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e mechanical response of multilayer sheet structures, such as leaf springs or car bodies, is largely determined by the nonlinear
contact and friction forces between the sheets involved. Conventional computational approaches based on classical reduction
techniques or the direct �nite element approach have an ine�cient balance between computational time and accuracy. In the
present contribution, the method of trial vector derivatives is applied and extended in order to obtain a-priori trial vectors for the
model reduction which are suitable for determining the nonlinearities in the joints of the reduced system. Findings show that the
result quality in terms of displacements and contact forces is comparable to the direct �nite element method but the computational
eort is extremely low due to the model order reduction. Two numerical studies are presented to underline the method’s accuracy
and e�ciency. In conclusion, this approach is discussed with respect to the existing body of literature.

1. Introduction

Some examples of permanent joints between two solid bodies
are screwed or bolted joints, crimp connections, and spot-
welded seams. 
e construction of such joints normally
permits large relative displacements between the contacting
bodies. 
is leads to a time invariant potential contact area� Joint, which is identical to the spatial distribution of the
joint. However, due to small structural displacements there
are areas �� inside the joint where the surfaces are in contact
and other areas �� where the surfaces are not in contact.
Consider

� Joint = �� (� (�)) + �� (� (�)) . (1)


e argument �(�) represents this structural displacement
and indicates that the contacting and gapping areas are
displacement dependent. In dynamic cases, this implies an
indirect dependency on time. 
e state dependent contact
forces, which avoid penetration, and the friction forces act
between the two contacting surfaces. Such friction forces
are a function of the local contact forces and the relative

in-plane displacements of the contacting surfaces. Due to
the joint’s construction, such relative displacements are small
and are, therefore, o�en referred to as “microslip” or “small
sliding” displacements. 
ese friction forces lead to energy
dissipation. In summary, it can be said that such joints
lead to nonlinear stiness and damping eects. 
e latter
observations are well documented in the literature (see [1–7]
for more detailed information on the subject of experiments
and simulations). Depending on some parameters, such
as the spatial extension of the joint, the aforementioned
nonlinearities can have an eect—both minor and major—
on the structural response (see [8] for an investigation on
this issue with two generic structures). In some cases it is of
signi�cant importance for the response quality to regard the
nonlinear characteristic of the joint in terms of contact and
friction. Examples of this are structures with large joints, like
car bodies or leaf springs.
is is demonstrated in the paper as
well. However, even if the global eects of the nonlinearities
in a joint are negligible, it can happen that the local ones
are not. An example of this is the lifetime prediction of a
weld spot. 
ere is a signi�cant dierence on the local stress
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2 Shock and Vibration

situation around a weld spot, whether or not the reinforcing
eect due to the contact between the surrounding sheets is
taken into prior consideration (see [9]).

One possible approach to arrive at a mathematical model
which considers the contact and frictional phenomena is
the use of the �nite element method (FEM). In case of a
penalty formulation for both the contact [11] and friction
[12] phenomenon, the FEM leads to a coupled and nonlinear
dierential equation

Mẍ + Kx + f
NL
(x) = f(�), (2)

where the (� × 1) vector x contains the system’s degrees of
freedom (DOF). Note, no material nor any viscous damping
is considered in (2). 
e constant (� × �) matrices M and K
represent the structural mass and stiness. 
e (� × 1) vector
f(�) holds the external and imposed forces while the (� × 1)
vector fNL(x) contains the nonlinear forces due to contact and
friction inside a joint. A direct time integration of (2) is in
principle possible, but it is generally considered an ine�cient
operation due to the system’s dimension �, which can be
quite large in the case of relevant �nite element (FE) models
found in the industry. Such FE models may have 107 DOF
and this number is still growing. Even though the resulting
quality may be good, the computational power required can
be impractical.

In order to shrink the number of DOF in (2), model
order reduction via projection is possible. 
e displacement
vector x is approximated by x̃ which is limited to a scaled
superposition of � time invariant trial vectors. Formally, this
can be given as

x ≈ x̃ = �∑
�=1
���� = Φq, (3)

where the (� × 1) vector �� holds the time invariant �th trial
vector and �� the corresponding time varying scaling factor.
All trial vectors can be collected as columns in the (� × �)
matrix Φ and the scaling factors are collected in the (� × 1)
column vector q. 
e application of (3) on the equation of
motion (2) leads to � instead of �DOF,whichwill be shown in
the next chapter in greater detail. Good reduction approaches
provide a number of � which is much smaller than � with a
small error

 = |x − x̃| , (4)

where x is the system response of (2) and x̃ is the response of
the reduced system. A proper vector norm is symbolized by| |. For linear systems, where the stiness matrix is constant,
a number of suggestions for a proper trial vector base Φ can
be found in the literature (see [13–15]). Comparisons can
be found, among others, in [16–18]. Properly applied, the
latter methods provide a proper reduction base Φ for linear
systems.However, in nonlinear systems it ismore challenging
to �nd a proper subspace Φ. 
e literature oers some
choices formodel reduction of nonlinear systems, namely, the
conservation of all DOF which are involved in nonlinearities,
proper orthogonal decomposition (POD), and trial vector
derivatives.

Nonlinearities which are restricted to certain (time
invariant) areas of a structure are o�en referred to as
“local nonlinearities.” By this de�nition, joints are such local
nonlinearities. Some publications in the literature suggest
preserving all the nodal FE DOF which are involved in
nonlinearities (see [19–24]). 
e consequence for jointed
structures would be that each FE DOF in a joint would
lead to a corresponding DOF in the reduced system. With
joints, this approach would lead to several hundreds or even
thousands of DOF, which then need to be considered in the
time integration of the reduced system. 
e computational
eort would, again, be very high. Some other publications
suggest the use of POD for the construction of a proper
subspace Φ (see [25] for an overview on POD). Note that in
Section 2 additional literature is given concerning POD and
the concept is brie�y discussed.
e basic idea of the so-called
POD-snapshot method is to determine the most important
subspace of a given space in terms of a Euclidian distance.
e
given space is spanned by all result vectors x1 to x� which are
obtained by time integration of the full system for the time
steps �1 to ��. An obvious disadvantage of this approach is
a necessary simulation of the full system in order to obtain
the reduction base. Another option for the construction of
a proper subspace is the use of trial vector derivatives. In
the literature, the name modal derivative is more common
because the term “mode” is o�en used for any kind of trial
vectors. However, in this paper the name “mode” is only used
for trial vectors which stem from an eigenvalue problem and
the term “trial vector” is used for any kind of displacement
shape which is used to form the model reduction base. 
e
basic idea is that for nonlinear systems such as (2) trial
vectors are somehow a function of the state. In a �rst step, a
subspace is constructed based on the linear portion of (2). In
a second step, the subspace is enriched by an approximation
of the dierence to those trial vectors, which would have
been obtained when the full nonlinear (2) would have been
considered. 
e publication of Slaats et al. [26] gives a very
useful introduction to this topic. For the sake of clarity, some
parts of the theory are reviewed in Section 2 below. Tiso et al.
[27] published a strategy for regarding the nonlinear bending
stretching coupling of shells based on trial vector derivatives.
Still, an open issue is the a-priori selection of the important
trial vector derivatives. 
is is necessary because trial vector
derivatives lead tomany potential candidates for the subspace
enrichment containing a lot of redundant information. In
[27] some general comments are made on this issue and [28]
contains a strategy for an “optimal selection.” However, in the
present paper, a new strategy will be presented in order to
determine the �nal subspace extension based on trial vector
derivatives.

For the particular case, where the nonlinearity is caused
by joints, the author has already introduced another approach
for the computation of a proper subspace Φ (see [10]). In
the latter work, a given subspace based on a linearized
structure is enriched by so called Joint Interface Modes.
In principle, a meaningful subspace of all DOF inside a
joint is determined. 
is subspace is used as a problem
oriented extension of classical reduction bases. Gaul and
Becker [29] con�rmed the superior convergence rate of the
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latter Joint Interface Modes (JIM) in comparison to other
methods known from the literature. An implementation of
this approach is the commercially available so�ware product
MAMBA [30]. Segalman [31] suggested at the same time an
approach for localized nonlinearities, which is a nonjoint
focused generalization of [10]. A comparison of the proposed
method with the one of [10] is given in Section 5, which is
devoted to a discussion of the proposed method with respect
to the already published literature.


e present work is devoted to the application of trial
vector derivatives to jointed structures.
eproposed strategy
leads to an a-priori subspace, which delivers a level of accu-
racy comparable to the FEMwithout losing the advantages of
model order reduction. Other advantages are as follows.

(i) Quick convergencewith respect to the number of trial
vectors.

(ii) Automatic a-priori selection of the necessary trial
vectors without a simulation of the full system.

(iii) Simple and e�cient computation of the trial vectors
by utilizing commercially available FE so�ware.

(iv) No separate trial vectors in normal and in tangential
direction of the contact surfaces are needed.

To the best knowledge of the authors, the following points
are new contributions to the literature.

(i) Application of trial vector derivatives to jointed struc-
tures.

(ii) A model order reduction strategy for the e�cient
simulation of multilayered sheet structures.

(iii) A clear a-priori strategy for the automatic computa-
tion and selection of the necessary trial vectors using
an energy criterion and POD.
is is not restricted to
joints and, therefore, is a general contribution to the
whole issue of modal or trial vector derivatives.


e present work is organized as follows. In the next
section the theory of the trial vector derivatives is shortly
reviewed and an energy based criterion is introduced in
order to determine the important directions—out of all
available trial vector derivatives. In the subsequent section,
the theory is applied to jointed structures followed by some
numerical examples in order to underline the methods’
accuracy and e�ciency. Finally, the approach introduced
herein is discussed with respect to the already published
literature.

2. Trial Vector Derivatives as a General
Method for the Generation of A-Priori
Reduction Base for Nonlinear Systems

2.1. Nonlinear Mechanical Systems. In the present work we
restrict ourselves to structures which can be characterized by
an equation of motion in the form of (2). In a next step, the
vector x is decomposed into a time invariant portion x� and
a time varying portion Δx, such that

x = x� + Δx. (5)


e vector x� can be interpreted as an operating point and
the vector Δx as the vibrations around this point. In the very
common case that a structure vibrates around its undeformed
state, the vector x� is simply the zero vector. Examples where
x� is not trivial are prestressed screwed joints or leaf springs.
As a consequence of the latter decomposition the stiness
matrix K simply holds the stiness at x�. Rearranging (2)
yields

Mẍ + Kx = f(�) − f
NL
(x) (6)

which can be interpreted as a linear system which is loaded
by external and �ctive forces due to the nonlinearities.
is is
a well-known approach in the literature and the �ctive forces
are sometimes called “pseudoforces”; see exemplarily [32, 33].

2.2. Model Order Reduction via Projection. As mentioned in
(3) the possible displacements are restricted to a weighted
superposition of � trial vectors. Inserting equation (3) into (6)
and premultiplying withΦ	 delivers

M̃q̈ + K̃q = Φ	f(�) −Φ	fNL(Φq) (7)

with the (� × �) reduced mass matrix M̃ = Φ	MΦ and the

(�×�) reduced stinessmatrix K̃ = Φ	KΦ.
eused subspace
Φ needs to ful�ll two criteria which in�uence each other.
e
subspace Φ should provide an approximated displacement
x̃ so that accurate nonlinearities can be computed and, as
a consequence, the resulting error  (4) should be small.
For linear systems, the so-called component mode synthesis
(CMS) has in recent years become a reliable standard tool
(see [13–15, 34]). 
e subspace used is a combination of two
groups of trial vectors

Φ = [Φ
 Φ�] , (8)

where the (� × V) matrix Φ
 contains V vibration mode
shapes and the (� × �) matrix Φ� contains � trial vectors
which are displacement shapes due to static loads. 
ese �
static displacement shapes are typically related to s nonzero
entries in the external force vector f(�). According to the
pseudoforce concept motivated by the structure of (6), one
could suggest preserving all DOF which are involved in the

vector fNL(x) , something which is borne out of the literature
(see [19–24]). 
is approach is promising in case of local
nonlinearities with a small number of DOF involved. With
distributed nonlinearities, such as joints, the latter approach
would lead to a very large number of static modes and the
advantage of model reduction is lost. Another “brute force”
solution would be to ignore the nonlinearities introduced by

fNL(x) . In that case the resulting quality cannot be guaranteed
without a convergence analysis with respect to the number of
vibrationmode shapes collected inΦ
. It is shown below that
this approach leads to a poor convergence, which means that
the number of V is high.

2.3. Trial Vector Derivatives. 
e idea is to extend the trial
vector base (8) in the form of

Φ = [Φ
 Φ� Φ	] , (9)
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where the (�×�) matrixΦ	 contains the so-called trial vector
derivatives (TVD). 
e TVD approximate the dierence
between Φ
 and Φ� computed with a nonlinear stiness
matrix with respect toΦ
 andΦ� computed with a linearized
stiness matrix (8). 
erefore, the computation of Φ	 can
be performed using a �nite dierence scheme as Slaats et al.
proposed in [26].

In general, a trial vector is a function of the stiness
and mass matrix used. Due to the state dependency of the
stiness matrix, a certain trial vector is state dependent as
well. Because of the projection (3) the state is a function of the
trial vectors weighting factors �1 to ��. 
e state dependent
trial vector ��(� ≤ (V + �)) can be expressed by a Taylor series
expansion as

��(q) = ������q=0 + �����1
��������q=0�1 + ⋅ ⋅ ⋅ +

�����
V+�

��������q=0�V+�
+ terms of higher order,

��(q) = �������q=0 + [����q ] q + terms of higher order.
(10)


e (� × 1) vector ��|q=0 holds the �th trial vector computed

at the point where the structure is linearized; see (5). 
is
vector is already part ofΦ
 andΦ�. Note that the expression[���/�q] holds an � by (V + �) matrix. One important con-
sideration is to interpret the �rst order trial vector derivatives
as independent trial vectors themselves and add them to the
model reduction base. Consider

Φ = [Φ
 Φ� Φ	] = [Φ
 ΦS [��1�q ] ⋅ ⋅ ⋅ [��V+��q ]] .
(11)


e � by (V + �)2 matrix Φ	 contains the �rst order terms of
(10) applied to all trial vectors ofΦ
 andΦ�. 
at means, the
trial vector base is increased by its squared columndimension
and the number of generalized coordinates collected in the
vector q increases by the same size. 
is is, in general, too
much for an e�cient model reduction scheme. Practical
examples show that there is a lot of redundant information in
Φ	; see [28]. 
e space spanned byΦ	 can be approximated

by a reduced space Φ̃	 which contains most of the important
information. 
is issue is addressed below, where a POD
based transformation (reduction) ofΦ	 into Φ̃	 is proposed.

2.4. Trial Vector Derivatives for VibrationModes (See [26, 35]).
When vibration modes are used as trial vectors, the TVD can
be computed based on the eigenvalue problemwhich is given
for mode number �. A derivation of both sides with respect to
the scaling factor of mode number � gives

�
�� [(K − Ω

2
�M)��] = 0. (12)


e application of the product rule and the assumption that
the mass matrix is constant lead to

(K − Ω2�M) ����� + (
�K
�� −

�Ω2��� M)�� = 0, (13)

where the (� × 1) vector ���/�� holds the TVD of mode �
with respect to mode � and is hereon denoted as ��,. When

(13) is premultiplied with �	� , the sensitivity of the eigenvalueΩ2� with respect to � can be computed (see [35]). Note that
the symmetry of K and M has to be considered in this step
along with the mass and stiness orthogonality of the modes.
Consider

�Ω2��� = �
	
�
�K
����. (14)

Substitution of the according term in (13) with (14)
delivers the TVD:

��, = ����� = (K − Ω
2
�M)−1 ( �K�� − �

	
�
�K
����M)��. (15)

It has been observed in the literature [26] that the terms
related to inertia can be neglected, also a subject of further
investigations in this paper. Doing this leads to a simpli�ed
equation in the form of

��, = K
−1 �K����. (16)

2.5. Trial Vector Derivatives for Static Displacement Shapes
(See [26, 35]). A derivation of both sides of the characteristic
equation for statics with respect to the scaling factor of trial
vector number � gives

�
�� (K��) =

�
�� f�. (17)

Considering the product rule and the fact that f� is state
independent delivers

��, = K
−1 �K���� (18)

which is formally identical with (16).
Equations (16) and (18) can be interpreted in such a way

that a TVD is the static response due to the �ctive force

f�, = �K
����. (19)


is may yield an e�cient algorithm for the computation
of the TVD when commercially available FE so�ware is used
(see Algorithm 1). 
e advantage of Algorithm 1 is that it
uses the strength of such commercially available FE so�ware,
which is the computation of static displacements based on a
de�ned number of forces. If several load cases are used for
one computational run, the stiness matrix needs only to be
decomposed just once, meaning that a huge number of such
load cases can be treated e�ciently. However, the challenge
may be the computation of �K/��. It is discussed in Section 3
how �K/�� can be computed when nonlinearities due to
contact and friction inside a joint are considered.
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Input: �1, . . . ,��, . . . ,��+�,K
Output:Φ	 = [�1,1, . . . ,�1,�+�, . . . ,��,1, . . . ,��,�+�, . . . ,��+�,1, . . . ,��+�,�+�]
(1) F = []
(2) for � = 1 : (V + �)
(3) determine �K/��
(4) for � = 1 : (V + �)
(5) f�, = �K

�� ��
(6) F = [F f�,]
(7) end
(8) end
(9) use FE so�ware to computeΦ	 based on KΦ	 = F

Algorithm 1: Computation of TVD for a given reduction base �1 to ��+�.

2.6. Comment on a Singular Sti	ness Matrix. As outlined in
the introduction, the literature oers dierent approaches for
a proper reduction base Φ. Some of them lead to a regular
stinessmatrix and some of them do not.
e �xed boundary
CMS (Craig/Bampton) is an example of a method dealing
with an invertible stiness matrix while the free boundary
CMS leads to a singular one (see [14]). Note that a singular
stiness matrix (which corresponds to a �oating structure)
is not a drawback for the computation of TVD. For such
structures the FE so�ware needs to perform a so-called
“inertia relief ” computation when line 9 of Algorithm 1 is
executed.

2.7. Selection of the Final Reduction Base Using Proper

Orthogonal Decomposition. Using the TVD provides (V + �)2
additional trial vectors for the model reduction. 
is is by
far too much for e�cient model reduction and it is known
from the literature that the space spanned by Φ	 contains
a lot of redundant information; see [27, 28]. 
is can lead
to numerical problems and is the prime motivation behind

the search for a lower dimensional reduction space Φ̃	
which contains most of the information of Φ	. For some
computations in [27] just the ��,� TVD have been regarded.
In other words, just the change of a trial vector due to its
own variation is considered, while the dependency on the
other modes is neglected. It can be seen therein that this
strategy sometimes leads to good results, but o�en it does
not. In [28] a strategy is presented, which is based on the idea
that when the according modes �� and � are important, the

TVD ��, is important as well. In the present paper a general

strategy for the determination of Φ̃	 based on Φ	 is given.

is strategy is based on proper orthogonal decomposition
(POD). Literature on POD can be found, among others, in
[25, 37]. A detailed derivation of POD can be found in [38].
For the sake of readability, the main points of POD are brie�y
reviewed next.

Let us assume$ independent (�×1) vectors y1 to y� which
are gathered in the (�×$) matrixY. POD of rank % delivers %
orthonormal (&×1) vectors u1 to u�, which approximate the
space spanned byY optimal in a Euclidean sense.
e vectors
u1 to u� are named proper orthogonal modes (POM) and can

be gathered in the (� × %) matrix U. 
e POMs maximize a
function ' in the form of

' (u1, . . . , u�) =
�∑
�=1

�∑
=1
(y	 u�)2 *→ max (20)

so that

(u	� u)2 = {1 � = �
0 � ̸= �, (21)

(see [38] for a proof). 
e POM u1 to u� can be found by
using the �rst % eigenvectors of

Y
	
Yû� = 5�û� for � = 1 . . . % (22)

and a subsequent transformation

u� = 1
√5�Yû� for � = 1 . . . %. (23)

A slightly dierent POD method with a weighted inner
product maximizes a function ' in the form of

' (u1, . . . , u�) =
�∑
�=1

�∑
=1
(y	 Au�)2 *→ max (24)

so that condition (21) is ful�lled as well. 
e (� × �) matrix
A has to be symmetric and positive semide�nite. 
e POM
for the weighted POD can be found by using the �rst %
eigenvectors of

Y
	
AYû� = 5�û� for � = 1 . . . % (25)

and a subsequent transformation along equation (23). 
e
second POD variant can be transformed into the �rst one if
the (�×�) identitymatrix is substituted for thematrixA. From
a mechanical point of view, the characteristics of the matrix
A are the same as those of the stiness matrix of a linear
FE model. In that context, the POM based on a weighted
inner product can be interpreted as those % trial vectors
which optimally approximate the deformation energy caused
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by the space Y. 
e POM without a weighted inner product
approximates the displacement space only. 
e eigenvalue 5�
is of special interest because it is related to the importance of
the vector u� for the minimization of (20) or (24). Note that
large eigenvalues indicate important POM.
erefore, a ratio7(%) is de�ned which can be used as a criterion to determine
the number of %. Consider

7 (%) = 51 + ⋅ ⋅ ⋅ + 5�
51 + ⋅ ⋅ ⋅ + 5� + ⋅ ⋅ ⋅ + 5� . (26)

Note that 7(0) = 0 and 7($) = 1. In case of POD with
weighted inner product, 7(%) provides a value of how much
of the available deformation energy is already covered by u1
tou�. Both PODapproaches are investigated and discussed in
the numerical examples below. In order to apply POD to the
problemof reducing the space of available TVD, the following
substitutions need to be performed. Instead of the matrix Y

the (� × (V + �)2) matrixΦ	 has to be used. It is important to
mention that all column vectors of Φ	 are normalized with
respect to the stinessmatrixK.
is is important because the
TVD represent just “directions” and the vector’s length is not
of interest. Without this normalization, a vector’s magnitude
would in�uence the selection of the “important” POM. 
e
space spanned by U corresponds with the one spanned by

the (� ×%) matrix Φ̃	. In case of inner weighting the stiness
matrix K is used instead of A.


e �nally obtained reduction space is Φ =
[Φ
 Φ� Φ̃	].
3. Application of Trial Vector Derivatives to

Jointed Structures


e application-relevant part of the general strategy outlined
in the chapter above is the computation of the (� × �) matrix�K/��. 
e qualitative content of the latter matrix is the
change in stiness due to a variation induced by trial vector
number �. In cases where nonlinearities induced by joints are
used alongside a penalty contact and a penalty frictionmodel
(see [11, 12]) this matrix can be obtained as follows. Note that
for the sake of simplicity a coincidentmesh of the two contact
surfaces is assumed and, therefore, it is su�cient to consider
a node-to-node contact. Assuming that w FE node-pairs are
involved in the joint contact,7 gap functions %1 . . . %� can be
de�ned. 
e gap function %� represents the normal distance
of the node-pair �. Following a simple penalty approach,
a constant contact stiness 8� and a constant tangential
stiness 8� are acting between those node-pairs with a gap
function %� smaller than 0 (penetration). If %� ≥ 0 (gaping)
no stiness acts between the node-pairs. We assume that
the linear modes Φ
 and Φ� are computed based on the
undeformed reference con�guration, which means that no
contact stiness is acting between the joint node-pairs. In
such a case, the matrix �K/�� contains the stinesses 8�
and 8� which act only on those DOF corresponding to node-
pairs with a gap function less than zero.
e gap functions are
evaluated based on the displacements due to the trial vector
�.


ere is another particularity related to nonlinearities
caused by the contact and friction in joints. Up to now, we
have assumed that all derived quantities are dierentiable.

is is not the case in terms of the simple contact law under
consideration, because

lim
��−>0−

K
�
(����) ̸= lim

��−>0+
K
�
(����). (27)

Note that the superscript “;” denotes an eective stiness
matrix which consists of the linear portion K plus the addi-
tional stiness which is added due to contacting joint areas.
At that point it would be possible to construct a dierentiable
contact law using polynomials of higher order.
is approach
is not constructive because it does not account for the “strong
asymmetry” of the nonlinearity under consideration. “Strong
asymmetry” means that

�K�(����)
� (−�) ̸= − �K

�
(����)�� . (28)

In other words, the change in the stiness matrix is com-
pletely dierent in case of a positive or in case of a negative
scaling of the trial vector �. 
e mechanical explanation for

a particular node-pair is that when a positive scaling leads
to a negative gap function and a high stiness, the negative
scaling leads to a positive gap function and no stiness, and
vice versa. 
erefore, it is advisable to compute two modal
derivatives for a trial vector �� with respect to trial vector
number �, namely, ��, and ��,−. 
e (� × 1) vector ��,−
denotes the trial vector derivative based on a negative scaling
of trial vector �. In case of joint induced nonlinearities the

matrix Φ	 is of size (� × 2(V + �)2). See Algorithm 2 for the
�nal �ow. Note that this �ow is valid for structures which are
linearized around their undeformed reference con�guration.

e particular choice of % is problem dependent and is
discussed in Section 4.

4. Numerical Examples

In this section, two practical examples are presented. 
e
�rst one deals with friction bar containing one joint and the
second one is a multilayer sheet structure consisting of three
sheets overlapping each other. For both examples, a static
and a dynamic computation is presented. 
e focus is on the
convergence of the result with respect to the number of trial

vectors considered in Φ̃	.
For both examples, the matrices Φ
 and Φ� were com-

puted according to the Craig/Bampton method [39]. For this
particular method, the content of the matrix Φ
 is named
“Fixed Boundary Normal Modes” and the content of the
matrix Φ� is named “Constrained Modes.” In both examples
Φ
 and Φ� are computed with respect to the undeformed
reference condition and using zero stiness between the
contacting surfaces.

In both examples the stiness and mass matrix of the
FE model were computed by MSC.NASTRAN [40]. 
e
matrices were imported into Scilab [41] and all subsequent
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Input: FE-Model,M, K

Output:Φ = [Φ� Φ
 Φ̃	]
%%Computation of trial vectors for the linear system

(1) Compute � trial vectors based on static de�ection shapesΦ�
(2) Compute V trial vectors based on vibration modesΦ


%%Computation of trial vector derivatives
(3) F = []
(4) for � = 1 : (V + �)
(5) for 8 = −1 : 2 : 1
(6) �K/���⋅ = zeros(�, �)
(7) for > = 1 : 7
(8) compute %(>) due to 8��
(9) if (%(>) <= 0)
(10) add 8� and 8� to �K/���⋅ (corresponding to DOF of FE node pair z)

(11) end
(12) end
(13) for � = 1 : (V + �)
(14) f�,�⋅ = �K

���⋅ ��
(15) F = [F f�,�⋅]
(16) end
(17) end
(18) end
(19) use FE so�ware to computeΦ	 based on KΦ	 = F
(20) normalize each column ofΦ	 with respect to K

%%POD
(21) if (POD with inner weighting)

(22) solve eigenvalue problemΦ		KΦ	�	,� = 5��	,�
(23) else

(24) solve eigenvalue problemΦ		Φ	�	,� = 5��	,�
(25) determine g

(26) Φ̃	 = []
(27) for � = 1 : %
(28) Φ̃	 = [Φ̃	 1

√5�Φ	�	,�]
(29) end

Algorithm 2: Construction of reduction base for jointed structures.

Table 1: Solver parameter for time integration.

Solver kind Sundials/CVODE-BDF-FUNCTIONAL [36]

Integrator absolute
tolerance

1 − 6
Integrator relative
tolerance

1 − 8
Tolerance on time 1 − 10

computations have been done directly in Scilab or in its
toolbox Xcos [42].

Due to the small sliding assumption and the coinci-
dent meshing a node-to-node contact and friction model
is applied. 
e contact forces were computed following a

simple penaltymodel with a linear stiness of 104N/mm.
e
friction forces, if necessary, were computed as given in [43].

e lattermodel requires two parameters, namely, the friction
coe�cient B and an in-plane stiness when a node-pair is in

contact. For the friction coe�cient B a value of 0.25 is used

and the in-plane stiness is set to 104N/mm.
e contact and
friction forces are computed for all involved nodes pairs and
the force vector (fNL(x) ) is constructed according to the physical
DOF. 
is physical force vector is then projected into the

reduction space by a premultiplication with the matrixΦ	.
For the time integration the Scilab [41] toolbox Xcos [42]

has been used. In Figure 1 a screenshot of the Scilab-Xcos
model can be seen. 
e parameters necessary for the time
integration are listed in Table 1.

4.1. Friction Bar. An FE model of the structure under
consideration is depicted in Figure 2. Two metallic sheets
with a dimension of 125mm× 25mm× 0.5mmare connected
via two beams. 
e extension of the joint is 85mm × 25mm.

e length of the overlapping area (the joint) is indicated in
Figure 2 with a thick black dashed line.


e two sheets and the two beams, which can be inter-
preted as two weld spots, are modeled out of steel. On the le�
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Function for physical
contact and friction
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Figure 1: Scilab-Xcos model for time integration.

y

x
z

Mx

Fy

Figure 2: FE model of friction bar.

hand side, the structure is �xed mounted. On the free end,
all nodal DOF are attached to a rigid bar. 
e free node of
the rigid bar is in the middle of the sheet. 
is is indicated
in Figure 1 by a solid dark grey line and a dot. 
e load for
the static and dynamic investigations consists of a force in
the C direction (D�) and a torque around the x axis (E�).
e
entire model has 906 DOF and 648 DOF involved in the joint
contact.

4.1.1. Trial Vector Derivatives. As mentioned before, the
reduction base for the linear system is computed in accor-
dance with the Craig/Bampton method [39]. 
e six DOF of
the free end are de�ned as so-called “boundary DOF.” 
is
leads to six static de�ection shapes for the matrix Φ�. 
e
two most relevant “Constraint Modes” (de�ection along C
and rotation around �) are visualized in Figure 3.

For the matrixΦ
 the �rst ten “Fixed Boundary Normal
Modes” are considered.
e eigenfrequency of the 10th mode
is 1337Hz. Figure 4 contains a visualization of the �rst three
modes (=columns) of Φ
. It can be seen that the �rst two
columns represent bending modes and the third column
represents a torsion mode around the x axis. Note, again
that the “Constraint Modes” as well as the “Fixed Boundary
Normal Modes” have been computed based on a linear
structure where no contact and friction are considered.

In the next step, the trial vector derivatives according
to the theory outlined in Sections 2 and 3 are computed.
In case of 16 modes the procedure ends up with 512 TVD.
Figure 5 contains 6 arbitrarily selected TVD. As mentioned

in the literature TVD typically contain a degree of redundant
information.
is can already be seen in Figure 5 because�1,2
and �1,4 or �1,3 and �1,5 look quite similar.

In order to get a suitable small number of trial vectors
for the joint, the POD method, as outlined in Section 2, is
applied to the TVD. In this example, both methods, POD
with and without weighting, are applied. Figure 6 contains

visualizations of the �rst four columns of the matrix Φ̃	. 
e
visualized vectors are based on weighted POD.


e question of which one of the two POD approaches
is preferable will be answered later, when the results are
evaluated.

4.1.2. Static Response Computation. 
e static response is
computed for D� = −0.7N and E� = −20Nmm. For this
computation, no friction is considered. For the convergence
analysis, a (1×7) vector f� is constructed.
e vector contains
w entries, namely, G�,1 to G�,�, and G�,� (1 ≤ � ≤ 7)
maintains the contact force at FE node-pair �. As convergence
criteria the Euclidean norm of the vector f� is evaluated.
Figure 7 contains a convergence analysis with respect to the

number of considered joint vectors in the matrix Φ̃	 (=g).
Note that the columns of this matrix are donated as “joint
mode” later on. For the reference solution the contact forces
are computed based on a fully nonlinear FE analysis using
all nodal DOF. 
e dashed and the dotted curves represent
the Euclidian norm of the contact force vector following the
proposed approach. In order to underline the necessity of
suchmodes, an additional computation is performedwithout
joint modes. Instead of additional joint modes the number of
vibration modes is increased.
e results of this approach are
documented in the dashed and dotted lines.

It can be seen in Figure 7 that 20 additional joint modes
lead to a good representation of the contact force. 
e
convergence in cases where vibration modes were only used
is not that good. Note that there is no signi�cant dierence
when PODwith orwithout weighting is used. From this point
of view, both computational approaches qualitatively lead to
the same result. Figure 8 contains the function 7(%) for both
approaches. 
e scalar value g represents the number of trial

vectors �nally considered in Φ̃	.
A comparison of Figures 7 and 8 indicates that in case

of weighted POD, the 7(%) function corresponds better with
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Figure 3: Constraint modes along y and around x of friction bar.

Figure 4: First three columns of matrixΦ
.

the convergence of the structure. 
is is not a proof, but an
observation which can be made for other structures as well.

e latter observation can be used as an a-priori estimation
for the number of necessary modes. For the friction bar the
solution can be considered as converged when 25 additional
joint modes are taken into consideration. 
is corresponds
with 7(%) = 0.9994 and that means that 99.94% of the
available strain energy of all TVD is considered in the �nal
reduction base. Based on this observation we propose a
number of % such that

0.95 ≤ 7 (%) ≤ 0.9999. (29)


e actual limit for the function 7(%) is problem dependent
and probably needs some practical experience using the
proposed method.

4.1.3. Dynamic Response Computation without Friction. For
the dynamic response analysis the former loads are applied
as step functions to the structure. 
e step function is
implemented as a half wave cosine with a frequency of 10Hz.

Figure 9 contains the evolution of the norm of the
contact force vector f� with respect to time. It can be seen

that a matrix Φ̃	 with 25 columns delivers excellent results
which corresponds with the convergence analysis of the static
computation.

As mentioned in Section 2 the trial vector derivatives for
vibrationmodes can be computed with or without neglecting
the inertia eect. Figure 10 contains the evolution of the
Euclidian norm of the contact force vector f� for joint
modes according to TVD following equation (15) and those
according to (16) where the inertia eects are neglected. It can
be seen that the consideration of the inertia terms in (15) does
not lead to a better convergence. 
is is in accordance with
the literature; see [26]. 
erefore, it is advisable to compute
the TVD based on (16) which is much simpler and holds

some advantages with respect to commercial FE codes (see
Section 2).

4.1.4. Dynamic Response Computation with Friction. In case
of ametallic structure the dry friction inside a joint is typically
the dominating source of damping. 
e reader is referred
to the introduction in Section 1 for more explanations and
literature quotations on that issue. In the cited literature it
can be read that a Coulomb, like dry friction model which
is applied between all FE node pairs, catches most of the
relevant eects.

Figure 11 contains a convergence analysis and it can be
seen that the consideration of no additional jointmodes is not
an option. 
e explanation can be found in Figure 12 where
the Euclidian norm of the (27 × 1) friction force vector f� is
evaluated with respect to time.
e vector f� contains friction
forces in the � and > directions of the 7 FE node-pairs being
involved in the joint contact.

Figure 12 indicates that an accurate joint �exibility is
essential for the result quality when friction is regarded.
When no additional joint vectors are regarded, the damping
due to friction is extremely overestimated. 
e dierence
between 10 and 25 additional jointmodes is already small and
a converging behavior very similar to the example without
friction can be observed. In cases of friction, it was not
possible to compute a reference solution using all FE nodal
DOF.

Note that up to now the TVD have been computed
without the consideration of the tangential stiness when the
contact is closed. In other words, the matrix �K/�� only
contains the change in stiness due to the contact in case
of a closed gap. In a next step the trial vector derivatives
are computed regarding a normal and an in-plane stiness
in case of a closed contact. 
e result is not plotted in a
diagram because there is no notable dierence to the curves
in Figure 12. In other words, the in-plane displacement
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�1,1 �1,2 �1,3

�1,4 �1,5 �1,6

Figure 5: Trial vector derivatives.

Figure 6: Visualization of the �rst columns of Φ̃	.

0.00

4.00

8.00

12.00

16.00

0 10 20 30 40 50

POD with weighting

POD without weighting

Additional vibration modes (no TVD)

Exact solution using all DOF

Number of additional vectors

2
‖f
c‖

Figure 7: Convergence analysis for a static computation.

in the joint is dominated by the �exibility in the joint
normal direction while the contributions due to the in-plane
�exibility can be neglected.
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Figure 8: Evaluation of the function 7(%).

4.1.5. Computational E�ciency. All simulations are per-
formedwith the sameXCos [42] block diagram (see Figure 1).

e simulations just dier in the particular use of the stiness
and mass matrix and the number of DOF. While the reduced
models require a reduced stiness and mass matrix the full
FE model needs the matrices obtained by the FE so�ware. It
can be reported that the time integration with 0, 10, and 25
additional joint modes needs 0.07%, 0.12%, and 0.25%CPU
time in comparison to the full FE model. In other words it
can be said that the use of 25 additional joint modes delivers
an accuracy which is comparable to that of a full nonlinear FE
simulationwithout losing the advantages ofmodel reduction.
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Figure 9: Time evolution of the Euclidian norm of the contact force
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Figure 10: Comparison of the results computed by TVD with and
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−25

−20

−15

−10

−5

0

No additional trial vectors based on TVD

10 additional trial vectors based on TVD

25 additional trial vectors based on TVD

100 additional trial vectors based on TVD

y
T

ip
(m

m
)

Time

Figure 11: Tip de�ection in y direction.

0

2

4

6

8

10

12

No additional joint vectors based on TVD

10 additional trial vectors based on TVD

25 additional trial vectors based on TVD

100 additional trial vectors based on TVD

Time

f‖
R
‖ 2

Figure 12: Time evolution of the Euclidean norm of the friction
forces.

y

x

z

Fy
Mx

Fy

3D view

Front viewy x

Joint area 1Joint area 2

Mx

Figure 13: Multilayer sheet structure.

4.2. Multilayer Sheet Structure. A 3D view and a front view
of the FE model of the structure under consideration are
shown in Figure 13. 
ree metallic sheets of the dimensions
135mm × 25mm × 0.5mm are connected via three beams.
Due to its construction the structure contains two joints with
an extension of 135mm × 25mm. 
e three sheets and the
three beams, which can be interpreted as two weld spots, are
made out of steel. On the le� hand side, the structure is �xed
mounted. On the free end, all nodal DOF are attached to a
rigid body.
e free node of the rigid body is in the middle of
the sheets.
is is indicated in Figure 13 by a white “spider” in
the enlarged picture of the free end.
e load for the static and
dynamic investigations consists of a force in the C direction
(D�) and a torque around the x axis (E�). 
e entire model
has 834DOF and all of them are involved in the joint contact.

In order to demonstrate a special advantage of the
proposed method in contrast to an already existing method,
the structure is arti�cially subdivided into two regions which
are named joint area 1 and joint area 2 (see Figure 13). 
is
subdivision is obtained by displacement constraints between
these two areas. As a consequence, joint area 2 is in fact not
present for the problem under consideration. 
is is done
to demonstrate an advantage of the proposed method in
contrast to the one published in [10]. 
e latter mentioned
advantage is discussed in detail in Section 5.
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Figure 14: Visualization of the �rst six columns of Φ̃	.
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Figure 15: Convergence analysis for a static computation.

As in the previous example, the reduction base for the
linear system is computed according the Craig/Bampton
method [39]. 
e six DOF of the free end are de�ned as so-
called “boundary DOF.” Consequently, the matrix Φ� which
holds the static de�ections shapes contains six trial vectors.

e number of vibration modes which are stored in the
matrixΦ
 is 10.

4.2.1. Trial Vector Derivatives. 
e trial vector derivatives
Φ	 and the �nal used joint modes Φ̃	 are computed along
the theory given in Sections 2 and 3. Note that POD with
weighting has been used to get the �nal joint modes out of
all TVD. In order to get an impression of the joint modes the

�rst six columns of the matrix Φ̃	 are visualized in Figure 14.
What all TVD have in common is that there are no

deformations in joint area 2, since neither the trial vectors
in Φ� nor the selected vibration modes in Φ
 lead to
deformations in joint area 2. 
e �rst vibration mode with
displacements in joint area 2 is mode number 28.

4.2.2. Static Response Computation. 
e static response has
been computed for D� = −50N andE� = −2500Nmm. In
this computation, no friction is considered. As in the example
before, the Euclidian norm of the contact force vector f� is
used for the convergence analysis.

Figure 15 contains a convergence analysis with respect to
the number of additionally used vectors. One curve contains
the Euclidian norm of the contact force in case of additional
jointmodes based on TVD.
e other curve is obtained when
no joint modes are used but ordinary vibration modes. For
the reference solution the contact forces are computed based
on a fully nonlinear FE analysis using all nodal DOF. It can
be seen that the computations with joint modes converge
quicker to the reference solution and it can be assumed
that the use of 10 joint modes leads to acceptable results.

is is con�rmed in the next subsection when dynamic
investigations are performed.

As observed in the �rst example the function 7(%) can
be used as an a-priori indication of the number of necessary
joint trial vectors (=g), see Figure 16.


e lower boundof suggestion (29)would lead to amatrix

Φ̃	 with 15 trial vectors which delivers acceptable results for
all static and dynamic investigations.

4.2.3. Dynamic Response Computation including Contact and
Friction. For the dynamic response analysis, the former loads
are applied as step function to the structure.
e step function
is implemented as a half wave cosine with a frequency of
100Hz.

Figures 17 and 18 contain the evolution of the Euclidian
norm of the contact force vector f� and the friction force
vector fR with respect to time. It can be seen in both �gures

that a matrix Φ̃	 with 20 columns delivers acceptable results.

is corresponds with the prior static convergence analysis.
Due to the rigid body at the end of the beam and the
spot welds, the friction forces and, therefore, the energy
dissipation are very low.
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Figure 16: Function 7(%) for the multilayer sheet structure (POD
with inner weighting).
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Figure 17: Time evolution of the Euclidian normof the contact force
vector.

4.2.4. Computational E�ciency. Again, all simulations are
performed with the same XCos [42] block diagram (see
Figure 1) with dierent numbers of DOF and dierent
stiness andmassmatrices. For themultilayer sheet structure
the time integration with 0, 20, and 60 additional joint
modes needs 0.42%, 0.44%, and 0.49% of the CPU time
which is needed for the full FE model. 
e balance between
computation e�ciency and accuracy is again excellent.

5. Discussion

As mentioned previously, the literature oers several options
for the model reduction of nonlinear mechanical systems.

is chapter is devoted to a comparison of the proposed
method with existing methods found in the literature.

5.1. Preservation of FE DOF Which Are Involved in Nonlin-
ear Phenomena. Some publications in the literature suggest
preserving all the nodal FE DOF which are involved in
nonlinearities; see [19–24]. 
is approach is promising with
respect to accuracy but not e�cient in terms of computational
eort when it is applied to jointed structures because a lot
of FE DOF are necessary to model the joint surfaces. A
“brute force” application of this approach to the �rst example

0

0.01

0.02

0.03

0.04

0.05

No additional trial vectors

20 additional trial vectors based on TVD

60 additional trial vectors based on TVD

100 additional trial vectors based on TVD

Time

f‖
R
‖ 2

Figure 18: Time evolution of the Euclidian normof the friction force
vector.
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Figure 19: Multilayer sheet structure: convergence analysis for the
static computation.

(friction bar) would lead to 628 additional DOF, while the
proposed TVD based approach needs only 25 additional trial
vectors (DOF) for a similar result quality. 
e gap between
the proposed approach and that known from the literature
increases with the complexity of the involved joints.

5.2. Proper Orthogonal Decomposition. 
e POD method
can be directly used for the model reduction of nonlinear
systems; see [25] for a review on POD. As descripted in the
introduction in Section 2, the matrix Y includes in such a
case > structural displacement shapes which are obtained as
solutions of the time integration of the fully nonlinear system
for the time instances 0, �1, �2, . . . , ��−1. POD can be used
to obtain a reduction base which approximates the original
space (= K) in the sense of a minimal Euclidean distance.

In comparison to the proposed approach, two disadvan-
tages of POD are obvious.

(i) In order to get a reduction base via POD at least
one time integration of the fully nonlinear system is
necessary. 
is is time consuming and the obtained
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Joint mode 3 Joint mode 19

Figure 20: Joint mode numbers 3 and 19 following [10].

reduction base is strongly related to the space spanned
by the results of the time integration of the full system.
In other words, applying other loads in the reduced
system as they are applied in the full system may lead
to considerable errors.

(ii) POD minimizes a Euclidian distance. 
e relative
displacements inside the gap are typically much
smaller as the overall structural displacements which
would, therefore, dominate the latter Euclidian dis-
tance. However, those relative gap displacements are
signi�cant for the nonlinear stiness and damping
due to contact and friction. From this perspective it
seems questionable whether a direct application of
POD is possible in case of jointed structures.

5.3. Joint InterfaceModes. 
eauthor of this work has already
introduced another approach for the computation of a proper
reduction base for jointed structures (see [10]). In this work, a
given subspace is enriched by so-called Joint InterfaceModes.
In principle the structure is statically condensed to the DOF
of the joints. 
is condensation leads to a reduced mass and
stiness matrix which are used for a subsequent eigenvalue
problem.
eobtained eigenvectors are used as Joint Interface
Modes. Gaul und Becker [29] con�rmed the superior con-
vergence rate in comparison to other methods, known from
the literature. 
e commercially available so�ware product
MAMBA [30] is an implementation of the latter approach.


e theory of the proposed reduction base is completely
dierent to the one found in [10] because it is a result of a
power series expansion. 
e advantages are as follows.

(i) For complex joints and structures the convergence in
terms of additional trial vectors is faster. Figure 19
contains a convergence analysis of the static compu-
tation of the multilayer sheet structure. It can be seen
that the proposed approach leads to trial vectors with
better convergence.
Two reasons can be observed by a close look at
the trial vectors. 
e �rst one is that all joints in
[10] are considered separately from each other. For

a particular example the contact between the middle
and the lower sheet is considered completely separate
from the contact between the middle and the upper
sheets. 
is is not the case for the proposed approach
and this is closer to the full system because the
three sheets cannot deform independently from each
other. 
is can be seen in the le� �gure of Figure 20
where the third and the 19th trial vectors computed
along [10] are visualized. It shows that two sheets
deform but the third does not.
is does not represent
the construction of the beam where the spot welds
enforce a coupling between all three sheets. 
e
second reason is that the trial vectors obtained by [10]
are completely independent of the initial reduction
base [Φ
 Φ�]. In [10] a subspace for all available joint
DOF is computed regardless of the importance with
respect to the initial trial vector base [Φ
 Φ�]. As
a consequence, joint trial vectors are computed for
joint areas, which are less meaningful for a particular
initial reduction base [Φ
 Φ�] than other areas. In
the second example of this work, joint area 2 is
arti�cially added to the structure in order to illustrate
this point. In fact, joint area 2 is meaningless for
the problem under consideration and, therefore, no
trial vector computed along the proposed method
shows deformations in joint area 2. 
is is to be
expected, because no mode in the initial reduction
base [Φ
 Φ�] leads to deformations in that area.
is
is not true for the joints modes computed along [10].

e right plot of Figure 20 reveals that themodes with
a number higher than 19 have deformations in that
area, even though it is not necessary. Note that this
may have a signi�cant impact on the convergence in
case of geometrical complex joints, like those found
in car bodies.

(ii) 
e proposed algorithm is easier to implement
because for the implementation of [10] a Guyan
reduction [44] of all nonjoint DOF to the joint DOF
is needed. 
is is a remarkable computational eort
for large FE structures.
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(iii) In [10] the joint trial vectors in normal and in-plane
directions of the contact surface have to be computed
separately. 
is is not necessary for the proposed
approach even if the importance of such in-plane
displacements is not yet clear; see the comments on
Figure 12.

6. Conclusion

In this paper a new reduction base for an accurate and
e�cient model reduction of jointed structures is presented.
Based on an initial reduction base of a linear structure so-
called trial vector derivatives are computed. In order to get
an accurate and small reduction base, proper orthogonal
decomposition with inner weighting has been applied to the
trial vector derivatives. 
is transformation is not limited
to jointed structures. It seems to be a promising strategy
whenever trial vector derivatives lead to a high dimensional
space with a lot of redundant information. As a byproduct, an
a-priori estimator of the required number of joint trial vectors
is given. All convergence analyses indicate that just a few
of these joint trial vectors signi�cantly improve the system
response because the joint nonlinearities in terms of contact
and friction can be considered accurately.


e reduction of trial vectors and, therefore, degrees of
freedom has signi�cant impact on the time that is required
for the time integration. Although the quality of the result
is comparable to that of a nonlinear FE computation, the
reduction in CPU time is more than a factor of hundred for
both examples.

In the future, applying the proposed approach to very
complex structures like car bodies is planned. It is expected
that a full dynamic simulation can be done considering all
contact and friction forces in the joint areas all over the car
body.
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