of time subjects needed to find
out which robot actions would bring the box to the desired
position when manually controlling the robot. Additionally,
some subjects annotated short trajectories during the man-
ual condition, while others took multiple redundant steps
when commanding the robot. Reducing the variation in ex-
ecution time is important in the manufacturing domain, as
it enables more efficient process planning and scheduling.
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Figure 4: Average and standard error for task com-
pletion and human idle times in each condition.

We conducted a post-hoc experimental analysis of the
data, and observed that task completion times varied signif-
icantly depending on the position from which participants
were asked to execute the task (Figure 3). In particular,
when manually annotating robot actions in the far-left po-
sition, a small number of robot motions within the horizon-
tal plane were enough to bring the box from the starting
point to a comfortable position. Indeed, a repeated mea-
sures analysis of variance with a Greenhouse-Geisser correc-
tion demonstrated statistically significant differences in task
completion time between participants for the far-left posi-
tion (F (1.16, 46.0) = 26.61, p < 0.01). Completion time at
this position in the Manual condition was significantly lower
than in the Auto2 condition (t(29) = −6.651, p < 0.01).

On the other hand, in the middle-right and far-right posi-
tions, several users spent a considerable amount of time dur-

ing the Manual session trying to determine which robot ac-
tions would bring the box to a comfortable position from the
starting configuration. A repeated measures analysis of vari-
ance with a Greenhouse-Geisser correction indicated statisti-
cally significant differences in task completion time as a func-
tion of condition at both the middle-left (F (1.12, 32.5) =
7.03, p = 0.01), and far-right positions (F (1.66, 48.13) =
8.96, p < 0.01). Completion time in the Auto2 condition
was significantly lower than in the Manual condition at the
middle-left (t(29) = 3.16, p < 0.01) and far-right (t(29) =
3.39, p < 0.01) positions (Figure 5). These results show
that, at positions where the robot actions that would bring
the box to a comfortable position were straightforward, sim-
ply annotating robot actions seemed to be the most efficient
approach. For more complex configurations, the robot an-
ticipatory behavior enabled by our framework resulted in a
significant benefit to team efficiency.
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Figure 5: Average and standard error for the task
completion times in Manual and Auto2 conditions.

7.3 Open-Ended Responses
When participants were asked to comment on their overall

experience, some suggested that they appreciated the auto-
mated motion of the robot, because they found it difficult
to determine how to move it to a favorable position. When
asked to describe the part of the experiment that they liked
most, some mentioned the ease of standing in place and al-
lowing the robot to maneuver itself. One subject mentioned
that, during the Manual session, she “had to think how to
rotate the box, which turned out to be not trivial.” Several
subjects, on the other hand, suggested that they preferred
to be in control during the manual condition, rather than
ceding control to the robot, and that both automated tri-
als resulted in some unnecessary motion on the part of the
robot. Interestingly, we observed an intermediate correla-
tion between the execution time of the subjects in the man-
ual condition and their preference for manually controlling
the robot (r = -0.58). This result is indicative of a relation-
ship between user preference and performance that warrants
future investigation.

8. CONCLUSION
We presented a framework for automatically learning hu-

man user models from joint-action demonstrations, enabling
the robot to compute a robust policy for a collaborative task
with a human. First, we described the clustering of demon-
strated action sequences into different human types using
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an unsupervised learning algorithm. These demonstrated
sequences were used to learn a reward function that is rep-
resentative for each type, through the employment of an
inverse reinforcement learning algorithm. The learned mod-
els were then included as part of a MOMDP formulation,
wherein the human type was a partially observable vari-
able. In a human subject experiment (n = 30), participants
agreed more strongly that the robot anticipated their actions
when using the proposed framework (p < 0.01), compared
with manually annotating robot actions. In trials where
participants faced difficulty annotating the robot actions in
order to complete the task, the proposed framework signifi-
cantly improved team efficiency (p < 0.01). Also, compared
with policies computed using a reward function hand-coded
by a domain expert, the robot was more responsive to human
actions when using our framework (p < 0.01). These results
indicate that learning human user models through joint-
action demonstrations and encoding them in a MOMDP
formalism can support effective teaming in human-robot col-
laborative tasks.

While our assumption of full-observability of the task-
steps is reasonable in a manufacturing setting with well-
defined task procedures, many other domains including home-
settings involve less structured tasks and would require ex-
tensions to our approach. Future work also includes the ex-
ploration of a hybrid approach between inferring“dominant”
human types and learning an individualized user model: the
robot starts with a policy corresponding to the general type
of a new human user, and further refines its action selection
mechanism through interaction.
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