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Abstract
Smart wearable items are becoming more well recognized and are steadily making their way into people’s lives as a result 
of the ongoing advancement of technology and people’s growing concern for their health. In this work, we investigate the 
stimulation of physiological signals and the level of happiness indicated by people’s emotions using the linkage of smart 
gadgets and biological data. To reduce motion artifacts from wearable PPGs, we first suggest a sparse representation-based 
approach. To address the issue of poor model generalization brought on by individual signal differences (inter- and intra-
individual) in human ECG data, a wearable ECG individual signal difference reduction technique based on Balanced Dis-
tribution Domain Adaptive (BDA) is also suggested. In addition to making a significant contribution to the advancement of 
intelligent control technology, medicine, and other fields, it provides an effective baseline for research on the satisfaction 
level of group music and dancing based on physiological signals.
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1 Introduction

Dance and music may be employed as a kind of exercise that 
lasts a lifetime. In addition to enhancing emotional and phys-
ical health, music and dance also have the power to regulate 
daily life, foster better interpersonal relationships, and fill 
individuals with vigor and vitality. According to psycholo-
gists, the emotional responses of the elderly can be broadly 
categorized as melancholy, sadness, anxiety, loneliness, 
guilt, helplessness, and anger, and the cognitive changes can 
be broadly categorized as pessimism, short attention span, 
hopelessness, helplessness, uselessness, low value, and, in 
some cases, delusions, fantasies, or suicidal thoughts, which 
are more common in the elderly than in other age groups [1]. 
Compared to other age groups, the elderly are more prone to 
have these symptoms [2]. According to the survey, it is well 
known that senior people frequently experience temporary 
anxiety symptoms. If psychological issues are effectively 
handled, elderly people’s bad behaviors and social issues 
can be alleviated [3]. Female seniors who actively engage in 

social activities have been shown to live longer, and group 
music and dance activities give seniors a new platform to 
express their social roles while also giving them a place to 
confide in and communicate with one another, effectively 
reducing loneliness and raising happiness levels. However, 
it is very important to accurately capture the real physiologi-
cal excitement of people to music and dance, as well as the 
pleasurable biological stimulation.

Physiological signal analysis and processing algorithms 
for wearable technology have advanced quickly in recent 
years, making significant contributions to domains of human 
health monitoring such heart rate estimates of human activ-
ity and emotion identification [4, 5]. In the human health 
monitoring system, as seen in Fig. 1, wearable devices like 
smart watches and bracelets are used to gather physiologi-
cal signals from the body, such as photoplethysmography 
(PPG) and electrocardiogram (ECG), before transmitting 
the information to a distant server. Finally, the analysis and 
processing of physiological information allows for the per-
ception of the human body’s state of health [6]. The human 
health monitoring system can help reduce the scarcity of 
medical resources brought on by China’s massive population 
base and growing aging rate in addition to offering low-
load and long-term continuous daily health monitoring for 
the monitored [7]. Consequently, developing algorithms for 
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physiological data analysis and processing for wearable tech-
nology has significant scientific and societal implications.

A human health monitoring system can not only provide 
low-load, long-term continuous daily health monitoring for 
the monitored individuals, but also alleviate the shortage 
of medical resources due to the huge population base and 
the deepening aging in China. This paper proposes a wear-
able ECG individual signal discrepancy elimination algo-
rithm based on BDA. The effectiveness of this algorithm 
in eliminating individual signal differences in ECG is veri-
fied in an emotion recognition experiment based on an open 
dataset. Our model can provide effective help for accurate 
estimation of emotions and group activities, not only limited 
to music and dance. Therefore, it is of great scientific and 
social importance to conduct research on physiological sig-
nal analysis and processing algorithms for wearable devices.

2  Related Work

One of the sports that older people engage in is aerobic exer-
cise of low-to-moderate intensity, and one of them is music 
and dance, which forms a regular acoustic vibration through 
changes in tone and melody, which is a benign stimulus for 
the human body and has a direct effect on the brain, and 
this physical energy can cause the tissue cells to resonate 
harmoniously, resulting in physiological and psychological 
responses [8, 9]. Al-Turjman et al. [10] indicate that older 
adults who engage in regular exercise have significantly 
higher subjective health status (self-perceived health, recu-
peration, mental health, and stress management) than those 
who do not exercise. He et al. [11] interviewed older adults 
who participated in square dancing and concluded that they 
had higher happiness scores and all had good interpersonal 
relationships and fulfilling social lives. Kaur et al. [12] 

noted that female older adults who exercised consistently 
had fewer functional limitations in health, better daily func-
tioning, better exercise related self-efficacy, and fewer falls. 
Shen et al. [13] indicated that as older adults participated in 
group leisure activities more frequently, their physical and 
mental health and vitality tended to increase. By analyzing 
the current status of domestic and international research, this 
section attempts to show the trend of related research areas.

2.1  Product Design of Physiological Data

The word “emotion” is derived from the Greek word 
“pathos” and was first used to express people’s feelings 
about tragedy [14]. Emotion plays a central role in a range 
of intelligent activities, such as perception, decision-mak-
ing, logical reasoning, and social interaction, and some 
studies even show that “80%” of human communication is 
emotional information [15]. Because of the significance of 
emotion in human communication, affective computing is 
an essential part of the human–computer interaction pro-
cess and an important breakthrough in making machines 
intelligent [16, 17]. Emotional computing and understand-
ing aims to give computer systems the ability to recognize, 
understand, express, and adapt to human emotions to build 
a harmonious human–computer environment, and to make 
computers more intelligent and comprehensive [18, 19]. 
Depending on the input signal, affective computing and 
understanding encompasses different research directions. 
In addition, unlike the short-term and sparse characteristics 
of visual or speech emotion signals, physiological signals 
are long-time continuous signals that can work continuously 
in the absence or failure of traditional visual and speech 
signals, and thus can effectively enhance human–computer 
interaction or interpersonal interaction.

ECG

PPG

Physiologic
al signals 

collected by 
wearable 
devices

continuous 
monitoring

ECG paste

Smart 
bracelet

Physiological signal analysis and processing for 
hum

an health m
onitoring

Motion artifact 
removal algorithm for 
physiological signals

Estimation of human 
exercise heart rate

Human emotion 
recognition

An Algorithm for Eliminating 
Individual Signal Differences of 
Physiological Signals Based on 
Balanced Distribution Domain 

Adaptation

Fig. 1  Human health monitoring system based on physiological signal analysis and processing
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2.2  Methods Related to Emotion Measurement

According to the current mainstream research, models for 
measuring emotions are mainly divided into basic emotion 
theories (categorical models) and dimensional emotion theo-
ries. The basic emotion theory is a collection of basic and 
universal fundamental emotions [20, 21]. In recent years, 
physiological data mainly include peripheral physiologi-
cal measurements (e.g., heart rate, respiration, electromyo-
graphy, dermatography, skin temperature, etc.) and central 
nervous system measurements (e.g., EEG and functional 
magnetic resonance imaging) [22, 23]. Southwestern Uni-
versity in China has also done a lot of work on emotion rec-
ognition based on human physiological data, and considers 
physiological data as a very useful feature for identifying 
human emotions [24]. Measuring physiological signals is the 
first step in building a system that can automatically iden-
tify physiological patterns related to emotions. In a broad 
sense, all bodily changes can be considered as changes in 
physiological signals, including brain activity, facial expres-
sions, voice patterns, and body chemistry. In this paper, we 
focus on continuous physiological signals measured from the 
skin surface, which can reflect the activity of the autonomic 
nervous system. Next, we will discuss the characteristics of 
cardiac activity (heart rate and heart rate variability), blood 
pressure, skin conductivity, surface electromyography, res-
piration, pulse, and other physiological signals.

With the rapid development of network technology 
and intelligent hardware, wearable devices have become a 
hot spot for current research. The application of wearable 
devices in the field of human health monitoring provides 
a new path for disease monitoring and diagnosis, and has 
become a hot spot in the current medical device innovation. 
Based on this, this paper briefly introduces the current appli-
cation status and development trend of wearable devices in 
the field of music and dance well-being of elderly people.

3  Methodology

3.1  PPG Motion Artifact Removal Based on Sparse 
Representation

The purpose of this section is to remove motion artifacts 
(MA) of PPG using sparse representation (SR) based on 
the selected dictionary. It should be noted that this paper 
sets the dictionary form according to the strength of MA in 
the original signal to effectively express the original signal. 
In this part, we first introduce the binary decision based on 
correlation (used to determine whether the original PPG 
signal contains strong MA), and then describe the PPG MA 
removal algorithm based on sparse representation. The pur-
pose of correlation-based decision-making is to determine 

whether the original PPG signal contains strong MA by cal-
culating the correlation coefficient between the STFT ampli-
tude of the original PPG signal and the STFT amplitude of 
the acceleration signal. If the calculated Pearson correlation 
coefficient is not high, then the original PPG signal does not 
contain strong MA (that is, the PPG signal is considered 
clean). In this case, to avoid interference of MA dictionary 
atoms (from acceleration signal), MA dictionary R is not 
used. First, the STFT amplitude of PPG signal and accelera-
tion signal is calculated. Specifically, this paper uses STFT 
to convert the original PPG signal  sraw and acceleration sig-
nal  araw into STFT amplitude domain, as shown in Eqs. (1) 
and (2)

where X ∈ R m × N is the STFT amplitude of  sraw, and A ∈ R 
m × N is the STFT amplitude of  araw. M represents the com-
ponent in the frequency range of 0–5 Hz (the frequency 
range of heart rate) in the STFT domain. N represents the 
number of time windows. The acceleration signal  araw is the 
addition of three-axis acceleration signals after band-pass 
filtering. Second, the matrix X is converted into a column 
vector x ∈ R(m ∗ n) × 1 , that is, x is composed of column 
vectors in matrix X. Similarly, matrix A is transformed into 
a column vector a ∈ R(m ∗ n) × 1 , that is, a is composed of 
column vectors in matrix A. M · n represents the multiplied 
value of m and n. Finally, measure the Pearson correlation 
coefficient between x and a whether the pcorr meets the fol-
lowing conditions, as shown in Eq. (3):

Including Δ Corr is a preset threshold. If ρcorr meets 
Eq. (3), the original PPG signal is determined to be clean (or 
contains weak MA). At this time, only the PPG dictionary is 
used, and the MA dictionary is not used, which is expressed 
as Eq. (4)

If Pcorr cannot meet the Eq. (3), and the original PPG 
signal is determined to be unclean (or contains strong MA). 
At this time, both PPG dictionary and MA dictionary will 
be used, expressed as Eq. (5):

where D represents the dictionary used in the MA removal 
algorithm of sparse representation. (2) The sparse repre-
sentation PPG motion artifact removal sparse representa-
tion PPG motion artifact (MA) removal algorithm aims to 

(1)� =
|||STFT

(
�raw

)|||

(2)� =
|||STFT

(
�raw

)|||

(3)||�corr || ≤ Δcorr .

(4)D = R̃

(5)D = [R̃R].
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remove MA from the original PPG signal using the sparse 
representation algorithm. Sparse representation is a new sig-
nal processing technology, which has shown great potential 
in many applications. The sparse representation algorithm 
can be used for PPG and acceleration signals, because PPG 
signal and acceleration signal (MA reference signal) are 
sparse in a specific domain; the regularity of PPG and accel-
eration signals indicates that these two signals can be well 
represented. If an original PPG signal contains strong MA, 
this paper assumes that the STFT amplitude of the origi-
nal PPG signal x ∈ R(m ∗ n) × 1 , STFT amplitude s ∈ R (m 
· n) of clean PPG signal × 1, and STFT amplitude of MA 
m ∈ R(m ∗ n) × 1 and 1. This assumption can be expressed 
as Eq. (6)

This assumption is like the assumption of speech enhance-
ment. It is the sum of the spectrum amplitude of the original 
noisy speech signal that can be approximately regarded as 
speech signal and noise signal. Based on this assumption, 
if the original PPG signal contains strong MA, then D = [R 
R̃ ], That is, the dictionary D used in sparse representation 
is determined by the PPG dictionary R̃ and MA dictionary 
R. At this time, the optimization problem in Eq. (7) can be 
used to remove MA. The purpose of sparse representation 
is to use a linear combination of a small number of dic-
tionary atoms (atoms selected from dictionary D that are 
related to the original PPG signal x), the sparse coefficient 
is obtained by approximating the original PPG signal x with 
a lower error. The amplitude of clean PPG is estimated by 
the sparse coefficient obtained, and the contribution of MA 
is ignored, so MA is removed, and the denoised PPG signal 
is obtained. According to the form of D, the sparse repre-
sentation algorithm includes two cases. On the one hand, 
if D = R̃ , the purpose of sparse representation algorithm is 
to use the dictionary R̃ from the clean PPG linear combina-
tion of dictionary atoms. In this case, to remove MA, the 
obtained MA dictionary atom is ignored. Only the sparse 
coefficient corresponding to the clean PPG signal is used to 
estimate the clean PPG amplitude, and the clean PPG signal 
is reconstructed combining the phase of the original PPG 
signal to obtain the denoised PPG signal. The optimization 
problem of sparse representation algorithm is expressed as

where x represents the STFT amplitude of the original PPG 
signal after band-pass filtering. D is the dictionary after the 
decision using correlation (D = R̃ or D = [R R̃ ]) ° K is a small 
positive integer. C is a sparse coefficient vector. c = c  R̃ or 
c = [C̃ r cr] T, where C̃ R and cr correspond to PPG diction-
ary R̃  And MA dictionary R. This optimization problem 

(6)X = s + m.

(7)
min
�

‖� − �‖2

s.t.‖�‖0 ≤ K,

aims to obtain a sparse coefficient vector c, so that when 
the coefficient vector is sparse, the linear combination of a 
few dictionary atoms (the product of dictionary atoms and 
sparse coefficients) in dictionary D can approximately rep-
resent the original PPG signal x. The above optimization 
problem, Eq. (7), can be solved by using many algorithms, 
such as orthogonal matching pursuit OMP and base pursuit 
noise reduction. These algorithms use different criteria and 
steps to solve problems. Because OMP algorithm has low 
computational complexity and is simple to implement, this 
paper chooses OMP algorithm in the experiment. OMP is 
an iterative algorithm for selecting atoms from dictionaries. 
After the OMP algorithm is used to solve the optimization 
problem represented by Eq. (7), a sparse coefficient vector c 
is obtained in this paper. Then, the estimated STFT ampli-
tude is corresponding to the denoised (clean) PPG signal Ŝ . 
It can be obtained in the following way, as shown in Eq. (8):

Among them, Ŝ S can be converted into a denoised PPG 
signal in the time domain. Vector Ŝ ∈ R (m·n) × 1 is con-
verted to matrix Ŝ ∈ R m × n, where the matrix under the 
STFT field Ŝ  It can be converted into a denoised PPG sig-
nal in the time domain [by the following Eq. (9)]. Finally, 
based on the PPG signal Ŝ in the STFT amplitude domain 
and the phase of the original PPG signal, Ŝ is converted into 
the denoised PPG signal (signal in the time domain) srecon 
through the inverse STFT transform. The denoised PPG 
signal srecon will be used in the following heart rate peak 
tracking algorithm. The process of inverse STFT transforma-
tion can be expressed, as shown in Eq. (9). Where ISTFT 
represents the inverse STFT transform

3.2  Wearable ECG Difference Elimination Algorithm

In this section, a balanced BDA-based wearable ECG indi-
vidual signal disparity elimination algorithm is proposed for 
sentiment recognition scenarios, which improves the per-
formance of online sentiment recognition by overcoming 
inter-individual signal disparity as well as intra-individual 
signal disparity simultaneously. The algorithm uses the 
BDA algorithm [25] to reduce inter-individual signal dif-
ferences, obtains a shared subspace of source and target user 
data, and trains an emotion classifier (based on source user 
data) for the target user in the shared subspace. At the same 
time, the Online Data Adaptation (ODA) algorithm is used 
to reduce the intra-individual signal differences, so that the 
time-varying ECG signals arriving online can be adapted 
to improve the online recognition performance. Figure 2 
shows the framework of a wearable ECG individual signal 

(8)Ŝ = R̂c
T

r̃
.

(9)S
RECON

= ISTFT(Ŝ).
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difference elimination algorithm for emotion recognition. 
It mainly includes four parts: signal difference elimination 
between individuals based on balanced BDA, emotion clas-
sifier training, intra-individual signal difference elimination 
based on ODA, and online emotion recognition.

The BDA algorithm is used to learn a shared subspace 
and prepare for the training part of the emotion classifier. 
Figure 3 shows the principle of BDA-based inter-individ-
ual signal difference elimination algorithm. It can be seen 
from the figure that BDA makes the data of the two fields 
distributed and aligned in the shared subspace. BDA is a 
UDA algorithm, which can not only minimize the differ-
ence between edge distribution and conditional distribution, 
but also adaptively adjust the importance of each distribu-
tion. The BDA algorithm aims to minimize the difference 
between the source domain ECG data and the target domain 
ECG data, as shown in Eq. (10)

Because of the nonstationary of ECG, the ECG changes 
with time, resulting in differences between the online ECG 
data and the initial data of the same target user (intra-
individual signal differences), resulting in the classifier f 
obtained in the previous part may not be applicable to the 
newly arrived online data. As shown in Fig. 3, although 

(10)
min
Pr

tr

(

�r�
(

(1 − �)�0 + �
C
∑

c=1
�c

)

�T�r

)

+ �‖
‖

�r
‖

‖

2
F

s.t.�T
r ���T�r = �, 0 ≤ � ≤ 1.

Pr obtained by BDA can map online data to a shared sub-
space (i.e., Fig. 3c). The purpose of ODA algorithm is to 
adaptively adapt time-varying ECG signals by reducing the 
signal difference within individuals (the difference between 
the online data of the same target user and the initial target 
data), to improve the performance of online emotion recog-
nition. Specifically, the algorithm reduces the difference of 
second-order statistical characteristics between online data 
and initial target data, the time-varying ECG signals arriving 
online are adaptive to improve the online learning ability of 
the recognition model.

4  Experiments

4.1  Datasets

In the experiment, a variety of typical pseudo-periodic 
motion data sets are used. The six typical pseudo-periodic 
movements are walking, fast running, waving, arm swing-
ing, elliptical machine, and squatting. These movements 
are related to hand movements, which are the main source 
of MA. Figure 4 shows the schematic diagram of six com-
mon fitness exercises: walking, fast running, waving, 
arm swinging, elliptical machine, and squatting. Figure 5 
shows the hardware settings for collecting data. Figure 5a 
shows the hardware frame diagram during data acquisition, 
and Fig. 5b shows a subject with hardware. Among them, 
ECG sensor is used to obtain three lead ECG: LA, RA, and 
LL (LA and RA are placed in the left and right chest, and 
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LL lead is placed in the left lower abdomen); the reflective 
pulse oximeter sensor with green LED is used to collect 
PPG signals; the ADXL345 sensor is used to collect the 
three-axis acceleration signal. Finally, all data of the above 

sensors are processed through STM32 and transmitted to 
the host for data analysis and processing.

The six datasets used in this chapter were collected, while 
subjects performed six typical pseudo-periodic exercises. 
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Specifically, the Running dataset contains Walking and 
Running Fast; Beckoning contains Reckoning; Swing Arm 
contains Swing Arm; Elliptical Trainer contains Elliptical 
Machine; Deep Keen Bend contains Squat; and Mixture con-
tains Reckoner, Swing Arm, and Squat.

The Running dataset was first presented in the literature 
[26]. It was collected from 12 subjects (aged 18–35 years) 
and 12 records were obtained. For each individual, three 
signals were acquired simultaneously, namely, a single-pass 
photoelectric volumetric pulse-wave signal (PPG), a triaxial 
acceleration signal, and an ECG. These signals were sam-
pled at a frequency of 125 Hz and were acquired for approxi-
mately five minutes for each subject. Specifically, subjects 
first walked at 12 km/h for 0.5 min, then ran at 68 km/h for 
1 min, then ran at 1215 km/h for 1 min, and finally walked 
at 12 km/h for 0.5 min.

The other five datasets (Beckoning, Swing Arm, Ellipti-
cal Trainer, Deep Keen Bend, and Mixture) involved exer-
cises, such as handstands, arm swings, elliptical training, 
and squats. The first four datasets were collected from 9 
subjects (aged 18–35 years), resulting in 9 records. The 
Mixture dataset was collected from 4 subjects, resulting in 
four records. Each record lasted approximately 4 min. For 
each subject, the signals collected simultaneously included 
a single-channel PPG signal, a triaxial acceleration signal, 
and an ECG signal.

The other five datasets are described in detail below.
The Beckoning dataset contains the beckoning action. 

During the acquisition, subjects rested for 0.5 min at the 
beginning and end of the acquisition. At other times, sub-
jects performed the hand wave for 3 min. The hand-waving 
motion was very similar to the common mascot, the maneki-
neko (depicting a cat waving with an upright paw).

The Swing Arm dataset contains arm-swinging move-
ments. During the acquisition, subjects rested for 0.5 min at 
the beginning and end of the acquisition. At other times, the 
subject swings the arm with the sensor back and forth for 
3 min at an angle of approximately 60°.

The Elliptical Trainer data set was collected from subjects 
during elliptical training. At the time of acquisition, sub-
jects first rested for 0.5 min, then exercised on the elliptical 
machine for 1 min at 46 km/h, followed by 1 min at 78 km/h, 
then 1 min at 46 km/h, and finally rested for 0.5 min.

The Deep Keen Bend data set was collected while the 
subjects were performing the deep squat exercise. At the 
time of acquisition, subjects rested for 0.5 min at the begin-
ning and end of the acquisition. At other times, subjects 
performed the squat exercise for 3 min. Before starting the 
squat, the subject straightens the back and lower back with 
the knees aligned with the tips of the toes. The squat was 
performed in a natural and fluid manner, with hands on the 
knees when the lowest point of the squat was reached, so that 
the hands could provide proper support when rising.

The Mixture dataset was collected from subjects perform-
ing a mixture of three movements, namely, handstands, arm 
swings, and squats. This data set contains four records. In 
each record, subjects rested for 0.5 min at the beginning and 
end of the acquisition. At other times, subjects performed 
two types of exercises for a total of 3 min. For the first type, 
subjects beckoned for 1.5 min and then swung their arms 
for 1.5 min. For the second type, the subject beckoned for 
1.5 min and then squatted for 1.5 min. Of the four records, 
the first two were of the first type and the last two were of 
the second type.

4.2  Experimental Results and Analysis

In this paper, the performance of the algorithm was evalu-
ated in five aspects: error, Bland Altman plot, Pearson coef-
ficient scatter plot, heart rate estimation curve plot, and 
MA removal effect plot. Among the six methods compared 
in Table 1 (RandF, temko, TROIKA, JOSS, EEMD, and 
CorNet), there were some wild points, such as 70.18 for 
TROIKA. after removing outliers greater than 30 BPM, 
the mean errors of the five methods for all records were 
3.25 BPM, 3.38 BPM, 3.52 BPM 7.66 BPM, 6.88 BPM, 
and 7.31 BPM. These results indicate that the performance 
of our method (DL + HMR + SR-based heart rate estima-
tion) is still better (2.40 BPM) than these five methods even 
after removing the wild points in the six methods, which 
indicates that our method (DL + HMR + SR-based heart rate 
estimation) performs well and suggests that our algorithm 
(DL + HMR + SR) is effective in removing pseudo-periodic 
motion artifacts from the PPG signal.

To better compare different methods, Fig. 6 compares the 
F1 scores of different methods, that is, the average of the two 
types of F1 scores. For this method (emotion recognition 
based on BDA + ODA), the average F1 scores of all sub-
jects are Dreamer’s valence recognition is 0.69%, dreamer’s 
arousal recognition is 0.65%, Amigos’ valence recognition 
is 0.66%, and Amigos’ arousal recognition is 0.63%. It can 
be seen from Fig. 6 that the F1 score of the method in this 
paper is higher than that of other methods (UDA is used to 
reduce the individual signal difference), which shows the 
advantages of the method in emotion recognition and shows 
that the algorithm in this paper (BDA + ODA) is better than 
other UDA algorithms in overcoming the individual signal 
difference of ECG [27]. Further, to better compare different 
methods, Figs. 7 and 8 show the confusion matrices for dif-
ferent methods to classify on Dreamer Valence and Dreamer 
Ambient, respectively. In the confusion matrix, each row 
represents the real class, and each column represents the 
prediction class. The elements (i, j) represent the percentage 
obtained when the samples originally belonging to class i 
are divided into class j. On the Dreamer dataset, the method 
in this paper (emotion recognition based on BDA + ODA) 
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Table 1  Error comparison between the method in this chapter and other heart rate estimation methods

Data set User Methods in this 
chapter

RandF tcmko TROIKA JOSS EEMD CorNet

Running S1 1.95 1.62 1.26 2.88 1.34 2.07 6.24
S2 2.89 1.39 1.42 1.76 1.76 3.59 1.84
S3 0.99 0.74 0.72 1.92 1.48 0.93 0.89
S4 1.55 1.49 0.98 2.26 1.49 1.55 0.49
S5 1.12 0.78 0.76 1.69 0.69 0.98 0.41
S6 1.91 1.35 0.93 3.17 1.33 1.65 3.09
S7 0.68 0.59 0.66 1.73 0.72 2.26 1.35
S8 0.97 0.64 0.98 1.84 0.57 0.64 3.65
S9 0.61 0.58 0.56 1.59 0.49 0.63 3.31
S10 6.59 3.51 2.07 4.01 3.82 4.63 1.78
S11 2.08 1.08 1.04 1.97 0.79 1.31 0.42
S12 1.94 1.05 0.99 3.34 1.05 1.81 0.51
Ave 1.93 ± 1.62 1.23 ± 0.81 1.02 ± 1.26 2.43 ± 0.79 1.28 ± 2.62 1.83 ± 1.22 1.99 ± 4.65

Beckoning S1 2.14 2.88 2.21 4.08 17.45 2.05 5.81
S2 1.72 3.81 4.81 2.66 22.61 1.68 7.25
S3 1.98 3.52 2.82 2.82 4.88 2.41 14.54
S4 1.58 2.29 3.43 3.94 32.11 23.03 6.84
S5 2.02 3.23 1.63 70.19 4.76 3.64 7.35
S6 2.67 2.36 2.36 3.82 25.59 2.83 4.99
S7 2.74 3.68 2.59 20.73 8.22 4.27 5.99
S8 2.31 5.87 3.13 2.89 3.59 2.31 7.01
S9 1.59 2.37 1.85 2.49 5.32 1.89 4.94
Ave 2.08 ± 0.94 3.33 ± 1.13 2.75 ± 0.97 10.62 ± 22.35 13.83 ± 10.81 4.89 ± 6.86 7.18 ± 2.91

Swing
arm

S1 1.58 1.57 1.67 2.66 6.77 2.57 4.47
S2 1.49 2.52 8.59 3.47 19.01 25.59 6.65
S3 3.34 3.01 4.86 4.38 10.05 33.21 6.34
S4 1.56 1.68 1.79 3.97 3.25 37.38 5.49
S5 3.01 2.34 1.79 3.68 31.12 2.95 6.16
S6 2.49 1.82 1.71 2.71 2.69 1.51 5.13
S7 2.81 2.31 1.56 3.87 9.69 3.16 6.09
S8 3.53 5.09 13.78 4.87 19.13 37.98 6.42
S9 3.98 4.26 14.16 11.51 11.12 29.09 6.48
Ave 2.64 ± 0.94 2.72 ± 1.22 5.54 ± 5.32 4.56 ± 2.71 12.53 ± 9.12 19.26 ± 16.32 5.93 ± 0.69

Elliptical
trainer

S1 1.32 4.76 1.54 2.66 3.32 3.08 12.29
S2 2.19 1.39 1.26 3.29 1.61 2.81 16.24
S3 2.92 2.09 33.41 42.53 41.34 42.77 23.84
S4 5.43 1.28 3.26 5.74 20.78 9.53 8.81
S5 6.39 14.57 45.48 4.59 40.89 58.82 16.39
S6 1.38 3.41 4.34 2.59 11.84 1.66 12.13
S7 3.79 35.64 2.84 13.65 7.17 3.19 12.97
S8 1.22 0.87 1.31 2.22 3.29 11.25 21.96
S9 1.41 1.89 2.04 3.11 13.26 2.88 10.03
Ave 2.89 ± 1.94 7.31 ± 11.45 10.60 ± 16.66 8.92 ± 13.09 15.93 ± 15.49 15.1 ± 20.89 15.07 ± 5.11
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is 78.17% in positive emotion, 60.97% in negative emotion, 
and 57.12% in high arousal emotion, 79.32% in low arousal. 
Compared with other methods, this method performs better 
in valence classification and arousal classification, It shows 
that this method is superior to other methods (using UDA to 
reduce the individual signal difference) when it is used for 
emotion recognition, and it also shows that this algorithm 
(BDA + ODA) is superior to other UDA-based algorithms 

when it is used to eliminate the individual signal difference 
of ECG.

4.3  Heart Rate Estimation

On the data set Elliptic Trainer (Fig. 9), the estimated value 
deviates from the true value in 70–100 s. The reason may 
be that the trend of heart rate changes frequently, result-
ing in a large error in the heart rate peak tracking phase 
(when the heart rate value in the current time window is 
corrected based on the previous heart rate change trend). 
However, when the change trend of the rate of care is rela-
tively stable, this method (heart rate estimation based on 
DL + HMR + SR) can accurately reestimate the heart rate. 
Moreover, in Fig. 9, the trend of heart rate estimation in the 
overall time is generally consistent with the trend of the real 
value, which indicates that the method in this paper performs 
a good heart rate estimation, thus demonstrating the effec-
tiveness of the algorithm in this paper (DL + HMR + SR) 
in removing the pseudo-periodic motion artifacts in PPG.

5  Conclusion

Wearable devices monitor human health and emotions 
by collecting human physiological signals and based on 
physiological signal analysis and processing algorithms to 
effectively detect group music and dance well-being. First, 
we propose an algorithm based on sparse representation 

Table 1  (continued)

Data set User Methods in this 
chapter

RandF tcmko TROIKA JOSS EEMD CorNet

Deep keen squat S1 1.84 3.31 2.28 2.49 2.95 44.45 4.92

S2 2.76 2.64 2.24 2.89 74.74 73.09 5016

S3 3.43 36.57 1.92 3.89 11.76 53.32 4.77

S4 2.76 14.29 34.98 3.91 7.45 25.82 3.89

S5 1.38 1.97 1.56 3.13 15.44 2.67 3.19

S6 3.89 5.24 31.51 3.91 4.59 51.99 9.19

S7 3.15 8.75 21.03 2.59 4.73 59.28 10.19

S8 3.75 14.27 16.74 5.67 70.92 27.04 12.94

S9 1.09 1.47 3.28 1.98 4.04 4.36 12.05

Ave 2.66 ± 1.03 9.83 ± 11.19 12.5 ± 13.04 3.38 ± 1.1 21.82 ± 29.14 37.99 ± 24.52 7.36 ± 3.74
Mixture S1 4.13 3.53 4.29 5.05 9.58 16.27 7.32

S2 2.01 1.91 1.85 2.39 2.89 2.23 6.19
S3 1.37 3.76 1.76 2.23 2.79 1.55 9.73
S4 1.93 2.09 2.36 2.56 1.98 8.03 13.04
Ave 2.35 ± 1.22 2.81 ± 0.97 2.56 ± 1.18 3.05 ± 1.34 4.3 ± 3.54 17.4 ± 23.42 9.06 ± 3.04

Ave of all data (mean ± std) 2.4 ± 1.3 4.51 ± 7.13 2.55 ± 10.83 11.72 ± 15.98 11.72 ± 15.98 14.33 ± 19.37 7.31 ± 5.18

Fig. 6  F1 score of different emotion recognition methods
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Fig. 7  Confusion matrix of different emotion recognition methods in Dreamer valence classification
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Fig. 8  Confusion matrix of different emotion recognition methods in Dreamer arousal classification
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to eliminate motion artifacts of wearable PPGs. In addi-
tion, to address the problem of poor model generalization 
due to individual signal differences (between and within 
individuals) in human ECG signals, a wearable ECG indi-
vidual signal difference elimination algorithm based on 
BDA is proposed. The effectiveness of the algorithm in 
eliminating ECG individual signal differences is verified 
in an emotion recognition experiment based on an open 
dataset. Our model can provide effective help for accurate 
estimation of emotions and group activities, not only lim-
ited to music and dance.
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