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Abstract

Quantitative model checking is concerned with the verification of both
quantitative and qualitative properties over models incorporating quant-
itative information. Increases in expressivity of the models involved allow

more types of systems to be analysed, but also raise the difficulty of their efficient
analysis.

Three years ago, the Markov automaton (MA) was introduced as a general-
isation of probabilistic automata and interactive Markov chains, supporting non-
determinism, discrete probabilistic choice as well as stochastic timing (Markovian
rates). Later, the tool IMCA was developed to compute time-bounded reachab-
ility probabilities, expected times and long-run averages for sets of goal states
within an MA. However, an efficient formalism for modelling and generating
MAs was still lacking. Additionally, the omnipresent state space explosion also
threatened the analysability of these models. This thesis solves the first problem
and contributes significantly to the solution of the second.

First, we introduce the process-algebraic language MAPA for modelling MAs.
It incorporates the use of static as well as dynamic data (such as lists), allowing
systems to be modelled efficiently. A transformation of MAPA specifications to
a restricted part of the language—enabled through an encoding of Markovian
rates in action—allows for easy parallel composition, state space generation and
syntactic optimisations (also known as reduction techniques).

Second, we introduce five reduction techniques for MAPA specifications:
constant elimination, expression simplification, summation elimination, dead
variable reduction and confluence reduction. The first three aim to speed up state
space generation by simplifying the specification, while the last two aim to speed
up analysis by reductions in the size of the state space. Dead variable reduction
resets data variables the moment their value becomes irrelevant, while confluence
reduction detects and resolves spurious nondeterminism often arising in the
presence of loosely coupled parallel components. Since MAs generalise labelled
transition systems, discrete-time Markov chains, continuous-time Markov chains,
probabilistic automata and interactive Markov chains, our techniques and results
are also applicable to all these subclasses.

Third, we thoroughly compare confluence reduction to the ample set variant
of partial order reduction. Since partial order reduction has not yet been
defined for MAs, we restrict both to the context of probabilistic automata. We
precisely pinpoint the differences between the two methods on a theoretical
level, resolving the long-standing uncertainty about the relation between these
two concepts: when preserving branching-time properties, confluence reduction
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strictly subsumes partial order reduction and hence is slightly more powerful.
Also, we compare the techniques in the practical setting of statistical model
checking, demonstrating that the additional potential of confluence indeed may
provide larger reductions (even compared to a variant of the ample set method
that only preserves linear-time properties).

We developed a tool called SCOOP, which contains all our techniques and is
able to export to the IMCA tool. Together, these tools for the first time allow
the analysis of MAs. Case studies on a handshake register, a leader election
protocol, a polling system and a processor grid demonstrate the large variety
of systems that can be modelled using MAPA. Experiments additionally show
significant reductions by all our techniques, sometimes reducing state spaces
to less than a percent of their original size. Moreover, our results enable us to
provide guidelines that indicate for each technique the aspects of case studies
that predict large reductions.

In the end, MAPA indeed enables us to efficiently specify systems incorpor-
ating nondeterminism, discrete probabilistic choice and stochastic timing. It also
allows several advanced reduction techniques to be applied rather easily, leading
us to define a variety of such techniques. Our comparison of confluence reduction
and partial order reduction provides several novel insights in their relation. Also,
experiments show that our techniques greatly reduce the impact of the state
space explosion: a major step forward in efficient quantitative verification.
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CHAPTER 1

Introduction

“Joy in looking and comprehending is nature’s most beautiful gift.”

Albert Einstein

O
ur society heavily depends on computer systems. Although some people
associate these mainly with the desktop computer in their office, com-
puters are used much more ubiquitously. They allow us to watch digital

television, call a friend, play games on our consoles, listen to music on our
MP3 players and record our favorite movies on DVD. Embedded computer
systems can even be found in our microwaves, washing machines, dishwashers
and thermostats. Failure of any of such systems would be inconvenient.

Computers are ubiquitous in our financial infrastructure, libraries, and data
storage centers—unavailability may have a severe impact on our economy.
Maybe even more importantly, computer systems are of vital importance for our
transport infrastructure, controlling cars, airplanes, trains, railway crossings and
space shuttles. Also, they are present in medical equipment such defibrillators,
CT scanners and radiation devices. Failure of any of such systems could very well
be life-threatening. Erroneous behaviour by systems operating nuclear power
plants may even result in a number of casualties we would rather not imagine.

1.1 Formal methods

“Software engineers want to be real engineers.
Real engineers use mathematics.

Formal methods are the mathematics of software engineering.
Therefore, software engineers should use formal methods.”

Michael Holloway [BH06]

The omnipresence of computer systems and the accompanying increasing danger
of their failure clearly necessitates methods to verify their correctness: we want
to be sure that they are dependable. A wide variety of techniques can and should
be applied to achieve this goal, and due to the complexity and importance
of hardware and software we strongly advocate to include the use of formal
methods : mathematical techniques for system specification and analysis. Former
member of the NASA formal methods team Michael Holloway justifies the use
of formal methods in an interesting way, as cited above. Recent work at Philips
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Healthcare even indicated a possible tenfold reduction in the number of errors
and a threefold increase of productivity in software development when using
formal techniques [Osa12], illustrating their strength.

Traditionally, formal methods only dealt with qualitative aspects of behaviour,
verifying for instance that a certain undesirable event (e.g., a buffer overflowing)
can never occur, or that a certain desirable event (e.g., a message arriving)
is guaranteed to eventually occur. Often, these questions are answered in the
presence of nondeterminism: unquantified freedom for a system to choose from
a set of possible alternative behaviours.

More recently, the focus shifted towards quantitative aspects of behaviour,
verifying for instance that the probability of an undesirable event occurring
within a certain amount of time is below a given threshold. This asks for more
expressive models, that in addition to (1) nondeterminism are also able to model
(2) discrete probabilistic behaviour as well as (3) continuous (stochastic) timing.
The Markov automaton [EHZ10b, EHZ10a] was recently introduced to model
precisely those three dimensions.

1.1.1 Formal methods in the development process

The field of formal methods is based on the idea that quality is improved by
means of thoroughness through formalisation (i.e., mathematisation). Hence,
preferably, formal methods are applied to the specification, testing as well as
the verification of hardware and software systems [WLBF09, BH06, ABW10,
SSBM11]. We briefly discuss the application of formal methods in these three
stages, before zooming in on our subfield within verification in the next section.
For all applications of formal methods, tool support is essential—formal methods
should be (and are more and more) integrated in model-driven engineering
processes [BCP12, BCK+11].

Formal methods for system specification. Software engineers may use model-
ling languages with formal semantics (for instance, Z [ASM80], SDL [FO94] or
mCRL2 [CGK+13]) to specify parts of a system that is to be developed. One
advantage of using formal methods during this stage in the software engineering
process is that formalisation forces us to be precise, thereby hopefully reducing
the number of mistakes. Additionally, some languages allow for the automatic
generation of (parts of) an implementation that satisfies the formalised specific-
ation. Finally, a formal specification allows for easier and more thorough testing
methods as well as formal verification, as discussed below.

Formal methods for system testing. Once a formal model of a system has
been developed, it can be used for model-based testing [TBS11]: evaluating the
behaviour of a system by means of a large number of executions. Test tools such
as TGV [JJ05] and JTorX [Bel10] are able to automatically generate and run
many test cases and evaluate the correctness of an implementation in accordance
to the formal model of the specification.
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Formal methods for system verification. Although testing is applied often,
Dijkstra already stated many years ago that it can only be used to show the
presence of bugs, but never to show their absence [Dij70]. Hence, especially for
mission-critical and safety-critical systems this may not yield sufficient confidence.
Formal verification of its specification can then be used as an additional technique
to check for any remaining imperfections to improve our trust in a system.

Formal verification can roughly be categorised into two main categories:
theorem proving and model checking. The field of theorem proving is mostly
built on the work of Hoare [Hoa69], who proposed to use preconditions and
postconditions to reason about the correctness of a program. Although being
applicable to infinite-state systems, an important disadvantage is that theorem
proving can only partly be automated, resulting in the fact that theorem provers
(such as PVS [ORR+96] and Coq [Ber08]) are often called interactive theorem
provers or proof assistants. The user has to provide the structure of the proof,
while the theorem prover assists by validating all steps and possibly automatically
completing easy parts of the proof [Duf91, KM04]. We discuss the field of model
checking in more detail in the next section.

This thesis focuses on formal verification of quantitative behaviour by means
of model checking.

1.2 Model checking

“Model checking algorithms prior to submitting

them for publication should become the norm.”

Leslie Lamport [Lam06]

“Many notions of models in computer science provide

quantitative information, or uncertainties, which

necessitate a quantitative model checking paradigm.”

Michael Huth and Marta Kwiatkowska [HK97]

This thesis is positioned in the field of model checking, a topic that started with
two seminal papers, written independently by Clarke and Emerson [CE81] and
by Queille and Sifakis [QS82]. The basic idea is to construct a finite-state model
of a system, to specify some properties in a (temporal) logic and to automatically
verify the validity of these properties by means of an exhaustive search through
the state space. In case the system satisfies all properties we are done, otherwise
a counterexample is provided to either improve the system or maybe change the
property. Figure 1.1 summarises the approach.

Due to a combinatorial explosion of the size of the state space in the number
of variables and parallel components, model checking has shown to be rather
difficult to scale to real-life applications. Therefore, methods for reducing the
state space have been given quite some attention.
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Figure 1.1: An overview of model checking.

1.2.1 Logics for model checking

Since the beginning of model checking [CE81], temporal logics [Pnu77] have been
deemed a good method for reasoning about concurrent programs [Lam83]. Such
logics deal with the ordering of events, and traditionally do not care about their
timing. They are generally categorised based on whether the properties they
specify are either in the linear-time domain or the branching-time domain.

Linear-time domain. Linear-time properties denote that a certain condition
holds for all executions of a system. Such a property is actually just a set of
traces, indicating which observable behaviour is considered to be correct. The
most well-known logic to specify linear-time properties is LTL (Linear Temporal
Logic) [Pnu77]. Most importantly, it has operators for saying that a condition
over a set of atomic propositions holds eventually or that it should always
hold. Later, a probabilistic extension was proposed in the form of probabilistic
LTL [CY95]. Instead of being applied to verify if a certain condition holds for
all paths through a system, it is applied to check if the probability of obtaining a
path that satisfies the condition is above or below a given threshold.

Branching-time domain. Not all properties are expressible in linear time. For
instance, the property “it is always possible to return to the initial state”
cannot be translated to certain executions being either correct or incorrect: the
possibility to return to the initial state does not mean that all paths indeed at
some point have to take it—as long as the option to go back is always present.

Branching-time logics do allow such properties to be specified by means
of existential and universal quantifications over paths. The most well-known
branching-time logic for qualitative model checking is CTL (Computation Tree
Logic) [CE81], later generalised to PCTL (probabilistic CTL) [HJ94] and CSL
(continuous stochastic logic) [ASSB00, BHHK03, BHHZ11]. In PCTL, the
existential and universal quantifications over paths are replaced by a probabilistic
quantification. In CSL, intervals for the timing between events can be specified.
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Moreover, it can specify steady-state properties that hold in the long run.

There is an ongoing debate about whether LTL or CTL is best [Hol04, Var01].
Luckily, they can be combined into an overarching logic CTL∗. Similarly,
probabilistic LTL and PCTL can be combined into the logic PCTL∗ [BdA95]
that is able to express linear-time as well as branching-time properties. Since
all techniques presented in this work preserve at least a variant of PCTL∗, the
debate between LTL and CTL does not concern us much.

1.2.2 Quantitative model checking

Over the last two decades, much effort has gone into the field of quantitative
model checking . This field includes powerful techniques to analyse both qual-
itative properties and quantitative properties over models featuring discrete
probabilities and/or timing (and often still also nondeterminism). They allow us
to verify probabilistic as well as hard and soft real-time systems, modelled by
timed automata (TAs), discrete-time Markov chains (DTMCs), Markov decision
process (MDPs), probabilistic automata (PAs), continuous-time Markov chains
(CTMCs), interactive Markov chains (IMCs), and Markov automata (MAs).
Other notable extensions are the annotation of models with rewards or costs,
yielding priced timed automata and Markov reward models, and enabling the
verification of multi-objective problems [FKN+11].

Software tools such as UPPAAL [BDL+06], LiQuor [CB06], MRMC [KKZ05,
KZH+11], PRISM [KNP11], APMC [HLP06], and FHP-Murϕ [PIM+06] are
dedicated quantitative model checkers that have been applied to a wide range of
applications. The success of quantitative model checking is also witnessed by its
adoption as a major analysis technique by tools that originate from performance
analysis, such as GreatSPN [BBC+09], Möbius [BCD+03], PEPA WB [GH94],
and SMART [CJMS06].

In this work we focus on the extension of traditional model checking by
discrete-time probabilistic behaviour and continuous-time stochastic behaviour.
As all extensions are based on labelled transition systems (LTSs), we first discuss
their main feature: nondeterminism. Then, we discuss the three main extensions,
as well as their practical applications. Finally, we discuss the main limitations
of quantitative model checking and our contributions to the field.

Nondeterminism. As mentioned in the beginning of this chapter, nondetermin-
ism is the unquantified uncertainty about a system’s behaviour. Stated differently,
a system is nondeterministic if at some point its precise behaviour is unknown
to us (although the possible alternatives are specified). While probabilistic ap-
proaches specify the likelihood of each of the alternatives, nondeterminism leaves
the choice completely open. A system nondeterministically choosing between
providing coffee or tea may always provide coffee, serve coffee on Wednesdays and
tea on the other days, throw a coin to decide between the two, or do something
even different.

Nondeterminism may arise from the unspecified ordering of events of two
or more (partly) independent parallel components, from interaction with an
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unpredictable environment or just from underspecification. It is a invaluable
tool in the presence of uncertainty that cannot be resolved probabilistically.
Traditional model checking tools are often able to compute whether a certain
property holds for all possible ways to resolve the nondeterministic choices,
whereas quantitative model checking tools often provide minimal and maximal
probabilities for satisfying a given property (quantifying over all possible ways
to resolve the nondeterministic choices in a probabilistic manner).

Probabilistic automata

When adding probabilistic behaviour to traditional labelled transition systems,
we obtain Segala’s probabilistic automata (PAs) [Seg95]—or discrete-time Markov
chains (DTMCs) when restricting to deterministic systems (i.e., systems that do
not allow multiple actions from the same state). These models allow us to specify
transitions that do not have a unique target state anymore, but probabilistically
decide on their continuation. This is highly practical, as discrete probabilistic
behaviour is omnipresent:

Randomisation by design. Several protocols use randomisation to break their
symmetry. For instance, the Itah-Rodeh leader election protocol uses prob-
ability to decide on a leader between identical nodes [IR90] and the IEEE
802.11 standard for wireless networks applies random backoffs to avoid
collisions when multiple nodes try to access the network [IEE97]. Random-
isation is also present in many board and card games, for instance due to
the use of dice or because cards are drawn from a randomly shuffled deck.

Involuntary randomisation. Many practical systems also feature some natural
uncertainty due to erroneous behaviour. For instance, congestion in the
internet results in packet loss happening with a certain probability [KR01].
Additionally, many biological and physical systems behave in an unpre-
dictable way. For instance, we do not know upon conception whether a
baby will be a boy or a girl, we do not know which side of a coin will be
on top when we toss it, and we do not know for sure if a medicine is going
to work on a specific individual.

Note that, in fact, most of these phenomena are not really random
anymore if we zoom in to an extremely precise level: in theory, it may
be predicted which side of a coin will end up on top. We would need to
consider the exact location of the coin, the precise hand movement, the
non-perfect shape of the coin, the wind, etc—clearly, this is not feasible in
practice (even if we ignore Heisenberg’s uncertainty principle). Similarly,
packet loss in the internet may be predicted by modelling the entire state
of the network. Since such fine-grained analysis if often far from realistic,
abstraction is applied and probability arises.

All of these phenomena can be modelled effectively as PAs, allowing us to verify
properties in PCTL or probabilistic LTL and answer questions such as

• What is the probability of electing a leader within 5 rounds?
• What is the probability that a message in a network is lost at least once?



1.2. Model checking 7

• What is the probability that a customer’s demand can be satisfied from
stock on hand, given a certain inventory management strategy?

Interactive Markov Chains

When adding stochastic behaviour to labelled transition systems, we obtain Her-
manns’ interactive Markov chains (IMCs) [Her02]—or continuous-time Markov
chains (CTMCs) when restricting to deterministic systems. In addition to the
action-labelled transitions of traditional model checking (an IMC’s interactive
part), this model also supports transitions that take a certain amount of time,
determined by an exponential distribution—sometimes we also say that a state
has a certain rate of going to another state. Instead of moving in discrete time
steps, these models work in continuous time. This feature also allows us to
model several phenomena that often occur in practice:

Waiting times. When standing in line for a cash register or waiting for someone
to finish a phone call, the remaining waiting time may be unknown. Such
waiting times are often modelled by exponentially distributed delays in
the field of queueing theory [Hav98].

Failure rates. In dependability analysis, it is common to describe failure using
a mean time to failure (MTTF). Often, for instance in dynamic fault
trees [BCS10], the distribution of such failures is assumed to be determined
by an exponential distribution.

All of these phenomena can effectively be modelled as IMCs, allowing us to
verify properties in CSL and answer questions such as

• What is the probability that it is my turn at the cash register within 5
time units?

• What is the probability that a hard disk drive crashes within 10,000 hours
of operation?

• What is the expected time until a phone call ends?
• What is the fraction of time that a processor will be idle in the long run?
• What is the probability that an emergency cooling system in a nuclear

power plant does not switch on in time?

Markov Automata

PAs are great for modelling discrete probabilistic behaviour and IMCs for
modelling continuous stochastic behaviour, but they have their separate domain
of operation. In this thesis, we like to be as general of possible, and hence work
with a recent combination of these two models: the Markov automaton [EHZ10b,
EHZ10a]. By generalising PAs and IMCs, it also generalises the DTMC, CTMC
and LTS. Hence, MAs can be used as a semantic model for a wide range of
formalisms, such as generalised stochastic Petri nets (GSPNs) [ACB84], dynamic
fault trees [BCS10], Arcade [BCH+08] and the domain-specific Architecture
Analysis and Design Language (AADL) [BCK+11]. MAs are very general and,
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Figure 1.2: A queueing system, consisting of a server and two stations.

except for hard real-time deadlines and hybrid systems, can describe most
behaviour that is modelled today in theoretical computer science.

Most work on MAs so far has focused on defining appropriate notions of
weak bisimulation. The seminal work by Eisentraut, Hermanns and Zhang
first provided a notion of ‘naive weak bisimulation’ (which is a straightforward
generalisation of traditional weak bisimulation for PAs and IMCs) and then
improved on this by defining a notion of weak bisimulation that exploits the
interplay of rates and probabilistic invisible transitions [EHZ10b, EHZ10a].
Shortly after, [DH11, DH13] introduced another notion of weak bisimulation for
MAs. In was shown in [SZG12] that these notions coincide. Additionally, [SZG12]
introduced yet another notion of weak bisimulation for MAs, and showed that it
is coarser (i.e., equates more systems) than the earlier two notions.

Example 1.1. As an example of an MA, Figure 1.2 shows the state space of a
polling system with two arrival stations and probabilistically erroneous behaviour
(inspired by [Sri91]). The two stations have incoming requests with rates λ1, λ2,
which are stored until fetched by the server. If both stations contain a job,
the server chooses nondeterministically from which of them to fetch the next
task. Jobs are processed with rate µ, and when polling a station there is a 1

10
probability that the job is erroneously kept in the station after being fetched.
Each state is represented as a tuple (s1, s2, j), with si the number of jobs in
station i, and j the number of jobs in the server. For simplicity we assume that
each component can hold at most one job.

In Chapter 9 we will discuss a more complicated variant of this system,
demonstrating how to compute for instance the expected time until reaching full
capacity for the first time, the probability that full capacity is already reached
within the first two time units, and the fraction of time that all arrival stations
are at full capacity in the long run. �

Logics and algorithms for model checking MAs. At this moment, there is only
limited related work on logics for Markov automata. The only logic we are aware
of is a variant of CSL introduced in [HH12], containing operators for unbounded
and time-bounded reachability, but not dealing with expected times or long-run
averages as allowed by other variants of CSL for different models [BHHZ11].

Although not supported by a formal logic, Guck introduced algorithms
for computing long-run averages and expected times to reachability [Guc12].
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Also, Hafeti and Hermanns showed how to do time-bounded reachability ana-
lysis [HH12]. These results were unified in [GHH+13a], also providing tool
support by means of the IMCA tool.

1.2.3 Previous limitations and current contributions

No full-fledged formal modelling languages aimed at specifying MAs existed thus
far. As it is often infeasible to manually write down a low-level transition system,
this greatly limited the applicability of MAs. Additionally, model checking
is prone to the state space explosion: data variables and interleavings due to
parallel composition quickly yield a large number of states. In quantitative model
checking the effects of this explosion are even worse [KKZJ07], as the numerical
algorithms for computing quantitative properties are more time-consuming than
their non-probabilistic counterparts.

Contributions. We contribute to both issues by providing a process-algebraic
modelling language targeted specifically at MAs. It allows MAs to be modelled
efficiently by means of data, and enables reduction technique to be defined easily
due to its simplicity. The next sections go into more details on both issues.

This thesis aims at efficient modelling of Markov automata, as well as
reducing the state space explosion during their formal verification.

1.3 Process algebras

“Process algebra became an underlying theory of all parallel
and distributed systems, extending formal language and

automata theory with the central ingredient of interaction.”

Jos Baeten [Bae05]

While model checking algorithms are mostly defined on models such as PAs,
IMCs and MAs, it would be rather inconvenient to explicitly provide such models.
After all, model-based system specifications tend to get incredibly large even
for simple systems. Therefore, it is more common to specify systems in some
type of higher-level language that is mapped to a formal model. For efficient
specification, such a language should have compositionality features, allowing
the user to model several components independently. In addition to simplifying
the specification phase, higher-level languages also allow us to perform syntactic
optimisations on the language level to generate reduced models without even
having to generate the unreduced variant in the first place.

In this work, we focus on process-algebraic modelling languages (also called
process calculi) [Fok07, Bae05]. An important feature of such languages is
their mathematical thoroughness, describing behaviour by means of algebraic
terms. Additionally, a characterising feature of process algebras is the parallel
composition operator: a powerful method to compose a system by specifying its
various subsystems and their interaction.
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Traditionally—in addition to having an operational semantics defined in terms
of a model such as the IMC or MA—process algebras are often accompanied by a
set of algebraic laws. Preferably this set is an axiomatisation for some notion of
equivalence. That is, two process-algebraic descriptions yield equivalent models
if and only if they themselves are equivalent according to the algebraic laws.
In this work, we rather employ process algebra to specify systems formally and
generate the underlying models1. We do perform syntactical transformations
on the process-algebraic descriptions, but prove them correct by showing a
bisimulation relation between the original and the transformed specification.

The framework for working with MAs introduced in this thesis is related
to several existing formalisms. Mainly, it is based on µCRL, a process algebra
for specifying labelled transition systems. Also, it has been influenced by the
language TPCCS that extended CCS with discrete probabilistic choice, and the
language IML for specifying IMCs. It shows similarities to the mCCS language
for specifying MAs. We discuss these languages in some detail, and explain in
the next section how these languages have been used in our framework.

µCRL [GP95] The language µCRL was developed to more easily specify com-
municating processes in the presence of data, by adding equational abstract
data types to the process algebra ACP [BK89]. Data can be used to para-
meterise processes as well as actions, and in conditions to affect a process’
behaviour. Also, it can be used to concisely specify behaviour due to the
possibility of summing over (possibly infinite) data types—generalising the
well-known process-algebraic alternative composition operator.

In µCRL, the LPE (linear process equation) [BG94b] was introduced as
a restricted part of the language for easier formal manipulation. It is similar
to the Greibach normal form in formal language theory, specifications in
the language UNITY [CM88], and the precondition-effect style used for
describing I/O automata [LT89]. Usenko showed how to linearise a general
µCRL specification into an LPE [GPU01, Use02], based on ideas first
proposed in [BP95].

TPCCS [HJ90] The language TPCCS added a discrete probabilistic operator to
the CCS process algebra, introducing the notation

∑
• that we also apply.

TPCCS has its semantics defined in the so-called alternating model , having
disjoint sets of nondeterministic and probabilistic states. During the course
of execution of the alternating model, there is a strict alternation between

1One may therefore argue about whether or not our language is actually a process algebra,
depending on the definition that is used. According to [HJ90], process algebras are “structured
description languages for concurrent systems, in which a few simple constructs (e.g., sequential
and parallel composition, nondeterministic choice, and recursion) lead to languages capable of
describing the various aspects of distributed systems”. Similarly, [Fok07] states that process
algebra is “a mathematical framework in which system behaviour is expressed in the form of
algebraic terms, enhancing the available techniques for manipulation”. Our language precisely
satisfies the first definition, and could satisfy the second depending on the interpretation
of the word ‘algebraic’. On the other hand, according to [Bae05] a process algebra is “any
mathematical structure satisfying the axioms given for the basic operators”. When applying
this definition, our work should not be called a process algebra due to the absence of axioms.
We could also just call it a process calculus, like Milner [Mil80].
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these types of states. As mentioned in [Sto02a], any alternating model can
be transformed to an equivalent probabilistic automaton.

IML [Her02] The language IML was developed to model IMCs. It contains
operators to specify actions and well as Markovian rates. Its operational
rules that prescribe how each IML specification is mapped to an IMC take
into account the multiplicity of each transition. This is vital for stochastic
process algebras, since additional occurrences of the same rate increase
the speed of a process. There is a wide variety of other stochastic process
algebras featuring similar properties; an overview of the foundational ones
is provided in [HHK02].

mCCS [DH11, DH13] The language mCCS is the only other process algebra
we are aware of that also aims at constructing MAs. It contains discrete
probabilistic choice in the same way as defined first in [HJ90], and can
specify Markovian rates in the same way as IML. However, as already
stated in [DH11], it is incomplete due to the ignorance of multiplicities.

1.3.1 Previous limitations and current contributions

None of the existing languages discussed in the previous section serves the
purpose of providing a basis for efficient modelling, generation and analysis of
MAs. Except for mCCS, none of them is able to construct MAs. Except for
µCRL, none of them is able to deal with data or easily allows reduction techniques
to be defined. Still, together these languages contain all the ingredients for a
process algebra to efficiently work with MAs.

We note that the Modest language [BDHK06] is in principle also able to
model MAs, but it has not yet specifically been applied in this context. It is a
very expressive language, but does not contain a restricted form such as µCRL’s
LPE. Additionally, it does not allow MAs to be reduced for efficient analysis.

Contributions. We took from µCRL its way of dealing with data, as well as
the idea of first linearising each specification to a restricted part of the language
for easier formal manipulation. We extended this with an operator for discrete
probabilistic choice, similar to the one introduced in TPCCS [HJ90] but fully
integrated in the language in such a way that probabilistic behaviour can also
depend on data. Finally, we took from IML the operator for modelling Markovian
rates (and also allow these rates to depend on data parameters), as well as the idea
of taking into account the number of derivations for each Markovian transition.

The result is MAPA (Markov Automata Process Algebra): a language rich
enough to efficiently model nondeterminism, discrete probabilistic choice and
stochastic timing. MAPA improves on mCCS—the only other process algebra
for MAs—by the incorporation of data and a linear format (in MAPA called
the MLPE) that allows reduction techniques to be defined in a rather simple
manner, as well as by its proper way of dealing with multiplicities of rates.
MAPA includes operators for parallel composition and hiding, allowing systems
to be modelled in a compositional manner.

We introduce a novel notion of bisimulation: derivation-preserving bisimula-
tion. It is defined on a subset of MAPA (called prCRL), obtained by omitting
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the stochastic timing. We show how to encode MAPA specifications in prCRL,
and prove that transformations of prCRL that preserve our new notion of bisim-
ulation can be applied safely before decoding back—the result then is a MAPA
specification that is bisimilar to the specification we started with. This procedure
allows us to reuse techniques defined on prCRL immediately to the full range
of MAPA. We apply it for the transformation from MAPA to MLPE and for
multiple reduction techniques.

MAPA can be seen as a maximal analysable subset of Modest (only dis-
regarding its realtime features). By specialising our language to this subset we
are able to generalise µCRL’s LPE format to the MLPE, enabling reduction
techniques that have not been defined yet for the Modest language.

This thesis introduces the process-algebraic language MAPA, allowing
efficient modelling of MAs using data and enabling their efficient generation
and analysis by supporting several reduction techniques via the MLPE.

1.4 Reduction techniques

“A clever person solves a problem.
A wise person avoids it.”

Albert Einstein

As mentioned before, the applicability of model checking is bound by the
state space explosion: the number of states that has to be visited often grows
exponentially with the size of the system. Much research has been devoted to
techniques that battle this omnipresent state space explosion [Pel08].

These techniques focus on either reducing the amount of time needed for
model checking large systems, the amount of memory, or both. Three different
types of approaches can be observed, depending on whether they focus on efficient
representation, efficient computation or efficient generation. For all techniques,
the significance of their reductions depends on the model at hand.

Efficient representation. One way is to more efficiently store state spaces by
means of techniques such as state compression [Hol97, LLPY97, LvdPW11],
or to use symbolic representations like binary decision diagrams [McM93,
BvdP08]. Although these techniques aim at improved memory usage, they
may also reduce analysis time.

Efficient computation. Another approach is to more effectively use the increasing
number of cores in today’s hardware via smart parallelisations [Web06]
or to use multiple machines for distributed model checking [BvdPW10].
These techniques are mostly aimed at speeding up model checking; however,
the distribution of work over several machines may also partly solve the
memory problem.

Efficient generation. Finally, both memory usage and analysis time may be
improved by using techniques that reduce the number of states or only
explore part of a state space. There are several techniques that do so
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without influencing the truth values of the properties of interest. Most
notable are ingenuous techniques such as symmetry reduction [ES96, ID96,
CJEF96, KNP06], partial order reduction [Val90, Val93, Pel93, GP93,
God96, DN04, BGC04, BDG06], confluence reduction [BvdP02], and a
recent approach for on-the-fly symbolic bisimulation minimisation [DKP13].
Instead of reducing the model automatically, it is of course also possible to
model in such a way to keep the state space as small as possible to begin
with [GKO12].

Alternatively, simulation-based approaches such as statistical model
checking [HLMP04, LDB10, YS02] can be used to visit only part of a
state space without storing any states (requiring only constant memory).
As a downside, such techniques can only provide approximate results.
Also, abstraction techniques such as counter-example guided abstrac-
tion refinement (CEGAR) can be applied to partition a state space
into smaller regions [HWZ08].

Whereas all these techniques focus on alleviating the state space explosion on-
the-fly, it is also possible to minimise a system’s state space after first having
generated the unreduced variant. Whereas for traditional model checking this of-
ten does not help us much, it may benefit quantitative model checking [KKZJ07].

1.4.1 Previous limitations and current contributions

Although many of the existing techniques greatly stretch the boundaries of model
checking, it is still difficult to verify properties of real-life systems. Therefore,
there is a sustained demand for reduction techniques to alleviate the state space
explosion. Additionally, while we are very interested in more and more expressive
quantitative model checking—it allow us to verify properties about a larger class
of systems and unifies existing approaches—this makes the necessity for new and
better reduction techniques even larger. After all, quantitative properties over
probabilistic or stochastic models require numerical procedures that are obviously
more complex than the qualitative decision procedures. Also, techniques such as
partial order reduction and confluence reduction do not automatically work for
more expressive models; they have to be generalised. Hence, it is far from trivial
for model checking to be both efficient and expressive.

Contributions. Our goal is to optimise quantitative model checking by reducing
before or during state space generation, rather than afterwards. That way,
we never have to generate the larger unreduced state space, we limit memory
requirements and we immediately allow for efficient analysis.

Exploiting the MLPE format, we define several automatic reduction tech-
niques for more efficient generation of the underlying state space of a MAPA
specification. First of all, we generalise three basic reduction techniques from the
qualitative to the quantitative domain: constant elimination, summation elim-
ination and expression simplification. These techniques try to rewrite MLPEs
to make them more concise, improving readability and facilitating faster state
space generation (without actually influencing the state space itself).
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Second, we present a state space reduction technique based on dead variables ,
resetting variables to their initial value in case they will always be overwritten
before being used again. It is especially powerful due to a novel method for
detecting control flow. This technique detects which state parameters act as
program counters. Liveness analysis is then performed based on these recon-
structed program counters, and hence even takes into account control flow that
was manually encoded in a system’s global parameters. Dead variable reduction
preserves strong bisimulation, and hence leaves invariant all properties in PCTL∗

when restricting to PAs and in CSL when restricting to IMCs.
Third, we generalise confluence reduction to the Markovian realm and show

how apply it on MAPA specifications. This technique reduces spurious in-
terleavings, often arising from the parallel composition of largely independent
processes. We investigate confluence reduction in great detail by comparing it
to its competitor partial order reduction. As partial order reduction has not yet
been introduced for MAs, we restrict confluence for the subclass of MDPs and
theoretically show that it strictly subsumes the partial order reduction variant
that preserves branching time properties [BDG06]. We also define confluence
reduction for the context of statistical model checking , and compare partial order
reduction to confluence reduction on a practical level. It turns our that our con-
fluence implementation is able to reduce more than the previous implementation
based on partial order reduction, allowing more systems to be analysed with
this promising technique. Confluence reduction preserves divergence-sensitive
branching bisimulation, and hence leaves invariant all properties in PCTL∗

\X

when restricting to PAs and all time-bounded reachability properties when
restricting to IMCs.

We implemented all our reduction techniques in the tool SCOOP, and provide
several case studies that show significant reductions. No such reductions have
ever been obtained for MAs before. As MAs generalise LTSs, DTMCs, CTMCs,
PAs and IMCs, all our reduction techniques are also applicable to these models.

This thesis introduces dead variable reduction, confluence reduction and
some basic reduction techniques for the MLPE. Additionally, it investigates
confluence reduction in-depth by comparing it to partial order reduction
from a theoretical as well as practical perspective.

1.5 Main contributions

Summarising, this thesis contributes to the field of quantitative verification
in several ways. Our main goal was to enable more expressive models to
be specified, generated and analysed in an efficient manner. While initially
working on probabilistic automata—extending existing techniques with discrete
probabilistic choice—we generalised this even further to Markov automata when
these were introduced. As this formalism subsumes a large variety of important
models, its generality allows our techniques to be applied to an equally large
variety of systems. Our main contributions are threefold:

• We enable the efficient modelling of MAs, by providing the new process



1.6. Organisation of the thesis 15

algebra MAPA. It treats data as a first-class citizen, allowing complicated
behaviour involving data-dependent probabilistic branching or delays to be
modelled quite easily. MAPA includes operators for parallel composition
and hiding, allowing systems to be modelled in a compositional manner.
Since MAs generalise a wide variety of simpler models, MAPA allows
systems of all these types to be modelled in a uniform manner.

• We present an encoding of MAPA into prCRL, a restricted part of the lan-
guage obtained by omitting its stochastic timing aspect. We also introduce
a novel notion of bisimulation for prCRL. We show that transformations
on prCRL preserving this notion of bisimulation can safely be used on
encoded MAPA specifications—this still guarantees a strongly bisimilar
system after decoding back to MAPA. Based on this approach, we also
present an algorithm for rephrasing each MAPA specification in a stripped-
down (but equally expressive) version of the language: the MLPE. Due to
its simplicity, this format allows reduction techniques to be defined much
more easily.

We enable the efficient generation and analysis of MAs by defining sev-
eral reduction techniques on the MLPE. Three basic reduction techniques
speedup state space generation, while dead variable reduction and conflu-
ence reduction additionally speedup analysis. Case studies demonstrate
the usefulness of these techniques through significant reductions.
• We provide new understanding about the relation between confluence
reduction and partial order reduction, by providing both a theoretical
comparison, and a practical comparison in the context of statistical model
checking. We show that confluence reduction is more powerful in theory
when restricting to the preservation of branching-time properties, and
that its on-the-fly detection may even beat partial order reduction in the
linear-time context of statistical model checking.

1.6 Organisation of the thesis

The remainder of this thesis is organised in the following way:

Chapter 2 recalls the necessarily mathematical backgrounds for this work from
set theory and probability theory.

Chapter 3 presents the MA and discusses several behavioural equivalence
relations for this model and its subclasses.

Chapter 4 introduces the MAPA language, shows how to safely define trans-
formations on a restricted version of the language and introduces the
MLPE including its linearisation procedure. Also, it defines three basic
reduction techniques on the MLPE.

Chapter 5 introduces our dead variable reduction technique, including the
method for control flow reconstruction.

Chapter 6 generalises confluence reduction, formally defining confluence on
MAs, presenting heuristics for detecting it on MLPEs and demonstrating
how to apply confluence for generating reduced state spaces.
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Ch. 1 Ch. 2 Ch. 3 Ch. 4

Ch. 6

Ch. 7

Ch. 8

Ch. 5

Ch. 9 Ch. 10

Figure 1.3: Chapters roadmap.

Chapter 7 provides a theoretical comparison of confluence reduction and partial
order reduction.

Chapter 8 shows how to apply confluence reduction during statistical model
checking, proving that it outperforms partial order reduction in some cases.

Chapter 9 discusses our implementation and validates our reduction techniques
by means of a selection of case studies.

Chapter 10 concludes the thesis by providing a discussion on the advantages
and disadvantages of the MAPA language and the reduction techniques
we introduced, as well as providing directions for future work.

Appendix A provides proofs for all our results.

Appendix B provides a complete list of papers by the author of this thesis.

The introduction of each chapter mentions the papers on which it is based.
The chapters are meant to be read sequentially, but some variation to this is
possible. The dependencies between chapters are depicted in Figure 1.3 (where
the dashed arrow indicates a rather small dependency).
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Background





CHAPTER 2

Preliminaries

“Pure mathematics is, in its way, the poetry of logical ideas.”

Albert Einstein

M
ost of the technicalities in the next chapters rely on set theory and
probability theory. As formal treatments of both topics are rather
involved, we restrict ourselves to informally recalling the relevant notions

and introducing the notations that are used throughout the rest of this thesis.
All material in this chapter is well known. The set-theoretical notions we dis-

cuss can be found in almost any textbook on discrete mathematics (e.g., [Gri03]).
The basics from probability theory can for instance be found in [Ros11, CK04].

Organisation of the chapter. Section 2.1 discusses the basics of set theory, and
Section 2.2 the basics of probability theory.

2.1 Set theory

One of the most fundamental concepts in mathematics is the notion of a set : an
abstract collection of objects. Finite sets can be described explicitly, enumerating
all of their elements: X = {1, 3, 5, 7, 9}. We use 3 ∈ X to indicate that the
element 3 is contained in X, and 4 6∈ X to indicate that 4 is not. The empty
set is denoted by ∅. Moreover, the set of natural numbers is denoted by
N = {0, 1, 2, . . . }, the set of positive natural numbers by N

+ = {1, 2, . . . }, the
set of real numbers by R, the set of nonnegative real numbers by R

≥0 and the
set of positive real numbers by R

>0 (also known as R+).
The elements of a set do not have a multiplicity and are unordered: the

sets {1, 2, 3} and {1, 3, 2, 1} are identical. In a multiset , elements do have a
multiplicity. We denote multisets like {|1, 1, 2|}, indicating the multiplicity of
each element by the number of times it is written.

2.1.1 Building and comparing sets

Sets can be defined using the set-builder notation (also called set comprehension),
given a certain universe of all possible elements and a condition. For instance,
we write {x ∈ N | x < 5} = {0, 1, 2, 3, 4} for all natural numbers smaller than 5.

Often, the universe is implied by the context and an expression is used at the
left-hand side of the vertical bar. In that case, the condition at the right-hand
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side of the vertical bar specifies for which values from the universe, the value
obtained by evaluating the expression on its left-hand side is present in the
resulting set. For instance, we could write {x2 | x < 5} = {0, 1, 4, 9, 16}.

Given two sets X,Y , we use X ∩ Y = {x | x ∈ X ∧ x ∈ Y } to denote the
intersection of X and Y , i.e., the set of all elements that are both in X and
in Y . We say that X and Y are disjoint if X ∩ Y = ∅. We write X ∪ Y =
{x | x ∈ X ∨ x ∈ Y } for the set of all elements that are in either X or Y (or in
both): their union. We use X \Y = {x ∈ X | x 6∈ Y } to denote the difference of
X and Y , i.e., the set of elements from X that are not in Y . Finally, the disjoint
union of two sets X,Y is given by X ⊎ Y = {(x, 1) | x ∈ X} ∪ {(y, 2) | y ∈ Y }.

The concepts of intersection, union and disjoint union are lifted naturally to
be applied to more than two sets. For intersections, we let

⋂

i∈{1,2,3,... }

Xi =
⋂

{X1, X2, X3, . . . } = X1 ∩ X2 ∩ X3 ∩ . . .

Unions and disjoint unions are generalised in the same manner.

A set X is a subset of a set Y , denoted by X ⊆ Y , if every element in X is
also in Y , i.e., X ⊆ Y ⇐⇒ ∀x ∈ X . x ∈ Y . It is easy to see that this coincides
with X \ Y = ∅. If X ⊆ Y and X 6= Y , we write X ⊂ Y and say that X is a
strict subset of Y . If X is a (strict) subset of Y , then Y is a (strict) superset
of X, denoted by Y ⊇ X in general and Y ⊃ X for the strict version. We use
X 6⊆ Y to denote that X is not a subset of Y , and apply similar negations of
the other symbols.

Given a set X, we use P(X) to denote its powerset , i.e., the set of all its
subsets (including the empty set and X itself).

2.1.2 Relations and functions

The Cartesian product of two sets X,Y , denoted by X ×Y , is the set of all pairs
(x, y) such that x ∈ X and y ∈ Y . A binary relation between two sets X,Y is a
subset of X × Y . If X = Y , it is called a binary relation on X. Given a binary
relation R, we sometimes write xRy to indicate that (x, y) ∈ R.

Given two binary relations R1 and R2 over a set X, we use R2 ◦ R1 to denote
their composition:

R2 ◦ R1 = {(x, z) ∈ X ×X | ∃y ∈ X . (x, y) ∈ R1 ∧ (y, z) ∈ R2}

Equivalence relations. A binary relation R on a set X is called reflexive if
(x, x) ∈ R for every x ∈ X, symmetric if (x, y) ∈ R implies (y, x) ∈ R and
transitive if (x, y) ∈ R and (y, z) ∈ R together imply (x, z) ∈ R. Binary relations
that have all these properties are called equivalence relations.

Given an equivalence relation R ⊆ X ×X, we write [x]R for the equivalence
class induced by x, i.e., [x]R = {y ∈ X | (x, y) ∈ R}. We denote the set of all
such equivalence classes by X/R. Due to the nature of equivalence relations, the
equivalence classes partition X. That is, two equivalence classes [x]R, [y]R either
coincide or are disjoint, and the union of the equivalence classes equals X.



2.1. Set theory 21

Example 2.1. Let X = {1, 2, 3, 4, 5, 6, 7, 8}, then the relation

R = {(x, y) ∈ X ×X | x and y are both even or both odd}

is an equivalence relation. To see why R is transitive, note that (x, y) ∈ R and
(y, z) ∈ R imply that x, y, z are all even or all odd, and hence (x, z) ∈ R is
immediate. Reflexivity and symmetry are shown similarly.

We find that, for instance, [1]R = [3]R = {1, 3, 5, 7} and [4]R = {2, 4, 6, 8}.
As these are the only equivalence classes, X/R = {{1, 3, 5, 7}, {2, 4, 6, 8}}. �

Functions. A (total) function from a set X (its domain) to a set Y (its range)
is a relation R ⊆ X × Y such that (x, y) ∈ R and (x, z) ∈ R imply y = z, and
for each x ∈ X there is a pair (x, y) ∈ R. Hence, a function from X to Y maps
each element of X to precisely one element of Y . If (x, y) ∈ R for a function R,
we also write R(x) = y and say that y is the image of x under R. Often, we
write f : X → Y to indicate that f is a function from X to Y .

A function f : X → Y is injective if f(x) = f(y) implies x = y for all
x, y ∈ X. Hence, it never maps two different values from X to the same value
from Y . It is surjective if it uses its complete range, i.e., if for every y ∈ Y
there exists an x ∈ X such that f(x) = y. A function that is both injective and
surjective is said to be bijective. Such functions represent a one-to-one mapping
between the elements of X and Y , and hence can only exist if X and Y have
the same number of elements.

Given a function f : X → Y and an element y ∈ Y , the inverse image of y
under f is denoted by f−1(y) and given by the set {x ∈ X | f(x) = y}. Note
that f−1(y) contains at most one value if f is injective and at least one value if f
is surjective. Hence, for bijective functions it always contains precisely one value.

Example 2.2. The function f : N→ N given by f(n) = n2 is injective, but not
surjective (and hence not bijective). The image of 3 under f is 9, and the inverse
image of 10 is f−1(10) = ∅.

The function f : R→ R given by f(n) = n2 is neither surjective nor injective.
After all, the negative numbers do not appear as the image of any value from
the domain, and f−1(4) = {−2, 2} contains more than one value.

The function f : R→ R given by f(x) = x3 is both injective and surjective,
and hence bijective. �

A partial function f : X ⇀ Y is similar to a function from X to Y , except
that it does not necessarily assign a value from Y to each element in X. Hence,
it behaves like a function f ′ : X ′ → Y for some set X ′ ⊆ X. We use dom(f) to
denote this domain X ′.

Set cardinality. The size or cardinality of a set X, denoted by |X|, is its number
of elements. Obviously, |X × Y | = |X| · |Y |. Any set with a finite number of
elements is called a finite set. We define a set to be countable if it contains
at most as many elements as the set N of natural numbers. Formally, a set X
is countable if there exists an injective function f : X → N. A set that is not
countable is called uncountable.
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Note that our definition allows countable sets to be finite. Countable sets
that are infinite are called countably infinite.

Example 2.3. Let X = {x ∈ R | 2x ∈ N}, i.e., X = {0, 1
2 , 1,

3
2 , . . . }. Although

intuitively this sets seems to be bigger than N, there does exist an injective
function f : X → N. After all, take f(x) = 2x for every x ∈ X. This clearly is
a function from X to N, and no element in N is the image of more than one
element from X. Hence, it is injective. �

It can be shown that the set of real numbers R, as well as any nontrivial
interval [a, b] ∈ R, is uncountable.

2.1.3 Summations and sequences

Summations. Given a function f : X → Y and a countable set X ′ ⊆ X, such
that Y ⊆ R and either X ′ is finite or f is nonnegative (i.e., f(x) ≥ 0 for every
x ∈ X), we use

∑

x∈X′ f(x) to denote the summation of the image under f of all
elements of X ′. Given a countable set X ⊆ R such that |X| <∞ or X ⊆ R

≥0,
we use

∑
X as an abbreviation for

∑

x∈X x. Similarly, for a multiset Y satisfying
the same conditions, we let

∑
Y be the sum of its elements (taking into account

their multiplicities).
We note that the finiteness or nonnegativity constraints are needed for

the summation order to be irrelevant and a summation to either diverge or
converge (and thus not oscillate), and hence for the notion

∑

x∈X f(x) to be
well-defined [Bro08]. Often we do not explicitly provide the function f , but
write an expression that implicitly captures it. For instance, we write x2 to
denote the function f : R→ R such that f(x) = x2.

Sequences. For a sequence σ = a1a2a3 . . . ak of elements from some set L
(sometimes also written as 〈a1, a2, a3 . . . , ak〉), we write |σ| = k to denote its
length. Given an element a ∈ L, we use aσ to denote the sequence aa1a2a3 . . . ak.
The empty sequence is denoted by ǫ. Given a subset L′ ⊆ L, we let σ \L′ denote
the sequence σ′ obtained by removing every occurrence of elements from L′ in σ.

2.2 Probability theory

When systems behave in an uncertain manner, probability theory can be used
to formalise this behaviour. The basis of probability theory is the experiment :
some real-world procedure with a predetermined set of possible outcomes . Each
execution of the experiment will result in one specific outcome; the next execution
may have a different one. A standard example is the roll of a die; it has six
different outcomes, corresponding to which side ends up on top.

For a fair die, the probability of rolling a six is 1
6 . Intuitively, this means that

if the experiment is repeated N times (with N going to infinity), the outcome
will be six approximately 1

6 ·N times. This intuition immediately explains why
probabilities have to be nonnegative and have to sum up to one. After all, an
event cannot be expected to occur a negative number of times, and together the
outcomes should account for all N experiments.
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2.2.1 Probability spaces

Mathematically, an experiment is modelled by a probability space, consisting of
a sample space, a set of events and a probability measure.

The sample space Ω is just a non-empty set consisting of all possible outcomes
of the experiment modelled by the probability space. We want to assign prob-
abilities to the occurrence of the elements of this sample space, but in general
it does not suffice to do so only for each individual outcome. After all, for an
experiment yielding a value from a continuous domain, we often find that the
probability of each individual outcome is 0; still, there is a positive probability
of an outcome within a certain set of outcomes. Therefore, events are defined as
sets of outcomes—i.e., subsets of the sample space—and the probability space
contains a set F of all events to which a probability is assigned by the probability
measure P .

Formally, a probability space is a tuple (Ω,F , P ), where

1. Ω 6= ∅ is the sample space
2. F ⊆P(Ω) is the set of events, such that

• Ω ∈ F
• E ∈ F implies Ω \ E ∈ F
• Ei ∈ F for i = 1, 2, . . . implies

⋃∞
i=1 Ei ∈ F

3. P : F → [0, 1] is the probability measure, such that

• P (Ω) = 1
• P (

⋃∞
i=1 Ei) =

∑∞
i=1 P (Ei), if Ej ∩ Ek = ∅ for all j 6= k.

Example 2.4. Consider the experiment of rolling a die. We may model this
experiment by the probability space (Ω,F , P ), with Ω = {1, 2, 3, 4, 5, 6}, F =

P(Ω) and P (E) = |E|
6 for every E ∈ F . It is easy to check that F and P indeed

satisfy their constraints.
The event O = {1, 3, 5} ∈ F represents the scenario that the experiment

yields an odd outcome. We easily compute P (O) = 3
6 = 1

2 . �

Probability measures. To understand the restrictions on the probability measure,
first note that the event Ω corresponds to the occurrence of any outcome of the
sample space. As this is unavoidable, clearly P (Ω) = 1 has to hold. Additionally,
if we know the probabilities of two or more disjoint events, then the probability of
the union of these events intuitively indeed should be the sum of their probabilities
(this property is called countable additivity). Any function with range [0, 1]
satisfying these two properties is called a probability measure.

Measurable spaces and σ-algebras. To understand the restrictions on the set
of events, note that the first and third are obviously needed for the probability
measure to be well-defined. The second corresponds to the intuition that if we
know the probability p of a certain event, we also know the probability of its
complement: 1− p. Hence, for each event in F , also its complement should be
in F . Any set satisfying these properties is called a σ-algebra. A pair (Ω, F )
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of a sample space and an associated σ-algebra is called a measurable space. A
well-known example of a measurable space is (R,B), with R the set of real
numbers and B the Borel σ-algebra over R, i.e., the smallest σ-algebra over the
real numbers containing all intervals.

Although it may seem that we can take F = P(Ω) for every Ω, it is well
known from measure theory that this is impossible in general. There are sets
(e.g., the Vitali sets1) that are so inherently complicated, that no probability can
be assigned to them in a satisfactory way while satisfying the constraints above.
Hence, they must be excluded from the domain of the probability measure, in
order to still be able to define useful measures. This is precisely the purpose of
the set F . However, if Ω is countable, F = P(Ω) can always be used.

2.2.2 Random variables

Instead of dealing with a probability space (Ω,F , P ) directly, it is more common
to work with an additional layer of random variables. These are just functions
X : Ω → S from the sample space to some other domain S, under the (often
implicit) restriction that S is part of some measurable space (S,S). For a
countable set S we can always take S = P(S), and for S = R the Borel
σ-algebra often suffices.

As a random variable assigns a value to each outcome of an experiment, we
can ask for the probability that this value is in a certain set E ∈ S, defined by

Pr(X ∈ E) = P (X−1(E)) = P ({w ∈ Ω | X(w) ∈ E})

Similarly, we use notations like Pr(X < 5) and Pr(X = s4). Note that, for such
probabilities to be well-defined, we need X−1(E) ∈ F for every E ∈ S. We then
say that X is (F ,S)-measurable.

Example 2.5. Consider again the rolling of a die, represented earlier by a
probability space (Ω,F , P ). We define a random variable X : Ω→ {even, odd},
given by X(1) = X(3) = X(5) = odd and X(2) = X(4) = X(6) = even.

1To understand the intricacies, consider a probability distribution P over the sample space
Ω = [0, 1], assigning to each interval [a, b] in Ω a probability equal to its length b − a. For
unions of disjoint intervals, it takes the sum of their lengths. Additionally, we require that
P (X) = P ({x + c (mod 1) | x ∈ X}) for every set X and real number c. These are very
reasonable assumptions for a probability distribution, as for instance satisfied by the uniform
distribution introduced in Example 2.9. Note that P (Ω) = 1, and that for unions of disjoint
intervals the requirement of countable additivity is fulfilled; indeed, for all sets in the Borel
σ-algebra, everything works fine.

Now consider an equivalence relation R over Ω equating all real numbers x, y such that
x−y ∈ Q. A Vitali set A is then obtained by choosing precisely one value from each equivalence
class of R. To see why A cannot be given a probability, consider the family of sets defined
by Aq = {a+ q (mod 1) | a ∈ A} for every q ∈ Q. Since the sets Aq form a partitioning of
[0, 1], countable additivity prescribes that

∑

q∈Q P (Aq) = P ([0, 1]) = 1. Because each Aq is

identical to A except for a translation, we find that P (Aq) = P (A) for every q ∈ Q and hence
∑

q∈Q P (A) = 1. This is clearly impossible, since an infinite sum of a nonnegative constant is
either 0 or ∞. Therefore, no probability can be assigned to the set A under the restrictions
of P , and indeed it is not present in the Borel σ-algebra B that can be used for such measures.
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We can now compute, for instance,

Pr(X = odd) = P ({ω ∈ Ω | X(ω) = odd}) = P ({1, 3, 5}) =
1

2 �

The question may rise why to use this additional layer, and not just directly
work with probability spaces. Although that indeed would be possible, the
main argument is that we may be interested in several different observations
based on a probabilistic experiment. For instance, whereas someone may be
interested in the parity of the outcome of a die, as given by the random variable
in Example 2.5, someone else may be interested in the fact whether or not it is
a 5 or higher. Then, the same probability space may be reused, just defining
an additional random variable over it. This corresponds to the philosophical
argument that ‘chance’ only does its work once, and that we may have several
different observers of it.

Conditional probabilities. A well-known concept when dealing with random
variables is the conditional probability : the probability that a certain event E1

occurs, given that we know that an event E2 occurs. It is defined by

Pr(X ∈ E1 | X ∈ E2) =
Pr(X ∈ E1 ∩ E2)

Pr(X ∈ E2)

Example 2.6. Again considering the probability space defined in Example 2.4,
let X : Ω → S be given by X(ω) = ω (i.e., S = {1, 2, 3, 4, 5, 6} as well). Then,
obviously, we find that Pr(X = ω) = 1

6 for every ω ∈ Ω. Given that someone
tells us that an odd number was rolled, we can compute the probability that a 1
or 2 was rolled:

Pr(X ∈ {1, 2} | X ∈ {1, 3, 5}) =
Pr(X ∈ {1, 2} ∩ {1, 3, 5})

Pr(X ∈ {1, 3, 5})

=
Pr(X = 1)

Pr(X ∈ {1, 3, 5})
=

1
6
1
2

=
1

3
�

Distribution functions for random variables. Often, it is more convenient to
specify the probabilities for the outcomes of a random variable directly, embracing
the underlying probability space and basically forgetting about it. Traditionally,
for this to be specified feasibly, random variables are classified to be either
discrete (having a countable domain) or continuous (having an uncountable
real-valued domain). Although in general more complicated random variables
are possible, we restrict to these two basic cases.

From now on, we do not refer to underlying probability spaces anymore.
Also, we will use the common standard of referring to the domain of the random
variables we consider as their sample spaces.
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2.2.3 Discrete probability theory

A discrete random variable has a countable sample space S, and a corresponding
σ-algebra of events P(S). Its behaviour can easily be specified by a discrete
probability distribution (often just called a probability distribution or distribution)
over S. Such a distribution is a function µ : S → [0, 1] such that

∑

s∈S µ(s) = 1.
That is, it assigns a probability to the occurrence of each possible outcome in S
in such a way that the total probability is 1. The behaviour of X is then simply
given by Pr(X = s) = µ(s) and Pr(X ∈ S′) =

∑

s∈S′ µ(s′), for s ∈ S and
S′ ⊆ S.

Sometimes, we use the notation µ = {s1 7→ p1, s2 7→ p2, . . . , sn 7→ pn} to
denote that µ(s1) = p1, µ(s2) = p2, . . . , µ(sn) = pn. Also, we often write µ(S′)
as an abbreviation of

∑

s∈S′ µ(s′) if S′ ⊆ S.

Example 2.7. The random variable from Example 2.6 is specified by the dis-
tribution µ : S → [0, 1] with µ(s) = 1

6 for every s ∈ S. �

Given a countable set S, we use Distr(S) to denote the (uncountable) set
of all discrete probability distributions over S. We use SDistr(S) for the set
of all substochastic discrete probability distributions over S, i.e., all functions
µ : S → [0, 1] such that

∑

s∈S µ(s) ≤ 1.

Discrete probability distributions. For a discrete probability distribution µ over
S and a function f : S → T , we let µf ∈ Distr(T ) be the lifting of µ over f , i.e.,
µf (t) = µ(f−1(t)) for all t ∈ T . Hence, µf assigns the same probability to an
element t ∈ T as µ assigns to the corresponding elements s ∈ S. We write 1s

for the Dirac distribution over s, given by 1s(s) = 1 (and hence 1s(t) = 0 for
every t ∈ S such that t 6= s).

For any distribution µ over a countable set S, we write supp(µ) = {s ∈ S |
µ(s) > 0} for the support of µ. Given two distributions µ, ν ∈ Distr(S), we let
µ × ν ∈ Distr(S × S) be their joint distribution, defined by (µ × ν)((s, t)) =
µ(s) · ν(t).

Given two probability distributions µ, µ′ over a set S and an equivalence
relation R over S, we write µ ≡R µ′ to denote that µ and µ′ assign the same
probability to each equivalence class of S under R. Formally, µ([s]R) = µ′([s]R)
for every s ∈ S. Obviously, ≡R is an equivalence relation itself.

Example 2.8. Let S = {1, 2, 3, . . . , 10}, and let R relate all odd and all even
numbers, i.e.,

S/R = {{1, 3, 5, 7, 9}, {2, 4, 6, 8, 10}}

Also, let µ : S → [0, 1] and ν : S → [0, 1] be the distributions given by

µ(1) =
1

2
µ(2) =

1

4
µ(3) =

1

4

ν(5) =
1

8
ν(9) =

5

8
ν(4) =

1

4

Then, µ ≡R ν, since both assign probability 3
4 to the equivalence class {1, 3, 5,

7, 9} and 1
4 to {2, 4, 6, 8, 10}. �
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2.2.4 Continuous probability theory

A continuous random variable has an uncountable real-valued sample space S,
with the Borel σ-algebra as its set of events. It is often assumed that the
probability of each individual outcome is 0, but that a probability can be
assigned to an interval of the sample space. We adopt this assumption, and do
not consider random variables with a more complicated structure that cannot
be captured by the techniques discussed below.

A probability density function (often just called a density function or density)
f(x) : R→ R

≥0 is employed to specify the probabilities of a continuous random
variable X, in such a way that

Pr(X ∈ [a, b]) = Pr(X ∈ (a, b)) =

∫ b

a

f(x) dx

for every interval [a, b] ⊂ R. As every set in the Borel σ-algebra can be construc-
ted from intervals, this completely specifies X. Obviously, any density function
should satisfy

∫∞

−∞
f(x) dx = 1.

Example 2.9. Consider a web service that is available to its customers during
a 200 minutes time interval. Each customer will access it at some point during
this period, but will choose its timing randomly (in the sense that arriving within
every equally sized interval in [0, 200] is equally likely). Since time is continuous,
the probability of access at a specific time (for instance, t = 83.6) is 0, as there
are infinitely many other times. However, the probability of access within the
first 50 minutes is 1

4 .

This behaviour can be described by a random variable W with probability
density function

f(x) =

{

0.005 if 0 ≤ x ≤ 200

0 otherwise

In general, this is called the uniform distribution over the interval [0, 200], and
W is said to be distributed uniformly.

Indeed, Pr(W ∈ [0, 50]) =
∫ 50

0
f(x) dx = [0.005x]500 = 0.005 · 50 = 0.25. �

It is often more convenient to use a cumulative distribution function: a
function F : R → [0, 1] assigning to each value x ∈ R the probability that the
output of the experiment is at most equal to x. Hence,

F (x) = Pr(X < x) = Pr(X ∈ (−∞, x)) =

∫ x

−∞

f(t) dt

Example 2.10. For the density function f(x) of the previous example, we find
for 0 ≤ x ≤ 200 that

F (x) =

∫ x

−∞

f(t) dt =

∫ 0

−∞

0 dt+

∫ x

0

0.005 dt = 0 + [0.005t]x0 = 0.005x
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Hence, it is easy to see that

F (x) =







0 if x < 0

0.005x if 0 ≤ x ≤ 200

1 if x > 200

Indeed, F (50) = 0.005 · 50 = 0.25, as before. �

Expected values. The expected value E(X) of a continuous random variable X
is the weighted average of all possible values it can attain. It can be computed
by the integral E(X) =

∫∞

−∞
xf(x) dx.

Example 2.11. For the web service described in the previous example, we find

E(W ) =

∫ ∞

−∞

xf(x) dx =

∫ 200

0

0.005x dx = [0.0025x2]2000 = 0.0025 · 2002 = 100

Hence, as was to be expected, the average arrival of a customer who arrives
uniformly within the interval [0,200] is at time 100. �

Remark 2.12. The expected value of a random variable does not necessarily
exist. Like integrals in general, it may be infinite or even undefined (due to
oscillation). As an example of a random variable X with expected value ∞,
consider the probability density function

g(x) =

{
1
x2 if x ≥ 1

0 otherwise

Indeed, as required

Pr(−∞ ≤ X ≤ ∞) =

∫ ∞

−∞

g(x) dx =

∫ ∞

1

1

x2
dx =

[

−
1

x

]∞

1

= 1

However, we find that

E(X) =

∫ ∞

−∞

xg(x) dx =

∫ ∞

1

1

x
dx = [lnx]

∞
1 =∞

�

The exponential distribution. The most important continuous probability dis-
tribution for this work is the exponential distribution. It is parameterised by a
value λ > 0, and given by either the probability density function f(x) below
left, or alternatively the cumulative distribution function F (x) below right:

f(x) =

{

λe−λx if x > 0

0 otherwise
F (x) =

{

1− e−λx if x > 0

0 otherwise
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The parameter λ of an exponentially distributed random variable X dictates its
rate, which is the reciprocal of its expected value:

E(X) =

∫ ∞

−∞

xλe−λx dx = λ

∫ ∞

0

xe−λx dx =
1

λ

where the last step is obtained using integration by parts. Hence, the larger λ,
the smaller the expected outcome of an exponentially distributed experiment.
Note that each exponentially distributed random variable has a finite expected
value (since we disallow λ = 0).

The exponential distribution is the only memoryless continuous probability
distribution, as explained in the following example.

Example 2.13. The duration of telephone calls is often assumed to be ex-
ponentially distributed, with its parameter λ the average duration of a call.
The probability that a call takes at least t time units is easily computed by
1 − F (t) = e−λt. Now, given that a call has already taken s time units, the
probability that it will take at most an additional t time units is computed as
follows (where T is an exponentially distributed random variable):

Pr(T > s+ t | T > s) =
Pr(T > s+ t)

Pr(T > s)
=

e−λ(t+s)

e−λs
= e−λt

Hence, the duration someone was already on the phone does not influence the
probability that the call will take an additional t time units. This is called the
memoryless property of the exponential distribution. �

It is well known that the minimum of two independent exponentially dis-
tributed random variables X,Y with rates λ1 and λ2 is again an exponentially
distributed random variable Z, with rate λ1 + λ2. To see why, we compute the
probability that min(X,Y ) yields a value larger than t:

Pr(min(X,Y ) > t) = Pr(X > t ∧ Y > t)

= Pr(X > t) · Pr(Y > t)

= e−λ1t · e−λ2t

= e−(λ1+λ2)t = Pr(Z > t)

where the second step follows by independence. Since these probabilities coincide
for min(X,Y ) and Z, their cumulative distribution functions also coincide. This
immediately implies that indeed min(X,Y ) = Z. This naturally generalises
to the observation that min(X1, X2, . . . , Xn) = Z ′, with Z ′ an exponentially
distributed random variable with a rate equal to the sum of the rates of the
constituents X1, X2, . . . , Xn.

On the other hand, the maximum of two exponentially distributed random
variables is not exponentially distributed, and neither is their sum.





CHAPTER 3

Modelling with Automata

“One thing I have learned in a long life:
that all our science, measured against reality,

is primitive and childlike—and yet it is
the most precious thing we have.”

Albert Einstein

A
utomata are among the most commonly used models in computer science.
They represent system behaviour by means of a set of states and a set of
transitions between these states. States are often associated with atomic

propositions , characterising the system at a certain moment during its execution
and allowing them to be identified when verifying properties over the model.
Transitions are often labelled by actions , indicating events that cause the system
to evolve from one state to another. Automata-theoretical models have been
extended to incorporate nondeterminism, timing, probability and stochasticity.

In this chapter, we introduce the model acted on by most of our techniques:
the Markov automaton. Markov automata are among the most general automata-
based models in computer science, as they subsume labelled transition systems,
discrete-time Markov chains, continuous-time Markov chains, probabilistic auto-
mata and interactive Markov chains. Hence, they feature nondeterminism,
discrete probabilistic choice as well as Markovian rates, and can be used to
specify a wide variety of systems and protocols. Figure 3.1 visualises the sub-
sumption relations between the Markov automaton and all models it generalises.

Markov automata are of vital importance in this thesis, as our process-
algebraic specification language MAPA has its semantics defined in terms of
Markov automata. Therefore, we discuss the structure of these models, their

Markov Automaton

Probabilistic Automaton Interactive Markov Chain

Labelled Transition SystemDiscrete-Time Markov Chain Continuous-Time Markov Chain

(Probability) (Nondeterminism) (Markovian rates)

Figure 3.1: Subsumption relations between automata-based models.
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interpretation and several important notations for working with them. Addi-
tionally, all our reduction techniques will be proven correct by demonstrating
that the underlying Markov automaton of an original specification and its re-
duced counterpart are equivalent. In this chapter, we introduce the behavioural
equivalences that will be used in this context: isomorphism, strong bisimulation
and (divergence-sensitive) branching bisimulation.

Organisation of the chapter. Section 3.1 provides an informal overview of
automata for system specification, followed by a precise coverage of Markov
automata in Section 3.2. The latter section also briefly explains how Markov
automata can be restricted to obtain probabilistic automata or interactive Markov
chains. Then, Section 3.3 introduces isomorphism, strong bisimulation and
branching bisimulation, and discusses the properties of these notions. Section 3.4
concludes by summarising the contributions of this chapter.

3.1 Automata for modelling system behaviour

Many different types of automata can be used to represent behaviour. Tradi-
tionally in process algebra, labelled transition systems (LTSs) were the model
of choice to provide the semantics of specifications [Fok07]. These LTSs con-
sist of anonymous states, in which a system can reside. Whereas the states
themselves are not observable, interaction with the environment takes place via
action-labelled transitions between those states.

Example 3.1. As an example of an LTS, consider the one depicted in Fig-
ure 3.2(a). It represents the behaviour of a coffee machine, that initially (indicated
by the incoming arrow without source) requires the user to insert money and
then choose between coffee and tea. Afterwards, the correct beverage is provided,
and the machine returns to its initial state. �

Note that after inserting the money, there are two different ways of continuing:
either the chooseCoffee transition or the chooseTea transition is taken. This
kind of behaviour, having a choice between differently labelled transitions, is
called external nondeterminism. It is even allowed to have multiple equally
labelled outgoing transitions from a state; this kind of behaviour is called internal
nondeterminism. Often, nondeterminism refers to either type of behaviour.

Several generalisations of LTSs appeared over the last decades. For us,
most important are the probabilistic automaton [Seg95], the interactive Markov
chain [Her02] and the Markov automaton [EHZ10b, EHZ10a]. Probabilistic
automata generalise LTSs by adding probabilistic choices, whereas interactive
Markov chains generalise them by adding exponentially distributed delays. A
Markov automaton has both additions, and hence unites the two models.

Before going into any details, we first informally introduce all three models.

3.1.1 Informal overview

Probabilistic automata. Probabilistic automata (PAs) are similar to LTSs,
except that the destination of a transition may be uncertain: it is decided
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s0

s1s2 s3

insertMoney

chooseCoffee chooseTea

coffee tea

(a) LTS: a coffee machine.

s0

s1s2 s3

insertMoney

chooseCoffee chooseTea

coffee

tea
0.1

0.9

(b) PA: a half-broken coffee machine.

s0

s1s2 s3

s4

insertMoney

chooseCoffee chooseTea

3

coffee

tea

(c) IMC: a delayed coffee machine.

s0

s1s2 s3

s4

insertMoney

chooseCoffee chooseTea

3

coffee

tea
0.1

0.9

(d) MA: a delayed half-broken coffee machine.

Figure 3.2: Four kinds of models of a coffee machine.

probabilistically [Seg95]. Hence, even if the nondeterministic choices are resolved
in some deterministic manner, the behaviour of the system may still vary per
execution.

Example 3.2. Figure 3.2(b) shows an example of a PA, modelling a half-broken
version of the coffee machine of Example 3.1. After providing tea, the system
might forget its action (with probability 0.1) and provide tea again. �

Although some part of a PA’s behaviour is probabilistic, there may be non-
determinism present. Hence, we cannot immediately speak about the probability
of the occurrence of a certain path. After all, this depends on how the non-
deterministic choices are resolved. We will see how schedulers do precisely this.

Interactive Markov chains. Interactive Markov chains (IMCs) are also similar
to LTSs, except that they have an additional type of transitions: Markovian
transitions [Her02]. These transitions are each associated with a rate, and their
duration is determined by an exponentially distributed random variable with
that rate as its parameter.

Example 3.3. Figure 3.2(c) shows an example of an IMC, modelling a timed
version of the coffee machine of Example 3.1. It has a delay when selecting
coffee, governed by an exponential rate of 3. Hence, the probability of taking
this transition within t time units is 1− e−3t. �
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Markov automata. Markov automata (MAs) combine the forces of PAs and
IMCs, allowing nondeterministic choices, probabilistic choices and exponentially
distributed delays [EHZ10b, EHZ10a]. Hence, paths through an MA have a
probability of occurring (given a scheduler) as well as an expected duration.

Example 3.4. Figure 3.2(d) shows an example of a MA, combining the prop-
erties of the coffee machines from Examples 3.2 and 3.3. �

MAs allow for verifying several types of properties, such as the expected
time to reach a certain state, the long-run average of residing in a subset of the
states or the probability of executing a certain action within a given amount of
time [GHH+13a]. Due to possible nondeterministic choices, all these quantities
can only be computed given a particular scheduler. In practice, one often
computes the minimal and maximal values, ranging over all possible schedulers.
We go into more details on the analysis side of MAs in Section 9.2.

3.2 Markov automata

Formally, we define a Markov automaton as a 7-tuple. It consists of a set of
states, an initial state, an alphabet of actions, sets of action-labelled (interactive)
and rate-labelled (Markovian) transitions, and a set of atomic propositions
together with a state-labelling function. We assume a countable universe of
actions Act, containing an internal invisible action τ ∈ Act.

We note that the common definitions of MAs from literature [EHZ10b,
EHZ10a, DH11] do not contain state labels; however, for model checking this
often comes in handy. Hence, we take a very general approach and allow MAs to
have both action labels and state labels. Our framework can thus be applied in
both an action-based and a state-based manner, by either having no state labels
or by having only one action label.

As we want to allow data with possibly infinite domains in our process algebra
over MAs, we allow countable state spaces. Although this is problematic for the
complicated notion of weak bisimulation from [EHZ10b], it does not hinder us.

Definition 3.5 (Markov automata). A Markov automaton (MA) is a tuple
M = 〈S, s0, A, −֒→, ,AP, L〉, where

• S is a countable set of states;
• s0 ∈ S is the initial state;
• A ⊆ Act is a countable set of actions;
• −֒→ ⊆ S ×A×Distr(S) is a countable interactive probabilistic transition

relation;
•  ⊆ S × R

>0 × S is a countable Markovian transition relation;
• AP is a countable set of state labels (also called atomic propositions);
• L : S →P(AP) is the state-labelling function.

If (s, a, µ) ∈ −֒→, we write s a−֒→ µ and say that the action a can be executed from
state s, after which the probability to go to s′ ∈ S is µ(s′). If (s, λ, s′) ∈ , we
write s λ

 s′ and say that s moves to s′ with rate λ.
We require

∑
{|λ ∈ R

>0 | ∃s′ ∈ S . s λ
 s′|} <∞ for every state s ∈ S.
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We demand a finite exit rate for every state, as forced by the last requirement
of the definition above. After all, given a state s with infinite exit rate, there
is no obvious probability distribution for the next state of s. Also, if all states
reachable from s were considered equivalent by a bisimulation relation (defined
in Section 3.3), the bisimulation quotient would be ill-defined as it would yield a
Markovian transition with rate∞—which is not allowed. Fortunately, restricting
to finite exit rates is no severe limitation; it still allows infinite chains of states
connected by finite rates, as often seen in queueing systems. Also, it still allows
infinite branching with for instance rates 1

2λ,
1
4λ,

1
8λ, . . . .

Example 3.6. The MA depicted in Figure 3.2(d) is formally given by the tuple
M = 〈S, s0, A, −֒→, ,AP, L〉, with

S = {s0, s1, s2, s3, s4};

s0 = s0;

A = {insertMoney, chooseTea, chooseCoffee, tea, coffee};

−֒→ = {(s0, insertMoney,1s1), (s1, chooseCoffee,1s2), (s1, chooseTea,1s3),

(s3, tea, {s3 7→ 0.1, s0 7→ 0.9}), (s4, coffee,1s0)};

 = {(s2, 3, s4)}.

Although not indicated in the picture, we may take AP = {paid, chosen} and

L(s0) = ∅ L(s1) = {paid} L(s2) = L(s3) = L(s4) = {paid, chosen} �

3.2.1 Interpretation

Like an LTS, an MA moves between states via its transitions (some of which may
feature a probabilistic choice). Each state may allow several transitions, both
interactive and Markovian. Like IMCs, MAs adhere to the maximal progress
assumption [Her02], prescribing τ -transitions to never be delayed (as they are
assumed to be infinitely fast). Hence, no Markovian transition can ever be taken
from a state that also has at least one outgoing τ -transition.

Traditionally, an interpretation was only given for closed MAs (or IMCs),
i.e., systems obtained after parallel composition and after hiding of all actions
(renaming them to τ). In such a setting, each state is either

Interactive: it has one or more outgoing τ -transitions,

Markovian: it has only outgoing Markovian transitions, or

Deadlock : it has no outgoing transitions at all.

Then, the interpretation of an MA is as follows:

• In each interactive state, a nondeterministic choice is made between the
enabled τ -transitions. We discuss below how schedulers are used to re-
solve these choices. When an interactive transition is chosen, its discrete
probability distribution determines the next state.
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• In each Markovian state, there is a race between the outgoing Markovian
transitions. The rate between two states s, s′ ∈ S (denoted by rate(s, s′))
and the total outgoing rate of s (denoted by rate(s)) are given by

rate(s, s′) =
∑

(s,λ,s′)∈ 

λ rate(s) =
∑

s′∈S

rate(s, s′)

Each outgoing Markovian transition s λ
 s′ potentially fires after a delay

governed by an exponentially distributed random variable with rate λ—i.e.,
an experiment is conducted to obtain this delay, in such a way that the
probability of obtaining a value below x is 1− e−λx. The transition whose
delay turns out to be shortest ‘wins the race’, and is taken.

Since the minimum of a number of exponentially distributed random
variables is exponentially distributed with a rate equal to the sum of the
individual rates (as discussed in Section 2.2.4), the time of staying in a
state s—sometimes called its sojourn time—is exponentially distributed
with rate rate(s). Hence, the probability of leaving state s within t time
units is given by 1− e−rate(s)·t. Also, it follows easily that the probability
of going to a state s′, after waiting for some time in state s, is

Ps(s
′) =

rate(s, s′)

rate(s)

We denote by Ps this branching probability distribution of state s.

Remark 3.7. Due to the properties of the exponential distribution, we can
assume without loss of generality that there is at most one Markovian transition
between each pair of states s, s′. After all, two transitions s λ′

 s′ and s λ′′

 s′ can
be combined into one transition s λ

 s′ with λ = λ′+λ′′. Under this assumption,
the sojourn time rate(s) and the branching probability distribution Ps together
can be used to completely reconstruct all outgoing Markovian transitions from
state s: for each state s′ ∈ supp(Ps), there is a Markovian transition s λ

 s′ with
λ = Ps(s

′) · rate(s). �

Example 3.8. Consider the MA shown in Figure 3.3(a). Due to the maximal
progress assumption, the Markovian transition from state s0 is irrelevant. Hence,
a scheduler may choose to either select the τ -transition to s1 or the one to s3.
In state s3, no interactive transitions are enabled: it is a Markovian state. We
find rate(s3) = 3 + 4 = 7, and thus the probability of leaving s3 within t time
units is 1− e−7t. Then, the probability of going to s2 is Ps3(s2) =

3
7 . �

Interpretation of open Markov automata. For open systems, in which some
visible actions are present, the precise behaviour of the system still depends on the
environment. After all, although τ -transitions can always happen immediately,
the timing of visible transitions is assumed to depend on the environment being
ready to synchronise on them. Hence, they only get real meaning in a context.
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Figure 3.3: Interpretation of MAs.

Example 3.9. Consider the MA shown in Figure 3.3(b). State s0 enables both
an interactive transition and a Markovian transition. By itself, its behaviour
is still unclear. So, we put it in parallel to an environment, forcing them to
synchronise on the a-action and hiding this action in the parallel composition1.

First, we put it in parallel to a system immediately providing an a-action
(Figure 3.3(c)). The resulting parallel composition in shown in Figure 3.3(e).
Due to maximal progress, the Markovian transition will never fire.

Second, we put it in parallel to a system first having a delay and only then
synchronising on the a-action (Figure 3.3(d)). The parallel composition of these
systems is shown in Figure 3.3(f). Now, the system ends up in s1 or s2, depending
on which Markovian transition fires first. �

An open system could behave as any closed system that can be obtained by
placing it in parallel to any environment over the same alphabet and subsequently
hiding all actions. In our current treatment we chose to in principle consider
open MAs. Although the precise behaviour of such a system still depends on its
context, that turns out not to be a problem. After all, we are only concerned with
transforming MAs into smaller MAs while preserving either strong or branching
bisimulation—equivalences that have been defined on open MAs.

Only when starting to model check the MAs resulting from our specifications,
we assume all actions to be hidden, as all model checking techniques for MAs

1Parallel composition is defined formally in Section 3.2.3.
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introduced thus far require closed systems [GHH+13a]. An interesting recent
approach is to verify open IMCs, obtaining compositionality properties by means
of timed games [BHK+12]. A generalisation of these techniques to MAs does
not yet exist.

3.2.2 Behavioural notions

Extended transitions. The fact that there are two types of transitions—in-
teractive and Markovian—is often rather inconvenient. Hence, the concept of
extended transitions was introduced to combine them into a single transition
relation and treat them in a uniform way [EHZ10b].

Each extended transition has a source state, an action label and a probability
distribution, just like an interactive transition. Hence, each interactive transition
can be lifted to an extended transition without any difficulty. Furthermore,
for every state s with at least one outgoing Markovian transition, all these
transitions are combined into a single extended transition s −

χ(rate(s))
−−−−−−→ Ps. The

dedicated action label χ indicates that this extended transition is Markovian,
and its parameter rate(s) and the probability distribution Ps together determine
all Markovian transitions from state s (as discussed in Remark 3.7).

The maximal progress assumption is incorporated in the definition of extended
actions, only allowing a Markovian extended transition from states without any
outgoing τ -transitions.

Definition 3.10 (Extended action set2). Let M = 〈S, s0, A, −֒→, ,AP, L〉
be an MA, then the extended action set ofM is

Aχ = A ∪ {χ(r) | r ∈ R
>0}

Given a state s ∈ S and an action α ∈ Aχ, we write s −α→ µ if either

• α ∈ A and s α−֒→ µ, or

• α = χ(rate(s)), rate(s) > 0, µ = Ps and there is no µ′ such that s τ−֒→ µ′.

A transition s −α→ µ is called an extended transition. We use s −α→ t as shorthand
for s −α→ 1t, and write s → t if there is at least one action α such that s −α→ t.
We write s −

α,µ
−−→ s′ if there is an extended transition s −α→ µ such that µ(s′) > 0.

Note that each state has an extended transition per interactive transition,
while it has only one extended transition for all Markovian transitions together
(if there are any).

Example 3.11. Reconsider the MA in Figure 3.3(a). There are three extended
transitions: s0 −

τ→ 1s1 , s0 −
τ→ 1s3 and s3 −

χ(7)
−−→ {s1 7→

4
7 , s2 7→

3
7}. There is no

Markovian extended transition from s0, as it has τ -transitions. �

2Instead of first defining MAs in terms of the interactive transition relation −֒→ and the
Markovian transition relation  , we could also have chosen to define MAs immediately based
on extended actions. For historical reasons, we chose not to do so.
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Paths, traces and connectivity. As for LTSs and other types of automata, we
can define paths and traces through an MA. We define these concepts, and
provide notations to work with them. Basically, a path is just a traversal
through an MA, indicating which transitions were taken and which states were
chosen probabilistically. Paths abstract from timing: they do not contain any
information on the precise duration of these steps. As paths are based on
extended transitions, they may contain interactive as well as Markovian steps.
Traces are obtained from paths by only listing the observable aspects of a path:
the state labels and the visible action labels.

Definition 3.12 (Paths and traces). LetM = 〈S, s0, A, −֒→, ,AP, L〉 be an
MA. Then,

• A path inM is a finite sequence

πfin = s0 −
α1,µ1−−−→ s1 −

α2,µ2−−−→ s2 −
α3,µ3−−−→ . . . −

αn,µn−−−→ sn,

possibly with n = 0, or an infinite sequence

πinf = s0 −
α1,µ1−−−→ s1 −

α2,µ2−−−→ s2 −
α3,µ3−−−→ . . . ,

with si ∈ S for all 0 ≤ i ≤ n and all i ≥ 0, respectively, and such that each
extended transition si −

αi+1,µi+1−−−−−−→ si+1 is indeed present inM. We refer to
πfin as a path from s0 to sn.

• For any path π as above, we define

trace(π) = L(s0)α1L(s1)α2L(s2)α3 . . .

to be its sequence of state labellings and action labels. Additionally, we
write

actionTrace(π) = α1α2α3 . . . \ {τ}

stateTrace(π) = L(s0)L(s1)L(s2) . . .

for the sequences of visible actions and state labellings of π, respectively.
• Given an infinite or sufficiently long finite path π, we use prefix(π, i)
to denote the path fragment s0 −

α1,µ1−−−→ . . . −
αi,µi−−−→ si, and step(π, i) for the

transition si−1 −
αi−→ µi. When π is finite we define |π| = n and last(π) = sn,

otherwise |π| =∞ and no final state exists.
• We use finpathsM for the set of all finite paths in M (not necessarily
beginning in the initial state), and finpathsM(s) for all such paths with
s0 = s.

• We say that a path π is invisible (denoted by invisible(π)) if it never
alters the state labelling and only consists of invisible actions. That is,
actionTrace(π) = ǫ and stateTrace(π) is a sequence of identical labellings.

Example 3.13. Again, consider the MAM in Figure 3.3(a). A possible path
inM is

π = s0 −
τ,1s3−−−→ s3 −

χ(7),µ
−−−→ s1
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with µ(s1) =
4
7 and µ(s2) =

3
7 . We have |π| = 2, last(π) = s1, and obviously

π ∈ finpathsM and π ∈ finpathsM(s0). Additionally, we find

trace(π) = L(s0)τL(s3)χ(7)L(s1)

actionTrace(π) = χ(7)

stateTrace(π) = L(s0)L(s3)L(s1)

As actionTrace(π) 6= ǫ, the path π is visible, regardless of the state labelling.�

We now introduce the three most important connectivity relations: reachab-
ility, joinability and convertibility.

Definition 3.14 (Connectivity). LetM = 〈S, s0, A, −֒→, ,AP, L〉 be an MA,
s, t ∈ S, and consider again the binary relation → ⊆ S × S from Definition 3.10
that relates states s, t ∈ S if there is a transition s −α→ 1t for some α.

We let ։ (reachability) be the reflexive and transitive closure of →, and we
let և։ (convertibility) be its reflexive, transitive and symmetric closure. We
write s։ ։t (joinability) if there is a state u such that s։ u and t։ u.

Note that the relation ։ ։is symmetric, but not necessarily transitive. Also
note that, intuitively, sև։ t means that s is connected by extended transitions
to t—disregarding the orientation of these transitions, but requiring them all to
have a Dirac distribution. Clearly, s։ t implies s։ ։t, and s։ ։t implies
sև։ t. These implications do not hold the other way.

Example 3.15. In Figure 3.3(a), we find s0 ։ s2, but not s2 ։ s0. Since both
s0 ։ s2 and s3 ։ s2, also s0 ։ ։s3 (alternatively, they could join in s3).
Finally, s1 և։ s2, since they are connected by s3 (but not s1 ։ ։s2). �

Schedulers. Although some part of an MA’s behaviour is probabilistic, there
may be nondeterminism present. Hence, we cannot immediately speak about
the probability of the occurrence of a certain path. After all, this depends on
the nondeterministic choices that are made. Therefore, we define schedulers to
precisely resolve these choices (basing our notations on [Sto02a]).

Basically, a scheduler is a function defining for each finite path which trans-
ition to take next. The decisions of schedulers are allowed to be randomised , i.e.,
instead of choosing a single transition, a scheduler may resolve a nondeterministic
choice by a probabilistic choice. Schedulers can also be partial , i.e., they may
assign some probability to the decision of not choosing any next transition at all
(and hence terminate). Our schedulers can select from interactive transitions as
well as Markovian transitions, as both may be enabled at the same time. This is
due to the fact that we consider open MAs, in which the timing of visible actions
is still to be determined by their context (as discussed above in Section 3.2.1).

Definition 3.16 (Schedulers). Let M = 〈S, s0, A, −֒→, ,AP, L〉 be an MA,
and → ⊆ S ×Aχ ×Distr(S) its set of extended transitions. Then, a scheduler
forM is a function

S : finpathsM → Distr({⊥} ∪ →)
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such that, for every π ∈ finpathsM, the transitions s −α→ µ that are scheduled
by S after π are indeed possible, i.e., S(π)(s, α, µ) > 0 implies s = last(π). The
decision of not choosing any transition is represented by ⊥.

Note that our schedulers are time-homogeneous, i.e., they cannot take into ac-
count the amount of time that already passed during a path. Time-inhomogeneous
schedulers are important in some contexts, for instance, for defining the type of
time-bounded reachability properties [HH12] that we also consider. However,
in this work we can do without as we will not formally define such properties.
Since time-homogeneous schedulers do take into account the rates of an MA, we
can use them to define notions of bisimulation that do preserve time-bounded
properties (similar to weak bisimulation in [EHZ10b] being defined in terms
of ‘time-homogeneous’ labelled trees).

As discussed in [ZN10], measurability is not an issue for time-homogeneous
schedulers. See [NSK09] for a thorough analysis of different types of schedulers.
Since Markovian extended transitions only emanate from states without any out-
going τ -transitions, schedulers cannot violate the maximal progress assumption.

We now define finite and maximal paths of an MA given a scheduler. The
finite paths given a scheduler are those finite paths of the MA for which each step
has been assigned a nonzero probability. The maximal paths are again a subset
of those; they are the paths after which the scheduler may decide to terminate.

Definition 3.17 (Finite and maximal paths). Given an MA M = 〈S, s0,
A, −֒→, ,AP, L〉 and a scheduler S forM, the set of finite paths ofM under
S is

finpathsSM = {π ∈ finpathsM | ∀0 ≤ i < |π| . S(prefix(π, i))(step(π, i+ 1)) > 0}

We define finpathsSM(s) ⊆ finpathsSM as the set of all such paths starting in s.
The set of maximal paths ofM under S is given by

maxpathsSM = {π ∈ finpathsSM | S(π)(⊥) > 0}

Similarly, maxpathsSM(s) is the set of maximal paths ofM under S starting in s.

Example 3.18. Reconsider the MAM from Figure 3.2(d). For convenience, it
is repeated in Figure 3.4.

A possible scheduler S for this system is given by

S(π) =







{(s0, insertMoney,1s1) 7→ 1} if last(π) = s0 ∧ |π| = 0

{⊥ 7→ 1} if last(π) = s0 ∧ |π| > 0

{(s1, chooseCoffee,1s2) 7→ 0.5, if last(π) = s1

(s1, chooseTea,1s3) 7→ 0.5}

{(s2, χ(3),1s4) 7→ 1)} if last(π) = s2

{(s3, tea, {s3 7→ 0.1, s0 7→ 0.9}) 7→ 1)} if last(π) = s3 ∧ |π| ≤ 2

{(s3, tea, {s3 7→ 0.1, s0 7→ 0.9}) 7→ 0.25, if last(π) = s3 ∧ |π| > 2

⊥ 7→ 0.75)}

{(s4, coffee,1s0) 7→ 1)} if last(π) = s4
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s0

s1s2 s3

s4

insertMoney

chooseCoffee chooseTea

3

coffee

tea
0.1

0.9

Figure 3.4: A delayed half-broken coffee machine.

This scheduler tries to order one beverage, and chooses randomly between
coffee and tea. Upon returning to the initial state, it terminates. If it receives
a tea without returning to the initial state, termination only happens with
probability 0.75.

Given this scheduler, there are infinitely many finite and maximal paths
starting from the initial state. We list part of the maximal paths, and note that
the finite paths are these maximal paths as well as all their prefixes.

maxpathsSM(s0) = {s0 −
iM,1s1−−−−→ s1 −

cC,1s2−−−−→ s2 −
χ(3),1s4−−−−−→ s4 −

coffee,1s0−−−−−−→ s0,

s0 −
iM,1s1−−−−→ s1 −

cT,1s3−−−−→ s3 −
tea,µ
−−−→ s0,

s0 −
iM,1s1−−−−→ s1 −

cT,1s3−−−−→ s3 −
tea,µ
−−−→ s3,

s0 −
iM,1s1−−−−→ s1 −

cT,1s3−−−−→ s3 −
tea,µ
−−−→ s3 −

tea,µ
−−−→ s0,

s0 −
iM,1s1−−−−→ s1 −

cT,1s3−−−−→ s3 −
tea,µ
−−−→ s3 −

tea,µ
−−−→ s3, . . . }

Here, we used iM, cC and cT as abbreviations for insertMoney, chooseCoffee
and chooseTea, respectively. Also, we used µ = {s3 7→ 0.1, s0 7→ 0.9}. �

We can now define the behaviour of an MA M under a scheduler S. As
schedulers resolve all nondeterministic choices, this behaviour is fully probabil-
istic. We can compute the probability that, starting from a given state s, the
path generated by S has some finite prefix π. This probability is denoted by
PS
M,s(π).

Definition 3.19 (Path probabilities). Let M = 〈S, s0, A, −֒→, ,AP, L〉 be
an MA, S a scheduler for M, and s ∈ S a state of M. Then, we define the
function PS

M,s : finpathsM(s)→ [0, 1] by

PS
M,s(s) = 1 PS

M,s(π −
α,µ
−−→ t) = PS

M,s(π) · S(π)(last(π), α, µ) · µ(t)

Based on these probabilities we can compute the (substochastic) probability
distribution FS

M(s) over the states where an MAM under a scheduler S ter-
minates, when starting in state s. Note that FS

M(s) is potentially substochastic
(i.e., the probabilities do not add up to 1), as S does not necessarily terminate.
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Definition 3.20 (Final state probabilities). Given an MA M = 〈S, s0, A,
−֒→, ,AP, L〉 and a scheduler S forM, we define FS

M : S → SDistr(S) by

FS
M(s) =

{

s′ 7→
∑

π∈maxpathsSM(s)

last(π)=s′

PS
M,s(π) · S(π)(⊥) | s

′ ∈ S
}

∀s ∈ S

Example 3.21. We continue with Example 3.18. Since all maximal paths end
in either state s3 or state s0, F

S
M(s0) will be a probability distribution over these

two states.

For the scheduler S defined before, we compute PS
M,s0

(πi) · S(πi)(⊥) for the
following three paths (again with µ = {s3 7→ 0.1, s0 7→ 0.9}):

π1 = s0 −
iM,1s1−−−−→ s1 −

cC,1s2−−−−→ s2 −
χ(3),1s4−−−−−→ s4 −

coffee,1s0−−−−−−→ s0

π2 = s0 −
iM,1s1−−−−→ s1 −

cT,1s3−−−−→ s3 −
tea,µ
−−−→ s0

π3 = s0 −
iM,1s1−−−−→ s1 −

cT,1s3−−−−→ s3 −
tea,µ
−−−→ s3

Using the definition of path probabilities, we find

PS
M,s0(π1) · S(π1)(⊥) = (1 · 1) · ( 12 · 1) · (1 · 1) · (1 · 1) · 1 = 0.5

PS
M,s0(π2) · S(π2)(⊥) = (1 · 1) · ( 12 · 1) · (1 · 0.9) · 1 = 0.45

PS
M,s0(π3) · S(π3)(⊥) = (1 · 1) · ( 12 · 1) · (1 · 0.1) · 0.75 = 0.0375

As π3 ends in s3, its path probability 0.0375 contributes to the total probability
of terminating in s3. To precisely obtain the probability of terminating in s3, we
need to sum the probabilities of all paths ending in s3. Note that these paths
always first have to take the chooseTea transition (probability 0.5). Then, the
tea transition should be taken (probability 1) and it should fail (probability
0.1). Due to independence of these probabilities, this combination happens with
probability 0.5 · 1 · 0.1 = 0.05.

Then, either we immediately terminate (probability 0.75), or we terminate
after any number of times continuing and failing again (probability 0.25 · 0.1 =
0.025 per time). So, this happens with probability

0.75 + 0.025 · 0.75 + 0.0252 · 0.75 + · · · = 0.75 ·
∞∑

i=0

0.025i =
0.75

1− 0.025
=

10

13

Combining these results, the total probability of terminating in state s3 is found
to be 0.05 · 1013 = 1

26 . In the same way, we can compute that the probability of
terminating in s0 is 25

26 . Hence,

FS
M(s0) =

{

s0 7→
25

26
, s3 7→

1

26

}

�
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3.2.3 Parallel composition

To enable modular system specification, MAs can be composed in parallel. This
construction is a straightforward generalisation of the constructions for parallel
composition of PAs and IMCs. As usual, each state of the parallel composition
is a pair of states of the individual components.

Parallel processes by default interleave all their actions. Additionally, we
assume a partial function γ : A1×A2 ⇀ A1 ∪ A2, that specifies which actions can
communicate. More precisely, γ(a, b) = c denotes that a and b can communicate,
resulting in the action c (as in ACP [BK89]). Still, even if (a, b) ∈ dom(γ),
the component processes are also allowed to act individually. Clearly, it would
just as well be possible to define parallel composition using CCS or CSP style
synchronisations.

Due to the memoryless property of exponential distributions, parallel com-
position of Markovian transitions is also very straight-forward. Consider two
interleaving processes, one having a transition with rate λ1 and the other having
a transition with rate λ2. Then, the properties of the exponential distribution
(as discussed in Section 2.2.4) tell us that together they work with rate λ1 + λ2.
Hence, we can just take the union of the Markovian transitions of the parallel
components. After for instance the first component took its transition, the
memoryless property of the exponential distribution tells us that the other still
has a rate of λ2 to take its transition. This makes the MA (and before that the
IMC) a very suitable model for parallel composition. For some easy examples,
see Figure 3.3 on page 37.

Except for the addition of state labels and the slightly different manner
of synchronisation, our definition of parallel composition coincides with the
definition in [EHZ10b]. As already mentioned there, it also agrees with the
standard definitions of parallel composition for PAs and IMCs if the MA does
not contain any rates or probabilities, respectively.

Definition 3.22 (Parallel composition). Given two MAsM1 = 〈S1, s
0
1, A1,

−֒→1, 1,AP1, L1〉 andM2 = 〈S2, s
0
2, A2, −֒→2, 2,AP2, L2〉, and a partial com-

munication function γ : A1×A2 ⇀ A1 ∪ A2, the parallel composition ofM1 and
M2 is the systemM1 ||M2 = 〈S, s0, A, −֒→, ,AP, L〉, where

• S = S1 × S2;
• s0 = (s01, s

0
2);

• A = A1 ∪ A2;
• AP = AP1 ∪ AP2;
• L((s1, s2)) = L1(s1) ∪ L2(s2),

and −֒→ and  are the smallest relations fulfilling the inference rules in Table 3.5
(i.e., if all conditions above the line of a rule hold, then so should the condition
below the line). We use λ(s1, s2) to denote rate(s1, s1) + rate(s2, s2).

It may seem that we could just omit the last SOS rule and the inequality
constraints of the rules above. However, if in that case s1

λ
 s1 and s2

λ
 s2,

the parallel composition would have a transition (s1, s2)
λ
 (s1, s2). This would

clearly be erroneous, as it would neglect the fact that two systems trying to
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s1
a−֒→ µ1

(s1, s2)
a−֒→ µ1 × 1s2

s2
a−֒→ µ2

(s1, s2)
a−֒→ 1s1 × µ2

s1
a−֒→ µ1 s2

b−֒→ µ2 γ(a, b) = c

(s1, s2)
c−֒→ µ1 × µ2

s1
λ
 s′1 s1 6= s′1

(s1, s2)
λ
 (s′1, s2)

s2
λ
 s′2 s2 6= s′2

(s1, s2)
λ
 (s1, s

′
2)

λ(s1, s2) > 0

(s1, s2)
λ(s1, s2)
 (s1, s2)

Figure 3.5: Inference rules for the transitions of a parallel composition.

self-loop produce a faster self-loop than one system doing so. The current
formalisation correctly produces the transition (s1, s2)

2λ
 (s1, s2).

Although our treatment of state labels in the parallel composition is rather
standard [BK08, CGP01], it does need some attention if AP1 ∩ AP2 6= ∅. After
all, for p ∈ AP1 ∩ AP2 it may be the case that p ∈ L1(s1) and p 6∈ L2(s2), and
hence by definition p ∈ L((s1, s2)) in the parallel composition. If we interpret
p 6∈ L2(s2) to mean ¬p ∈ L2(s2), this basically would imply that p and ¬p are
combined to p. Hence, this only makes sense if the atomic propositions in the
parallel composition can somehow be taken to be the disjunction of the atomic
propositions of the constituent processes. In our setting, this is indeed the case,
as will become clear in Section 4.2.3 when defining the state labelling of the
MAs underlying specifications in our process algebra MAPA.

3.2.4 Probabilistic automata and interactive Markov chains

As discussed in Section 3.1.1, PAs are MAs without any Markovian transitions,
and IMCs are MAs without any probabilistic choices. Hence, both models can
easily be defined as special MAs and all our concepts and results for MAs are
applicable to these types of models as well. This is important, since it has already
been argued that both IMCs [Her02] and PAs [Seg95, Sto02b] are important
models for working with stochastically timed and probabilistic systems.

Definition 3.23 (PAs). A PA is an MA A = 〈S, s0, A, −֒→, ,AP, L〉 with
 = ∅.

Sometimes, PAs are assumed not to have any state labels. Clearly, this can
easily be achieved by taking AP = ∅.

Definition 3.24 (IMCs). An IMC is an MA A = 〈S, s0, A, −֒→, ,AP, L〉 such
that s a−֒→ µ implies that |supp(µ)| = 1.

For PAs, the set of extended transitions coincides with the set of interactive
transitions, and thus they can be used interchangeably.
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3.3 Isomorphism and bisimulation relations

It is often important to be able to say that two models are equivalent, for
instance when reducing a model before analysing it. After all, we do not want
to lose behaviour or change the properties of the model. Several behavioural
equivalences have already been defined for MAs, most importantly notions of
bisimulation. There is one important criterion that distinguishes them: some
equivalences require internal transitions to be mimicked (strong equivalences),
while others abstract from them (weak equivalences). Both types of bisimulation
relations have their own merits [BK08].

Strong equivalences preserve more properties; most importantly, they preserve
properties involving the length of a computation. Weak equivalences on the other
hand allow more aggressive state space reductions, but preserve only properties
that are oblivious to stuttering (repetition) of state labels and do not refer to
internal actions or computation length. For most of our techniques we are able
to prove a strong equivalence, showing that they can safely be applied while
preserving a large set of properties. For confluence reduction, we explicitly aim at
reducing the amount of internal behaviour; hence, a weak equivalence is needed.

3.3.1 Strong equivalences

We first discuss the two most important strong equivalences: isomorphism and
strong bisimulation.

Isomorphism. Isomorphism is the strongest equivalence on MAs that we con-
sider. For two models to be isomorphic, they have to be identical except for
state names.

Definition 3.25 (Isomorphism). Given an MA M = 〈S, s0, A, −֒→, ,AP,
L〉, two states s, t ∈ S are isomorphic (denoted by s ≈iso t) if there exists a
bijection f : S → S such that f(s) = t and

∀s′ ∈ S, α ∈ Aχ, µ ∈ Distr(S) . L(f(s′)) = L(s′) ∧ s′ −α→ µ⇐⇒ f(s′) −α→ µf

with µf as defined in Section 2.2.3. Two MAsM,M′ are isomorphic (denoted
byM≈isoM

′) if their initial states are isomorphic in their disjoint union.

Strong bisimulation. The notion of strong bisimulation we introduce is taken
from [EHZ10b], while adding support for state labels. Based on the traditional
notions of strong bisimulation [Mil89, LS91, SL95], it is the most straightforward
kind of bisimulation, equating any two states that cannot be distinguished. The
system is considered to be quite transparant, in the sense that it can observe
state labels, action labels and even internal transitions. Hence, bisimilar states
should have the same state label. Moreover, any α-labelled transition enabled
by one state should also be enabled by all bisimilar states, and all target states
of these transitions should again be bisimilar. More precisely, the probability
distributions of a transition and its mimicking transitions should assign the same
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probabilities to the equivalence classes of the state space under bisimulation (as
formalised by the relation ≡R, defined in Section 2.2.3).

Definition 3.26 (Strong bisimulation). Given an MA M = 〈S, s0, A, −֒→,
 ,AP, L〉, an equivalence relation R ⊆ S × S is a strong bisimulation forM if
for every (s, t) ∈ R and all α ∈ Aχ, µ ∈ Distr(S), it holds that L(s) = L(t) and

s −α→ µ =⇒ ∃µ′ ∈ Distr(S) . t −α→ µ′ ∧ µ ≡R µ′

Two states s, t ∈ S are strongly bisimilar (denoted by s ≈s t) if there exists a
strong bisimulation R forM such that (s, t) ∈ R. Two MAsM,M′ are strongly
bisimilar (denoted byM≈sM

′) if their initial states are strongly bisimilar in
their disjoint union.

It is easy to see that strong bisimulation is implied by isomorphism, by taking
R = {(s, t) ∈ S × S | t = f(s)} as the bisimulation relation associated with
an isomorphism f . We note that there are also notions of strong bisimulation
allowing convex combinations of transitions [Seg95]; we do not need to consider
these notions, as our procedures already preserve the current (stronger) variant
of strong bisimulation. As future work, it might be beneficial to define more
powerful reduction techniques that do take advantage of such a more liberal
notion of bisimulation.

The following proposition (taken from [EHZ10b]) states that strong bisimu-
lation is a congruence for parallel composition. It is of vital importance to the
rest of this thesis, since we will often transform components while preserving
strong bisimulation, prior to composing them in parallel.

Proposition 3.27. LetM1,M2 andM3 be MAs such thatM1 ≈sM2. Then,

M1 ||M3 ≈sM2 ||M3

It is easy to see that the validity of this proposition is not influenced by the fact
that our notion of strong bisimulation also requires state labels to coincide or by
our slightly different manner of synchronisation.

3.3.2 Weak equivalences

Often, from an outside perspective not all behaviour of a system is observable.
In action-based process algebras, the τ -action is used to model unobservable
behaviour. In state-based model checking, stuttering transitions (i.e., transitions
leaving the state labelling invariant) are assumed to be invisible. Since our
definition of MAs contains both action and state labels, we assume transitions
to be invisible if they are labelled by τ and their source state and all possible
target states have the same state labelling.

As mentioned before, it is often desirable to abstract from internal be-
haviour and consider systems to be equivalent if the visible transitions co-
incide. This insight resulted in many weak equivalences for LTSs and PAs,
among which weak bisimulation [Mil89, SL95, BH97, BS00, PLS00], and branch-
ing bisimulation [vGW96, SL95]. Weak bisimulation was also generalised to
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Figure 3.6: Weak transitions.

MAs [EHZ10b, EHZ10a, DH11, SZG12], but branching bisimulation not yet.
In order to understandably introduce branching bisimulation for MAs, we first
discuss weak transitions and then strengthen this concept to obtain branching
transitions and branching bisimulation.

Weak transitions. In the non-probabilistic process-algebraic setting, abstraction
from unobservable behaviour is formalised via the weak transition. A state s
can do a weak transition to s′ under an action a, denoted by s

a
=⇒ s′, if there

exists a path s −τ→ s1 −
τ→ . . . −τ→ sn −

a→ s′ with n ≥ 0 (often, also τ -steps after the
a-action are allowed, but this will not concern us). Traditionally, s

a
=⇒ s′ is thus

satisfied by an appropriate path.
In our setting of Markov automata, s

α
=⇒ µ is satisfied by an appropriate

scheduler. A scheduler S is appropriate if its final state distribution FS
M(s)

equals µ, and for every maximal path π that is scheduled from s with non-zero
probability, it holds that

trace(π) = L(s) τ L(s) τ L(s) . . . L(s) τ L(s) aX

where X is any state labelling. Hence, π always moves invisibly (with respect
to both action labels and state labels) to a state from which an α-transition is
possible, takes this transition and terminates.

Example 3.28. Consider the MA shown in Figure 3.6(a), and assume that
L(s) = L(t2) = L(t3) = L(t4). We demonstrate that s

α
=⇒ µ, with

µ(s1) =
8
24 µ(s2) =

7
24 µ(s3) =

1
24 µ(s4) =

4
24 µ(s5) =

4
24

To show the existence of this weak transition, we define a scheduler S such that

S(s) = {(s, τ,1t2) 7→ 2/3, (s, τ,1t3) 7→ 1/3}

S(t2) = {(t2, α,1s1) 7→ 1/2, (t2, τ,1t4) 7→ 1/2}

S(t3) = {(t3, α, {s4 7→ 1/2, s5 7→ 1/2}) 7→ 1}

S(t4) = {(t4, α,1s2) 7→ 3/4, (t4, α, {s2 7→ 1/2, s3 7→ 1/2}) 7→ 1/4}

S(t1) = S(s1) = S(s2) = S(s3) = S(s4) = S(s5) = 1⊥

Here we used S(s) to denote the choice made for every possible path ending in s.
The scheduler is depicted in Figure 3.6(b). Where it chooses probabilistically
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between two transitions with the same label, this is represented as a combined
transition. For instance, from t4 the transition (t4, α, {s2 7→ 1}) is selected with
probability 3/4, and (t4, α, {s2 7→ 1/2, s3 7→ 1/2}) with probability 1/4. This
corresponds to the combined transition (t4, α, {s2 7→ 7/8, s3 7→ 1/8}).

Clearly, all maximal paths enabled from s move invisibly to a state from
which they execute an α-transition and end directly afterwards.

The path probabilities can also be calculated. For instance,

PS
M,s(s −

τ,{t2 7→1}
−−−−−→ t2 −

τ,{t4 7→1}
−−−−−→ t4 −

α,{s2 7→1}
−−−−−−→ s2) =

2
3 · 1 ·

1
2 · 1 ·

3
4 · 1

= 6
24

PS
M,s(s −

τ,{t2 7→1}
−−−−−→ t2 −

τ,{t4 7→1}
−−−−−→ t4 −

α,{s2 7→1/2,s3 7→1/2}
−−−−−−−−−−−−−→ s2) =

2
3 · 1 ·

1
2 · 1 ·

1
4 ·

1
2

= 1
24

As no other maximal paths from s go to s2, and the scheduler always terminates
directly after these paths, we find that FS

M(s)(s2) =
6
24 + 1

24 = 7
24 = µ(s2).

Similarly, it can be shown that FS
M(s)(si) = µ(si) for every i ∈ {1, 3, 4, 5},

so indeed FS
M(s) = µ. �

Branching bisimulation. The notion of branching bisimulation for non-probabi-
listic systems was first introduced in [vGW96]. Basically, it relates states that
have an identical branching structure in the presence of τ -actions. Segala defined
branching bisimulation for PAs [SL95], which we generalise here to MAs using
the simplified notations of [Sto02a].

To introduce branching bisimulation, we need a restriction on weak transitions
to obtain the branching transition. Intuitively, a state s can do a branching
step s

α
=⇒R µ if there exists a scheduler that terminates according to µ, always

schedules precisely one α-transition (immediately before termination), does not
schedule any other visible transitions and does not leave the equivalence class
[s]R before doing an α-transition. Additionally, every state can do a branching
τ -step to itself. Due to the use of extended transitions as a uniform manner of
dealing with both interactive and Markovian transitions, this definition precisely
coincides with the definition of branching steps for PAs, as defined in [TSvdP11].

Definition 3.29 (Branching transitions). LetM = 〈S, s0, A, −֒→, ,AP, L〉
be an MA, s ∈ S, and R an equivalence relation over S. Then, s

α
=⇒R µ if

either (1) α = τ and µ = 1s, or (2) there exists a scheduler S such that

• FS
M(s) = µ;

• For every maximal path

s −
α1,µ1−−−→ s1 −

α2,µ2−−−→ . . . −
αn,µn−−−→ sn ∈ maxpathsSM(s)

it holds that αn = α. Moreover, for every 1 ≤ i < n we have αi = τ ,
(s, si) ∈ R and L(s) = L(si).

Example 3.30. The tree in Figure 3.6(b) visualised a weak transition s
α
=⇒ µ.

If for some equivalence relation R over the state space we find t2, t3, t4 ∈ [s]R,
then it also demonstrates s

α
=⇒R µ. �
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Based on branching transitions, we define branching bisimulation for MAs as
a natural extension of the notion of naive weak bisimulation from [EHZ10b]3.
Naive weak bisimulation is an intuitive generalisation of weak bisimulation from
PAs and IMCs to MAs. Naive weak bisimulation is implied by our notion
of branching bisimulation, as it is obtained by omitting the requirement that
(s, si) ∈ R for all 1 ≤ i < n, and allowing convex combinations of transitions.

Definition 3.31 (Branching bisimulation). Given an MA M = 〈S, s0, A,
−֒→, ,AP, L〉, an equivalence relation R ⊆ S × S is a branching bisimulation
for M if for every (s, t) ∈ R and all α ∈ Aχ, µ ∈ Distr(S), it holds that
L(s) = L(t) and

s −α→ µ =⇒ ∃µ′ ∈ Distr(S) . t
α
=⇒R µ′ ∧ µ ≡R µ′

Two states s, t ∈ S are branching bisimilar (denoted by s ≈b t) if there exists
a branching bisimulation R for M such that (s, t) ∈ R. Two MAs M,M′ are
branching bisimilar (denoted byM≈bM

′) if their initial states are branching
bisimilar in their disjoint union.

Note that, since each branching bisimulation relation R has the property that
(s, t) ∈ R implies L(s) = L(t), the condition “L(s) = L(si) for every 1 ≤ i < n”
in Definition 3.29 is already implied by (s, si) ∈ R, and hence does not explicitly
need to be checked for t

α
=⇒R µ′.

This notion of branching bisimulation has some appealing properties. First,
the definition is robust in the sense that it can be adapted to using s

α
=⇒R µ

instead of s −α→ µ in its condition. It turns out that this altered definition equates
exactly the same systems. Second, the relation ≈b induced by the definition is
an equivalence relation.

Proposition 3.32. LetM = 〈S, s0, A, −֒→, ,AP, L〉 be an MA. Then, an equi-
valence relation R ⊆ S × S is a branching bisimulation forM if and only if for
every (s, t) ∈ R and all α ∈ Aχ, µ ∈ Distr(S), it holds that L(s) = L(t) and

s
α
=⇒R µ =⇒ ∃µ′ ∈ Distr(S) . t

α
=⇒R µ′ ∧ µ ≡R µ′

Proposition 3.33. The relation ≈b is an equivalence relation.

Divergence sensitivity. If infinite paths of τ -actions can be scheduled with
non-zero probability, then minimal probabilities (e.g., of eventually seeing an
a-action) are not preserved by branching bisimulation. Consider for instance the
two systems in Figure 3.7.

Note that, for the system on the left, the a-transition is not necessarily ever
taken. After all, it is possible to indefinitely and invisibly loop through state

3Since our notion of branching bisimulation for MAs is just as naive as naive weak bisimu-
lation for MAs, we could have called it naive branching bisimulation. However, since naive
weak bisimulation for MAs is actually very related to weak bisimulation for PAs and IMCs, we
argue that it would have made more sense to omit the ‘naive’ in the existing notion of naive
weak bisimulation for MAs and prefix ‘smart’ to the existing notion of weak bisimulation for
MAs. Our terminology still leaves room for a notion of smart branching bisimulation.
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s0 s1
a

τ τ t0 t1
a

τ

Figure 3.7: Two systems to illustrate divergence.

s0 (diverge). For the system on the right, the a-transition cannot be avoided,
assuming that termination cannot occur in states with outgoing transitions (as
is always assumed by model checking tools). Still, these systems are branching
bisimilar, as invisible behaviour does not necessarily have to be mimicked. Hence,
branching bisimulation does not leave invariant all properties—in this case, the
minimal probability of traversing an a-transition.

To solve this problem, divergence-sensitive notions of bisimulation have been
introduced [BK08]. They force diverging states to be mapped to diverging states.
This concept can be used in the same way for Markovian branching bisimulation.
Since Markovian transitions already need to be mimicked, and the same holds
for transitions that change the state labelling (since these cannot stay within
the same equivalence class), divergence is defined as the traversal of an infinite
path π that contains only τ -actions and never changes the state labelling (i.e.,
a path π such that invisible(π)). We formalise divergence by the existence of a
scheduler that never terminates and only yields such paths.

Definition 3.34 (Divergence-sensitive relations). An equivalence relation
R ⊆ S×S over the states of an MAM is divergence sensitive if for all (s, s′) ∈ R
it holds that

∃S . ∀π ∈ finpathsSM(s) . invisible(π) ∧ S(π)(⊥) = 0

⇐⇒

∃S ′ . ∀π ∈ finpathsS
′

M(s′) . invisible(π) ∧ S ′(π)(⊥) = 0

where S ranges over all possible schedulers for M. Two MAs M1,M2 are
divergence-sensitive branching bisimilar, denoted by M1 ≈

div
b M2, if they are

branching bisimilar and the equivalence relation to show this is divergence sens-
itive.

Hence, if (s, s′) ∈ R and R is divergence sensitive, then s can diverge if and only
if s′ can. The proof of Proposition 3.33 can easily be extended to show that ≈div

b

is an equivalence relation as well.

Weak bisimulation. Earlier work [EHZ10b] introduced an intricate notion of
weak bisimulation for MAs, able to equate considerably more models than
the naive weak bisimulation on which our notion of branching bisimulation is
based. Our reduction techniques are not yet able to profit from the additional
power of this notion of weak bisimulation—they already preserve the much finer
notion of branching bisimulation presented above. Hence, we decided not to
present the weak bisimulation from [EHZ10b] here. As mentioned in [EHZ10b],
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Weak bisimulation [EHZ10b]

Naive weak bisimulation ([EHZ10b]) Divergence-sensitive weak bisimulation

([EHZ10b] + Sec. 3.3.2)

Branching bisimulation (Sec. 3.3.2) Divergence-sensitive naive weak bisimulation

([EHZ10b] + Sec. 3.3.2)

Divergence-sensitive branching bisimulation (Sec. 3.3.2)

Strong bisimulation ([EHZ10b] + Sec. 3.3.1)

Isomorphism (Sec. 3.3.1)

Figure 3.8: Hierarchy of equivalences for MAs.

though, systems equivalent according to naive weak bisimulation (and hence also
systems equivalent according to our notion of branching bisimulation) are also
equivalent according to weak bisimulation. Obviously, future work should focus
on developing reduction techniques that do benefit from the additional power of
this more involved concept.

Figure 3.8 summarises the equivalences that we introduced, together with the
notions of weak bisimulation and naive weak bisimulation from [EHZ10b] and
divergence-sensitive variants of them.

3.3.3 Property preservation by our notions of bisimulation

A notion of bisimulation is called sound with respect to a logic if bisimilar
systems satisfy the same properties in that logic, and it is called complete if
preservation of the same properties in the logic implies bisimulation. If a notion
of bisimulation is sound as well as complete with respect to a logic, we say that
it is characterised by that logic. For DTMCs and CTMCs such characterisations
were given in [BKHW05]. For probabilistic automata, it took several more years
to find a one-to-one correspondence [SZG11]. Often, we are already happy if a
notion of bisimulation is sound with respect to a logic4; after all, this implies that
we can safely replace systems by (hopefully smaller) bisimilar systems without
influencing the validity of their properties.

Since MAs are still a rather recent formalism, not many logics have been
defined for them so far. The only logic we are aware of is a variant of CSL
(Continuous Stochastic Logic) introduced in [HH12], containing operators for

4Since isomorphic systems are identical except for state names, they clearly satisfy the
same properties in any conceivable logic—as long as this logic cannot refer to the state names.
Hence, isomorphism is sound with respect to every such logic.
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unbounded and time-bounded reachability, but not dealing with expected times
or long-run averages as allowed by other variants of CSL for different mod-
els [BHHZ11] (see Section 9.2.1 for an explanation of these types of properties).
Additionally, there are no results yet on the relation between notions of bisim-
ulation for MAs and the logic of [HH12]. Instead, the notions of bisimulation
that have been defined were motivated by the fact that they coincide with their
corresponding notions for PAs and IMCs in case an MA does not have any rates
or probabilities, respectively [EHZ10b]. Hence, in these cases there does exist
a logic that is preserved. We discuss the preservation of logical properties by
strong bisimulation and branching bisimulation, for the subclass of PAs as well
as for IMCs.

Strong bisimulation. In the degenerate case of an MA actually being an IMC,
our notion of strong bisimulation coincides with the notion of strong bisimulation
for IMCs [HK09]. It is well-known that strongly bisimilar IMCs satisfy exactly the
same properties in the logic CSL, including time-bounded and unbounded reach-
ability probabilities, expected reachability times and long-run averages [NK07].

When restricting to action-based probabilistic automata, our notion of strong
bisimulation coincides with the notion of strong bisimulation from [SL95]. It was
shown there that systems that are equivalent according to this notion satisfy
exactly the same properties in an action-based variant of PCTL (Probabilistic
Computation Tree Logic). Additionally, when restricting to a state-based setting,
our notion is a strengthening of the strong bisimulation in [SZG11]. There, it was
shown that strongly bisimilar systems satisfy the same properties in state-based
PCTL∗ [BdA95].

Branching bisimulation. When restricting MAs to IMCs, we find that our notion
of branching bisimulation almost coincides with the notion of weak bisimulation
for IMCs [HK09]—our notion being slightly more restrictive with the branching
requirement. It was shown in [HK09] that this notion preserves maximal time-
bounded reachability properties (i.e., the probability of reaching a certain set
of goal states within a certain time bound, under the most optimal scheduler
maximising this probability, remains invariant). As always, minimal probabilities
are not preserved due to divergences. This problem was solved in [Her02] by
requiring bisimulation relations to be divergence sensitive, as later also used
in [SZG12] for MAs to deal with the indefinite ignoring of behaviour. Hence, if
we restrict our notion of branching bisimulation to be applied in a divergence-
sensitive manner, then we also preserve minimal reachability properties of IMCs.

When restricting to action-based probabilistic automata, our branching bi-
simulation coincides with Segala’s notion. He showed that branching bisimulation
preserves all properties that can be expressed in the probabilistic temporal logic
WPCTL (Weak Probabilistic Computation Tree Logic), provided that no infinite
path of τ -actions can be scheduled with non-zero probability [SL95]. Again, it
is well-known that this limitation to systems without divergences can be lifted
by introducing divergence sensitivity, as for instance used in [BDG06]. When
restricting to state-based probabilistic automata, our branching bisimulation
coincides with the notion of probabilistic visible bisimulation [Grö08] (except that
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we only require invisibility of transitions, whereas [Grö08] requires invisibility of
actions—i.e., they consider a transition invisible only if all transitions with the
same action label are invisible as well). In [Grö08], it was stated that systems
equivalent according to this notion preserve PCTL∗

\X (PCTL∗ without the ‘next’

operator).
All these logics that are preserved by weak or branching bisimulation are very

expressive, with the only limitation that a property cannot take into account the
action or state labelling in the next state. After all, trace lengths are cut back by
omitting irrelevant internal transitions. However, many interesting properties can
still be specified without a next operator, such as time-bounded and unbounded
reachability probabilities, expected reachability times and long-run averages.

We are mostly interested in time-bounded and unbounded reachability probabil-
ities, expected times to reachability and long-run averages for MAs. Although
not yet published, Sergey Sazonov from RWTH Aachen University showed that
strong bisimulation and branching bisimulation indeed preserve expected times
to reachability and long-run averages for MAs (in the absence of divergences).
For unbounded reachability probabilities it follows easily from the fact that
each MA can be transformed into a PA by changing rates to probabilities.
Since unbounded reachability probabilities in an MA correspond to reachabil-
ity probabilities in such an associated PA, and since branching bisimilar MAs
yield branching bisimilar PAs, the fact that branching bisimulation preserves
reachability probabilities in PAs implies that it preserves unbounded reachability
probabilities in MAs. We conjecture that time-bounded reachability probabilities
are preserved as well. For the subclass of IMCs it is a known result, and all
our case studies confirm this conjecture also for MAs containing probabilities.
It is additionally supported by the observation that our notion of branching
bisimulation is a strengthening of all notions of weak bisimulation for MAs
introduced thus far [EHZ10b, EHZ10a, DH11, SZG12].

3.4 Contributions

The main concepts concerning Markov automata, probabilistic automata and
interactive Markov chains are well-established in the field. Relevant citations
were already made throughout the section. Our presentation of these concepts
was inspired by the way Stoelinga rephrased Segala’s theory on probabilistic
automata [Sto02a].

The definition of branching bisimulation for MAs, introduced in Section 3.3,
and the corresponding Propositions 3.32 and 3.33, are original work, as well as
the discussion in Section 3.3.3.
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CHAPTER 4

Process Algebra for Markov Automata

“Whatever mathematical models are studied,
I believe that process calculi provide an

essential perspective for the study.”

Robin Milner

W
hile the models described in Chapter 3 are well-suited for formal
verification, they tend to be very large for any non-trivial system.

Hence, it is rather inconvenient and error-prone to model a specification
directly as an MA or one of its subclasses. Instead, many specification languages
have been introduced to model systems on a much higher level—just like pro-
gramming languages. Among the most prominent specification techniques in
model checking are process algebras : formal languages to describe behaviour in
terms of actions, allowing compositional modelling using parallel composition.

Related work. No full-fledged process algebra for MAs existed thus far. There
were already some modelling formalisms for probabilistic systems, but they often
suffer from two major deficiencies:

Restricted treatment of data. The focus of probabilistic process algebras has
mainly been on understanding random phenomena and the interplay
between randomness and nondeterminism. Data is mostly treated in a
restricted manner: probabilistic process algebras typically only allow a ran-
dom choice over a fixed distribution, and input languages for probabilistic
model checkers such as the reactive module language of PRISM [KNP11] or
the probabilistic variant of Promela [BCG04] only support basic data types,
but neither support more advanced data structures. To model realistic
systems, however, convenient means for data modelling are indispensable.
In the non-probabilistic world, µCRL [GP95] and LOTOS NT [GS98] are
able to handle advanced data structures.

State space explosion. In addition to the problem of a restricted treatment
of data, the state space explosion is always threatening the feasibility
of most model-based analysis techniques (including model checking).
After all, although parameterised probabilistic choice is semantically well-
defined [BDHK06], the incorporation of data yields a significant increase
of, or even an infinite, state space. However, current probabilistic min-
imisation techniques are not well-suited to be applied in the presence
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of data: aggressive abstraction techniques for probabilistic models (e.g.,
[DJJL01, dAR07, HMW09, KKLW07, KKNP10]) reduce at the model
level, but the successful analysis of data requires symbolic reduction tech-
niques. Such methods reduce stochastic models using syntactic trans-
formations at the language level, minimising state spaces prior to their
generation while preserving functional and quantitative properties (see for
instance [DKP13]). Other approaches that try to deal with data in an
efficient manner are two variants of probabilistic CEGAR (counterexample-
guided abstraction refinement) [HWZ08, KKNP09], as well as the probab-
ilistic guarded command language [MM99].

We refer back to Section 1.3 for a brief overview of the process algebras on which
our work is founded.

Our approach. We alleviate both problems mentioned above, allowing systems
with nondeterminism, probability and Markovian rates to be specified in an
efficient data-dependent manner.

We introduce a generalisation of the process-algebraic language µCRL [GP95],
named MAPA (Markov Automata Process Algebra), which treats data as a
first-class citizen and adds support for both probability and Markovian rates. To
the best of our knowledge, it is the first full-fledged process-algebraic language for
specifying MAs. The language contains a carefully chosen minimal set of basic
operators—on top of which syntactic sugar can be defined easily—and allows
data-dependent probabilistic branching as well as Markovian delays. Additionally,
operators for parallel composition, hiding, renaming and encapsulation allow a
modular approach to system specification. Also, because of its process-algebraic
nature, message passing can be used to define systems in a more modular manner
than with for instance the PRISM language.

To battle the state space explosion, MAPA has been developed in such a way
that reduction techniques can be defined rather easily. Our aim is to support
symbolic minimisation techniques that operate at the syntax level and reduce our
MAPA specifications in such a way that their underlying MAs become smaller
while remaining equivalent. To enable such symbolic reductions, we introduce the
MLPE: a generalisation of the linear process equations (LPEs) of µCRL [BG94b],
which are a restricted form of process equations akin to the Greibach normal form
in formal language theory, specifications in the language UNITY [CM88], and
the precondition-effect style used for describing I/O automata [LT89]. Like the
LPE for µCRL, these MLPEs allow for easy state space generation and parallel
composition. Also, they simplify the definition of syntactic reduction techniques
that either optimise state space generation or reduce the MA underlying a MAPA
specification prior to its generation.

Hence, instead of immediately instantiating a MAPA specification to an MA,
we always first transform the specification to an MLPE. Then, the corresponding
state space can be generated, but more often we will exploit the MLPE’s potential
for reduction and first transform it to an equivalent MLPE that will generate a
smaller (but still either strongly or branching bisimilar) MA. Figure 4.1 illustrates
the general concepts of this approach.



59

MAPA

MA0

MLPE1

MA1

MLPE2

MA2

instantiate

reducetransform

instantiate

≈s ≈s / ≈b

instantiate (optimised)

Figure 4.1: Efficient MA generation.

As some reduction techniques can be oblivious to the Markovian aspect of
MAs, it is much more convenient to only define them on prCRL: the subclass of
MAPA that does not contain Markovian rates. To support reduction techniques
to be defined on this subclass, we show how to encode a MAPA specification
into prCRL. Figure 4.2 illustrates this approach. We discuss under what circum-
stances transformations defined on prCRL can be used safely on encoded MAPA
specifications, in such a way that the decoded transformed specification is still
strongly bisimilar to the specification we started with. This requires a novel
notion of bisimulation on prCRL specifications, based on preservation of the
number of derivations for each transition. We immediately apply this paradigm
by defining a two-phase linearisation procedure to transform prCRL specifica-
tions into LPPEs (MLPEs without any Markovian rates) and showing that it
indeed can be applied to MAPA specifications as well. Similar linearisations
have been provided for plain µCRL [BP95], as well as a real-time variant [Use02]
and a hybrid variant [vdBRC06] thereof. Note that the procedure of encoding,
linearising and decoding can be substituted for the transform arrow in Figure 4.1.

In this chapter, we also introduce three basic reduction techniques that
optimise state space generation: constant elimination, expression simplification
and summation elimination. The next two chapters are concerned with two state
space reduction techniques based on the MLPE.

Organisation of the chapter. We first present the theoretical basics of process
algebras in Section 4.1. Then, we introduce our process algebra MAPA in
Section 4.2, presenting its syntax and semantics, defining the MLPE format
and showing how it can be restricted to obtain the probabilistic process algebra
prCRL. Also, this section demonstrates how to encode MAPA specifications
in prCRL and apply transformations on these encodings in such a way that
they are also valid for MAPA. Section 4.3 provides a procedure to linearise a
prCRL specification to LPPE and proves that it can also be applied to MAPA
specifications. Section 4.4 introduces an extension of MAPA with parallel com-

MAPA

MLPE

prCRL

LPPE

≈s

encode

linearise

decode
reducereduce

Figure 4.2: Linearising MAPA specifications using prCRL linerarisation.
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position, encapsulation, hiding and renaming, and shows how systems specified
using these constructs can be linearised as well. In Section 4.5 we exploit the
MLPE format to define the three basic reduction techniques. Finally, Section 4.6
concludes by summarising the contributions of this chapter.

Origins of the chapter. The results in this chapter on prCRL were first pub-
lished in the proceedings of the 10th International Conference on Application
of Concurrency to System Design (ACSD) [KvdPST10a] and a corresponding
technical report [KvdPST10b]. Later, they were published more extensively in
the journal Theoretical Computer Science [KvdPST12]. The language MAPA
was introduced afterwards, in the proceedings of the 23rd International Con-
ference on Concurrency Theory (CONCUR) [TKvdPS12a] and a corresponding
technical report [TKvdPS12b].

4.1 Process algebras

Before discussing our process algebra for MAs, we give a brief introduction to the
field of process algebras. We based our concepts and notations on the treatment
in [Fok07], and refer to that work for a more detailed discussion.

Each process algebra basically consists of two parts: a definition of its syntax
(the process terms that are allowed) and a definition of its semantics (the
meaning of its syntactic elements in terms of automata). Together, these two
aspects combine to allow us to specify automata more efficiently by means of
process-algebraic descriptions. Often, additionally axioms are introduced to
more easily equate process terms that yield bisimilar automata. We are not
concerned with such axioms, since we will justify our reduction techniques defined
on process-algebraic descriptions by proving that the underlying automata of an
original process term and its reduced variant are bisimilar.

4.1.1 Syntax: signatures and process terms

Process algebras are defined over a signature Σ = {f, g, . . . }, consisting of a
finite set of operators. Each operator f is equipped with an arity , denoted by
ar(f), indicating its number of arguments. Operators with arity zero are often
called constants, and operators with arity two are called binary operators .

In addition to the signature, a countable set of variables V = {x, y, z, . . . },
disjoint from Σ, is assumed. Based on a signature Σ and set of variables V ,
process terms can be constructed. Basically, they consist of operators applied to
as many arguments as prescribed by their arity.

Definition 4.1 (Process terms). Given a finite signature Σ and a countable
set of variables V , process terms over Σ and V are constructed recursively as
follows:

• Any variable v ∈ V is a process term;
• If f ∈ Σ and p1, p2, . . . , pn are process terms, with n = ar(f), then also

f(p1, p2, . . . , pn) is a process term.
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A process term is said to be open if it contains at least one variable, and closed
if it does not. Process terms containing binary operators, such as f(p1, p2), are
often written in infix notation, as in p1 f p2 or (p1 f p2). Constants in process
terms are often written without parentheses, i.e., as f instead of f().

Note that this is a rather simple view on process algebra. It provides a
basic and thorough framework for process algebras without any data, binding
operators or recursion; our MAPA language does contain such more complicated
constructs. Still, the current treatment provides a solid basis for understanding
various concepts such as SOS rules and proof trees.

Example 4.2. We define the syntax of a very simple process algebra, based on
CCS [Mil80]. It consists of one constant ∅ for the deadlock process, a binary
operator + for alternative composition and two unary operators a· and b· for
action prefix.

Formally, the signature of our process algebra is Σ = {∅,+, a·, b·}, with
ar(∅) = 0, ar(+) = 2 and ar(a·) = ar(b·) = 1. We assume a set of variables
V = {x, x′, y, y′}. Often, we just write an action name a to abbreviate a · ∅.

An infinite number of process terms can be constructed for this process
algebra, such as:

• a · ∅ (also written as a);

• +(a · ∅, b · ∅) (also written as a+ b);

• +(b · ∅, x) (also written as b+ x);

• +(a · (b · x),+(b, ∅)) (also written as (a · b · x) + (b+ ∅)).

The first two process terms are closed, whereas the last two are open. �

To transform an open process term into a closed one, substitutions can be
applied. This entails renaming variables to (either closed or open) process terms.

Definition 4.3 (Substitutions). Given a signature Σ and a countable set V
of variables, a substitution is a list σ = [x1 := q1, . . . , xn := qn], where xi ∈ V
and qi is a process term for each 1 ≤ i ≤ n.

Given a process term p and a substitution σ = [x1 := q1, . . . , xn := qn], we
define σ(p) inductively on the structure of p:

σ(x) =

{

qi if x = xi for some 1 ≤ i ≤ n

x otherwise

σ(f(p1, . . . , pn)) = f(σ(p1), . . . , σ(pn))

for any variable x ∈ V , process terms p1, . . . , pn and operator f ∈ Σ. We lift
this to sets of process terms P in the obvious way: σ(P ) = {σ(p) | p ∈ P}.

Given two vectors x = (x1, . . . , xn) and q = (q1, . . . , qn), we write [x := q]
as an abbreviation for the substitution σ = [x1 := q1, . . . , xn := qn].
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4.1.2 Semantics

To give meaning to closed process terms, they are mapped to a semantic model.
While our process algebra MAPA will map to the full spectrum of MAs, in this
introductory section we restrict to semantics in terms of LTSs. Hence, there
are no Markovian transitions, no state labels and all transitions have a Dirac
distribution to determine their next state.

We use structural operational semantics [Plo81] to provide the semantics of
process algebras, still assuming a signature Σ and a set V of variables. The basic
building blocks of an SOS specification are transitions between process terms.

Definition 4.4 (Process term transitions). Given a signature Σ and a set
of variables V , a process term transition is an expression of the form t −a→ t′,
such that

• a ∈ Σ is an action;
• t, t′ are (possibly open) process terms over Σ and V .

A process term transition is called open if it contains at least one variable,
otherwise it is closed.

Based on such process term transitions, the structural operational semantics
of a process algebra are given by a set of transition rules (also called SOS rules).

Definition 4.5 (Transition rules). Given a signature Σ and a set of variables
V , a transition rule is a structure of the form

TR
p1 p2 . . . pn

c

where every pi, as well as c, is a process term transition. For a transition rule as
above, the process term transitions pi are called its premises and the process term
transition c its conclusion. A transition rule is called closed if all its process
term transitions are closed.

Given a substitution σ, we write σ(TR) to denote the instantiated transition
rule

σ(TR)
σ(p1) σ(p2) . . . σ(pn)

σ(c)

where a substitution σ applied to a process term transition t −a→ t′ is meant to be
the process term transition σ(t) −a→ σ(t′).

Before formally defining how an LTS is obtained from a set of transition rules,
we first present the transition rules for our basic process algebra and informally
discuss their meaning.

Example 4.6. Figure 4.3 shows the transition rules for the simple process
algebra introduced in Example 4.2 over Σ = {∅,+, a·, b·} and V = {x, x′, y, y′}.
We use a variable v that ranges over the actions a, b, to prevent having to include
a copy of each rule. However, technically we just assume each rule to be present
twice, once with v = a and once with v = b. Due to the simplicity of our algebra,
all transition rules have at most one premise.
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ActPrefix
v · x −v−→ x

NChoiceL
x −v−→ x′

x+ y −v−→ x′ NChoiceR
y −v−→ y′

x+ y −v−→ y′

Figure 4.3: SOS rules for our basic process algebra.

Each rule (after having chosen any action for v) can be instantiated by
substituting closed process terms for (some of) x, x′, y and y, in such a way that
no closed process terms remain. For example, for v = a and the substitution
σ = [x := a · b, x′ := b, y := b · b · a], we obtain

σ(NChoiceL)
a · b −a−→ b

(a · b) + (b · b · a) −a−→ b

This means that if we can prove the transition a ·b −a→ b, then (a ·b)+(b ·b ·a) −a→ b
immediately follows from this rule. More precisely: the transition given by a
transition rule’s conclusion is derivable if all transitions given by its premises
are derivable.

The ActPrefix rule can be seen as our base case: it does not have any
premises. It states that every action prefix yields a transition labelled by that
action, and then transforms into the process that is prefixed by the action. The
NChoiceL and NChoiceR rules describe that the behaviour of x+ y consists
of the behaviours of x and y together: if x has a v-labelled transition to x′, then
so does x+ y. �

Formally, a transition p −v→ p′ follows from a proof (also called derivation).
This is a finite upwardly branching tree, i.e., a graph with a root node (drawn at
the bottom) that is connected to a finite number of children (upwards neighbours),
which in turn can have children, and so one. All nodes are labelled with process
term transitions, and a node is depicted to be connected to its children by
means of a horizontal line (as above in Example 4.6 and below in Example 4.8).
The idea is that each node, together with its children, is an instantiation of a
transition rule.

Definition 4.7 (Proofs). Given a signature Σ, a set of variables V and a set
of transition rules R = {Pi

ci
} for Σ and V , a proof for a closed process term

transition p −a→ p′ is a finite upwardly branching tree such that

• The root of the tree is p −a→ p′;
• For every node c, with set K of nodes directly above it, there is a transition

rule K′

c′ ∈ R and a substitution σ such that K = σ(K ′) and c = σ(c′).

In the process algebra presented in the examples above, as well as the MAPA
process algebra we define later on, all variables present in the premises of a
transition rule are also present in its conclusion. Hence, since the root r of the
tree is a closed process term transition, the restriction c = σ(c′) applied to c = r
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implies that all process term transitions directly above the root are also closed.
This argument can be repeated to see that a proof tree for our process algebras
will never contain any variables.

Example 4.8. To show (a · b) + (b · b · a) −a→ b, we provide the following finite
upwardly branching tree. The rule names on the right-hand side are officially
not part of the proof tree, but demonstrate how its correctness can be shown.

a · b −a→ b

(a · b) + (b · b · a) −a→ b
NChoiceL

ActPrefix

Indeed, the root of this tree is the transition we want to prove. The tree has two
nodes for which we have to show that they indeed arise for one of the transition
rules:

• First, let c = a · b −a→ b. It has no nodes directly above it, so K = ∅.
Choosing v = a, we find that rule ActPrefix equals K′

c′ with K ′ = ∅ and

c′ = a · x −a→ x. Taking σ = [x := b], indeed K = σ(K ′) and c = σ(c′).

• Second, let c = (a·b)+(b·b·a) −a→ b. It has one child; we findK = {a·b −a→ b}.

Choosing v = a, we find that rule NChoiceL equals K′

c′ with K ′ = {x −a→

x′} and c′ = x + y −a→ x′. Taking σ = [x := a · b, x′ := b, y := b · b · a],
indeed K = σ(K ′) and c = σ(c′). �

4.1.3 Alternative syntax descriptions

Whereas the notations above—based on an explicit signature—fit a very basic
process algebra, we often apply different techniques to easily specify more
complicated process algebras. The most important difference is the use of a
Backus-Naur form (BNF) definition of the syntax [BBG+63]. A BNF grammar
is a set of rules

p1 ::= P 1
1 | P 2

1 | . . . | P k1
1

. . .

pn ::= P 1
n | P 2

n | . . . | P kn
n

where each expression P i
j may contain operators (often called terminals in this

context) and the symbols p1, . . . , pn (called the non-terminals). The grammar
has a starting point, for instance p1, and generates a language consisting of all
terms that can be obtained by rewriting p1 into one of the expressions P i

1 and
then recursively rewriting all non-terminals in this expression according to their
rules. The set of process terms of the corresponding process algebra is then
precisely this language.

BNF more easily allows us to define a process algebra in which operators
also take parameters that are not process terms themselves.
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Example 4.9. A process term in our basic process algebra of Example 4.2 is
any term that can be generated by the following grammar:

p ::= ∅ | p+ p | v · p

where v ∈ {a, b}. Note that this grammar yields an infinite language. �

4.2 Markov Automata Process Algebra

We introduce Markov Automata Process Algebra (MAPA), a language based on
µCRL [GP95]. The process algebra µCRL allows the standard process-algebraic
constructs, such as nondeterministic choice and action prefix, to be used in
a data-rich context: processes are equipped with a set of variables over user-
definable data types, and actions can be parameterised based on the values of
these variables. Additionally, conditions can be used to restrict behaviour, and
nondeterministic choices over data types are possible. This enables efficient
modelling of many types of systems [BG94a, KS94, FGK97, GPW03, PS07].

MAPA adds two operators: a probabilistic choice over data types and a
Markovian delay. The language therefore features all constructs available in
MAs, and indeed we will show that MAPA specifications naturally map to MAs.
Both the probabilistic behaviour and the delays may depend on data parameters,
generalising the efficient way of modelling from µCRL to MAPA.

We assume an external mechanism for the evaluation of expressions (e.g.,
equational logic, or a fixed data language), able to handle at least boolean and
real-valued expressions. The data language contains variables and allows concrete
values to be substituted for these variables. Also, we assume that any expression
that does not contain variables can be evaluated to a concrete value. Note that
this restricts the expressiveness of the data language. In the examples we use an
intuitive data language, containing basic arithmetic and boolean operators.

4.2.1 Syntax

We generally refer to data types with upper-case letters D,E, . . . and to variables
with lower-case letters u, v, . . . . Vectors, sets of vectors and Cartesian products
are denoted in bold. We use {∗} to denote a singleton set with a dummy
element. As in Section 3.2, we still assume a countable universe of actions Act.
Additionally, we assume a set Proc of process names.

Definition 4.10 (Process terms). A process term in MAPA is any term that
can be generated by the following grammar:

p ::= Y (t) | c⇒ p | p+ p |
∑

x:D

p | a(t)
∑

•
x:D

f : p | (λ) · p

When omitting the (λ) · p construct, we obtain a process term in the language
prCRL (discussed in Section 4.2.5).
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Here, Y ∈ Proc is a process name, t a vector of data expressions, c a boolean
expression, x a vector of variables ranging over a countable1 type D, a ∈ Act
a (parameterised) atomic action, f a real-valued expression yielding values in
[0, 1], and λ an expression yielding positive real numbers (rates). All expressions
are allowed to contain variables—although later we will put some restrictions
on them, requiring each data variable to either be a process variable or to be
bound by a nondeterministic or probabilistic choice operator.

We write p = p′ only for syntactically identical process terms, not to relate
process terms with identical meaning but different syntax.

Remark 4.11. Not all possible process terms have meaning. Since this depends
on their context, we defer this issue to Section 4.2.2, where we specify several
well-formedness criteria. �

Given an expression t, a process term p, a vector of variable names x =
(x1, . . . , xn) and a vector of closed data expressions d = (d1, . . . , dn), we use
t[x := d] to denote the result of simultaneously substituting every xi in t
by di, and p[x := d] for the result of applying this to every expression in p
(only substituting each xi by di in expressions in p that do not occur within a
construct

∑

x:D or
∑
•

x:D such that xi is an element of x (not considering the
context of p)).

Example 4.12. The grammar above provides the MAPA language with an
infinite number of process terms. One of these is

∑

n:N

n < 3⇒ (2 · n+ 1) · send(n)
∑

•
x:{1,2}

x

3
: (Y (n+ x) + Z(n+ x))

For the expression t = x
3 we find t[x := 2] = 2

3 , and for the process term
p′ = Y (x) + Z(x) we find p′[x := 2] = Y (2) + Z(2).

Note that two of our operators (
∑

and
∑
• ) range over vectors of data

parameters. If a vector x is indeed nontrivial (i.e., it has more than one
element), then its accompanying data type D is a Cartesian product. This is
the case in the following process term:

∑

(m,i):{m1,m2}×{1,2,3}

send(m, i) · Y ()

�

To make it easier to understand the rest of this section, we already give a
very informal idea of the meaning of the operators. In Section 4.2.3 we will go
into more details, after having completed our discussion on the syntax.

In a process term, Y (t) denotes process instantiation, where t instantiates
Y ’s process variables as defined below. The term c ⇒ p behaves as p if the
condition c holds, and cannot do anything otherwise. The + operator denotes
nondeterministic choice, and

∑

x:D p a (possibly infinite) nondeterministic choice
over data type D. The term a(t)

∑
•

x:D f : p performs the action a(t) and then

1Although uncountable choice may be well-defined process-algebraically, this would not
work out for us as we want to provide semantics in terms of MAs.
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has a probabilistic choice over D. It uses the value f [x := d] as the probability
of choosing each d ∈D. Finally, (λ) · p behaves as p after a delay, determined
by a negative exponential distribution with rate λ.

Example 4.13. Consider again the first process term of Example 4.12. Intuit-
ively, it behaves as follows:

1. The variable n nondeterministically gets assigned any natural number.

2. If n < 3, then the process continues with a delay, governed by an exponential
distribution with rate 2 · n+ 1.

3. The process does the action send, parameterised by the number n that
was chosen earlier.

4. Probabilistically, x gets assigned a value from the set {1, 2}. Each value x
has probability x

3 to be chosen, so 1 has probability 1
3 and 2 has with

probability 2
3 . Note that, as expected and will be required later on, these

probabilities add up to 1.

5. Nondeterministically, the behaviour continues as either Y (n+x) or Z(n+x),
with the value chosen nondeterministically in the first step substituted
for n and the value chosen probabilistically in the previous step substituted
for x.

Combining all these steps, and in anticipation of the formal semantics that are
given later on, this yields the MA given in Figure 4.4, where each state ti behaves
as Y (i) + Z(i). The behaviour of these processes was not specified yet. �

We do not consider sequential composition of process terms (i.e., a term of
the form p · p). Already in the non-probabilistic case sequential composition

s0

s2s1 s3

t2t1 t3 t4

3
1 5

1
3

2
3

1
3

2
3

1
3

2
3send(0) send(1) send(2)

Figure 4.4: Semantics of the first process term of Example 4.12.
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significantly increases the difficulty of linearisation (especially when using recur-
sion) [Use02]. Therefore, it would distract from our main purpose: combining
probabilities and Markovian rates with data. Moreover, many specifications
can easily be written without sequential composition (as long as action prefix is
present). Actually, [Use02] even showed that all sequential composition can be
encoded by means of data.

We now formally introduce MAPA specifications. They consist of a set of
process equations (defining behaviour for processes that can again be instantiated
by other processes) and an initial process.

Definition 4.14 (Specifications). A MAPA specification is given by a tuple
M = ({Xi(xi : Di) = pi}, Xj(t)) consisting of a finite set of uniquely-named
processes Xi, each defined by a process equation Xi(xi : Di) = pi, and an initial
process Xj(t) with t a vector of closed data expressions. Here, xi is a vector of
process variables2 with type Di, and pi (the right-hand side) is a process term
specifying the behaviour of Xi.

A variable v in an expression in a right-hand side pi is bound if it is an
element of xi or it occurs within a construct

∑

x:D or
∑
•

x:D such that v is an
element of x. Variables that are not bound are said to be free.

We generally refer to process terms with lower-case letters p, q, r, and to
processes with capitalsX,Y, Z. Also, we writeX(x1 : D1, . . . , xn : Dn) instead of
X((x1, . . . , xn) : (D1×· · ·×Dn)). Finally, for brevity we often abuse notation by
interpreting a single process equation as a specification (additionally mentioning
the initial state if this is not clear from the context).

Example 4.15. The first process term introduced in Example 4.12 can be made
into a proper MAPA specification by using it as a right-hand side of a process,
adding behaviour for the processes Y and Z, and specifying an initial state.
Hence, we obtain for instance the specification M = (Procs, X), where Procs is
the set of process equations

X =
∑

n:N

n < 3⇒ (2 · n+ 1) · send(n)
∑

•
x:{1,2}

x

3
: (Y (n+ x) + Z(n+ x))

Y (y : N) = beep(y)
∑

•
x:{1}

1 : Y (y)

Z(z : N) = ring(z)
∑

•
x:{1}

1 : Z(z) �

Syntactic sugar. For notational ease, we define some syntactic sugar. First,
given a process name X and an action a, we write X instead of X() and a instead
of a(). Second, given a process p and a (possibly parameterised) action a(t), we
write a(t) · p as an abbreviation for the process term a(t)

∑
•

x:{1} 1 : p, where x is

2Note that we use the term process variables to denote data variables within a process (like
a class variable is a variable within a class in object-oriented programming), not to denote
variables referencing processes.
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a fresh variable, not occurring freely in p. Third, for finite probabilistic sums we
introduce the notation

a(t)(u1 : p1 ⊕ u2 : p2 ⊕ · · · ⊕ un : pn)

for the process term that executes the action a(t) and then behaves as process
term pi with probability ui. This could be modelled in MAPA as the process
term a(t)

∑
•

x:{1,...,n} f : p, where x is chosen such that it does not occur freely

in any pi, the probability expression f is such that f [x := i] = ui for every
1 ≤ i ≤ n, and p is given by (x = 1⇒ p1) + (x = 2⇒ p2) + · · ·+ (x = n⇒ pn).

4.2.2 Static semantics

Not all syntactically correct MAPA specifications are meaningful. The follow-
ing definition formulates additional well-formedness conditions. The first two
constraints ensure that a specification does not refer to undefined variables
or processes, the third is needed to obtain valid probability distributions, and
the fourth ensures that the specification has a unique solution (modulo strong
probabilistic bisimulation).

Additionally, all outgoing rates should be finite. This requirement is discussed
in Remark 4.28, after providing the operational semantics and MLPE format—
it is not easily defined statically, since it cannot be checked locally due to
Markovian delays possibly being nested within several nondeterministic choices
and conditions and hence depending on the operational semantics of these
operators.

To define well-formedness, we require the concept of unguardedness. We
say that a process term Y (t) can go unguarded to Y . Moreover, c⇒ p can go
unguarded to Y if p can, p+ q if either p or q can, and

∑

x:D p if p can, whereas
a(t)

∑
•

x:D f : p and (λ) · p cannot go unguarded anywhere.

Definition 4.16 (Well-formedness). A MAPA specification

M = ({Xi(xi : Di) = pi}, Xj(t))

is well-formed if the following four constraints are all satisfied:

1. None of the right-hand sides pi contains a free variable.

2. There are no instantiations to undefined processes. That is, for every
instantiation Y (t′) occurring in some right-hand side pi, there exists a
process equation (Xk(xk : Dk) = pk) such that Xk = Y and t′ is of
type Dk. Also, the vector t used in the initial process is of type Dj .

3. The probabilistic choices are well-defined. That is, for every construct
a(t)

∑
•

x:D f : p occurring in a right-hand side pi we have

∑

d∈D

f [x := d] = 1
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for every possible valuation of the free variables in f [x := d] (the summation
now used in the mathematical sense)3.

4. There is no unguarded recursion4. That is, for every process Y , there is no
sequence of processes X1, X2, . . . , Xn (with n ≥ 2) such that Y = X1 = Xn

and pj can go unguarded to Xj+1 for every 1 ≤ j < n.

We assume from now on that every MAPA specification is well-formed.

Note that the first two and the last requirement are easily checked statically.
The third requirement is undecidable in general, but could of course simply be
checked on-the-fly during state space generation.

Example 4.17. As an example of a well-formed MAPA specification, we con-
sider a system that first writes the number 1, and then continuously writes
natural numbers (excluding zero) in such a way that the probability of writ-
ing n is each time given by 1

2n . This system can be modelled by the MAPA
specification M = ({X}, X(1)), where X is given by

X(n : N+) = write(n)
∑

•
m:N+

1
2m : X(m)

We demonstrate that all four well-formedness rules are satisfied:

1. The right-hand side contains two variables: n and m. The variable n is
bound since it is a process variable of X. The variable m is bound since it
only occurs within the construct

∑
•

m:N+ .

2. There is one process instantiation: X(m). Indeed, there is a process
equation for this process, namely X(n : N+) = . . . , and m is of type N

+.
Also, the initial parameter value 1 is of type N

+, as required.

3. There is one probabilistic choice in the specification:
∑
•

m:N+
1
2m . Indeed,

∑

d∈N+

1
2m [m := d] =

∑

d∈N+

1
2d

= 1

where the last step is well-known in mathematics since it concerns the
geometric series.

4. There is one process: X. The only way for this process to yield unguarded
recursion, would be to go unguarded to itself. However, X always starts
with an action, and hence cannot go anywhere unguarded.

Note that the data types in MAPA specifications can be countably infinite.
Also, probabilistic choices over countably infinite domains are allowed. Hence,
countably infinite branching may occur, as long as no infinite exit rates are
present. Since this is a semantic well-formedness rule, we will come back to
it in Remark 4.28. �

3We could be slightly more liberal, only requiring this for all reachable valuations of the
free variables in f [x := d].

4This constraint could be relaxed a bit, as contradictory conditions of the processes may
make an unguarded cycle harmless.
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Inst
p[x := d] −α−→D β

Y (d) −α−→InstD β
if Y (x : D) = p Cond

p −α−→D β

true⇒ p −α−→CondD β

NChoiceL
p −α−→D β

p+ q −α−→NChoiceLD β
NChoiceR

q −α−→D β

p+ q −α−→NChoiceRD β

NSum(d)
p[x := d] −α−→D β

∑

x:D p −α−→NSum(d)D β
if d ∈ D MStep

−

(λ) · p −λ−→〈MStep〉 p

PSum
−

a(t)
∑

•
x:D

f : p −
a(t)
−−→〈PSum〉 µ

where µ(p[x := d]) =
∑

d′∈D
p[x:=d]=p[x:=d′]

f [x := d
′], for every d ∈ D

Figure 4.5: SOS rules for MAPA.

4.2.3 Operational semantics

We now formally define the operational semantics of well-formed MAPA specific-
ations in terms of MAs. Most importantly, we explain how a MAPA specification
is translated to a set of interactive transitions p a−֒→ µ and a set of Markovian
transitions p λ

 p′. We define these sets in a two-phase manner: our SOS rules
first provide derivations that can be either interactive or Markovian. Later, in
Definition 4.22 we show how to obtain the sets −֒→ and  from these derivations.
The need to keep track of derivations is due to the well-known fact that the
multiplicity of Markovian transitions is important when giving semantics to a
Markovian process algebra [HHK02].

The SOS rules that define our semantics are provided in Figure 4.5, where
p, q are process terms, λ ∈ R

>0 is a rate, a ∈ Act is an action, α is either a
(possibly parameterised) action or a rate, t is a vector of data expressions, f is
a real-valued expression, Y is a process name, x is a vector of variables, D is
a vector of data types, β is either a process term or a probability distribution
over process terms, and D is a sequence of SOS rule names (representing the
derivation).

The intuition behind the rules is as follows:

Inst. The behaviour of a process term Y (d) depends on the right-hand side p
of the process Y , substituting the actual parameters d of the instantiation
for the process variables x of Y . Hence, if p[x := d] can do a transition,
then so can Y (d).

Cond. The behaviour of a process term c⇒ p is guarded by its condition c. If
c holds, then c⇒ p behaves precisely as p; otherwise, it does not have any
behaviour.

NChoiceL / NChoiceR. The behaviour of a process term p+q is the union of
the behaviours of p and q. Hence, if either p or q can carry out a transition,
then so can p+ q.

NSum(d). The behaviour of a process term
∑

x:D p depends on p, which may
contain variables from the vector x. All behaviours that are possible by
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substituting the variables of x by any of their possible values from D

are also enabled by
∑

x:D p. That is, every transition of p[x := d], with
d ∈D, is possible from

∑

x:D p.

MStep. The behaviour of a process term (λ) · p does not depend on anything.
It can just do a Markovian delay with rate λ and continue as p, and hence

we can immediate derive (λ) · p −λ→〈MStep〉 p.

PSum. The behaviour of a process term a(t)
∑
•

x:D f : p can also be obtained
immediately. It can execute its a(t) action, and continue as p. However, p
may contain free variables from the vector x, which are instantiated
according to the probability distribution implied by f . More concretely:
the probability to instantiate x by d ∈ D is given by f [x := d]. Hence,
we would be tempted to say that the probability to continue as p[x := d]
is f [x := d], but that is not correct. After all, there could well be
several different valuations for x that all yield the same continuation.
So, for any d ∈ D, the probability to continue as p[x := d] (denoted by
µ(p[x := d])) is given by the sum of the probabilities f [x := d′] for all
values d′ ∈ D such that p[x := d] = p[x := d′]. (The need for summing
probabilities of equal processes was already observed in [YL92].)

We note that the + operator could not be omitted from the basic set of
MAPA constructs, even though it may seem similar to the

∑
operator. After

all, it can be observed from the operational semantics that a process term such
as a+ b cannot be expressed by means of the

∑
operator.

The following proposition states the validity of the PSum rule.

Proposition 4.18. The target µ of every transition derived using the SOS-rule
PSum is a probability distribution over closed process terms.

Compared to non-Markovian process algebras, our SOS rules are slightly
more complicated: in addition to providing transitions from process terms to
process terms, they also keep track of the proof tree that is employed to derive
that transition. Since all of our SOS rules have at most one premise, each proof
tree is actually just a linear sequence of nodes, which can be identified by the SOS
rules that they instantiate. We call such a sequence of SOS rules a derivation,
and write ∆ for the set of all derivations. We construct the derivation as part of
the transition, by adding it as a subscript to the transition relation—it is needed
later to construct the Markovian transitions. Note that NSum is instantiated
with a data element to keep track of the specific substitution that was performed
to obtain a transition using this rule.

The SOS rules yield a transition p −α→D β (note that this is not an extended
transition but a new concept) if we can find a proof for it, precisely as in
Definition 4.7. The target β can be either a probability distribution or a single
state, depending on whether the derivation contains an MStep or a PSum rule.

Example 4.19. We show that the SOS rules yield the transition

(λ1) · q +
∑

n:{1,2,3}

n < 3⇒ (λ2) · q −
λ2−→〈NChoiceR,NSum(1),Cond,MStep〉 q
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For this, consider the following proof tree:

−

(λ2) · q −
λ2−→〈MStep〉 q

1 < 3⇒ (λ2) · q −
λ2−→〈Cond,MStep〉 q

∑

n:{1,2,3} n < 3⇒ (λ2) · q −
λ2−→〈NSum(1),Cond,MStep〉 q

(λ1) · q +
∑

n:{1,2,3} n < 3⇒ (λ2) · q −
λ2−→〈NChoiceR,NSum(1),Cond,MStep〉 q

NChoiceR

NSum(1)

Cond

MStep

Indeed, every node together with its upwards neighbour is an instantiation of an
SOS rule (depicted on the right between each pair of nodes). Hence, this tree is
a valid proof for the transition that is given as its root node.

Note that the name of each SOS rule that is applied is also mentioned as part
of the transition. Hence, the derivation is present twice: on the right-hand side
of the proof tree as well as subscripted to the transition. We could have omitted
the names on the right of the tree, but chose to keep them to stay closest to the
notation of Example 4.8. �

Traditionally, these transitions p −α→D β generated by the SOS rules are
the transitions of the underlying LTS. In our case, however, they are only an
intermediate step. They are used to define the sets of interactive and Markovian
transitions of the underlying MA, as explained in detail below.

Interactive transition relation. The interactive transition relation of the un-
derlying MA of a MAPA specification is constructed trivially based on the
transitions arising from the SOS rules: there is an interactive transition p a−֒→ µ
for every transition p −α→D µ that can be proven using the SOS rules.

Markovian transition relation. The Markovian transition relation is also con-
structed based on the transitions arising from the SOS rules. However, now
the number of different derivations for transitions between two process terms
is taken into account. To see why this is needed, consider a process term like
(5) · p+ (5) · p. The SOS rules provide two different ways of demonstrating that
this process term can go to p with rate 5. We can prove both

(5) · p+ (5) · p −5→〈NChoiceL,MStep〉 p and (5) · p+ (5) · p −5→〈NChoiceR,MStep〉 p

While in traditional process algebra this would just yield a single transition
(5) · p+ (5) · p −5→ p, that is not correct in our situation. Instead of having a
rate of 5 to go to p, this process term must act with a rate of 10. After all, the
minimum of two exponential distributions is distributed exponentially with the
sum of the rates (as discussed in Section 2.2.4). This issue has been recognised
before, leading to state-to-function transition systems [LMdV12], rate transition
systems [DLLM09], multi-transition systems [Hil05], and derivation-labelled
transitions [Pri95], to mention a few. Our approach is based on the latter.

First, we define MD(p, p′) to be the set of Markovian derivations from p to p′,
given by pairs consisting of a rate and a derivation.
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Definition 4.20 (Derivations). Given two process terms p, p′, we define

MD(p, p′) = {(λ,D) ∈ R
>0 ×∆ | p −λ→D p′}

to be the set of pairs (λ,D) such that there is a transition p −λ→D p′ that can be
proven by our SOS rules.

Example 4.21. Consider again the process term

p = (λ1) · q +
∑

n:{1,2,3}

n < 3⇒ (λ2) · q

In Example 4.19 we already showed that p −λ2−→D q, with

D = 〈NChoiceR,NSum(1),Cond,MStep〉

In the same way, we can find one other derivation D′ with rate λ2 using NSum(2),

and finally p −λ1−→D′′ q with D′′ = 〈NChoiceL,MStep〉. Since these are the only
Markovian derivations from p to q, we find

MD(p, q) = {(λ2,D), (λ2,D
′), (λ1,D

′′)} �

Now, the total rate from a process term p to a process term q can easily be
obtained by summing all rates in MD(p, q).

Based on the observations above, we now formally define the operational se-
mantics of a well-formed MAPA specification.

Definition 4.22 (Operational semantics). The semantics of a MAPA spe-
cification

M = ({Xi(xi : Di) = pi}, Xj(t))

is an MAM = 〈S, s0, A, −֒→, ,AP, L〉, where

• s0 = Xj(t);
• −֒→ is the smallest relation such that p α−֒→ µ if there exists a D ∈ ∆ for

which p −α→D µ holds;
•  is the smallest relation such that p λ

 p′ if MD(p, p′) 6= ∅ and

λ =
∑

(λ′,D)∈MD(p,p′)

λ′

• L(s) = {a ∈ A \ {τ} | ∃s′ ∈ S . s a−֒→ s′},

and S, A and AP are the smallest sets such that s0, −֒→ and  are well-defined.

Note that we cannot give S explicitly based on a specification, as its reachable
states cannot be determined statically. Therefore, also the set of actions A
and hence the set of atomic propositions AP can only be constructed by first
computing the reachable state space.
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Also note that we may obtain infinite rates, if the MAPA specification is not
constructed carefully. We discuss in Remark 4.28 how to check for this.

Remark 4.23. We chose the state labelling in such a way that each state is la-
belled by the set of actions that it enables. This may seem restrictive, since during
model checking we may also be interested in the values of some of the global vari-
ables. However, we will see in Section 4.2.4 that any condition over the global vari-
ables can easily be encoded by the enabledness of an action (see Remark 4.29).

Note that this implies that none of the proofs showing strong bisimulation for
MAPA need to be concerned with the state labelling. After all, since (s, t) ∈ R
implies that all transitions from s can be mimicked by t and vice versa, clearly s
and t enable the same actions and hence L(s) = L(t). �

Example 4.24. Continuing with Example 4.21, we find that there is a transition
from p to q with rate λ = λ1 + 2λ2. �

Equivalent MAPA specifications. Given a MAPA specification M and its under-
lying MAM, two process terms in M are isomorphic if their corresponding states
in M are isomorphic. Two specifications with underlying MAs M1,M2 are
isomorphic ifM1 is isomorphic toM2. Bisimilar process terms and specifications
are defined in the same way.

Associativity of nondeterministic sums. It can easily be seen from our opera-
tional semantics that nondeterministic sums are associative, i.e., (p+ q) + r and
p+ (q + r) yield the same transitions. The derivations differ, having for instance
〈NChoiceR,NChoiceL〉 instead of 〈NChoiceL,NChoiceR〉 for choosing q,
but the resulting MAs will not be any different as the number of derivations does
not change. Hence, instead of writing 〈NChoiceL,NChoiceR〉 for choosing q
in (p+ q) + r, we could also omit the parentheses and write 〈NChoice(2)〉 for
choosing q in p+ q+ r. So, we will often just write p+ q+ r without parentheses.

Congruences. Although not specifically needed for the results in this work, it
can be shown that strong bisimulation is a congruence for all MAPA operators,
along the same lines as the proof of Proposition 4.35. Just like weak bisimulation
is not a congruence for IML [Her02], branching bisimulation is not a congruence
for MAPA. After all, while a · p ≈b τ · a · p, we have a · p+λ · p 6≈b τ · a · p+λ · p.
We leave it for future work to consider weak congruences for MAPA (as already
suggested in [EHZ10b]).

4.2.4 Markovian Linear Process Equations

In the non-probabilistic setting, a restricted version of µCRL is captured by
the LPE format [BG94b]. It is well-suited for formal manipulation, state space
generation and parallel composition. In the purely functional setting of LTSs,
LPEs provided a uniform and simple format for the data-rich process algebra
µCRL. As a consequence of this simplicity, the LPE format was essential for
theory development and tool construction. It led to elegant proof methods, like
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the use of invariants for process algebra [BG94b], and the cones and foci method
for proof checking process equivalence [GS01, FPvdP06]. It also enabled the
application of model checking techniques to process algebra, such as optimisations
from static analysis [GL01] (including dead variable reduction [vdPT09a]), data
abstraction [VvdP07], distributed model checking [BLvdPW11], symbolic model
checking (either with BDDs [BvdP08] or by constructing the product of an
LPE and a parameterised µ-calculus formula [GM98, GW05]), and confluence
reduction [BvdP02] (a variant of partial order reduction). In all these cases, the
LPE format enabled a smooth theoretical development with rigorous correctness
proofs (often checked in PVS), and a unifying tool implementation. It also
allowed the cross-fertilisation of the various techniques by composing them as
LPE to LPE transformations.

A µCRL specification is in LPE format if it consists of only one process and
has the following structure:

X(g : G) =
∑

d:D
c1 ⇒ a1(b) ·X(n)

+
∑

d:D
c2 ⇒ a2(b) ·X(n)

. . .

+
∑

dk:Dk
ck ⇒ ak(bk) ·X(nk)

Each of the k components is called a summand . The conditions ci, action para-
meters bi and next-state vectors ni may all depend on the process variables g and
on di. The LPE corresponds to the well-known precondition-effect style [LT89].

As each summand contains only one action and then immediately has a
recursive call, the values of the process variables g completely characterise the
state of an LPE. Hence, a valuation of g is often called a state vector (possibly
empty), and the process variables are also called the LPE’s global variables . The
variables di are often called a summand’s local variables ; these may be absent.

Each summand potentially gives rise to several transitions: it may be enabled
for many different valuations of the global variables g, and hence produce
transitions in multiple states. Additionally, even per state a summand may yield
more than one transition, due to its local nondeterministic choice.

Sometimes, the LPE format is more compactly represented as

X(g : G) =
∑

i∈I

∑

di:Di

ci ⇒ ai(bi) ·X(ni)

Example 4.25. Consider a system consisting of two buffers, B1 and B2. Con-
tinuously, buffer B1 reads a message of type D from the environment, and
sends it synchronously to buffer B2. Then, B2 writes the message back to the
environment. The following LPE has exactly this behaviour when initialised
with a = 1 and b = 1 (x and y can be chosen arbitrarily):

X(a : {1, 2}, b : {1, 2}, x : D, y : D) =
∑

d:D a = 1 ⇒ read(d) ·X(2, b, d, y) (1)

+ a = 2 ∧ b = 1⇒ comm(x) ·X(1, 2, x, x) (2)
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+ b = 2 ⇒ write(y) ·X(a, 1, x, y) (3)

The first summand models B1’s reading, the second the inter-buffer commu-
nication, and the third B2’s writing. The global variables a and b are used as
program counters for B1 and B2, and x and y for their local memory. �

We generalise the LPE format to a restricted format for our MAPA language.
As it should easily be mapped onto MAs, it should follow the concept of non-
deterministically choosing between rates and actions. Hence, we need Markovian
and interactive summands, mirroring the fact that MAs have Markovian and
interactive transitions. The rate transitions should have unique target states,
whereas the state after an interactive transition should be determined probabil-
istically. Therefore, a natural generalisation of the LPE to the Markovian world
is the format given by the following definition.

Definition 4.26 (MLPEs). A Markovian linear process equation (MLPE) is
a MAPA specification of the following format:

X(g : G) =
∑

i∈I

∑

di:Di

ci ⇒ ai(bi)
∑

•
ei:Ei

fi : X(ni)

+
∑

j∈J

∑

dj :Dj

cj ⇒ (λj) ·X(nj)

The first |I| nondeterministic choices are referred to as interactive summands,
the last |J | as Markovian summands.

The expressions ci, bi, fi and ni may depend on g and di, and fi and ni also
on ei. Similarly, cj , λj and nj may depend on g and dj . Often, we write ci(g

′,d′
i)

for ci[(g,di) := (g′,d′
i)], and we use similar shorthands for the other expressions.

As an MLPE consists of only one process, an initial process X(v) can be
represented by its initial vector v. Often, we will use the same name for the
specification of an MLPE and the single process it contains. Also, we sometimes
use X(v) to refer to the specification X = ({X(g : G) = . . . }, X(v)).

Operational semantics. Since a state vector g′ ∈ G completely characterise the
state of an MLPE, we can simplify the underlying MA by identifying each state
by g′ instead of X(g′). The initial state is the initial vector.

Since an MLPE is a MAPA specification, its semantics are given by the SOS
rules in Table 4.5. However, due to the strict structure of an MLPE, we can
simplify to explicit non-recursive semantics. It immediately follows from the
SOS rules that for all g′ ∈ G, there is a transition g′ a(q)−֒−−→ µ if and only if for
at least one summand i ∈ I there is a local choice d′

i ∈Di such that5

ci ∧ ai(bi) = a(q) ∧ ∀e′i ∈ Ei . µ(ni[ei := e′i]) =
∑

e′′
i ∈Ei

ni[ei:=e′
i]=ni[ei:=e′′

i ]

fi[ei := e′′i ]

5Note that for the variables g, di and ei we use the primed notations g′, d′
i
, e′

i
and e′′

i
to

denote specific values for these variables. We will often use this convention of having unprimed
letters denote variables and primed letters denote possible valuations for them.
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where, for readability, the substitution [(g,di) := (g′,d′
i)] is omitted from ci, bi,

ni and fi. Additionally, there is a transition g′ λ
 g′′ if and only if λ > 0 and

λ =
∑

(j,d′
j)∈J×Dj

cj∧nj=g′′

λj

omitting the substitution [(g,dj) := (g′,d′
j)] from cj , nj and λj .

Example 4.27. Consider the following system, continuously sending a random
element of a finite type D after waiting for an exponentially distributed time:

X = (5) · choose
∑

•
x:D

1
|D| : send(x) ·X

Now consider the following MLPE, where d′ ∈ D was chosen arbitrarily. It
is easy to see that X is isomorphic to Y (1, d′). Note that d′ could be chosen
arbitrarily, since it is overwritten before used.

Y (pc : {1, 2, 3}, x : D) = pc = 1⇒ (5) · Y (2, x)

+ pc = 2⇒ choose
∑
•

d:D
1

|D| : Y (3, d)

+ pc = 3⇒ send(x)
∑
•

y:{1} 1 : Y (1, d′) �

The first summand is Markovian, whereas the other two are interactive. Taking
D = {a, b} and d′ = a, and applying the semantics defined above, we obtain the
following MA:

1, a

2, a

3, a 3, b

5

1
2

1
2choose

send(a) send(b)

Obviously, the earlier defined syntactic sugar also applies to MLPEs; we can write
send(x) · Y (1, d′) in the second summand. However, as we define linearisation
only on the basic operators, we will often keep writing the full form.
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Remark 4.28. We already noted in Section 4.2.2 that MAPA specifications are
not allowed to have infinite outgoing rates (since this is not allowed by MAs),
although at that point we could not yet make this precise. With the MLPE
format, though, it is much easier to define and heuristically check this.

For the semantics to be an MA with finite outgoing rates, we can now require
that for every Markovian summand j ∈ J and every reachable state g′ ∈ G,

∑

d′
j∈Dj

cj(g
′,d′

j)

λj(g
′,d′

j) <∞

That is, for each reachable state g′ ∈ G and each Markovian summand j, the
Markovian transitions that may be generated in g′ ∈ G by j should add up to a
finite number.

One way of enforcing this syntactically is to require all data types in
Markovian summands to be finite. For the MLPE in Example 4.27, this is
indeed the case. Note, however, that this restriction would disallow an MLPE
having a Markovian summand such as

∑

n:N

( 1
2n ) ·X(n)

even though it is well-formed. �

Remark 4.29. For any MAPA specification in the MLPE format, it is trivial to
encode a condition c over its global variables g by the enabledness of an action,
as mentioned in Remark 4.23. We just add a single summand to the MLPE,
having c as its enabling condition, obtaining

X(g : G) =
∑

i∈I

∑

di:Di

ci ⇒ ai(bi)
∑

•
ei:Ei

fi : X(ni)

+
∑

j∈J

∑

dj :Dj

cj ⇒ (λj) ·X(nj)

+ c ⇒ conditionReached
∑

•
x:{∗}

1 : X(g)

Clearly, X behaves precisely the same as without the final summand, except
that there is a selfloop labelled conditionReached in every state such that the
global variables satisfy condition c. Of course we should be careful never to
hide the action conditionReached (renaming it to τ), as in combination with
the maximal progress assumption this would disable all Markovian summands.
Actually, in our implementation we only use such actions for finding a set of
goal states; during state space generation, they are omitted to get precisely the
same MA as we would have obtained without the additional summand. �
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4.2.5 Probabilistic Common Representation Language

The MAPA specification language we just presented can be used to model
systems with nondeterminism, probability and Markovian rates. If a system
does not contain any rates, a subset of MAPA suffices. In fact, before defining
MAPA in [TKvdPS12a], we had already introduced such a subset under the
name probabilistic Common Representation Language (prCRL) in [KvdPST10a,
KvdPST12]. The syntax of prCRL coincides with the syntax of MAPA, except
that it does not contain the (λ) · p construct.

Definition 4.30 (Process terms in prCRL). A process term in prCRL is
any term that can be generated by the following grammar:

p ::= Y (t) | c⇒ p | p+ p |
∑

x:D

p | a(t)
∑

•
x:D

f : p

Assuming this restricted syntax, all MAPA concepts defined before (specific-
ations, well-formedness, operational semantics, syntactic sugar) can be applied
unchanged. Note that for prCRL the SOS rule MStep is never used, and that
the concept of derivations is rendered superfluous.

It is often more convenient to define and prove correct a (reduction) tech-
nique on prCRL than on MAPA, due to the absence of Markovian transitions.
Therefore, we present an encoding scheme that allows us to encode a MAPA
specification M into a prCRL specification enc (M), apply some transforma-
tion f on it and then decode back to a MAPA specification dec (f(enc (M))) (see
Figure 4.2 on page 59). For a transformation f on prCRL specification to be
applicable to MAPA specifications in this manner, we often need to take care that
dec (f(enc (M))) is strongly bisimilar to M for every MAPA specification M . To
achieve this, we introduce a novel notion of derivation-preserving bisimulation
on prCRL terms and show that, for any prCRL transformation f that respects
this notion, dec ◦ f ◦ enc indeed preserves strong bisimulation.

Encoding and decoding. The encoding of MAPA terms is straightforward. The
construct (λ) · p of MAPA is the only one that has to be encoded, since the other
constructs all are also present in prCRL. We chose to encode each exponential
rate λ by a parameterised action rate(λ) (which is assumed not to occur in the
original specification). Since actions in prCRL require a probabilistic choice for
the next state, we use

∑
•

x:{1} 1 : p such that x is not used in p. Figure 4.6 shows
the appropriate encoding and decoding functions.

Remark 4.31. We only provide a decoding rule for rate-actions in a construct
of the form rate(λ)

∑
•

x:{∗} 1 : p, and cannot decode any construct of the form
rate(λ)

∑
•

x:D f : p with D 6= {∗} or f 6= 1. We say that a prCRL specification P
is decodable if it can be decoded, otherwise it is non-decodable.

Note that the encoding of a MAPA specification without any rate actions is
always decodable. Also note that transformations on encoded MAPA specifica-
tions are not allowed to modify the data types D or probability expressions f
of the existing rate-constructs or add additional rate-constructs of a different
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enc (Y (t)) = Y (t)
enc (c ⇒ p) = c ⇒ enc (p)
enc (p+ q) = enc (p) + enc (q)
enc

(
∑

x:D p
)

=
∑

x:D enc (p)
enc

(

a(t)
∑

•
x:D f :p

)

= a(t)
∑

•
x:D f :enc (p)

dec (Y (t)) = Y (t)
dec (c ⇒ p) = c ⇒ dec (p)
dec (p+ q) = dec (p) + dec (q)
dec

(
∑

x:D p
)

=
∑

x:D dec (p)
dec

(

a(t)
∑

•
x:D f :p

)

= a(t)
∑

•
x:D f :dec (p)

(a 6= rate)

enc ((λ) · p) = rate(λ)
∑

•
x:{1} 1 : enc (p) (x does not occur in p)

dec (rate(λ)
∑

•
x:{∗} 1 : p) = (λ) · dec (p)

Figure 4.6: Encoding and decoding rules for process terms.

form, as this would make the specification non-decodable. Indeed, none of our
techniques do so. �

Definition 4.32 (Encoding). Given a MAPA specification M and a decodable
prCRL specification P , specified by

M = ({Xi(xi : Di) = pi}, Xj(t))

P = ({Yi(yi : Ei) = qi}, Yj(u))

we define

enc (M) = ({Xi(xi : Di) = enc (pi)}, Xj(t))

dec (P ) = ({Yi(yi : Ei) = dec (qi)}, Yj(u))

where the functions enc and dec for process terms are given in Figure 4.6.

It is easy to see that well-formed MAPA specifications encode to well-formed
prCRL specifications. For the reverse, in addition to being well-formed we also
need to require prCRL specifications to not contain infinite summations over rate
actions that would decode to infinite outgoing rates. Since such constructions
can never arise from the encoding of well-formed MAPA specifications, and
derivation-preserving bisimulation (as discussed below) does not allow them to
be added, this issue does not concern us.

It may appear that, given the above encoding and decoding rules, strongly
bisimilar prCRL specifications always decode to strongly bisimilar MAPA spe-
cifications. However, this is not the case. Consider the strongly bisimilar prCRL
terms rate(λ) ·X+ rate(λ) ·X and rate(λ) ·X. The decodings of these two terms,
(λ) ·X + (λ) ·X and (λ) ·X, are clearly not strongly bisimilar in the context of
MAPA as they have different rates to go to X.

An obvious solution may seem to encode each rate by a unique action,
yielding rate1(λ) ·X+ rate2(λ) ·X and preventing the above erroneous reduction.
However, this does not work in all occasions either. Take for instance a MAPA
specification consisting of the two processes X = Y + Y and Y = (λ) · X.
Encoding this to X = Y + Y and Y = rate1(λ) · X enables the reduction to
X = Y and Y = rate1(λ) ·X, which is still incorrect since it halves the rate of X.

Note that an ‘encoding scheme’ that does yield bisimilar MAPA specifications
for bisimilar prCRL specifications exists. We could generate the complete state
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space of a MAPA specification (in case this is finite), determine the total rate
from p to p′ for every pair of process terms p, p′, and encode each of these as a
unique action in the prCRL specification. When decoding, potential copies of
this action that may arise when looking at bisimilar specifications can then just
be ignored. However, this clearly renders useless the whole idea of reducing a
linear specification before generation of the entire state space.

Derivation-preserving bisimulation. The observations above suggest that we
need a stronger notion of bisimulation if we want two strongly bisimilar prCRL
specifications to decode to strongly bisimilar MAPA specifications: all bisimilar
process terms should have an equal number of rate(λ) derivations to every
equivalence class (as given by the bisimulation relation). We formalise this by
means of a derivation-preserving bisimulation6. It is defined on prCRL terms
instead of a PA, since the number of derivations is not encoded in the PA
semantics of prCRL.

Definition 4.33 (Derivation preservation). Let R be a strong bisimulation
relation over decodable prCRL process terms. Then, R is derivation preserving
if for every pair (p, q) ∈ R, every equivalence class [r]R and every rate λ:

|{D ∈ ∆ | ∃r′ ∈ [r]R . p −
rate(λ)
−−−−→D 1r′}| =

|{D ∈ ∆ | ∃r′ ∈ [r]R . q −
rate(λ)
−−−−→D 1r′}|

Two prCRL terms p, q are derivation-preserving bisimilar, denoted by p ∼dp q, if
there exists a derivation-preserving bisimulation relation R such that (p, q) ∈ R.

It can be shown that ∼dp is an equivalence relation in a way similar to the proof
of Proposition 3.33.

Note that—as above for the decoding rules—we assume decodable prCRL
process terms. Hence, the definition of derivation preservation does not need to
take into account rate(λ)-transitions with a non-Dirac target distribution.

Example 4.34. Consider the three prCRL process terms

p1 = rate(3) · a ·X + rate(3) · a ·X

p2 = rate(3) · a ·X

p3 = rate(3) · a ·X + rate(3) · (a ·X + a ·X)

It can easily be seen that p1 ≈iso p2. However, the obvious bisimulation relation
obtained by taking the smallest equivalence relation R containing (p1, p2) is not
derivation preserving. To see why, consider the pair (p1, p2), the equivalence
class [a ·X]R = {a ·X} and the rate 3. We find that

|{D ∈ ∆ | ∃p ∈ [a ·X]R . p1 −
rate(3)
−−−→D 1p}|

= |{〈NChoiceL,MStep〉, 〈NChoiceR,MStep〉}|

6We could be a bit more liberal—although technically slightly more involved—than the
current definition, only requiring equal sums of the λs of all rate-transitions to each equival-
ence class.
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= 2 6= 1

= |{〈MStep〉}|

= |{D ∈ ∆ | ∃p ∈ [a ·X]R . p2 −
rate(3)
−−−→D 1p}|

No derivation-preserving bisimulation relation can be found for p1, p2, and
hence isomorphism in the prCRL setting does not imply derivation-preserving
bisimulation. This is desirable, since p1 and p2 indeed do not decode to bisimilar
MAPA process terms.

On the other hand, while p1 and p3 are not isomorphic, they are derivation-
preserving bisimilar. Consider the bisimulation relation obtained by taking the
smallest equivalence relation R containing (p1, p3) and (a · X, a · X + a · X).
Now, we find that [a ·X]R = {a ·X, a ·X + a ·X}, and both p1 and p3 have two
derivations to this class. The fact that a ·X and a ·X + a ·X do not have the
same number of derivations to X is irrelevant, as the action is not a rate. �

As expected and desired, derivation-preserving bisimulation is a congruence
for every prCRL operator. Hence, prCRL process terms in a specification
can be replaced by derivation-preserving bisimilar process terms, retaining a
derivation-preserving bisimilar specification.

Theorem 4.35. Derivation-preserving bisimulation is a congruence for all op-
erators in prCRL.

Our encoding scheme and notion of derivation-preserving bisimulation allow
us to reuse prCRL transformations for MAPA specifications. The next theorem
confirms that a function dec ◦ f ◦ enc : MAPA→ MAPA respects bisimulation if
f : prCRL→ prCRL respects derivation-preserving bisimulation (and does not
introduce non-decodable rate-constructs).

Since the full proof (presented in the appendix with all other proofs) is rather
complicated, we sketch the main steps.

Theorem 4.36. Let f : prCRL→ prCRL be a function such that f(P ) ∼dp P
for every prCRL specification P , and such that if P is decodable, then so is f(P ).
Then, dec (f(enc (M))) ≈s M for every MAPA specification M without any
actions labelled by rate.

Proof (sketch). It can be shown that (a) p a−֒→ µ (with a 6= rate) holds for a
MAPA process term p if and only if enc (p) −a→ µenc holds for its prCRL encoding
enc (p) (recall from Section 2.2.3 that µenc is the lifting of µ over the function enc),
and that (b) every derivation p −λ→D p′ corresponds one-to-one to a derivation
enc (p) −rate(λ)−−−−→D′ 1enc(p′), with D

′ obtained from D by substituting PSum for
MStep. Using these two observations, and taking R as the derivation-preserving
bisimulation relation for f(P ) ∼dp P for some arbitrary P , it can be shown
that R′ = {(dec (p) , dec (q)) | (p, q) ∈ R} is a bisimulation relation, and hence
that dec (f(P )) ≈s dec (P ). As P was arbitrary, this holds for every P . Taking
P = enc (M), and noting that dec (enc (M)) = M , the theorem follows. �
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4.3 Linearisation

Whereas we want to model systems in the full MAPA language as presented in
Section 4.2, we prefer to define our reduction techniques and state space gen-
eration algorithms on the restricted MLPE format introduced in Section 4.2.4.
Hence, we need a way to transform MAPA specifications to an equivalent spe-
cification in MLPE format—a transformation called linearisation. We note that
our algorithms resemble parts of the linearisation procedure developed in [Use02],
but that our algorithm is simpler due to the absence of sequential composition.
Also, our algorithm will turn out to be derivation-preserving bisimilar, while
Usenko’s was not (because of the optimisation step that transforms x+ x to x).

To simplify matters, we present our linearisation procedure for the prCRL
language from Section 4.2.5. We call the resulting object—an MLPE without
any Markovian transitions—an LPPE (linear probabilistic process equation).

Definition 4.37 (LPPEs). A linear probabilistic process equation (LPPE) is
a MAPA specification of the following format:

X(g : G) =
∑

i∈I

∑

di:Di

ci ⇒ ai(bi)
∑

•
ei:Ei

fi : X(ni)

Note that, since an LPPE does not contain any rates, it is also a prCRL
specification. As we will show that the linearisation procedure for prCRL
preserves derivations, Theorem 4.36 tells us that this technique can just as easily
be applied to linearise MAPA specifications via encoding and decoding.

Linearisation of a prCRL specification P is performed in two steps. In the
first step, a specification P ′ is created such that P ′ ∼dp P and P ′ is in so-called
intermediate regular form (IRF). Basically, this form requires every right-hand
side to be a summation of process terms, each of which contains exactly one
action. This step is performed by Algorithm 1 (page 87), which uses Algorithms 2
and 3 (page 88 and page 90). In the second step, an MLPE X is created from P ′

such that X ∼dp P ′. This step is performed by Algorithm 4 (page 94).
We first illustrate both steps by two examples.

Example 4.38. Consider the specification P = ({X = a · b · c ·X}, X). The
behaviour of P does not change if we introduce a new process Y = b · c ·X and
let X call Y after its action a. Splitting the new process as well, we obtain the
derivation-preserving bisimilar specification

P ′ = ({X = a · Y, Y = b · Z,Z = c ·X}, X)

As required, every right-hand side is a summation of process terms that have
precisely one action. Now, an isomorphic LPPE is constructed by introducing a
program counter pc that keeps track of the subprocess that is currently active,
as shown below (similar to Usenko’s transformation in [Use02, Section 4.3.2]).

P ′′(pc : {1, 2, 3}) = pc = 1⇒ a · P ′′(2)

+ pc = 2⇒ b · P ′′(3)

+ pc = 3⇒ c · P ′′(1)
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It is easy to see that P ′′(1) is isomorphic to P , and—since it does not contain
any rate-actions—also derivation-preserving bisimilar. �

Example 4.39. Now consider the following specification, consisting of two
processes with parameters. Let X(d′) be the initial process for some arbitrary
d′ ∈ D. (The types D and E are assumed to be finite, have addition defined
on them and contain the element 1—we could for instance take an interval
{0, 1, 2, . . . , n− 1} with addition defined modulo n).

X(d : D)

= choose
∑
•

e:E
1

|E| : send(d+ e)
∑
•

i:{1,2}(if i = 1 then 0.9 else 0.1) :

((i = 1⇒ Y (d+ 1)) +

(i = 2⇒ crash
∑
•

j:{∗} 1 : X(d)))

Y (f : D)

= write(f)
∑
•

k:{∗} 1 :
∑

g:Dwrite(f + g)
∑
•

l:{∗} 1 : X(f + g)

Again, we introduce a new process for each subprocess. They all get the same
process variables (d : D, f : D, e : E, i : {1, 2}), which for lay-out purposes we
abbreviate by (p). The new initial process is X1(d

′, f ′, e′, i′), where f ′ ∈ D,
e′ ∈ E, and i′ ∈ {1, 2} can be chosen arbitrarily (and d′ should correspond to
the original initial value d′). In the specification below, the values d′, f ′, e′, i′

correspond to these concrete initial values.

X1(p) = choose
∑
•

e:E
1

|E| : X2(d, f
′, e, i′)

X2(p) = send(d+ e)
∑
•

i:{1,2}(if i = 1 then 0.9 else 0.1) : X3(d, f
′, e′, i)

X3(p) = (i = 1⇒ write(d+ 1)
∑
•

k:{∗} 1 : X4(d
′, d+ 1, e′, i′))

+ (i = 2⇒ crash
∑
•

j:{∗} 1 : X1(d, f
′, e′, i′))

X4(p) =
∑

g:Dwrite(f + g)
∑
•

l:{∗} 1 : X1(f + g, f ′, e′, i′)

Note that we added process variables to store the values of local variables that
were bound by a nondeterministic or probabilistic summation. As the index
variables j, k and l are never used, and g is only used directly after the summation
that binds it, they are not stored. We reset variables that are not syntactically
used in their scope to keep the state space small by changing them to their initial
value. The idea of giving all processes the same parameters stems from [Use02,
Section 4.3.1]. Again, the LPPE is obtained by introducing a program counter.
Its initial vector is (1, d′, f ′, e′, i′).

X(pc : {1, 2, 3, 4}, d : D, f : D, e : E, i : {1, 2}) =

pc = 1 ⇒ choose
∑
•

e:E
1

|E| : X(2, d, f ′, e, i′)

+ pc = 2 ⇒ send(d+ e)
∑
•

i:{1,2}(if i = 1 then 0.9 else 0.1) :

X(3, d, f ′, e′, i)

+ pc = 3 ∧ i = 1⇒ write(d+ 1)
∑
•

k:{∗} 1 : X(4, d′, d+ 1, e′, i′)
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+ pc = 3 ∧ i = 2⇒ crash
∑
•

j:{∗} 1 : X(1, d, f ′, e′, i′)

+
∑

g:D pc = 4 ⇒ write(f + g)
∑
•

l:{∗} 1 : X(1, f + g, f ′, e′, i′) �

4.3.1 Transforming from prCRL to IRF

We now formally define the intermediate regular form (IRF), and then discuss
the transformation from prCRL to IRF in more detail.

Definition 4.40. A process term is in IRF if it adheres to the following gram-
mar:

p ::= c⇒ p | p+ p |
∑

x:D

p | a(t)
∑

•
x:D

f : Y (t)

A process equation is in IRF if its right-hand side is in IRF, and a specification
is in IRF if all its process equations are in IRF and all its processes have the
same process variables.

Note that in IRF every probabilistic sum goes to a process instantiation, and
that process instantiations do not occur in any other way. Therefore, every
process instantiation is preceded by exactly one action.

For every specification P there exists a specification P ′ in IRF such that
P ∼dp P ′ (since we provide an algorithm—proven correct in Theorem 4.45—to
construct it). However, it is not hard to see that P ′ is not unique.

Remark 4.41. It is not necessarily true that P ≈iso P ′, as we will show in
Example 4.46. Still, every specification P representing a finite PA can be
transformed to an IRF describing an isomorphic PA: define a data type S with
an element si for every reachable state of the PA underlying P , and create a
process X(s : S) consisting of a summation of terms of the form

s = si ⇒ a(t)(p1 : s1⊕ p2 : s2⊕ . . .⊕ pn : sn)

(one for each transition si −
a(t)
−−→ µ, where µ(s1) = p1, µ(s2) = p2, . . . , µ(sn) = pn).

However, this transformation completely defeats its purpose, as the whole idea
behind the LPPE is to apply reductions before having to compute all states of
the original specification. �

Overview of the transformation to IRF. Algorithm 1 (page 87) transforms
a specification P to a specification P ′, in such a way that P ∼dp P ′ and P ′

is in IRF. It requires that all process variables and local variables of P have
unique names (which is easily achieved by renaming variables having names
that are used more than once). Three important variables are used: (1) done
is a set of process equations that are already in IRF; (2) toTransform is a set
of process equations that still have to be transformed to IRF; (3) bindings is a
set of process equations {X ′

i(pars) = pi} such that X ′
i(pars) is the process in

done ∪ toTransform representing the process term pi of the original specification.
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Algorithm 1: Transforming a specification to IRF

Input:

• A prCRL specification

P = ({X1(x : D) = p1,

X2(x : D) = p2,

. . . ,

Xn(xn : Dn) = pn}, X1(v))

in which all variables (either declared as a process variable, or
bound by a nondeterministic or probabilistic sum) are named
uniquely.

Output:

• A prCRL specification

P ′ = ({X ′
1(x : D,x

′ : D′) = p′1, . . . ,

X ′
k(x : D,x

′ : D′) = p′k}, X
′
1(v

′))

such that P ′ is in IRF and P ′ ∼dp P . Here, x′ : D′ contains all
global variables of X2, . . . , Xn, as well as some additional variables
to store nondeterministic and probabilistic choices.

Initialisation
1 [(y1, E1), . . . , (ym, Em)] = [(y,E) | ∃i . pi binds variable y of type E by

a nondeterministic or probabilistic
sum, and syntactically uses y in the
scope of that operator]

2 pars := (x : D,x : D, . . . ,xn : Dn, y1 : E1, . . . , ym : Em)
3 v′ := v ++ [any constant of type D | D ← [D, . . . ,Dn, E1, . . . , Em]]
4 done := ∅

5 toTransform := {X ′
1(pars) = p1}

6 bindings := {X ′
1(pars) = p1}

Construction
7 while toTransform 6= ∅ do
8 Choose an arbitrary equation (X ′

i(pars) = pi) ∈ toTransform
9 (p′i, newProcs) := transform(pi, pars, bindings, P,v

′)
10 done := done ∪ {X ′

i(pars) = p′i}
11 bindings := bindings ∪ newProcs
12 toTransform := (toTransform ∪ newProcs) \ {X ′

i(pars) = pi}
13 return (done, X ′

1(v
′))

Initially, pars is assigned the vector of all variables declared in P , either
globally or in a summation (and syntactically used after being bound), to-
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Algorithm 2: Transforming process terms to IRF

Input:

• A process term p;

• A list pars of typed process variables;

• A set bindings of (unchanged) process terms in P that have already
been mapped to a new process;

• A specification P ;

• An initial vector v′.

Output:

• An IRF for p;

• The process equations to add to toTransform.

transform(p, pars, bindings, P,v′) =
1 case p = a(t)

∑
•

x:D f : q
2 (q′, actualPars) := normalForm(q, pars, P,v′)
3 if ∃j . (X ′

j(pars) = q′) ∈ bindings then
4 return (a(t)

∑
•

x:D f : X ′
j(actualPars),∅)

5 else
6 return (a(t)

∑
•

x:D f : X ′
k(actualPars), {(X

′
k(pars) = q′)})

where k = |bindings|+ 1
7 case p = c⇒ q
8 (newRHS, newProcs) := transform(q, pars, bindings, P,v′)
9 return (c⇒ newRHS, newProcs)

10 case p = q1 + q2
11 (newRHS1, newProcs1) := transform(q1, pars, bindings, P,v

′)
12 (newRHS2, newProcs2) := transform(q2, pars, bindings ∪ newProcs1,

P,v′)
13 return (newRHS1 + newRHS2, newProcs1 ∪ newProcs2)

14 case p = Y (t)
15 (newRHS, newProcs) := transform(RHS(Y ), pars, bindings, P,v′)
16 newRHS’ = newRHS, with all free variables substituted by the value

provided for them by t

17 return (newRHS’, newProcs)

18 case p =
∑

x:D q
19 (newRHS, newProcs) := transform(q, pars, bindings, P,v′)
20 return (

∑

x:D newRHS, newProcs)

gether with the corresponding type. The new initial vector v′ is constructed
by appending dummy values to the original initial vector for all added vari-
ables (denoted by Haskell-like list comprehension). Also, done is empty, the
right-hand side of the initial process is bound to X ′

1(pars), and this equation
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is added to toTransform and bindings. Then, we repeatedly take an equation
X ′

i(pars) = pi from toTransform, transform pi to a strongly probabilistically
bisimilar IRF p′i using Algorithm 2, add the equation X ′

i(pars) = p′i to done, and
remove X ′

i(pars) = pi from toTransform. The transformation may introduce new
processes, which are added to toTransform, and bindings is updated accordingly.

Remark 4.42. The use of the set bindings makes sure that multiple occur-
rences of the same process term are linearised only once. For instance, when
transforming a process term such as x · b · c ·X + y · b · c ·X, we want to make
use of the duplication, transforming to x ·X ′

2 + y ·X ′
2, with X ′

2 = b · c ·X (which
is initially put in toTransform and later transformed itself). To this end, we add
the equation X ′

2 = b · c ·X to bindings after transforming the left-hand side of
the nondeterministic choice to x ·X ′

2. Then, when transforming the right-hand
side, this information is used to transform to y ·X ′

2 instead of introducing a new
process X ′

3.
Additionally, the bindings set makes sure that process instantiations are

transformed correctly while still terminating. For instance, when transforming a
process such as X = a · b · c ·X, the algorithm starts by putting the equation
X ′

1 = a · b · c · X in both bindings and toTransform. When transforming the
right-hand side of this equation, at some point we will have to transform the
process term c ·X. It is then checked whether the right-hand side of X, in this
case a · b · c · X, is already present in bindings. This is the case (in the form
X ′

1 = a · b · c ·X), so the instantiation X is changed to X ′
1.

In a more complicated situation where X has data parameters, the algorithm
still works in the same way. For instance, consider the process X(n : N) =
a ·b ·X(n+1)+b ·X(5). In the initialisation, X ′

1(n : N) = a ·b ·X(n+1)+b ·X(5)
is put in bindings. When later on b ·X(n + 1) needs to be transformed, it is
recognised that X(n+ 1) is an instantiation of a process with right-hand side
a · b ·X(n+ 1) + b ·X(5). This process term is already present in bindings, so
the algorithm transforms b ·X(n+ 1) to b ·X ′

1(n+ 1).

Transforming single process terms to IRF. Algorithm 2 transforms individual
process terms to IRF recursively by means of a case distinction over the structure
of the terms (using Algorithm 3). Its base case is the action prefix, which is
always reached in a finite number of steps due to the requirement of guarded-
ness (Definition 4.16).

For a summation q1 + q2, the IRF is q′1 + q′2 (with q′i an IRF of qi). For the
condition c⇒ q1 it is c⇒ q′1, and for

∑

x:D q1 it is
∑

x:D q′1. Finally, the IRF
for Y (t) is the IRF for the right-hand side of Y , where the global variables of Y
occurring in this term have been substituted by the expressions given by t.

The base case is a probabilistic choice a(t)
∑
•

x:D f : q. The corresponding
process term in IRF depends on whether or not there already is a process name
X ′

j mapped to q (as stored in bindings). If this is the case, apparently q has
been linearised before and the result simply is a(t)

∑
•

x:D f : X ′
j(actualPars),

with actualPars as explained below. If q was not linearised before, a new process
name X ′

k is chosen, the result is a(t)
∑
•

x:D f : X ′
k(actualPars) and X ′

k is mapped
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Algorithm 3: Normalising process terms

Input:

• A process term p;

• A list pars of typed global variables;

• A prCRL specification P ;

• An initial vector v′ = (v′1, v
′
2, . . . , v

′
k).

Output:

• The normal form of p;

• The actual parameters needed to supply to a process which has
right-hand side p′ to make its behaviour derivation-preserving
bisimilar to p.

normalForm(p, pars, P,v′) =
1 case p = Y (t1, t2, . . . , tn)
2 return(RHS(Y ), [inst(v) | (v,D)← pars])

where inst(v) =







ti if v is the ith global variable of Y in P
v′i if v is not a global variable of Y in P ,

and v is the ith element of pars

3 case otherwise
4 return (p, [inst′(v) | (v,D)← pars])

where inst′(v) =







v if v occurs syntactically in p
v′i if v does not occur syntactically in p,

and v is the ith element of pars

to q by adding this information to bindings. Since a newly created process X ′
k

is added to toTransform, in a next iteration of Algorithm 1 it will be linearised.

More precisely, instead of q we use its normal form, computed by Algorithm 3.
The reason behind this is that, when linearising a process in which for instance
both the process instantiations X(n) and X(n+ 1) occur, we do not want to
have a distinct term for both of them. We therefore define the normal form of
a process instantiation Y (t) to be the right-hand side of Y , and of any other
process term q to just be q. This way, different process instantiations of the
same process and the right-hand side of that process all have the same normal
form, and no duplicate terms are generated.

Algorithm 3 is also used to determine the actual parameters that have to
be provided to either X ′

j (if q was already linearised before) or to X ′
k (if q

was not linearised before). This depends on whether or not q is a process
instantiation. If it is not, the actual parameters for X ′

j are just the global
variables (possibly resetting variables that are not used in q). If it is, for instance
q = Y (t1, t2, . . . , tn), all global variables are reset, except the ones corresponding
to the original global variables of Y ; for them t1, t2, . . . , tn are used.

Note that in Algorithm 3 we use (v,D)← pars to denote the list of all pairs
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(vi, Di), given pars = (v1, . . . , vn) : (D1 × · · · × Dn). We use RHS(Y ) for the
right-hand side of the process equation defining Y .

Example 4.43. We linearise two example specifications:

P1 = ({X1 = a · b · c ·X1 + c ·X2, X2 = a · b · c ·X1}, X1)

P2 = ({X3(d : D) =
∑

e:D

a(d+ e) · c(e) ·X3(5)}, X3(d
′))

Table 4.7 on page 92 shows done, toTransform and bindings at line 7 of Al-
gorithm 1 for every iteration. As done and bindings only grow, we just list their
additions. For layout purposes, we omit the parameters (d : D, e : D) of every
X ′′

i in the lower part of Table 4.7. The results in IRF are P ′
1 = (done1, X

′
1) and

P ′
2 = (done2, X

′′
1 (d

′, e′)) for an arbitrary e′ ∈ D. �

Example 4.44. We illustrate the case p = Y (t) of Algorithm 2 by means of
the following example:

P = ({X = a ·X + Y (5),

Y (n : N) = a(n) · b(n) · Y (n+ 1)}, X)

For this specification, our algorithm yields

P ′ = ({X ′
1(n : N) = a ·X ′

1(0) + a(5) ·X ′
2(5),

X ′
2(n : N) = b(n) ·X ′

3(n+ 1),

X ′
3(n : N) = a(n) ·X ′

2(n)}, X
′
1(0))

First, the right-hand side of Y was transformed to a(n) · X ′
2(n). Then, the

value 5 provided by the call Y (5) was substituted for n, yielding a(5) ·X ′
2(5).�

The following theorem states the correctness of our transformation.

Theorem 4.45. Let P be a decodable prCRL specification such that all variables
are named uniquely. Given this input, Algorithm 1 terminates and provides a
specification P ′ such that P ′ ∼dp P , P ′ is in IRF and P ′ is decodable.

Algorithm 1 does not always compute an isomorphic specification, as illus-
trated by the following example.

Example 4.46. Let P = ({X =
∑

d:D a(d) · b(f(d)) ·X}, X), with f(d) = 0 for
all d ∈ D. Then, our procedure will yield the specification

P ′ = ({X ′
1(d : D) =

∑

d:D

a(d) ·X ′
2(d),

X ′
2(d : D) = b(f(d)) ·X ′

1(d
′)}, X ′

1(d
′))

for some d′ ∈ D. Note that the reachable number of states of P ′ is |D|+ 1 for
any d′ ∈ D. However, the reachable state space of P only consists of the two
states X and b(0) ·X. �
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4.3.2 Transforming from IRF to LPPE

Given a specification P ′ in IRF, Algorithm 4 (page 94) constructs an LPPE X.
The global variables of X are a program counter pc and all global variables of P ′.
To construct the summands for X, we range over the process equations in P ′.
For each equation

X ′
i(x : D) = a(t)

∑

•
y:E

f : X ′
j(t

′
1, . . . , t

′
k)

a summand
pc = i⇒ a(t)

∑

•
y:E

f : X(j, t′1, . . . , t
′
k)

is constructed. For an equation X ′
i(x : D) = q1 + q2 the union of the summands

produced by X ′
i(x : D) = q1 and X ′

i(x : D) = q2 is taken. For X ′
i(x : D) =

c⇒ q the condition c is prefixed to the summands produced by X ′
i(x : D) = q;

nondeterministic sums are handled similarly.
To be precise, the specification produced by the algorithm is not literally an

LPPE yet, as there may be several conditions and nondeterministic sums, and
their order could still be wrong (we call such specifications semi-LPPEs). An
isomorphic LPPE is obtained by moving the nondeterministic sums to the front
and merging separate nondeterministic sums (using vectors) and separate condi-
tions (using conjunctions). When moving nondeterministic sums to the front,
some variable renaming may be needed to avoid clashes with the conditions.

Example 4.47. Looking at the IRFs obtained in Example 4.43, it is easy to
see that P ′

1 ∼dp X and P ′
2 ∼dp Y , with

X = ({X(pc : {1, 2, 3, 4})

= pc = 1⇒ a ·X(2)

+ pc = 1⇒ c ·X(3)

+ pc = 2⇒ b ·X(4)

+ pc = 3⇒ a ·X(2)

+ pc = 4⇒ c ·X(1)},

X(1))

Y = ({Y (pc : {1, 2}, d : D, e : D)

=
∑

e:D

pc = 1⇒ a(d+ e) · Y (2, d′, e)

+ pc = 2⇒ c(e) · Y (1, 5, e′)},

Y (1, d′, e′))

where again e′ ∈ D can be chosen arbitrarily in the initial vector of Y . �

Theorem 4.48. Let P ′ be a decodable specification in IRF without a variable
pc, and let the output of Algorithm 4 applied to P ′ be the specification X. Then,
P ′ ∼dp X and X is decodable.

Let Y be like X, except that for each summand all nondeterministic sums have
been moved to the beginning while substituting their variables by fresh names,
and all separate nondeterministic sums and separate conditions have been merged
(using vectors and conjunctions, respectively). Then, Y is an LPPE, Y ∼dp X
and Y is decodable.
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Algorithm 4: Constructing an LPPE from an IRF

Input:

• A specification P ′ = ({X ′
1(x : D) = p′1, . . . , X

′
k(x : D) = p′k}, X

′
1(v))

in IRF (without variable pc).

Output:

• A semi-LPPE X = ({X(pc : {1, . . . , k},x : D) = p′′}, X(1,v))

such that P ′ ∼dp X.

Construction
1 S = ∅

2 forall (X ′
i(x : D) = p′i) ∈ P ′ do

3 S := S ∪ makeSummands(p′i, i)
4 return ({X(pc : {1, . . . , k},x : D) =

∑

s∈S s}, X(1,v))

where
makeSummands(p, i) =

5 case p = a(t)
∑
•

y:E f : X ′
j(t

′
1, . . . , t

′
k)

6 return {pc = i⇒ a(t)
∑
•

y:E f : X(j, t′1, . . . , t
′
k)}

7 case p = c⇒ q
8 return {c⇒ q′ | q′ ∈ makeSummands(q, i)}

9 case p = q1 + q2
10 return makeSummands(q1, i) ∪ makeSummands(q2, i)

11 case p =
∑

x:D q
12 return {

∑

x:D q′ | q′ ∈ makeSummands(q, i)}

We are now able to conclude that the linearisation procedure presented
above can also be used to transform MAPA specifications to MLPEs. Under
the observation that a prCRL specification and its linearisation are derivation-
preserving bisimilar (which follows from Theorems 4.45 and 4.48), it is an
immediate consequence of Theorem 4.36. The fact that a linearised MAPA
specification is indeed an MLPE follows from Theorem 4.48 and the observation
that decoding does not change the structure of a specification.

Corollary 4.49. Let M be a MAPA specification without any rate action, and

M ′ = dec (linearise(enc (M)))

Then, M ≈s M
′ and M ′ is an MLPE.

4.3.3 Complexity

To discuss the complexity of linearisation, we first define the size of prCRL
specifications.
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Definition 4.50. The size of a process term is defined as follows:

size(Y (t)) = 1 + size(t)

size(c⇒ p) = 1 + size(c) + size(p)

size(p+ q) = 1 + size(p) + size(q)

size(
∑

x:D p) = 1 + |x|+ size(p)

size
(
a(t)

∑
•

x:D f : p
)
= 1 + size(t) + |x|+ size(f) + size(p)

size((t1, t2, . . . , tn)) = size(t1) + size(t2) + · · ·+ size(tn)

The size of the expressions f , c and ti are given by their number of function
symbols and constants. Also, size(Xi(xi : Di) = pi) = |xi|+ size(pi). Given a
specification P = (E, I), size(P ) =

∑

p∈E size(p) + size(I).

Proposition 4.51. Let P be a prCRL specification such that size(P ) = n.
Then, the worst-case time complexity of linearising P is O(n3). The worst-case
size of the resulting LPPE is in O(n2).

To get a more precise time complexity, we first define the notion of subterms .

Definition 4.52. Let p be a process term, then a subterm of p is a process term
complying to the syntax of prCRL and syntactically occurring in p. The set of
all subterms of p is denoted by subterms(p). Let P = (E, I) be a specification,
then subterms(P ) is the set of all process terms p such that there is an equation
Xi(xi : Di) = pi in E such that p ∈ subterms(pi).

We write subterms′(P ) to denote the multiset containing all subterms of P
(counting a process term that occurs twice as two subterms, and including
nondeterministic and probabilistic choices over a vector of k variables k times).

Now, we can define m = |subterms′(P )| and

k = |subterms′(P )|+
∑

(Xi(xi:Di)=pi)∈E

|xi|

Then, it can be shown that the worst-case time complexity of linearisation is
O(m · k · n) (in the same way as we prove the above proposition).

Although the transformation to LPPE increases the size of the specifica-
tion, it facilitates optimisations to reduce the state space (which is worst-case
exponential), as we will see in the next chapters.

4.4 Parallel composition

Using MAPA processes as basic building blocks, we support the modular con-
struction of large systems via top-level parallelism, encapsulation, hiding, and
renaming.
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Definition 4.53. A initial process in parallel MAPA is any term that can be
generated by the following grammar:

q ::= Y (t) | q || q | ∂E(q) | τH(q) | ρR(q)

Here, Y is a process name, t is a vector of data expressions, E,H ⊆ Act are
sets of actions, and the function R : Act \ {τ} → Act \ {τ} maps visible actions
to visible actions. A parallel MAPA specification P = ({Xi(xi : Di) = pi}, q) is
a set of MAPA process equations together with an initial process q according to
the above grammar7. The well-formedness criteria of Definition 4.16 are lifted
in the obvious way.

Hence, a parallel MAPA specification is just a normal MAPA specification with
a more complex initial process. In such an initial process, q1 || q2 is parallel
composition. Furthermore, ∂E(q) encapsulates the actions in E (i.e., omits all
transitions labelled by these actions), τH(q) hides the actions in H (renaming
them to the internal action τ and removing their parameters), and ρR(q) renames
actions according to the function R. Parallel processes by default interleave
all actions. However, we assume a partial function γ : Act× Act→ Act that
specifies which actions can communicate; more precisely, γ(a, b) = c denotes that
a and b can communicate if their parameters are equal, resulting in the action c
with these parameters (as in ACP [BK89]).

The SOS rules for the initial process in parallel MAPA are shown in Figure 4.8
(relying on the SOS rules for MAPA from Figure 4.5), where for any probability
distribution µ, we denote by τH(µ) the probability distribution µ′ such that
∀p . µ′(τH(p)) = µ(p). Similarly, we use ρR(µ) and ∂E(µ). Also, we used µ ||µ′

for the distribution µ′′ such that µ′′(p′ || q′) = µ(p′) · µ′(q′) for all p′, q′. In these
rules, λ is a rate, a, b, c are actions and t is a vector of parameters. We use α to
denote an action together with its parameters.

The intuition behind the rules is as follows:

ParL / ParR / ParL’ / ParR’. The two constituent processes of a parallel
composition can still act on their own. Hence, if p or q can do a transition,
then so can p || q. For the next state, the acting process changes state as it
would do normally, while the other process remains in the same state.

ParC. If a process p has an a-transition and a process q has a b-transitions, and
γ(a, b) = c, then p || q can synchronise on a and b to perform a c-transition.
Both processes choose a next state as they would normally do. As these
probabilistic decisions are independent, the probability to go to p′ || q′ is
the multiplication of the probabilities for p to go to p′ and q to go to q′.

HideT / HideF / Hide’. If a process p can do a transition with an action a(t),
then the hiding process τH(p) can do the same transition, but with a(t) sub-
stituted by τ if a ∈ H . The next state is chosen as before, except that it is
again put within a τH operator. Markovian transitions cannot be hidden.

7Often, we abuse notation slightly by just writing the initial process when we actually
mean to talk about a specification. For instance, given two processes X,Y defined by process
equations X(x : D) = p1 and Y (x : D) = p2, we write X(v) ||Y (v′) when we mean the
specification P = ({X(x : D) = p1, Y (x : D) = p2}, X(v) ||Y (v′)).
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ParL
p −α−→D µ

p || q −α−→ParLD µ′ where ∀p′ . µ′(p′ || q) = µ(p′)

ParR
q −α−→D µ

p || q −α−→ParRD µ′ where ∀q′ . µ′(p || q′) = µ(q′)

ParC
p −

a(t)
−−→D µ q −

b(t)
−−→D′ µ′

p || q −
c(t)
−−→ParCDD′ µ ||µ′

if γ(a, b) = c

HideT
p −

a(t)
−−→D µ

τH(p) −
τ
−→HideTD τH(µ)

if a ∈ H HideF
p −

a(t)
−−→D µ

τH(p) −
a(t)
−−→HideFD τH(µ)

if a 6∈ H

Ren
p −

a(t)
−−→D µ

ρR(p) −
R(a)(t)
−−−−−→RenD ρR(µ)

EncapF
p −

a(t)
−−→D µ

∂E(p) −
a(t)
−−→EncapFD ∂E(µ)

if a 6∈ E

ParL’
p −λ−→D p′

p || q −λ−→ParL’D p′ || q
ParR’

q −λ−→D q′

p || q −λ−→ParR’D p || q′

Hide’
p −λ−→D p′

τH(p) −λ−→Hide’D τH(p′)
Ren’

p −λ−→D p′

ρR(p) −
λ−→Ren’D ρR(p

′)

Encap’
p −λ−→D p′

∂E(p) −
λ−→Encap’D ∂E(p

′)

Figure 4.8: SOS rules for parallel MAPA.

Ren / Ren’. If a process p can do a transition with an action a(t), then
the renaming process ρR(p) can do the same transition, but with a(t)
substituted by R(a)(t). The next state is chosen as before, except that it is
again put within a ρR operator. Markovian transitions cannot be renamed.

EncapF / Encap’. If a process p can do a transition with an action a(t), then
the encapsulating process ∂E(p) can do the same transition only if a 6∈ E.
The next state is chosen as before, except that it is again put within a
∂R operator. Note that there is no Encap-T rule, to remove transitions
labelled by an encapsulated action. Markovian transitions cannot be
encapsulated; hence, they are always undisturbed by the ∂R operator.

Note that, if p −λ1−→ p and q −λ2−→ q, we obtain both a derivation for p || q −λ1−→ p || q
and one for p || q −λ2−→ p || q. By the operational semantics, as defined in Sec-
tion 4.2.3, this means that the underlying MA has a transition p || q

λ
 p || q with

λ = λ1 + λ2. The derivation-based semantics makes sure that this even works if
λ1 = λ2. Hence, no side condition is needed for this scenario (as was the case
for the formal definition of parallel composition of MAs in Section 3.2.3).

Example 4.54. Figure 4.9 shows the specification for a slightly more involved
variant of the system explained in Example 1.1. Instead of having just one type
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constant queueSize = 10,nrOfJobTypes = 3

type Stations = {1, 2}, Jobs = {1, . . . ,nrOfJobTypes}

Station(i : Stations, q : Queue})

= size(q) < queueSize⇒ (2i+ 1) ·
∑

j:Jobs arrive(j) · Station(i, enqueue(q, j))

+ size(q) > 0 ⇒ deliver(i, head(q))
∑

•
k∈{1,9}

k
10 : k = 1⇒ Station(i, q)

+ k = 9⇒ Station(i, tail(q))

Server =
∑

n:Stations

∑

j:Jobs poll(n, j) · (5 ∗ j) · complete(j) · Server

γ(poll, deliver) = copy

init τ{copy,arrive,complete}(∂{poll,deliver}(Station(1, empty) ||Server ||Station(2, empty)))

Figure 4.9: Specification of a polling system.

of job, as was the case there, we now allow a number of different kinds of jobs
(with different service rates). Also, we allow the stations to have larger buffers.

The specification uses three data types: a set Stations with identifiers for
the two stations, a set Jobs with the possible incoming jobs, and a built-in type
Queue. The arrival rate for station i is set to 2i+ 1, so in terms of the rates in
Figure 1.2 we have λ1 = 3 and λ2 = 5. Each job j is served with rate 5j.

The stations receive jobs if their queue is not full, and are able to deliver
jobs if their queue is not empty. As explained before, removal of jobs from the
queue fails with probability 1

10 . The server continuously polls the stations and
works on their jobs. The system is composed of the server and two stations,
communicating via the poll and deliver actions. �

4.4.1 Linearisation of parallel processes

The MLPE format allows a parallel composition of processes to be linearised
quite easily. Since strong bisimulation is a congruence for parallel composi-
tion (Proposition 3.27), we can first linearise the components of the parallel
composition and then compose the resulting MLPEs.

Assume the following two MLPEs (omitting the initial states):

X(g : G) =
∑

i∈I

∑

di:Di

ci ⇒ ai(bi)
∑

•
ei:Ei

fi : X(ni)

+
∑

j∈J

∑

dj :Dj

cj ⇒ (λj) ·X(nj)

Y (g′ : G′) =
∑

i∈I′

∑

d′
i
:D′

i

c′i ⇒ a′i(b
′
i)
∑

•
e′
i
:E′

i

f ′
i : Y (n′

i)

+
∑

j∈J ′

∑

d′
j
:D′

j

c′j ⇒ (λ′
j) · Y (n′

j)

Also assuming (without loss of generality) that all global and local variables
are named uniquely, the product Z(g : G, g′ : G′) = X(g) ||Y (g′) is constructed
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as follows (based on the construction introduced by Usenko for traditional
LPEs [Use02]):

Z(g : G, g′ : G′) =
∑

i∈I

∑

di:Di

ci ⇒ ai(bi)
∑

•
ei:Ei

fi : Z(ni, g
′)

+
∑

i∈I′

∑

d′
i
:D′

i

c′i ⇒ a′i(b
′
i)
∑

•
e′
i
:E′

i

f ′
i : Z(g,n′

i)

+
∑

(k,l)∈IγI′

∑

(dk,d′
l
):Dk×D′

l

ck ∧ c′l ∧ bk = b′l ⇒

γ(ak, a
′
l)(bk)

∑

•
(ek,e′

l
):Ek×E′

l

fk · f
′
l : Z(nk,n

′
l)

+
∑

j∈J

∑

dj :Dj

cj ⇒ (λj) ·X(nj , g
′)

+
∑

j∈J′

∑

d′
j
:D′

j

c′j ⇒ (λ′
j) · Y (g,n′

j)

Here, IγI ′ is the set of all combinations of summands (k, l) ∈ I × I ′ such that
the action ak of summand k and the action a′l of summand l can communicate.
Formally, IγI ′ = {(k, l) ∈ I × I ′ | (ak, a

′
l) ∈ dom(γ)}.

The first set of summands represents X doing a transition independent
from Y , and the second set of summands represents Y doing a transition
independent from X. The third set corresponds to their communications. The
fourth and fifth interleave all Markovian summands of X and Y . As there is no
synchronisation on Markovian transitions, no Markovian variant of the third set
of summands needs to be added.

Example 4.55. Consider the following two MLPEs:

X(pc1 : {1, 2, 3},m : {1, 2}) =

pc1 = 1⇒ choose
∑
•

n:{1,2}
1
2 : X(2, n)

+ pc1 = 2⇒ (5) ·X(3,m)

+
∑

x:{0,1} pc1 = 3⇒ transmit(m+ x)
∑
•

l:{∗} 1 : X(1,m)

Y (pc2 : {1, 2},m′ : {1, 2}) =
∑

p:{1,2,3} pc2 = 1⇒ retrieve(p)
∑
•

1:{∗} 1 : X(2, p)

+ pc2 = 2⇒ send(m′)
∑
•

1:{∗} 1 : X(1,m′)

The first system randomly chooses either the value 1 or the value 2. Then, a
delay governed by an exponential rate 5 happens. Finally, the chosen value,
possibly increased by 1, is transmitted to the environment. The second system
retrieves a value from the environment and then sends is out again.

The parallel composition of these two MLPEs, assuming the communication
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function γ given by γ(transmit, retrieve) = communicate, is

Z(pc1 : {1, 2, 3},m : {1, 2}, pc2 : {1, 2},m′ : {1, 2}) =

pc1 = 1⇒ choose
∑
•

n:{1,2}
1
2 : Z(2, n, pc2,m

′)

+
∑

x:{0,1} pc1 = 3⇒ transmit(m+ x)
∑
•

l:{∗} 1 : Z(1,m, pc2,m
′)

+
∑

p:{1,2,3} pc2 = 1⇒ retrieve(p)
∑
•

1:{∗} 1 : Z(pc1,m, 2, p)

+ pc2 = 2⇒ send(m′)
∑
•

1:{∗} 1 : Z(pc1,m, 1,m′)

+
∑

(x,p):{0,1}×{1,2,3} pc1 = 3 ∧ pc2 = 1 ∧ m+ x = p⇒

communicate(m+ x)
∑
•

(l,l′):{∗}×{∗} 1 · 1 : Z(1,m, 2, p)

+ pc1 = 2⇒ (5) · Z(3,m, pc2,m
′) �

The following proposition states that our construction of an MLPE for the
parallel composition of two MLPEs is correct.

Proposition 4.56. For all v ∈ G,v′ ∈ G′, it holds that

Z(v,v′) ≈iso X(v) ||Y (v′)

Although the MLPE size is worst-case exponential in the number of parallel
processes (when all summands have different actions and all of them com-
municate), in practice we see only linear growth (having only some actions
communicate).

4.4.2 Linearisation of hiding, encapsulation and renaming

For hiding, renaming, and encapsulation, again we can first linearise and then
manipulate the MLPE.

Remark 4.57. In our case, it is easy to see that strong bisimulation is a
congruence for hiding: if each transition can be mimicked by a transition with
the same label, this will still be the case after renaming some actions to τ .
Maximal progress may disable some transitions due to this renaming, but at
most this could make systems bisimilar that were not bisimilar before; this
is no problem for congruence, though. A similar argument can be made for
encapsulation and renaming (note that since it is not allowed to rename τ to a
visible action, renaming can never enable transitions that were disabled by the
maximal progress assumption). �

For the MLPE

X(g : G) =
∑

i∈I

∑

di:Di

ci ⇒ ai(bi)
∑

•
ei:Ei

fi : X(ni)

+
∑

j∈J

∑

dj :Dj

cj ⇒ (λj) ·X(nj)
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we define the MLPEs U(g) for τH(X(g)), V (g) for ρR(X(g)), and W (g) for
∂E(X(g)), by

U(g : G) =
∑

i∈I

∑

di:Di

ci ⇒ a′i(b
′
i)
∑

•
ei:Ei

fi : U(ni)

+
∑

j∈J

∑

dj :Dj

cj ⇒ (λj) · U(nj)

V (g : G) =
∑

i∈I

∑

di:Di

ci ⇒ a′′i (bi)
∑

•
ei:Ei

fi : V (ni)

+
∑

j∈J

∑

dj :Dj

cj ⇒ (λj) · V (nj)

W (g : G) =
∑

i∈I′

∑

di:Di

ci ⇒ ai(bi)
∑

•
ei:Ei

fi : W (ni)

+
∑

j∈J

∑

dj :Dj

cj ⇒ (λj) ·W (nj)

where

a′i =

{
τ if ai ∈ H
ai otherwise

a′′i = R(ai)

b′i =

{
( ) if ai ∈ H
bi otherwise

I ′ = {i ∈ I | ai 6∈ E}

Since hiding, renaming and encapsulation only affect the interactive trans-
itions, the Markovian summands can remain unchanged. For hiding an action
a, every occurrence of this action is just replaced by τ and its parameters are
removed. Similarly, renaming is applied. For encapsulation of a set of actions,
we just omit all interactive summands that have an action from this set.

Example 4.58. For the parallel composition of the systems X and Y of Ex-
ample 4.55, we do not want the transmit or retrieve action to happen anymore;
the systems are always assumed to communicate on these actions. Moreover, we
are not interested in the internal behaviour, and so want to hide the communicate
action. We can thus specify the system by means of the following initial process
(choosing some initial values for the parameters of the two constituent processes):

τ{communicate}(∂{transmit,retrieve}(X(1, 1) ||Y (1, 1)))

which is linearised to

S(pc1 : {1, 2, 3},m : {1, 2}, pc2 : {1, 2},m′ : {1, 2}) =

pc1 = 1⇒ choose
∑
•

n:{1,2}
1
2 : S(2, n, pc2,m

′)

+ pc2 = 2⇒ send(m′)
∑
•

1:{∗} 1 : S(pc1,m, 1,m′)

+
∑

(x,p):{0,1}×{1,2,3} pc1 = 3 ∧ pc2 = 1 ∧ m+ x = p⇒

τ(m+ x)
∑
•

(l,l′):{∗}×{∗} 1 · 1 : S(1,m, 2, p)
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+ pc1 = 2⇒ (5) · S(3,m, pc2,m
′) �

Again, we prove our method correct.

Proposition 4.59. For all v ∈ G, U(v) ≈iso τH(X(v)), V (v) ≈iso ρR(X(v)),
and W (v) ≈iso ∂E(X(v)).

4.5 Basic reduction techniques

Using the MLPE, several reduction techniques can now easily be applied to
MAPA specifications. Even simpler, some reductions can be defined on the
LPPE (i.e., an MLPE without any Markovian summands) in case they preserve
derivations, due to Theorem 4.36.

We introduce three basic reduction techniques: (1) Constant elimination
detects parameters of an MLPE that never change value. Then, these parameters
are omitted and all references to them are replaced by their initial values.
(2) Expression simplification evaluates functions for which all parameters are
constants and applies basic laws from logic. (3) Summation elimination aims to
remove unnecessary summations that often arise from communications. These
techniques do not change the actual state space, but simplify the specification
and hence speed up state space generation. All our techniques work on the
syntactic level, i.e., they do not unfold the data types at all, or only locally to
avoid a data explosion—this makes them easy to apply.

We note that not all ideas presented in this section are original; these simpli-
fication techniques already exist for the non-quantitative LPE format [GL01].
However, their generalisation to the Markovian setting is new. We would also
like to stress again that, since MAs generalise LTSs, CTMCs, DTMCs, PAs and
IMCs, all our reduction techniques are also applicable to these subclasses.

4.5.1 Constant elimination

If a parameter of an MLPE never changes value, we can clearly just omit it and
replace every reference to it by its initial value. Basically, we detect a parameter p
to be constant if in every summand it is either unchanged, or ‘changed’ to its
initial value.

More precisely, we do a greatest fixed-point computation to find all non-
constants, initially assuming all parameters to be constant. If no new non-
constants are found (which happens after a finite number of iterations as there
are finitely many parameters), the procedure terminates and the remaining
parameters are constant. In every iteration, we check for each parameter x that
is still assumed constant whether there exists a summand s (with an enabling
condition that cannot be shown to be always unsatisfied) that may change
it. This is the case if either x is bound by a probabilistic or nondeterministic
summation in s, or if its next state is determined by an expression that is
syntactically different from x, different from the initial value of x, and different
from the name of another parameter that is still assumed constant and has the
same initial value as x.
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Example 4.60. Consider the specification

P = ({X(id : {one, two}) = say(id) ·X(id)}, X(one))

Clearly, the process variable id never changes value, so the specification can be
simplified to P ′ = ({X = say(one) ·X}, X). �

Proposition 4.61. The underlying MAs of an MLPE before and after constant
elimination are isomorphic.

Actually, we initially implemented constant elimination for prCRL by having
it operate on the LPPE. It is easy to see that constant elimination is derivation
preserving. Hence, by Theorem 4.36 we can just use this implementation for
optimising MAPA specifications as well: first encode as prCRL, then linearise to
an LPPE, then apply constant elimination, and then decode back to an MLPE
(as depicted earlier in Figure 4.2).

Since every iteration goes through the MLPE once, and the number of
iterations is limited by the number of parameters m, the worst-case time-
complexity is O(m ·N) (with N the size of the MLPE).

4.5.2 Expression simplification

Expressions occurring as enabling conditions, action parameters or next state
parameters can often be simplified. We apply two kinds of simplifications
(recursively): (1) functions for which all parameters are constants are evaluated,
and (2) basic laws from logic are applied.

Additionally, summands for which the enabling condition simplified to false
are removed, as they cannot contribute to the behaviour of an LPPE any-
way. More thoroughly, we also check for each summand whether every local
and global parameter with a finite type has at least one possible value for
which the enabling condition does not simplify to false. If there exists a para-
meter without at least one such a value, the summand apparently can never be
taken and hence is removed.

Example 4.62. Consider the expression 3 = 1+2 ∨ x > 5. As all parameters of
the addition function are given, the expression is first simplified to 3 = 3 ∨ x > 5.
Then, the equality function can be evaluated, obtaining true ∨ x > 5. Finally,
logic tells us that we can simplify once more, obtaining the expression true. �

The following proposition is trivial: replacing expressions by equivalent ones
does not change anything.

Proposition 4.63. The underlying MAs of an MLPE before and after expres-
sion simplification are isomorphic.

Again, we actually employ an implementation on LPPEs via the encoding
discussed earlier. After all, it is immediately clear that expression simplification
does not influence a process’s derivations.

Expression simplification is linear in the size of the MLPE, as it just processes
all expressions one by one to simplify them.
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4.5.3 Summation elimination

When composing parallel components that communicate based on message
passing actions, often this results in summations that can be eliminated. For
instance, summands with a nondeterministic choice of the form

∑

d:D and a
condition d = e may arise, which can obviously be simplified by omitting the
summation and substituting e for every occurrence of d.

More precisely, to eliminate a sum
∑

d:D in a summand that has the enabling
condition c, we compute the set S of possible values that c allows for d (and
use the empty set if we cannot establish specific values). When c is given by
d = e or e = d, where e is a value or an expression (in which d does not occur
freely) that can be evaluated, we take S to be the singleton set containing this
value. When c is a conjunction e1 ∧ e2, we take S = S1 ∩ S2, where Si is the set
of possible values for c given by ei. For a disjunction, we take a union (unless
S1 = ∅ or S2 = ∅; in that case also S = ∅). If it turns out that S is a singleton
set {d′}, we omit the summation and substitute every free occurrence of d by d′.

Example 4.64. Consider the specification X =
∑

d:{1,2,3} d = 2⇒ send(d) ·X.
As the summand is only enabled for d = 2, the specification can be simplified to
X = 2 = 2⇒ send(2) ·X. Expression simplification may further reduce this to
X = send(2) ·X. �

The concept of summation elimination described above, as well as the notions
of constant elimination and expression simplification, could be generalised to
the Markovian setting without any trouble. They all could be implemented for
LPPEs and applied to MAPA by means of our encoding. Their procedures as
described here are basically no different from the way they were defined earlier
for the non-quantitative LPEs [GL01].

For the second part of summation elimination, which we define next, this
is not the case anymore: we have to be slightly more careful. In the context
of LPEs and LPPEs we reduced summands such as

∑

d:{1,2} a ·X to a ·X, as
the summation variable is not used anyway. This, however, does influence the
number of derivations to take the action a. Hence, if this were an encoded rate,
the reduction would be erroneous. Therefore, we have to define summation
elimination directly on MLPEs. Interactive summands can be handled as before,
but for Markovian summands the second kind of reduction is altered. Instead of
reducing

∑

d:D(λ) ·X to (λ) ·X, we now reduce to (|D| × λ) ·X. That way, the
total rate to X remains the same.

In fact, we can even reduce summations over a variable that also appears
in the condition and the rate of a Markovian summand, as long as it does not
occur in the probabilities and next state expressions and there are no other
variables that occur in the condition. For instance, we automatically reduce
∑

d:{2..5} d < 4⇒ (di) ·X to (2i + 3i) ·X. To be precise, we reduce

∑

d:D

c⇒ (λ) ·X to
( ∑

d′∈D
c[d:=d′]

λ[d := d′]
)

·X

where the second summation is meant in the mathematical sense. If the sum-
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mation variable d does not occur in the condition, we can just sum over all its
values and leave the condition intact.

Proposition 4.65. The underlying MAs of an MLPE before and after summa-
tion elimination are isomorphic.

Summation elimination is linear in the size of the MLPE.

4.6 Contributions

We introduced a new process-algebraic framework—called MAPA (Markov
Automata Process Algebra)—for modelling and generating MAs. It can be
used to specify systems incorporating both nondeterminism, probability and
Markovian rates. Key ingredient is the combined treatment of data and data-
dependent probabilistic choice in a fully symbolic manner. Since MAs generalise
LTSs, DTMCs, CTMCs, IMCs and PAs, the MAPA framework is applicable to
specifying systems in any of these domains.

We defined a restricted format of MAPA, the MLPE, that allows easy state
space generation and parallel composition. Also, its basic structure enables much
simpler definitions of many reduction techniques, as will become apparent in the
next three chapters. We showed how MAPA specifications can be encoded in a
restriction of itself, prCRL, and defined the novel concept of derivation-preserving
bisimulation to prove under which circumstances MAPA transformations can
safely—that is, while preserving strong bisimulation—be defined solely on prCRL.

We showed how to linearise prCRL specifications to a restricted variant of the
MLPE, while indeed obtaining derivation-preserving bisimilar results. Hence,
the encoding scheme allows this procedure to be lifted to transform MAPA
specifications to MLPEs without any effort. That way, techniques defined on
the MLPE can be automatically applied to the full spectrum of MAPA.

The results show that the treatment of probabilities and Markovian rates
is simple and elegant, and rather orthogonal to the traditional setting [Use02].
This is very desirable, as it simplifies the generalisation of existing techniques
to the Markovian setting. We did this for three existing reduction techniques:
constant elimination, expression simplification and summation elimination. The
case studies in Chapter 9 will demonstrate their significance, sometimes speeding
up state space generation by more than an order of magnitude.

Although the CADP [CGH+10, GLMS13] and Modest [BDHK06] frame-
works are also able to model rates and probabilistic choices in the presence of
data, the MAPA framework is much simpler. None of the other quantitative
approaches features a restricted format such as the MLPE, which allows us to
easily define reduction techniques that are not available in the other toolsets.
CADP does implement bisimulation minimisation, but not for systems that
feature both discrete probabilistic choice and stochastic timing—hence, it is not
applicable to MAs. As already discussed in Section 1.3 and in the introduction
of this chapter, all other related specification languages cannot handle the full
spectrum of MAs and/or are not able to deal with data.





CHAPTER 5

Dead Variable Reduction

“Everything should be made
as simple as possible,

but no simpler.”

Albert Einstein

S
ection 4.5 introduced three techniques for MAPA that simplify the MLPE
representation of specifications, without influencing the state space. The
current chapter provides a different type of technique: dead variable reduc-

tion. This technique does not necessarily simplify MLPEs, but rather reduces
the number of states of the underlying MA while preserving strong bisimulation.
We define this reduction technique on LPPEs, show that it yields derivation-
preserving bisimilar systems, and apply Theorem 4.36 to show that it can be used
on MLPEs just as well. The linearisation procedure introduced in Section 4.3
makes the technique applicable to all MAPA specifications. The idea of our
technique is to analyse when certain global variables of an LPPE are dead, also
called irrelevant. Basically, this means that for all continuations of the process,
these variables are overwritten before they are used again. Hence, they can just
as well be reset to their initial value, reducing the number of states.

Our approach. Due to the structure of an LPPE, it is not obvious when
variables are irrelevant; this relies on the order in which summands can be
executed. The explicit control flows of the original parallel processes have been
lost, though, since they were merged into one linear form. Therefore, it is not
immediately clear which values a variable may get in the future, or when it will
be overwritten. Moreover, some control flow could already have been encoded
in the state parameters of the original specification. To solve this problem, we
first present a technique to (re)construct the control flow graphs of an LPPE.
This technique is based on detecting which state parameters act as program
counters for the underlying parallel processes; we call these counters control flow
parameters (CFPs). We analyse which summands of the LPPE correspond to
each CFP, similar to the ideas of program slicing [Wei84].

Using the reconstructed control flow, we define a parameter to be relevant
in a given state if, before being overwritten, it may be used by an enabling
condition, action parameter or probability distribution, or by an expression to
determine the value of another parameter that will be relevant in the next state.
Based on this notion of relevance, we present a syntactic reduction technique
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that resets variables that are not relevant to their initial value. This is justified,
because these variables will anyway be overwritten before ever being read. We
show that our technique may only shrink the state space and that it never
enlarges it, and discuss a couple of our technical design choices. A case study on
a handshake register shows its applicability in practice.

Related work. Liveness analysis techniques are well-known in compiler the-
ory [ASU86]. However, their focus is often not on handling the multiple control
flows arising from parallelism. Moreover, these techniques generally work only
locally for each block of program code, and aim at reducing execution time
instead of state space size.

The concept of resetting dead variables for state space reduction was first
formalised by Bozga et al. [BFG99, FBG03], but in their analysis relevance of
variables was only dealt with locally, such that a variable that is passed to a
queue or written to another variable was considered relevant, even if it is never
used afterwards. A similar technique was presented in [YG04], using analysis
of control flow graphs. It suffers from the same locality restriction as [BFG99].
Most recent is [GS06], which applies data flow analysis to value-passing process
algebras. It uses Petri nets as its intermediate format, featuring concurrency
and taking into account global liveness information. We improve on this work
by providing a thorough formal foundation including bisimulation preservation
proofs, and by showing that our transformation never increases the state space.
Additionally, none of the aforementioned techniques works in the context of MAs.
Most importantly, they do not attempt to reconstruct control flow information
that is hidden in the state variables, missing opportunities for reduction—they
can only reduce based on control flow resulting from the structure of the parallel
components, whereas we can exploit user-induced control flow as well.

The µCRL toolkit already contained a tool parelm, implementing a basic
variant of our methods. Instead of resetting state parameters that are dead given
some context, it simply removes parameters that are dead in all contexts [GL01].
That is, it marks all parameters that either occur in some condition or action
argument, and also (recursively and iteratively) all parameters that are used
in some summand to determine one of the marked parameters. Unmarked
parameters are then deleted. As it does not take into account the control flow,
parameters that are sometimes relevant and sometimes not will never be reset.

Organisation of the chapter. We discuss the construction of control flow graphs
in Section 5.1, the data flow analysis in Section 5.2, and the LPPE transformation
in Section 5.3. Some potential adaptations to the framework, including examples
illustrating our choice for the current variant, are discussed in Section 5.4.
In Section 5.5 we demonstrate our technique on a larger example. Finally,
Section 5.6 concludes by summarising the contributions of this chapter.

Origins of the chapter. The ideas of dead variable reduction for non-probabilistic
LPEs were developed by Jaco van de Pol, and published together with the author
in the proceedings of the 7th International Symposium on Automated Technology
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for Verification and Analysis (ATVA) [vdPT09a] and a corresponding technical
report [vdPT09b]. For this chapter, the author generalised the framework to
work with LPPEs, and added correctness proofs for derivation preservation to
be able to apply the technique to MAPA specifications as well.

5.1 Reconstructing the control flow graphs

The techniques introduced in this chapter all work on LPPEs. As discussed in
Chapter 4, these are MLPEs without any Markovian summands (and hence they
are also part of the prCRL language):

Definition 4.37 (LPPEs). A linear probabilistic process equation (LPPE) is
a MAPA specification of the following format:

X(g : G) =
∑

i∈I

∑

di:Di

ci ⇒ ai(bi)
∑

•
ei:Ei

fi : X(ni)

Throughout this chapter we assume the existence of such an LPPE, with
variable names as indicated and an initial state vector init, and we assume
that it is decodable (see Remark 4.31). We use the indices i ∈ I to refer to its
summands. Without loss of generality, we assume that all variables in g (the
parameters or global variables), di (the local variables) and ei (the probabilistic
variables) are unique—this can easily be achieved by renaming duplicates.

Given a vector of formal state parameters g, we use gj to refer to its jth

parameter. An actual state is a vector of values, which we often denote by v; we
use vj to refer to its jth value. We use Gj to denote the type of gj , and J for the
set of all parameters gj . Furthermore, ni,j denotes the jth element of ni, and
pars(t) the set of all parameters gj that syntactically occur in the expression t.

5.1.1 Basic control flow analysis

To construct the control flow of an LPPE, we detect which of its global parameters
are acting as program counters for the system or a part of it. We take this to be
the case for a parameter gj ∈ J if each summand either leaves it unchanged (since
that summand deals with a part of the system not governed by gj) or changes it
from a specific value to another specific value (since that summand does deal
with a part of the system governed by gj). Of course, we could just remember
which parameters were introduced as program counters during the linearisation
procedure of Section 4.3. However, the approach we take here is more general: it
does not only detect these parameters, but may additionally detect user-defined
parameters to also act as program counters for (a part of) the system.

First, we define a parameter to be changed in a summand i if its value after
taking i may be different from its current value. Clearly, this can only be the
case if the expression ni,j is different from gj .

Definition 5.1 (Changed parameters). Given a summand i, a parameter
gj ∈ J is changed in i if ni,j 6= gj, otherwise it is unchanged in i.
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Note that parameters that are changed according to this definition may still
keep the same value. However, since this is not easily decidable in practice, we
chose to take a safe overapproximation. Parameters that are unchanged in a
summand i according to this definition indeed will never be changed by i.

For a summand i to change a parameter gj from one specific value to another,
there should be one value s such that the enabling condition of i can only hold
if gj has that value. We call this value the source of gj for i.

Definition 5.2 (Source functions). A function f : I × J →
⋃

j∈J Gj ∪ {⊥}
is a source function if, for every i ∈ I, gj ∈ J , and s ∈ Gj, f(i, gj) = s implies
that

∀v ∈ G,d′
i ∈Di . ci(v,d

′
i) =⇒ vj = s

Furthermore, f(i, gj) = ⊥ is always allowed; it indicates that no unique value s
complying to the above could be found.

From now on we assume a given source function source.

We note that source(i, gj) is allowed to be ⊥ even though there may be some
source s, as computing the source is in general undecidable—so, in practice heur-
istics are used that sometimes yield ⊥ when in fact a source is present. However,
we will see that this does not result in any errors. It may limit the effects of the
reduction, though. The same holds for the destination functions defined below.

The heuristics we apply in our implementation (see Chapter 9) to find a
source can handle equations, disjunctions and conjunctions, as well as negations
of boolean expressions. For an equational condition gj = c the source of gj
is obviously c, for a disjunction of such terms we apply set union, and for
conjunction intersection. If for some summand i a set of sources is obtained, it
can be split into multiple summands, such that each again has a unique source.

Example 5.3. Let ci be given by (gj = 3 ∨ gj = 5) ∧ gj = 3 ∧ gk = 10, then
obviously source(i, gj) = 3 is valid (because ({3} ∪ {5}) ∩ {3} = {3}), but also
(as always) source(i, gj) = ⊥ is allowed. �

For a summand to change a parameter from one specific value to another,
in addition to having a unique source it also should have a unique destination.
We define the destination of a parameter gj for a summand i to be the unique
value gj obtains after taking i, regardless of the values of the global, local and
probabilistic variables. Again, we only specify a minimal requirement, since such
a value may not always easily be found.

Definition 5.4 (Destination functions). A function f : I×J →
⋃

gj∈J Gj ∪

{⊥} is a destination function if, for every i ∈ I, gj ∈ J , and s ∈ Gj , f(i, gj) = s
implies that

∀v ∈ G,d′
i ∈Di, e

′
i ∈ Ei . ci(v,d

′
i) =⇒ ni,j(v,d

′
i, e

′
i) = s

Furthermore, f(i, gj) = ⊥ is always allowed, indicating that no unique destination
value could be derived.
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From now on we assume a given destination function dest.1

The heuristics in our implementation for computing dest(i, gj) substitute
source(i, gj) for gj in ni,j , and try to rewrite the result to a closed term.

Example 5.5. If ci is given by gj = 8 and ni,j by gj +5, then dest(i, gj) = 13 is
valid, but also (as always) dest(i, gj) = ⊥ is allowed. If for instance ci is gj = 5
and ni,j equals e3, then dest(i, gj) can only yield ⊥, since the value of gj after
taking i is not fixed (it depends on the value of e3). �

We say that a parameter gj rules a summand i if both its source and its
destination for that summand can be computed, i.e., are different from ⊥. This
implies that i indeed changes gj from one specific value to another, and hence
that i belongs to the part of the system governed by gj .

Definition 5.6 (The rules relation). A parameter gj ∈ J rules a summand
i if

source(i, gj) 6= ⊥ and dest(i, gj) 6= ⊥

The set of all summands ruled by gj is denoted by Rgj = {i ∈ I | gj rules i}.
Furthermore, Vgj denotes the set of all possible values that gj can take before and
after taking one of the summands that it rules, plus its initial value. Formally,

Vgj = {source(i, gj) | i ∈ Rgj} ∪ {dest(i, gj) | i ∈ Rgj} ∪ {initj}

Examples will show that summands can be ruled by several parameters.

5.1.2 Control flow parameters

We now define a parameter to be a control flow parameter if it rules all summands
in which it is changed. Stated differently, in every summand a control flow
parameter is either left alone or we know what happens to it. As discussed
before, such a parameter can be seen as a program counter for the summands it
rules, and therefore its values can be seen as locations. All other parameters are
called data parameters.

Definition 5.7 (Control flow and data parameters). A parameter gj ∈ J
is a control flow parameter (CFP) if for all i ∈ I, either gj rules i or gj is
unchanged in i. A parameter that is not a CFP is called a data parameter (DP).

We call the set of all summands i ∈ I ruled by gj its cluster (denoted above
by Rgj ). The set of all CFPs is denoted by C, the set of all DPs by D.

Example 5.8. Consider the following LPPE, based on the specification in
Example 4.25. It still consists of two buffers that continuously read and write

1Note that we could be a bit more liberal than the current definition, only requiring
ni,j(v,d

′
i
,e′

i
) = s for values e′

i
∈ Ei such that fi(v,d

′
i
,e′

i
) > 0. We chose not to do so, to

keep the presentation simple. However, clearly all our results still hold for this more liberal
definition.
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a = 1

a = 2

(1) (2)

(a) Control flow graph for a.

b = 1

b = 2

(2) (3)

(b) Control flow graph for b.

Figure 5.1: Control flow graphs for the LPPE of Example 5.8.

messages from and to the environment, but now also contains some probabilistic
erroneous behaviour. It is used as a running example throughout this chapter.

X(a : {1, 2}, b : {1, 2}, x : N, y : N) =
∑

d:N a = 1 ⇒ read(d)
∑
•

c:{0,1}
1
2 : X(2, b, d+ c, y) (1)

+ a = 2 ∧ b = 1⇒ comm(x) ·X(1, 2, x, x) (2)

+ b = 2 ⇒ write(y) ·X(a, 1, x, y) (3)

For the first summand we may define source(1, a) = 1, since this summand is
clearly only enabled if a = 1. Also, we can define dest(1, a) = 2, since n1,1 = 2
for all valuations of the global, local and probabilistic variables. Therefore,
parameter a rules the first summand. Similarly, it rules the second summand.
As a is unchanged in the third summand, it is a CFP (with summands 1 and 2
in its cluster). In the same way, we can show that parameter b is a CFP ruling
summands 2 and 3. Parameter x is a DP, as it is changed in summand 1 while
both its source and its destination are not unique. From summand 2 it follows
that y is a DP. �

Based on CFPs, we can define control flow graphs . The nodes of the control
flow graph of a CFP gj are the values gj can take, and the edges denote possible
transitions between these values. Specifically, an edge labelled i from value s
to t denotes that summand i may be taken if gj has the value s, resulting in it
getting the value t.

Definition 5.9 (Control flow graphs). Let gj be a CFP, then the control
flow graph for gj is the tuple (Vgj , Egj ), where Vgj is as given in Definition 5.6,
and

Egj = {(s, i, t) | i ∈ Rgj ∧ s = source(i, gj) ∧ t = dest(i, gj)}

Example 5.10. Figure 5.1 shows the control flow graphs for the LPPE of
Example 5.8. �

Note that we construct a local control flow graph per CFP, rather than a global
control flow graph. Although global control flow may be useful, its graph could
grow larger than the complete state space, completely defeating its purpose.
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Algorithm 5: Reachable values of a CFP gj .

Reachj = {initj};
Prev = ∅;
while Reachj 6= Prev do

Explore := Reachj \Prev ;
Prev := Reachj ;
forall the s ∈ Explore do

forall the i ∈ Rgj such that s = source(i, gj) do
Reachj := Reachj ∪ {dest(i, gj)};

end

end

end

5.1.3 Removing dead code using CFPs

Although our main purpose of control flow analysis is to reset dead variables,
it has an additional application: removal of unreachable summands. After
all, for each CFP gj we can easily compute the set of all its reachable values
Reachj using Algorithm 5. The algorithm provides an overapproximation, since
conditions containing other parameters may prevent some summands from being
executed.

Proposition 5.11. After executing Algorithm 5, the set Reachj contains all
values that a CFP gj may obtain.

Now, it immediately follows that a summand i ∈ I can be removed if, for
some CFP gj that rules i, source(i, gj) 6∈ Reachj . After all, in this case the
enabling condition of i will never be satisfied. From the operational semantics it
then follows that i does not contribute to the behaviour of the system. Although
removal of such summands does not reduce the state space, it does clean up the
LPPE and hence may speed up state space generation. This extension has not
been included in our implementation yet, though.

Note that unreachable summands may arise naturally if behaviour can be
disabled by the context of a process.

5.2 Simultaneous data flow analysis

Using the notion of CFPs, we analyse to which CFPs each DP belongs. We
say that a DP gk belongs to a CFP gj if gj rules all summands that change or
use gk. After all, in that case we can say that gk belongs to the part of the
system governed by the summands in the cluster of gj . Therefore, all decisions
on resetting gk can be made based on these summands.

First, we formalise what we mean by a parameter being used by a summand.
This is split into two parts: a parameter is directly used in i if it occurs in its
enabling condition ci, action parameters bi or probability expression fi, and used
if it is either directly used or needed to compute the next state. The idea is that
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directly used parameters are immediately needed for the summand to behave as
it should. The relevance of parameters that are just used depends on whether or
not the next-state parameters they influence will be of use in the next state.

Definition 5.12 (Used parameters). A parameter gj ∈ J is directly used in
a summand i if gj ∈ pars(ci) ∪ pars(bi) ∪ pars(fi), and used in i if it is directly
used in i or gj ∈ pars(ni,k) for some k such that gk is changed in i.

Note that the requirement for gk to be changed in i just means that k 6= j or
that k = j and pars(ni,j) 6= gj .

Definition 5.13 (The belongs-to relation). Let gk be a DP and gj a CFP,
then gk belongs to gj if all summands i ∈ I that use or change gk are ruled
by gj. For technical reasons, we assume that each DP belongs to at least one
CFP, and we do not allow CFPs to belong to anything.

The assumption of each DP belonging to at least one CFP can always be satisfied
by adding a fresh global variable of some dummy type {∗} to the LPPE and
leaving it unused and unchanged in all summands—trivially, it is a CFP and all
DPs belong to it. Clearly, this adapted LPPE has the same behaviour as the
original system.

Example 5.14. In our running example, x belongs to a and y belongs to b. �

5.2.1 Data relevance analysis

Having settled the control flow and knowing to which CFPs each DP belongs,
we continue our analysis. For each DP gk and each CFP gj such that gk belongs
to gj , we check during which part of gj ’s cluster the value of gk is irrelevant.

Basically, gk is irrelevant at a certain point if its value will always be over-
written before being needed again; otherwise, it is relevant. More precisely, the
relevance of gk is divided into three conditions, stating whether gk is relevant
if a CFP gj that it belongs to has some value s (denoted by R(gk, gj , s)). We
illustrate all three conditions based on examples.

Direct usage. Consider the following LPPE.

X(a : {1, 2}, x : N) =

a = 1⇒ send(x) ·X(1, x+ 1)

It is easy to see that a is a CFP and that x belongs to a. Note that the value of x
is relevant if a has value 1, since that enables a summand that directly uses x.
Hence, we write R(x, a, 1). This motivates our first condition of relevance:

1. If a DP gk ∈ D is directly used in some i ∈ I, then for every gj ∈ C to
which gk belongs we require

R(gk, gj , source(i, gj))
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Note that indeed source(i, gj) 6= ⊥, since the facts that gk is directly used
in i and that gk belongs to gj together imply that gj rules i and hence that
source(i, gj) 6= ⊥.

Indirect usage within one cluster. Now consider the following LPPE.

X(a : {1, 2}, x : N, y : N) =

a = 1⇒ τ ·X(2, y, y + 1) (1)

a = 2⇒ send(x) ·X(1, x+ 1, y) (2)

Clearly a is a CFP, and x and y both belong to a. By the previous condition,
we immediately find R(x, a, 2) (due to the second summand). Additionally, we
observe that R(y, a, 1) should hold, since y is used in the first summand (enabled
when a has value 1) to determine the value that x will have when a becomes 2.
This motivates our second condition of relevance:

2. If a DP gk ∈ D is used in some i ∈ I to determine the value of an-
other DP gl ∈ D, then for every gj ∈ C such that gk belongs to gj and
R(gl, gj , dest(i, gj)) we require

R(gk, gj , source(i, gj))

Again, source(i, gj) and dest(i, gj) are well-defined since gk is used in i and
belongs to gj , and hence gj has to rule i.

Indirect usage between clusters. While the previous condition takes into account
the use of DPs to set other DPs that will be relevant later within the same
cluster, data may also be copied between different clusters. Consider for instance
the following LPPE.

X(a : {1, 2}, b : {1, 2}, x : N, y : N) =

a = 1 ⇒ send(x) ·X(2, b, x, y) (1)

a = 2 ∧ b = 1⇒ τ ·X(1, 2, y, y) (2)

b = 2 ⇒ τ ·X(a, 1, x, y + 1) (3)

We find that a and b are CFPs, that x belongs to a and that y belongs to b.
Clearly, R(x, a, 1) due to the first summand. Moreover, we observe that y is used
in the second summand to determine the value of x. Since this summand sets a
to 1, the value of x may be relevant in the next state (due to R(x, a, 1)), and
hence y may be relevant in the second summand (so R(y, b, 1)). However, there
is no gj ∈ C such that y belongs to gj and R(x, gj , dest(i, gj)), so the second
condition is not applicable. Hence, we need the following third condition, dealing
with a situation like this when a value is copied between clusters of two CFPs:

3. If a DP gk ∈ D is used in some i ∈ I to determine the value of another
DP gl ∈ D such that R(gl, gp, dest(i, gp)) for some gp ∈ C, then for every
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gj ∈ C such that gk belongs to gj and gl does not belong to gj we require

R(gk, gj , source(i, gj))

Now, for the example LPPE we already knew that R(x, a, 1), that y belongs to b
and that x does not belong to b. Hence, we obtain R(y, b, 1) via this condition.

By adding the restriction that gl does not belong to gj , we exclude the
situation that R(gl, gp, dest(i, gp)) for some gp ∈ C and that both gk and gl
belong to gj . This restriction is indeed safe, because if both gk and gl belong to
gj , all of their behaviour happens within the cluster of gj . Hence, we don’t have
to consider the cluster of any other CFP gp to decide for which values of gj the
value of gk is relevant for setting the value of gl. Our second condition suffices
to find all the relevant source values for gj . The following example shows that
we may even unnecessarily denote DPs to be relevant if we lift the restriction.

Example 5.15. Consider the following updated variant of our third condition.

(3’) If a DP gk ∈ D is used in some i ∈ I to determine the value of another
DP gl ∈ D such that R(gl, gp, dest(i, gp)) for some gp ∈ C, then

R(gk, gj , source(i, gj))

for every gj ∈ C such that gk belongs to gj .

Note that this updated condition subsumes our second condition, since it includes
the case that gp = gj . As the adapted definition is more inclined to consider a DP
relevant, the lemma relying on this definition (Lemma A.20) will still hold. How-
ever, this potentially yields more relevance than necessary, decreasing the number
of reductions that can be made. As an example, observe the following LPPE.

X(p : {1, 2}, q : {1, 2}, x : N) =

p = 1 ∧ q = 1 ⇒ a(x) ·X(2, 1, x) (1)

+ p = 2 ∧ q = 1 ⇒ τ ·X(1, 1, 2) (2)

+ p = 2 ∧ q = 2 ⇒ τ ·X(2, 1, x) (3)

Clearly, p and q are CFPs and x belongs to both p and q. Using our initial three
condition, we find R(x, p, 1) and R(x, q, 1) when applying the first condition
on the first summand of X. The second condition then yields R(x, q, 2) by
looking at the third summand. Now, no clause applies anymore, resulting in
the observation that ¬R(x, p, 2), and hence—as we will discuss in more detail
later—x can be reset in the next-state expression of the first and third summand.

Using condition (3’) instead of (3), on the other hand, the third summand
combined with R(x, q, 1) would yield R(x, p, 2), so no reductions can be made
anymore. The problem here is that x seems to be relevant when p = 2, since in
that case the third summand can be taken, after which q = 1 (and we already
knew that R(x, q, 1)). However, after taking the third summand p will still be 2,
preventing the first summand from being taken. �
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We are now able to give a smallest fixed-point definition of the relevance
relation R, using three clauses based on the three conditions discussed above.
We phrase the clauses slightly differently to accommodate the fixed-point way of
defining R, but it can easily be seen that they precisely correspond to the three
conditions described above.

Definition 5.16 (Relevance). Let gk ∈ D and gj ∈ C, such that gk belongs
to gj. Given some s ∈ Gj, we write (gk, gj , s) ∈ R (or R(gk, gj , s)) to denote
that the value of gk is relevant when gj has value s.

Formally, R is the smallest relation such that

1. If gk ∈ D is directly used in some i ∈ I, gk belongs to some gj ∈ C and
s = source(i, gj), then R(gk, gj , s);

2. If R(gl, gj , t), and there exists an i ∈ I such that (s, i, t) ∈ Egj , and gk
belongs to gj, and gk ∈ pars(ni,l), then R(gk, gj , s);

3. If R(gl, gp, t), and there exists an i ∈ I and an r such that (r, i, t) ∈ Egp ,
and gk ∈ pars(ni,l), and gk belongs to some CFP gj to which gl does not
belong, and s = source(i, gj), then R(gk, gj , s).

If (gk, gj , s) 6∈ R, we write ¬R(gk, gj , s) and say that gk is irrelevant when
gj = s.

Example 5.17. We now apply the definition of relevance to our running ex-
ample. The first condition immediately yields R(x, a, 2) and R(y, b, 2). Then,
no clauses apply anymore, so ¬R(x, a, 1) and ¬R(y, b, 1). Now, to makes things
more interesting we hide the action comm, obtaining

X(a : {1, 2}, b : {1, 2}, x : N, y : N) =
∑

d:N a = 1 ⇒ read(d)
∑
•

c:{0,1}
1
2 : X(2, b, d+ c, y) (1)

+ a = 2 ∧ b = 1⇒ τ ·X(1, 2, x, x) (2)

+ b = 2 ⇒ write(y) ·X(a, 1, x, y) (3)

In this case, the first clause of relevance only yields R(y, b, 2). Moreover, since x
is used in summand 2 to determine the value that y will have when b becomes 2,
also R(x, a, 2). Formally, this can be found using the third clause, substituting
gl = y, gp = b, t = 2, i = 2, r = 1, gk = x, gj = a, and s = 2. �

Remark 5.18. The computation of relevance is by far the most complex part
of our approach. It depends on the number of data parameters |D|, the number
of control flow parameters |C| and the number of summands |I|.

To construct R, first all directly relevant pairs are computed using the
first clause of Definition 5.16. For each summand i we check for each DP gk
whether it is directly used. If so, for all CFPs gj to which gk belongs the pair
(gk, gj , s) is added to R, with s the source of gj for summand i. Hence, in
the worst case O(|I| × |D| × |C|) operations are performed. The fixed-point
computation continues, and each iteration adds at least one relevant pair to R.
Since each CFP can have at most |I| sources, the number of iterations is bound
by O(|I| × |D| × |C|) as well. Per iteration, for each pair that is already in R
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(which worst case has size O(|I| × |D| × |C|)), all |I| summands are traversed to
check if there is a data parameter to satisfy the second clause of Definition 5.16.
For the third clause, a DP and a CFP are sought after. Hence, this is worst-case
in O(|I|2 × |D|2 × |C|2). Combining these observations, the worst-case time
complexity of dead variable reduction is in O(|I|3 × |D|3 × |C|3).

In practice, however, the number of iterations is very unlikely to be so
large. For instance, one of our case studies that will be discussed in Chapter 9
(leader-3) has 100 summands, 13 CFPs and 14 DPs. Instead of the worst-
case 100 · 13 · 14 = 18,200 iterations, only 3 were needed. Other case studies
required 2 instead of the maximal 360 iterations (polling-4), and 4 instead
of the maximum of 7,350 (hesselink-3). The final case study had no CFPs
(grid-3). Hence, in practice the number of iterations seems not to depend on
|I|, |D| and |C|. Additionally, we rarely come across summands that are ruled
by more than two CFPs. As CFPs can only change value in summands they
rule, it therefore seems realistic to assume that the number of pairs (c, s), with c
a CFP and s a source value for c, is in O(|I|). This implies that the size of R is
in O(|I| × |D|) instead of O(|I| × |D| × |C|). Assuming the number of iterations
to be in O(1), and the size of R in O(|I| × |D|), this brings our total complexity
down to O(|I|2 × |D|2 × |C|). �

Since clusters have only limited information, they do not always detect a
DP’s irrelevance. However, they always have sufficient information to never
erroneously declare a DP irrelevant. Therefore, we define a DP gk to be relevant
given a state vector v, if and only if it is relevant for the valuations of all CFPs
gj it belongs to.

Definition 5.19 (Relevance in state vectors). The relevance of a parame-
ter gk ∈ J given a state vector v, denoted by Relevant(gk,v), is defined by

Relevant(gk,v) =
∧

gj∈C
gk belongs to gj

R(gk, gj , vj)

Note that, since a CFP belongs to no parameters, it is always relevant.

Example 5.20. For our running example we derived that x belongs to a, and
that it is irrelevant when a = 1. Therefore, the valuation x = 5 is not relevant
in the state vector v = (1, 2, 5, 3), so we write ¬Relevant(x,v). �

Intuitively, the value of a DP that is irrelevant in a state vector does not matter.
For instance, the two state vectors v = (1, 2, 3) and v′ = (1, 5, 3) are equivalent if
¬Relevant(g2,v). To formalise this, we introduce a relation ∼= on state vectors,
given by

v ∼= v′ ⇐⇒ ∀gk ∈ J : (Relevant(gk,v) =⇒ vk = v′k)

and prove that it is a derivation-preserving bisimulation (considering each vector v
to behave as the process X(v). This is an important result: it shows us that
irrelevant DPs can indeed safely be modified without influencing an LPPE’s
behaviour.

Theorem 5.21. The relation ∼= is a derivation-preserving bisimulation.
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5.2.2 Changing the initial state

Linearisation chooses dummy values for parameters whose initial value does
not matter. These values are chosen locally per component. However, after
generating an LPPE (or MLPE) global information is available, making it
possible to choose more intelligent values.

Although the main purpose of Theorem 5.21 is to reset dead variables (as
discussed in the next section), it can also be used to see that the initial value
of a DP gk, belonging to a CFP gj , can be modified if ¬R(gk, gj , initj). If
possible, the initial value of a parameter should be chosen such that it is not
changed by any summand, as it can then be removed by constant elimination (see
Section 4.5). This extension has not been included in our implementation yet.

5.3 State space reduction using data flow analysis

The most important application of the data flow analysis described in the
previous section is to reduce the number of reachable states of the PA underlying
an LPPE. We need to do this in a careful manner, as modifications to irrelevant
parameters in an arbitrary way could even increase this number. We present
a syntactic transformation of LPPEs, and prove that it yields a derivation-
preserving bisimilar system and can never increase the number of reachable
states. In several practical examples, it yields a decrease.

5.3.1 Syntactic transformation

Our transformation uses the idea that a data parameter gk that is irrelevant in all
possible states after taking a summand i, can just as well be reset by i to its initial
value. Resetting to a different value could result in an increase of the number
of states, in case some variable is irrelevant in the initial state. The reason for
this is that no resets have yet taken place for the initial state itself. Hence, if
at some point the initial state is revisited in the original system, an additional
state may be generated by the transformed system due to a variable reset.

Definition 5.22 (LPPE transformation). Given an LPPE X

X(g : G) =
∑

i∈I

∑

di:Di

ci ⇒ ai(bi)
∑

•
ei:Ei

fi : X(ni)

its transform is the LPPE X ′ given by

X ′(g : G) =
∑

i∈I

∑

di:Di

ci ⇒ ai(bi)
∑

•
ei:Ei

fi : X
′(n′

i)

with

n′
i,k =







ni,k , if
∧

gj∈C
gj rules i

gk belongs to gj

R(gk, gj , dest(i, gj))

initk , otherwise
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We will use the notation X(v) to denote state v in the underlying PA of X, and
X ′(v) to denote state v in the underlying PA of X ′.

Note that n′
i only deviates from ni for parameters gk that are irrelevant

after taking i. The following theorem states that the transformation satisfies
derivation-preserving bisimilation for decodable LPPEs.

Theorem 5.23. Let X be a decodable LPPE, X ′ its transform, and v a state
vector for X. Then, X(v) ∼dp X ′(v).

Since our transformation additionally does not alter any of the action-prefix
constructs, it can never make an LPPE non-decodable. Hence, by Theorem 4.36
this transformation can also safely be applied to MLPE specifications.

We now show that our choice for redefining each n′
i ensures that the state

space of X ′ is at most as large as the state space of X. This is based on the
following invariant, stating that if a parameter is irrelevant, it is equal to its
initial value.

Proposition 5.24. For any state vector v reachable by the process X ′(init),
invariably ¬Relevant(gk,v) implies that vk = initk.

Theorem 5.25. The number of reachable states of X ′(init) is at most the
number of reachable states of X(init).

Since we prove the above theorem by providing a derivation-preserving
functional bisimulation from X to X ′ (see Appendix A.3), the result also holds
if our technique is applied to MAPA specifications by linearising, encoding to
LPPE, resetting dead variables and decoding back to MLPE.

Example 5.26. Using the above transformation, the LPPE of our running
example becomes

X(a : {1, 2}, b : {1, 2}, x : N, y : N) =
∑

d:N a = 1 ⇒ read(d)
∑
•

c:{0,1}
1
2 : X(2, b, d+ c, y) (1)

+ a = 2 ∧ b = 1⇒ comm(x) ·X(1, 2, 1, x) (2)

+ b = 2 ⇒ write(y) ·X(a, 1, x, 1) (3)

assuming that the initial state vector is (1, 1, 1, 1). The variable resets have been
underlined for comparison.

Note that for X ′ the state (1, 1, x′, y′) is only reachable for x′ = y′ = 1,
whereas in the original specification X it is reachable for all x′, y′ ∈ N such that
x′ = y′. �

5.3.2 Lack of idempotency

Generally it is considered desirable for a reduction technique to be idempotent;
applying it once yields the maximum effect it can possibly achieve, and applying
it more often does not have any additional effect. Unfortunately, our method is
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not idempotent in general, although experiments show that in practice it often
is. As an example of the lack of idempotency, consider the following LPPE.

X(p : {1, 2, 3}, q : {1, 2}, x : N) =

p = 2 ∧ q = 1 ⇒ a(x) ·X(1, 1, x) (1)

+ p = 1 ∧ q = 1 ⇒ τ ·X(2, 2, x+ 1) (2)

+ p = 3 ⇒ τ ·X(1, q, x) (3)

For this specification, p and q are both CFPs. Furthermore, p rules all summands,
whereas q rules only the first two. Since x is unchanged in the third summand,
however, it still belongs to both.

Clearly, R(x, p, 2) and R(x, q, 1), since in that case the first summand (which
directly uses x) can be taken. Moreover, R(x, p, 1), since the second summand
can be taken if p = 1, which uses x to set x in the next state and updates p to 2.
Finally, R(x, p, 3) due to the third summand.

However, because the second summand changes q to 2 and x is not relevant
when q = 2, its next-state vector can be changed to (2, 2, 0), obtaining

X(p : {1, 2, 3}, q : {1, 2}, x : N) =

p = 2 ∧ q = 1 ⇒ a(x) ·X(1, 1, x) (1)

+ p = 1 ∧ q = 1 ⇒ τ ·X(2, 2, 0) (2)

+ p = 3 ⇒ τ ·X(1, q, x) (3)

The next-state vector of the third summand could not (yet) be transformed,
since it changes p to 1 and it was established that x is relevant when p = 1.

However, starting over based on the transformed LPPE, it can be seen that x
is not relevant anymore when p = 1, since it is not used in the next-state vector.
Therefore, x is also not relevant anymore for p = 3, so that now the next-state
vector of the third summand can be changed to (1, q, 0).

This example shows that the lack of idempotency is due to our control flow
analysis being local; at first sight it seemed that the first summand would be
reachable after the second. As discussed before, we do not construct a control
flow graph of the complete system for efficiency reasons.

5.4 Failing alternatives

We discuss two potential adaptations to the theory: (1) allowing CFPs to
belong to other CFPs, and (2) relaxing the definition of the belongs-to relation.
While both adaptations may intuitively seem like an improvement, they can also
cause difficulties. Hence, we provide examples to motivate the current state of
the theory.

5.4.1 Allowing CFPs to belong to other CFPs

A possible adaptation to the theory may seem to allow CFPs to belong to other
CFPs. This, however, would raise problems if cycles occur in the belongs-to
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relation. Consider for example the following LPPE.

X(p : {1, 2}, q : {1, 2}) =

p = 1 ∧ q = 1⇒ τ ·X(2, 2)

with (2, 2) as the initial state vector. Clearly, this system can perform no actions.

If CFPs could belong to CFPs, in this case p would belong to q and q would
belong to p. Furthermore, we obtain ¬R(p, q, 2) and ¬R(q, p, 2). Therefore, the
initial condition seems to be allowed to change to (1, 1). However, in that case
we obtain a specification that is not strongly bisimilar to the original anymore,
since it can perform a τ -action.

5.4.2 Relaxing the definition of belongs-to

The definition of belongs-to could be relaxed to also allow DPs to be changed to
a constant value in summands that are not ruled by the CFPs they belong to.
That is, a DP gk belongs to a CFP gj if all summands i ∈ I that use or change
gk to a non-constant value are ruled by gj . In this case, the technique is still
correct; our proofs can easily be adapted. As an example of a useful application
of this change, observe the LPPE

X(p : {1, 2}, x : N) =

p = 1 ⇒ τ ·X(1, x+ 1) (1)

+ p = 2 ⇒ a(x) ·X(1, x) (2)

+ τ ·X(p, 0) (3)

For this infinite-state system parameter p rules the first two summands, but x is
changed in the last so according to the original definition x would not belong to
p and no reductions can be made. However, using the new definition, x does
belong to p, and we observe that x is only relevant when p = 2. Therefore, we
can reduce to the following LPPE, obtaining a finite-state system.

X(p : {1, 2}, x : N) =

p = 1 ⇒ τ ·X(1, 0) (1)

+ p = 2 ⇒ a(x) ·X(1, 0) (2)

+ τ ·X(p, 0) (3)

However, with the adapted definition it is also possible to increase the state
space due to a ‘reduction’; consider for instance the following LPPE.

X(p : {1, 2}, q : {1, 2}, x : {1, 2}) =

p = 1 ⇒ τ ·X(2, q, 2) (1)

+ q = 1 ⇒ a(x) ·X(p, 2, x) (2)

Using the initial state vector (1, 1, 1), this system has a state space consisting of
four states. Using the adapted definition of belongs-to we find that x belongs
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to q, and that x is not relevant when q = 2, so that reduction results in

X(p : {1, 2}, q : {1, 2}, x : {1, 2}) =

p = 1 ⇒ τ ·X(2, q, 2) (1)

+ q = 1 ⇒ a(x) ·X(p, 2, 1) (2)

This specification results in a state space with five states, so Corollary 5.25 does
not apply anymore.

5.5 Case study

A restricted version of the techniques described in this chapter was implemented
by Jaco van de Pol in the non-quantitative context of the µCRL toolset. Later,
the author implemented them in his quantitative tool SCOOP. Chapter 9 will
discuss our implementation and several case studies in detail, but we already
present one of the larger case studies here to show our technique in practice. It
is a model of a handshake register , modelled and verified by Hesselink [Hes98].

A handshake register is a data structure that is used for communication
between a single reader and a single writer. It guarantees recentness and
sequentiality ; any value that is read was at some point during the read action the
last value written, and the values of sequential reads occur in the same order as
they were written. Also, it is waitfree; both the reader and the writer can complete
their actions within a bounded number of steps, independent of the other process.
Hesselink provides a method to implement a handshake register of a certain data
type based on four so-called safe registers and four atomic boolean registers.

We modelled both the specification of the handshake register and its im-
plementation using the registers, aiming at demonstrating their equality. The
model of the implementation, though, is rather complex and hence has a large
state space (quickly reaching millions of states for larger variants of the data
type stored by the handshake register). We will show in Chapter 9 that our
dead variable reduction technique provides a substantial reduction of this state
space: at best, it is reduced to less than 0.5% of its original size. To see why,
observe the LPPE of each of the four safe registers:

Y (i : Bool, j : Bool, r : {1, 2, 3}, w : {1, 2, 3}, v : D, vw : D, vr : D) =

r = 1 ⇒ beginRead(i, j) · Y (i, j, 2, w, v, vw, vr) (1)

+ r = 2 ∧ w = 1⇒ τ · Y (i, j, 3, w, v, vw, v) (2)

+
∑

x : D r = 2 ∧ w 6= 1⇒ τ · Y (i, j, 3, w, v, vw, x) (3)

+ r = 3 ⇒ endRead(i, j, vr) · Y (i, j, 1, w, v, vw, vr) (4)

+
∑

x : D w = 1 ⇒ beginWrite(i, j, x) · Y (i, j, r, 2, v, x, vr) (5)

+ w = 2 ⇒ τ · Y (i, j, r, 3, vw, vw, vr) (6)

+ w = 3 ⇒ endWrite(i, j) · Y (i, j, r, 1, v, vw, vr) (7)

The boolean parameters i and j are process identifiers to distinguish the four
components (Y is instantiated four times, once for each combination of valuations
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for i and j). The parameter r denotes the read status, and w the write status.
Reading consists of a beginRead action, a τ step, and an endRead action.

During the τ step either the contents of v is copied into vr (summand 2), or,
when writing is taking place at the same time, a random value is copied to vr
(summand 3). In the final step, the endRead action is taken with the value of
vr as a parameter (summand 4). Writing works by first storing the value to be
written in vw (summand 5), and then copying vw to v (summand 6).

Our dead variable technique automatically detects several possibilities for
variable resets, indicated by the underlined variables in the specification. These
are due to r and w being recognised as manually encoded control flow parameters.
Based on these CFPs, our implementation detects that the value of vr is irrelevant
after summand 4, since it will not be used before summand 4 is reached again.
This is always preceded by summand 2 or 3, both overwriting vr. Thus, vr can
be reset to its initial value in the next-state expression of summand 4. These
resets drastically decrease the size of the state space, as our experiments will
show in Section 9.3.1. The CADP tool [GS06] was not able to make these
reductions, since it does not contain control flow reconstruction.

Note that the use of parallel processes for the reader and the writer instead
of our solution of encoding control flow in the data parameters—which would
limit the need for control flow reconstruction—would be difficult, because of the
shared variables. Additionally, although the example may seem artificial, it is
an almost one-to-one formalisation of its description in [Hes98]. Without our
method for control flow reconstruction, useful variable resets could not be found
automatically. Manual optimisation would be hard and error-prone.

5.6 Contributions

We presented a novel method for reconstructing the local control flow of linear
processes. The reconstruction process enables us to interpret some variables
as program counters. Especially when specifications are translated between
languages, their control flow may be hidden in the state parameters (as showed
by the case study presented in this chapter). To the best of our knowledge, no
such reconstruction method appeared in literature before, and hence other tools
are not able to do this analysis. As an exception, our techniques have recently
been used and adapted [KWW13] to the context of PBESs (parameterised
Boolean equation systems). This now allows dead variable reduction to also be
applied in the mCRL2 toolset [CGK+13].

The reconstructed control flow is used for data flow analysis, aiming at state
space reduction by resetting variables that are irrelevant given a certain state. We
introduced a transformation and proved its correctness with regard to derivation-
preserving bisimilarity, as well as its property to never increase the state space.

By finding useful variable resets automatically, users can focus on modelling
systems in an intuitive way, instead of formulating models such that a toolset
can handle them best. This idea of automatic syntactic transformations for
improving the efficiency of formal verification (not relying on users to make
their models as efficient as possible) already proved to be a fruitful concept in
earlier work [WH00]. Our case studies in Chapter 9 will show that significant
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reductions can indeed be obtained, sometimes shrinking state spaces to less than
1% of their original size.





Part III

Confluence Reduction





CHAPTER 6

Confluence Reduction

“Art is the elimination of the unnecessary.”

Pablo Picasso

T
he previous chapters presented techniques for reducing MAPA specific-
ations while preserving strong bisimulation. Although these are all very
useful, we can do much better in many cases: we can abstract from in-

ternal behaviour, reducing more while preserving divergence-sensitive branching
bisimulation1.

This chapter therefore generalises confluence reduction from LTSs to MAs.
It is a powerful state space reduction technique based on commutativity of
transitions, removing spurious nondeterminism often arising from the parallel
composition of largely independent components. The core is a confluent set of
invisible transitions; these are chosen in such a way that they always connect
bisimilar states. Confluence therefore paves the way for state space reductions,
by giving confluent transitions priority over their neighbouring transitions.

The aim of our analysis is to efficiently approximate which invisible transitions
are confluent, and hence do not influence the observable behaviour. Although
it may be beneficial to know all confluent transitions, this is often infeasible
in practice as it may require the entire state space—however, generating the
unreduced system is precisely what we want to prevent. Hence, we settle for an
underapproximation. To the best of our knowledge, it is the first technique of
this kind for MAs.

Our approach. In the probabilistic setting, transitions do not necessarily have
a unique target state. Using an example, we argue that only τ -transitions with
a unique target state can be considered confluent. Additionally, we generalise
the concept of commutativity to the probabilistic realm, taking into account the
probability of commuting paths. Based on these ideas, we define our novel notion
of confluence for MAs. As in the non-probabilistic case, it specifies sufficient
conditions for invisible transitions to not alter the behaviour of an MA; i.e., if a
transition is found to be confluent in a state s, it may be given priority over all
other transitions emanating from s.

We prove that confluent transitions connect divergence-sensitive branching
bisimilar states, and present a mapping of states to representatives to efficiently

1Since this chapter is only concerned with divergence-sensitive branching bisimulation, we
will often abbreviate this concept by just the term bisimulation.
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generate a reduced MA. We explain how confluence can be detected symbolically
on specifications in the MAPA language, and provide a detailed exposition of our
heuristics to do so efficiently. Case studies in Chapter 9 applying these heuristics
will demonstrate state space reduction up to more than 90%, with decreases in
analysis time of sometimes more than 98%. We conclude with a discussion on
possible alternatives to our notions and show why these fail.

Related work. Compared to the earlier approach on confluence reduction for
process algebras [BvdP02], the notion of confluence we present in this chapter is
different in three important ways:

• We can handle MAs, lifting confluence reduction to a significantly larger
class of systems (including the subclasses of PAs and IMCs).
• We discuss a subtle flaw in the earlier work [BvdP02], and solve it by

introducing an underlying classification of the interactive transitions. This
way we guarantee closure under unions, something that was not guaranteed
before2. It is key to the way we detect confluence on MAPA specifications.
• We preserve divergence and hence minimal reachability probabilities.

Outside the domain of confluence reduction, our technique is most related
to partial order reduction (POR). Several types of POR have been defined,
both for non-probabilistic [Val90, Val93, Pel93, GP93, God96] and probabilistic
systems [DN04, BGC04, BDG06]. These techniques are based on ideas similar to
confluence, choosing a subset of the outgoing transitions per state to reduce the
state space while preserving a certain notion of bisimulation or trace equivalence.
None of these techniques is capable of reducing MAs. For the subclass of PAs,
we provide a detailed comparison in Chapters 7 and 8, showing confluence
reduction to be more powerful in theory as well as practice when restricting to
the preservation of branching-time properties.

Since none of the existing techniques is able to deal with MAs, we believe that
our generalisation—the first on-the-fly reduction technique for MAs abstract-
ing from internal transitions—is a major step forward in efficient quantitative
verification.

Organisation of the chapter. We start in Section 6.1 by presenting an informal
introduction to the concept of confluence reduction. Since the additional technical
difficulties due to probabilities and Markovian rates may distract from the
underlying ideas, we just consider confluence for LTSs in this introduction.
Section 6.2 then discusses the additional difficulties when defining confluence
for probabilistic systems, introduces our novel notion of confluence for MAs,

2Actually, the approach taken in [BvdP02] resembles our approach to a large degree (except
that they consider a less expressive model and do not preserve divergence). While their claim
of being able to take the union of confluent sets is faulty in general, their implementation works
correctly. We show in this chapter that an additional technical restriction (the confluence
classification) is needed to remedy the theoretical mistake, and this restriction happens to be
satisfied in their implementation (in the same way as in ours). Since the confluence reduction
technique described in [BvdP02] is a restricted variant of our notion, it could be fixed by
introducing a confluence classification precisely in the same way as we do in this chapter.
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and proves closure under unions as well as the fact that confluent transitions
connect divergence-sensitive branching bisimilar states. Then, we present our
state space reduction technique based on confluence and representation maps
in Section 6.3. Section 6.4 provides a logical characterisation and heuristics
for detecting confluence on the MAPA language, and Section 6.5 discusses the
disadvantages of some variations on our concept. Finally, Section 6.6 concludes
by summarising the contributions of this chapter.

Origins of the chapter. The results in this chapter on confluence reduction
were first published for the context of probabilistic automata and prCRL, in the
proceedings of the 17th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS) [TSvdP11] and a corresponding
technical report [TSvdP10]. The generalisation to MAs and MAPA was published
in the proceedings of the 11th International Conference on Formal Modeling
and Analysis of Timed Systems (FORMATS) [TSvdP13a] and a corresponding
technical report [TSvdP13b].

6.1 Informal introduction

The concept of confluence reduction is based on the idea that some transitions
do not influence the observable behaviour of a system—assuming that only
visible actions (i.e., actions different from τ) and changes in the validity of
atomic propositions can be observed. To this end, they at least have to be
invisible themselves: their action should be τ and they should not change the
state labelling, i.e., they should be stuttering. Still, invisible transitions may
influence the observable behaviour of an MA, even though they are not observable
themselves. Figure 6.1 illustrates this phenomenon.

Example 6.1. While the transition s1 −
τ→ s2 in Figure 6.1(a) cannot be observed

itself, it does disable the b-transition. Hence, this transition influences the
observable behaviour of the system—if it was always taken from s1 while omitting
the other two transitions emanating from this state, no b-action would ever be
observed and the atomic proposition r would never hold. Therefore, states s1
and s2 are not branching bisimilar, and hence neither are the original system
and the proposed reduced system.

s1

s3

s2

s4s5

{p}

{q}

{p}

{q}{r}

τ

a

τ

a
b

(a) Observable invisible transition s1 −τ→ s2.

s1

s3

s2

s4 s5

{p}

{q}

{p}

{q} {r}

τ

a

τ

a
b

(b) Unobservable invisible transition s1 −τ→ s2.

Figure 6.1: Observable versus unobservable invisible transitions.
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The invisible transition s1 −
τ→ s2 in Figure 6.1(b) is of a different type: we

could always take it from s1 while ignoring the transition s1 −
a→ s3, without losing

any observable behaviour. Both the original system and the system reduced
in this way can eventually see an a or a b-action and may end up in a state
satisfying either q or r. Actually, states s1 and s2 are branching bisimilar, and
so are the original system and the proposed reduced system. �

The example illustrates the most important property of confluent transitions:
they connect branching bisimilar states, and hence in principle could be given
priority over their neighbouring transitions without losing any behaviour. To
verify that a transition is confluent and hence has this property, it should be
invisible and still allow all behaviour enabled from its source state to occur from
its target state as well. Stated otherwise, all other transitions from its source
state should be mimicked from its target state.

6.1.1 Checking for mimicking behaviour

To check whether all behaviour from a transition’s source state is also enabled
from its target state, confluence employs a coinductive approach similar to the
common definitions of bisimulation. For an invisible transition s −τ→ s′ to be
confluent, clearly the existence of a transition s −a→ t should imply the existence
of a transition s′ −a→ t′ for some t′. Additionally, for all behaviour from s to
be present at s′, also all behaviour from t should be present at t′. To achieve
this, we coinductively require s′ to have a confluent transition to t′. We note
that a coinductive approach such as the one just described requires a set of
transitions to be defined upfront. Then, we can validate whether or not this set
indeed satisfies the conditions for it to be confluent. In principle, we are always
interested in finding the largest set for which this is the case.

Example 6.2. In Figure 6.1(a), the set containing both τ -transitions is not
confluent. After all, for s1 −

τ→ s2 it is not the case that every action enabled from
its source state is also enabled from its target state.

In Figure 6.1(b), the set containing both τ -transitions is confluent. For
s3 −

τ→ s4 the mimicking condition is satisfied trivially, since it does not have any
neighbouring transitions from s3. For s1 −

τ→ s2 the condition is also satisfied,
since the transition s1 −

a→ s3 is mimicked by s2 −
a→ s4. As required, s3 and s4 are

indeed connected by a confluent transition. �

6.1.2 State space reduction based on confluence

When a transition is confluent, it can in principle be given priority, in the sense
that all other transitions emanating from the same state are omitted. This may
yield significant state space reductions, as many states may become unreachable.
Although a system obtained due to prioritisation of confluent transitions is
indeed branching bisimilar to the original system (under some assumptions that
we come back to later), it often contains states that could just as well be omitted.
They only have one outgoing invisible transition, and hence do not contribute to
the system’s observable behaviour in any way. Therefore, instead of prioritising
confluent transitions, we rather skip over them.
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Example 6.3. Consider again the toy example presented in Figure 6.1(b). We
already discussed in the previous example that both invisible transitions are
confluent. Figure 6.2(a) demonstrates the reduced state space when giving these
transitions priority over their neighbours. Although this is a valid reduction,
state s1 has little purpose and can be skipped over. That way, we obtain the
system illustrated in Figure 6.2(b). �

Both the idea of prioritising transitions and the idea of skipping over them
only work in the absence of cycles of confluent transitions. To see why, consider
the system depicted in Figure 6.3(a). All invisible transitions are confluent, as
can easily be checked. However, when continuously omitting all non-confluent
transitions (as in Figure 6.3(b)), the a-transition is postponed forever and the
atomic proposition q will never hold. Clearly, such a reduction does not preserve
all properties and hence the reduced system is not branching bisimilar to the
original. This problem is well known in partial order reduction as the ignoring
problem [Val90, EP10], and dealt with by requiring the reduction to be acyclic.
That is, no cycle should be present of states that are all omitting some of their
transitions. Indeed, this requirement is violated in Figure 6.3(b). As a solution,
we could also require reductions to be acyclic, forcing at least one state of a
cycle to be fully explored.

Example 6.4. Figure 6.3(c) shows the result of reducing Figure 6.3(a) based
on the idea of prioritisation while forcing at least one state on a cycle to be fully
explored (in this case, state s2 was chosen as the fully explored state). �

The technique of skipping over confluent transitions can also be extended
to work in the presence of cycles of confluent transitions. In the absence
of such cycles, the approach simply boils down to skipping over confluent
transitions until reaching a state without any outgoing confluent transitions
(state s2 in Figure 6.2(b)). In the presence of cycles, we just continue until
reaching the bottom strongly connected component (BSCC) of the subgraph when
considering only the confluent transitions. Due to some technical requirements
on confluent transitions, there always is a unique BSCC reachable from every
state (BSCC {s2, s3} for s1 in Figure 6.3(a)). In this BSCC, we select one
state to be the representative for all states that can reach it by skipping over

s1 s2

s4 s5

{p} {p}

{q} {r}

τ

a
b

(a) Prioritising a confluent transition.

s2

s4 s5

{p}

{q} {r}

a
b

(b) Skipping a confluent transition.

Figure 6.2: State space reduction based on confluence.
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(a) Cyclic confluence.
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(c) Acyclic reduction using prioritisation.
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{p}
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τ
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(d) Acyclic reduction using representatives.

Figure 6.3: Confluence reduction in the presence of cyclic confluent transitions.

confluent transitions. Since confluent transitions never disable behaviour, such
a representative state has all behaviour of the states that it represents. The
representative state is fully explored, and all transitions to states that can
reach that representative by confluent transitions are redirected towards the
representative.

Example 6.5. Figure 6.3(d) illustrates the result of the approach with repres-
entative states. Here, the state s2 was selected as representative of s1, s2 and
s3, and s6 was selected as representative of s5 and s6.

Note that both reduction approaches yield systems that are branching bisim-
ilar to the original system, but that the representatives approach allows for much
more reduction. �

6.1.3 Traditional notions of confluence

For non-probabilistic systems, several notions of confluence exist [Blo01, BvdP02].
Basically, as discussed above, they all require that if an action a is enabled from
a state that also enables a confluent τ -transition, then both

1. The action a is still enabled after taking the confluent τ -transition (possibly
allowing some additional confluent τ -transitions first), and

2. We can always end up in the same state traversing only confluent τ -steps
and the a-step, no matter whether we started by the τ - or the a-transition.
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Figure 6.4: Three variants of confluence.

Figure 6.4 depicts three notions of confluence from [Blo01], ordered from
strong to weak—the strength denoting their ability to distinguish systems, similar
to the terminology for notions of bisimulation. The stronger notions are easier to
detect, but less powerful in their reductions. In these diagrams, the notation τc
is used for confluent τ -transitions, and a can either be τ or an observable action.
The diagrams should be interpreted as follows: for any state from which the solid
transitions are enabled (universally quantified), there should be a matching for
the dashed transitions (existentially quantified). A double-headed arrow denotes
a path of zero of more transitions with the corresponding label, and an arrow
with label a denotes a step labelled with a that is optional in case a = τ (i.e., its
source and target state may then coincide). Additionally, confluent transitions
are required to be mimicked by confluent transitions; i.e., if the solid a-transition
in these diagrams is confluent (and hence a = τ), then so should the dashed
one be.

Note that we always first need to find a subset of τ -transitions that we believe
are confluent; then, the diagrams are checked.

6.2 Confluence for Markov automata

In [TSvdP11] we generalised the three variants of non-probabilistic confluence
depicted in Figure 6.4 to the setting of probabilistic automata. In a process-
algebraic context such as the MAPA framework, where confluence is detected
heuristically over a syntactic description of a system, it is most practical to
apply strong confluence. Therefore, we only generalise strong confluence to the
Markovian realm and from now on focus on this notion.

First, we discuss some important limitations that arise when defining con-
fluence for systems incorporating probabilities. Since this includes MAs, these
limitations also hold for the notion of confluence we define later.

6.2.1 Limitations of probabilistic confluence

For probabilistic systems, the situation is more involved than before, since the
target of each transition is a probability distribution, rather than a single state.
This yields two limitations to the generalisation of confluence:

1. Only τ -transitions with a unique target state can be considered confluent;
2. A more complicated notion of commutativity is needed.
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Figure 6.5: Two players throwing dice.

We discuss both issues in detail.

1. Dirac restriction on confluent transitions. We illustrate the first limitation
using an example of two players each throwing a die. The PA in Figure 6.5(a)
models this behaviour under the assumption that it is unknown who throws
first. The first character of each state name indicates whether the first player
has not thrown yet (X), or threw heads (H) or tails (T); the second character
indicates the same for the second player. For lay-out purposes, some states were
drawn twice.

We hid the first player’s throw action, and kept the other one visible. Now, it
may appear that the order in which the t2- and the τ -transition occur does not
influence the behaviour. However, the τ -step from state XX does not connect
bisimilar states (assuming HH, HT, TH, and TT to be distinct). After all, from
state XX it is possible to reach a state (XH) from where HH is reached with
probability 0.5 and TH with probability 0.5. From HX and TX no such state
is reachable anymore. Giving the τ -transition priority in XX, resulting in the
PA in Figure 6.5(b), therefore yields a reduced system that is not branching
bisimilar to the original system. If the τ -transitions were non-probabilistic, this
would not have been the case (as we will see in this chapter).

We note that this limitation is due to our goal of preserving branching
bisimulation. Future work may focus on preserving different types of bisimulation,
that may allow confluent probabilistic transitions.

2. More complicated notion of commutativity. In the non-probabilistic setting
of LTSs it is clear that a path aτ should reach the same state as its corresponding
path τa. For probabilistic systems, however, this is more involved as the a-step
leads us to a distribution over states. So, how should the partial model shown
below be completed for the τ -steps to be confluent?
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Since we want confluent τ -transitions to connect bisimilar states, we must
assure that s and t are bisimilar. Therefore, the distributions

µ = {s1 7→
1
2 , s2 7→

1
2} and ν = {t1 7→

1
3 , t2 7→

1
6 , t3 7→

1
2}

must assign equal probabilities to each class of bisimilar states. Basically, given
the inductive assumption that all other confluent τ -transitions already connect
bisimilar states, this may seem to be the case if µ ≡R ν for

R = {(s, s′) | sև։ s′ using only confluent τ -transitions}

However, due to the fact that the և։ relation allows us to traverse transitions
backwards this would go wrong, as explained in more detail in Section 6.5.1.
Hence, we need to take a smaller equivalence relation R.

For non-probabilistic confluence (Figure 6.4), given s −a→ s′ and t −a→ t′, a
confluent τ -transition s′ −τc−→ t′ was required. Hence, no transitions from t′ to s′

or longer paths of transitions were taken into account. We generalise this idea
to the probabilistic setting, only considering confluent τ -transitions from the
support of µ to the support of ν. Hence, this yields

R = {(s, t) ∈ supp(µ)× supp(ν) | (s −τ→ t) ∈ T }

where T is the set of confluent transitions3. Since the operator ≡ can only be
applied to equivalence relations, we actually take the smallest equivalence relation
containing the last set R just defined. Note that this implies that overlapping
states in the supports of µ and ν do not require a confluent transition.

Now, assuming all τ -transitions to be in T , one way of completing the model
above is as follows.
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We find that R yields three equivalence classes: C1 = {s, t}, C2 = {s1, t3} and
C3 = {s2, t1, t2}. Indeed, µ and ν coincide for these equivalence classes:

µ(C1) = 0 = ν(C1) µ(C2) =
1
2 = ν(C2) µ(C3) =

1
2 = ν(C3)

3We could have also chosen to be a bit more liberal, allowing a path of T -transitions from
s to t. However, we decided to stay closer to the non-probabilistic notion of strong confluence
and take the current approach. In addition to simplifying this definition and some proofs later
on, it also corresponds more directly to the way we detect confluence heuristically in practice.
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6.2.2 Confluence classifications and confluent sets

In the non-probabilistic case, the notion of confluence reduction had a subtle flaw:
it relied on the assumption that confluent sets are closed under unions [BvdP02].
In practical applications this is indeed a valid assumption (so the implementa-
tion of confluence reduction as described in [BvdP02] was not erroneous), but
technically closure under unions of confluent set could not be assumed just like
that. This was due to the requirement that confluent transitions have to be
mimicked by confluent transitions. When taking the union of two valid sets of
confluent transitions, this requirement was possibly invalidated (as explained in
more detail in Section 6.5.4).

To solve this problem, we slightly adjust the approach. Before, we just took
any subset of the invisible transitions and showed that it was confluent. Now, we
impose some more structure, classifying the interactive transitions of an MA into
groups upfront—allowing overlap and not requiring all interactive transitions
to be in at least one group. We will see that this is natural in the context of
MAPA, where the transitions of each summand will form a group together.

At this point, the set of interactive transitions as well as the classification
are still allowed to be countably infinite. However, for the representation map
approach later on, finiteness is required.

Definition 6.6 (Confluence classification). Given an MA M = 〈S, s0, A,
−֒→, ,AP, L〉, a confluence classification P is a set of sets of interactive trans-
itions:

P = {C1, C2, . . . , Cn} ⊆P(−֒→)

Given a set T ⊆ P (possibly P itself) of groups, we slightly abuse notation by
writing (s −a→ µ) ∈ T to denote that (s −a→ µ) ∈ C for some C ∈ T .

Additionally, we use s −a→Ci
µ to denote that (s −a→ µ) ∈ Ci and s −a→T µ

to denote that (s −a→ µ) ∈ T . Similarly, we subscript reachability, joinability
and convertibility arrows (e.g., s ։ ։T t) to indicate that they only traverse
transitions from a certain group or set of groups of transitions.

We define confluence on such a classification: we designate a set of groups
T ⊆ P to be confluent (now called Markovian confluent). As discussed in the
previous section and just like in probabilistic partial order reduction [BDG06],
only invisible transitions with a Dirac distribution are allowed to be confluent.
(Still, prioritising such transitions may very well reduce probabilistic transitions
as well, as we will see in Section 6.3.) For a set T to be Markovian confluent, it
is therefore not allowed to contain any visible or probabilistic transitions.

Additionally, each transition s −a→ µ (allowing a = τ) enabled together with a
transition s −τ→T t should have a mimicking transition t −a→ ν such that µ and ν
are connected by T -transitions (as discussed in Section 6.2.1). The previous
requirement for confluent transitions to be mimicked by confluent transitions
is strengthened: we require for each group in the classification that transitions
from that group are mimicked by transitions from the same group. This turns
out to be essential for the closure of confluence under unions. No restrictions are
imposed on transitions that are not in any group, since they cannot be chosen
to be confluent anyway.
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(a) (s −a→ µ) ∈ P.
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(b) (s −a→ µ) 6∈ P.

Figure 6.6: The confluence diagrams for s −τ→T t. If the solid transitions are
present, then so should the dashed ones be (such that µ ≡R ν).

All is formalised in the definition below, and illustrated in Figure 6.6.

Definition 6.7 (Markovian confluence). Let M = 〈S, s0, A, −֒→, ,AP, L〉
be an MA and P ⊆ P(−֒→) a confluence classification. Then, a set T ⊆ P is
Markovian confluent for P if it only contains sets of invisible transitions with
Dirac distributions, and for all s −τ→T t and all transitions (s −a→ µ) 6= (s −τ→ t):

{

∀C ∈ P . s −a→C µ =⇒ ∃ν ∈ Distr(S) . t −a→C ν ∧ µ ≡RT
µ,ν

ν , if (s −a→ µ) ∈ P

∃ν ∈ Distr(S) . t −a→ ν ∧ µ ≡RT
µ,ν

ν , if (s −a→ µ) 6∈ P

with RT
µ,ν the smallest equivalence relation such that

RT
µ,ν ⊇ {(s, t) ∈ supp(µ)× supp(ν) | (s −τ→ t) ∈ T }

A transition s −τ→ t is Markovian confluent if there exists a Markovian confluent
set T such that s −τ→T t. Often, we omit the adjective ‘Markovian’.

We remark several important aspects about this definition:

• Recall that a transition s −a→ µ is invisible if both a = τ and L(s) = L(t)
for every t ∈ supp(µ).

• Each set T and pair of transitions s −a→ µ and t −a→ ν yields a relation RT
µ,ν

to show that µ and ν are equivalent; this relation depends on T , µ and ν.
However, as it will always be clear from the context on which distributions
this relation depends (and often on which set T ), we will from now on
often omit the subscripts µ, ν and the superscript T .

• For µ ≡RT
µ,ν

ν, we require T -transitions from the support of µ to the

support of ν. Even though a (symmetric and transitive) equivalence
relation is used, transitions from the support of ν to the support of µ do
not influence RT

µ,ν , and neither do confluent paths from µ to ν of length
more than one.

• Markovian transitions are irrelevant for confluence. After all, states having
a τ -transition can never execute a Markovian transition due to the maximal
progress assumption. Hence, if s −τ→ t and s −a→ µ, then by definition of
extended transitions s −a→ µ corresponds to an interactive transition s a−֒→ µ.

Remark 6.8. Due to the confluence classification, confluent transitions are
always mimicked by confluent transitions. After all, transitions from a group
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Figure 6.7: An MAM.

C ∈ P are mimicked by transitions from C. So, if C is designated confluent
by T , then all these confluent transitions are indeed mimicked by confluent
transitions. �

Although the confluence classification may appear restrictive, we will see
that in practice it is obtained naturally. Transitions are often instantiations of
higher-level constructs, and are therefore easily grouped together. Then, it makes
sense to detect the confluence of such a higher-level construct. Additionally,
to show that a certain set of invisible transitions is confluent, we can just take
P to consist of one group containing precisely all those transitions. Then, the
requirement for P -transitions to be mimicked by the same group reduces to the
old requirement that confluent transitions are mimicked by confluent transitions.

Example 6.9. Figure 6.7 provides an MAM with nondeterminism, probability,
Markovian rates and state labels. It is used throughout this chapter as a running
example to illustrate the various concepts related to confluence.

We depict a possible confluence classification P forM by adding superscripts
to the τ -labels of some of the transitions (these are not part of the actual label).
Hence, P contains three groups:

C1 = {(s0, τ,1s1), (s2, τ,1s3), (s3, τ,1s4), (s5, τ,1s6), (s8, τ,1s9), (s9, τ,1s10),

(s10, τ,1s11), (s11, τ,1s8), (s13, τ,1s14), (s16, τ,1s15), (s15, τ,1s10)}

C2 = {(s3, τ,1s5), (s4, τ,1s6)}

C3 = {(s6, τ,1s17)}

All transitions in P are labelled by τ , have a Dirac distribution and do not
change the state labelling. Hence, they potentially may be confluent, if they
additionally commute with all neighbouring transitions. Note that no other
transitions can be confluent, as they all are either labelled by a visible action or
change the state labelling. So, there is no use for them in P .
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Now, we take T = {C1} and show that it is a Markovian confluent set.
We have to show that each transition in T is confluent as defined above. We
illustrate this for a couple of transitions.

First, consider s0 −
τ→T s1. There is one other transition from s0, namely

s0 −
a→ µ with µ(s2) =

9
10 and µ(s0) =

1
10 . Since s0 −

a→ µ 6∈ P , we need to show

that ∃ν ∈ Distr(S) . s1 −
a→ ν ∧ µ ≡R ν. We take s1 −

a→ ν with ν(s3) =
9
10 and

ν(s1) =
1
10 . This yields

R = Id ∪ {(s0, s1), (s1, s0), (s2, s3), (s3, s2)}

with Id the identity relation. Indeed, µ and ν assign the same probability to
each equivalence class of R, so µ ≡R ν.

Second, consider s2 −
τ→T s3. Since there are no other transitions from s2,

there is nothing to check. The same holds for several other transitions in T .
Finally, consider s3 −

τ→T s4. There are two other transitions from s3, namely

s3 −
b→ 1s7 and s3 −

τ→ 1s5 . The first one can be mimicked by s4 −
b→ 1s7 . Clearly

1s7 ≡R 1s7 , due to reflexivity. The second can be mimicked by s4 −
τ→ 1s6 . Then,

R = Id ∪ {(s5, s6), (s6, s5)}

and hence indeed 1s5 ≡R 1s6 . Since s3 −
τ→ 1s5 ∈ C2, we additionally need to

check that also s4 −
τ→ 1s6 ∈ C2. This is indeed the case.

The remaining transitions can be shown to satisfy the requirements in the
same manner. �

6.2.3 Properties of confluent sets

Since confluent transitions are always mimicked by confluent transitions, confluent
paths (i.e., paths following only transitions from a confluent set) are always
joinable. This is captured by the following proposition.

Proposition 6.10. LetM = 〈S, s0, A, −֒→, ,AP, L〉 be an MA, P ⊆P(−֒→) a
confluence classification forM and T a Markovian confluent set for P . Then,

s։ ։T t if and only if sև։T t

Due to the confluence classification, we now also do have a closure result.
Closure under union tells us that it is safe to show confluence of multiple sets
of transitions in isolation, and then just take their union as one confluent set.
Also, it implies that there exists a unique maximal confluent set.

Theorem 6.11. Let M = 〈S, s0, A, −֒→, ,AP, L〉 be an MA, P ⊆ P(−֒→) a
confluence classification forM and T1, T2 two Markovian confluent sets for P .
Then, T1 ∪ T2 is also a Markovian confluent set for P .

Example 6.12. Example 6.9 demonstrated that T = {C1} is confluent for our
running example. In the same way, it can be shown that T ′ = {C2} is confluent.
Hence, T ′′ = {C1, C2} is also confluent. �
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The final result of this section shows that confluent transitions indeed connect
divergence-sensitive branching bisimilar states. This is a key result; it implies
that confluent transitions can be given priority over other transitions without
losing behaviour—when being careful not to indefinitely ignore any behaviour.

Theorem 6.13. Let M = 〈S, s0, A, −֒→, ,AP, L〉 be an MA, s, s′ ∈ S two of
its states, P ⊆ P(−֒→) a confluence classification for M and T a Markovian
confluent set for P . Then,

sև։T s′ implies s ≈div
b s′

6.3 State space reduction using confluence

We can reduce state spaces by giving priority to confluent transitions, i.e.,
omitting all other transitions from a state that also enables a confluent transition
(as long as no behaviour is ignored indefinitely). Better still, we aim at omitting
all intermediate states on a confluent path altogether; after all, they are all
bisimilar anyway by Theorem 6.13. Confluence even dictates that all visible
transitions and divergences enabled from a state s can directly be mimicked from
another state t if s։T t. Hence, during state space generation we can just keep
following a confluent path and only retain the last state. To avoid getting stuck
in an infinite confluent loop, we detect entering a bottom strongly connected
component (BSCC) of confluent transitions and choose a unique representative
from this BSCC for all states that can reach it. This technique was proposed
first in [Blo01], and later used in [BvdP02] for the non-probabilistic setting. A
highly similar construction was used in [DJJL02] for representing sets of states
for the so-called essential state abstraction for probabilistic transition systems.

Since confluent joinability is transitive (as implied by Proposition 6.10), it
follows immediately that all confluent paths emanating from a certain state s
always end up in a unique BSCC (as long as the system is finite).

6.3.1 Representation maps

Formally, we use the notion of a representation map, assigning a representative
state ϕ(s) to every state s. We make sure that ϕ(s) indeed exhibits all behaviour
of s due to being in a BSCC reachable from s.

Definition 6.14 (Representation map). Let M = 〈S, s0, A, −֒→, ,AP, L〉
be an MA and T a Markovian confluent set forM. Then, a function ϕT : S → S
is a representation map forM under T if for all s, s′ ∈ S

• s։T ϕT (s);
• s→T s′ =⇒ ϕT (s) = ϕT (s

′).

Note that the first requirement ensures that every representative is reachable
from all states it represents, while the second takes care that all T -related states
have the same representative. Together, they imply that every representative is
in a BSCC. Since all T -related states have the same BSCC, as discussed above,
it is indeed always possible to find a representation map. We refer to [Blo01]
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Figure 6.8: An MAM with confluent transitions and representatives.

for the algorithm we use to construct it in our implementation—a variation on
Tarjan’s algorithm for finding strongly connected components [Tar72].

Example 6.15. For our running example M, we saw that T = {C1, C2} is
confluent. A possible representation map forM under T is given by

ϕ(s0) = ϕ(s1) = s1

ϕ(s2) = ϕ(s3) = ϕ(s4) = ϕ(s5) = ϕ(s6) = s6

ϕ(s7) = s7

ϕ(s8) = ϕ(s9) = ϕ(s10) = ϕ(s11) = ϕ(s15) = ϕ(s16) = s8

ϕ(s12) = s12

ϕ(s13) = ϕ(s14) = s14

ϕ(s17) = s17

Figure 6.8 shows our running example again, depicting all confluent transitions
by dashed arrows and all representatives by means of a grey background.

Note that, indeed, each state can reach its representative via confluent trans-
itions, and that confluently connected states all share the same representative.
Due to these requirements, it is for instance not valid to use ϕ(s1) = s0 or
ϕ(s0) = s0. �

Basically, the representation map is obtained by continuously following
confluent transitions until ending up in either a state without any outgoing
confluent transitions, or a cycle of confluent transitions.

6.3.2 Quotienting using a representation map

Since representatives exhibit all behaviour of the states they represent, they can
be used for state space reduction. More precisely, it is possible to define the
quotient of an MA modulo a representation map. This model does not have any
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T -transitions anymore, except for self-loops on representatives that have outgoing
T -transitions in the original system. These ensure preservation of divergences.

In the non-probabilistic case [BvdP02], these self-loops were not yet added
and confluence reduction was not divergence sensitive. For MAs, omitting these
self-loops could even erroneously enable Markovian transitions that were disabled
in the presence of divergence due to the maximal progress assumption. Hence, we
would not even preserve Markovian divergence-insensitive branching bisimula-
tion. Our current definition does not only make the theory work for MAs, it even
yields preservation of divergence-sensitive branching bisimulation (and hence,
according to our conjecture in Section 3.3.3, of minimal reachability probabilities
as well).

Definition 6.16 (Quotient). Given an MA M = 〈S, s0, A, −֒→, ,AP, L〉, a
confluent set T for M, and a representation map ϕ : S → S for M under T ,
the quotient ofM modulo ϕ is the smallest system

M/ϕ = 〈ϕ(S), ϕ(s0), A, −֒→ ϕ, ϕ,AP, Lϕ〉

such that

• ϕ(S) = {ϕ(s) | s ∈ S};
• ϕ(s) a−֒→ϕ µϕ if ϕ(s) a−֒→ µ;
• ϕ(s) λ

 ϕ ϕ(s′) if λ =
∑

λ′∈Λ(s,s′) λ
′ and λ > 0;

• Lϕ(ϕ(s)) = L(s) for every ϕ(s) ∈ ϕ(S).

where Λ(s, s′) is the multiset {|λ′ ∈ R | ∃s∗ ∈ S . ϕ(s) λ′

 s∗ ∧ ϕ(s∗) = ϕ(s′)|}.

Note that each interactive transition from ϕ(s) inM is lifted toM/ϕ by chan-
ging all states in the support of its target distribution to their representatives.
Additionally, each pair ϕ(s), ϕ(s′) of representative states inM/ϕ has a con-
necting Markovian transition with rate equal to the total outgoing rate of ϕ(s)
inM to states s∗ that have ϕ(s′) as their representative (unless this sum is 0).
It is easy to see that this implies ϕ(s) −

χ(λ)
−−→ϕ µϕ if and only if ϕ(s) −

χ(λ)
−−→ µ.
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Figure 6.9: The quotientM/ϕ ofM of the MAM from Figure 6.7.
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Example 6.17. Based on the representation map given in Example 6.15, Fig-
ure 6.9 shows the quotient of our running example M. The set of states is
obtained easily by applying the function ϕ to all states of M, resulting in
ϕ(S) = {s1, s6, s7, s8, s12, s14, s17} (the grey states from Figure 6.8). The initial
state ofM/ϕ is the representative of s0, which is s1.

To understand the construction of −֒→, consider the original transition s1
a−֒→ ν

with ν(s3) =
9
10 and ν(s1) =

1
10 . It yields the transition s1

a−֒→ µϕ in the quotient.
Since ϕ(s3) = s6 and ϕ(s1) = s1, it follows that µϕ is the distribution assigning
probability 9

10 to s6 and 1
10 to s1. Note that, in the same way, the confluent

transition from s8 yields a self-loop due to the fact that ϕ(s9) = s8.
To understand the construction of  , we discuss the motivation for the

transition s14
12
 s8 in the quotient. Note that

Λ(s14, s8) = {|λ
′ ∈ R | ∃s∗ ∈ S . s14

λ′

 s∗ ∧ ϕ(s∗) = s8|}

= {|5, 7|}

Hence, inM there is a total outgoing rate of 5+7 = 12 from s14 to states having
s8 as their representative. Therefore, the quotient has a transition s14

12
 s8.

Note that the multiset is necessary due to the possibility of having several
transitions with the same rate to states having the same representative. �

Since T -transitions connect bisimilar states, and representatives exhibit all
behaviour of the states they represent, we can prove the following theorem. It
shows that we indeed reached our goal of providing a reduction that is safe with
respect to divergence-sensitive branching bisimulation.

Theorem 6.18. Let M = 〈S, s0, A, −֒→, ,AP, L〉 be an MA, T a Markovian
confluent set forM, and ϕ : S → S a representation map forM under T . Then,

M/ϕ ≈div
b M

6.4 Symbolic detection of Markovian confluence

Although the MA-based definition of confluence in Section 6.2 is useful to show
the correctness of our approach, it is often not feasible to check in practice.
After all, we want to reduce on-the-fly to obtain a smaller state space without
first generating the unreduced one. Therefore, we propose a set of heuristics to
detect Markovian confluence in the context of the process-algebraic modelling
language MAPA (as defined in Chapter 4).

Since every MAPA specification can efficiently be linearised to an MLPE,
it suffices to define our heuristics only on this subset of the language. For
convenience, we restate the definition of the MLPE here.

Definition 4.26 (MLPEs). A Markovian linear process equation (MLPE) is
a MAPA specification of the following format:

X(g : G) =
∑

i∈I

∑

di:Di

ci ⇒ ai(bi)
∑

•
ei:Ei

fi : X(ni)
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+
∑

j∈J

∑

dj :Dj

cj ⇒ (λj) ·X(nj)

The first |I| nondeterministic choices are referred to as interactive summands,
the last |J | as Markovian summands.

Recall that the expressions ci, bi, fi and ni may depend on g and di, and
fi and ni also on ei. Similarly, cj , λj and nj may depend on g and dj . Often,
we use the shorthand notation ci(g

′,d′
i) for ci[(g,di) := (g′,d′

i)], and similar
notations for the other expressions.

Confluent summands. As discussed in Chapter 4, each interactive summand
of an MLPE yields a set of interactive transitions, whereas each Markovian
summand yields a set of Markovian transitions. Instead of detecting individual
confluent transitions, we detect confluent summands . A summand is considered
confluent if the set of all transitions it may generate (according to the opera-
tional semantics as discussed in Section 4.2.4) is guaranteed to be confluent.
Since only interactive transitions can be confluent, only interactive summands
can be confluent.

Hence, we assume an implicit confluence classification P = {C1, C2, . . . , Ck}
that, for each interactive summand i ∈ I = {1, . . . , k}, contains a group Ci

consisting of precisely all transitions generated by that summand. For each
interactive summand i we try to show that the set T = {Ci} is confluent. Then,
by Theorem 6.11, the set of transitions generated by all confluent summands
together is also confluent. Whenever during state space generation a confluent
summand is enabled, all other summands can be ignored (continuing until
reaching a representative in a BSCC, as explained in the previous section).

6.4.1 Characterisation of confluent summands

Let Ci be the set of all transitions generated by a summand i. By Definition 6.7,
for confluence we need to check for every transition s −a

′

−→ µ′ in Ci whether

1. The action is invisible: a′ = τ .
2. The probability distribution is Dirac: µ′ = 1t for some state t.
3. For every transition s −a→ µ different from s −τ→ 1t it holds that

{
∀C ∈ P . s −a→C µ =⇒ ∃ν ∈ Distr(S) . t −a→C ν ∧ µ ≡R ν , if (s −a→ µ) ∈ P

∃ν ∈ Distr(S) . t −a→ ν ∧ µ ≡R ν , if (s −a→ µ) 6∈ P

with R the smallest equivalence relation such that

R ⊇ {(s, t) ∈ supp(µ)× supp(ν) | (s −τ→ t) ∈ T }

4. The transition is stuttering: L(s) = L(t).

Since we want to reduce prior to the generation of the full state space, we
cannot first construct the set Ci and check if it satisfies all these conditions.
Rather, we overapproximate these requirements by checking symbolically if
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summand i is such that all transitions it may ever generate satisfy the conditions.
In this section, we characterise confluent summands, by explaining how these four
conditions can be derived from their specification. Examples will be provided in
the next section, when we discuss heuristics for checking these characterisations
practically.

1. Action-invisible summands. We can easily check if all transitions that can
be generated by a summand have an invisible action: the summand should just
have τ as its action.

Definition 6.19 (Action-invisible summands). A summand i is action-in-
visible if ai(bi) = τ .

It is immediately clear from the operational semantics of the MLPE that action-
invisible summands fulfill the first requirement of confluence.

2. Non-probabilistic summands. To check if a summand can only yield Dirac
distributions, there should be only one possible next state for each valuation of
the global and local parameters that enables its condition.

Definition 6.20 (Non-probabilistic summands). A summand i is non-
probabilistic if for every v ∈ G and d′

i ∈Di such that ci(v,d
′
i), there exists a

unique state v′ ∈ G such that ni(v,d
′
i, e

′
i) = v′ for every e′i ∈ Ei

4.

It should also be immediately clear from the operational semantics of the MLPE
that non-probabilistic summands fulfill the second requirement of confluence.

3. Commuting summands. For a summand i to satisfy the third condition,
we need to check if every transition s −a→ µ enabled together with a transition
s −τ→ 1t generated by i can be mimicked from state t. Additionally, the mim-
icking transition t −a→ ν should be from the same group as s −a→ µ. Since each
group precisely consists of all transitions generated by one summand, this boils
down to the requirement that if s −a→ µ is generated by summand j, then so
should t −a→ ν be.

To check if all transitions generated by a summand i commute in this way
with all other transitions, we check for each summand j if all transitions that
it may generate commute with all transitions that summand i may generate.
In that case, we say that the two summands commute. Again, we look at the
specification of the summands and not at the actual transitions they generate.

Clearly, two summands i, j commute if they cannot disable each other and
do not influence each other’s action parameters, probabilities and next states.
After all, in that case any transition s −a→ µ enabled from state s by summand j

4We could also weaken this condition slightly to

∀e′
i ∈ Ei . fi(v,d

′
i,e

′
i) > 0 =⇒ ni(v,d

′
i,e

′
i) = v′

However, in that case we would need to be more strict later on, requiring the probabilities
of a confluent summand to remain invariant. For the current formulation, the probability
expression can be changed without influencing the next state.
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must still be enabled from state t as a transition t −a→ ν, the τ -transition from
summand i is still enabled in all states in the support of µ and the order of the
execution of the two transitions does not influence the observable behaviour or
the final state. Hence, µ ≡R ν. Since Definition 6.7 does not require transitions
to commute with themselves, a summand can also commute with itself by
generating only one transition per state.

To formally define commuting summands, we already assume that one of
them is action-invisible and non-probabilistic. Hence, we can write ni(v,d

′
i) for

its unique next state given v and d′
i. For an action-invisible non-probabilistic

summand i to commute with a summand j, we have to investigate their behaviour
for all state vectors v ∈ G and local variable vectors d′

i ∈ Di,d
′
j ∈ Dj such

that both summands are enabled: ci(v,d
′
i) ∧ cj(v,d

′
j). The maximal progress

assumption dictates that interactive summands and Markovian summands can
never be enabled at the same time, so we only need to check commutativity
among the interactive summands.

Definition 6.21 (Commuting summands). An action-invisible non-probab-
ilistic summand i commutes with a summand j (possibly i = j) if for all v ∈ G,
d′
i ∈Di,d

′
j ∈Dj such that ci(v,d

′
i) ∧ cj(v,d

′
j):

• Summand i cannot not disable summand j, and vice versa:

cj(ni(v,d
′
i),d

′
j) ∧ ci(nj(v,d

′
j , e

′
j),d

′
i)

for every e′j ∈ Ej such that fj(v,d
′
j , e

′
j) > 0.

• Summand i cannot influence the action parameters of summand j:

bj(v,d
′
j) = bj(ni(v,d

′
i),d

′
j)

Note that summand i was already assumed to have no action parameters (as
its action is always τ), so these cannot be influenced by j anyway—hence,
no converse equality has to be checked.

• Summand i cannot influence the probability expression of summand j:

fj(v,d
′
j , e

′
j) = fj(ni(v,d

′
i),d

′
j , e

′
j)

for every e′j ∈ Ej .

Note that summand i was already assumed to have a unique next state
v′ ∈ G for any state vector v ∈ G and local variable vector d′

i ∈ Di, so
no converse equality has to be checked. (Under the adapted condition for
potentially confluent summands discussed in Footnote 4 on page 147, this
would not be the case anymore.)

• Execution of summands i and j in either order yield the same next state:

nj(ni(v,d
′
i),d

′
j , e

′
j) = ni(nj(v,d

′
j , e

′
j),d

′
i)

for every e′j ∈ Ej such that fj(v,d
′
j , e

′
j) > 0.

or, alternatively, if i = j ∧ ni(v,d
′
i) = nj(v,d

′
j).
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From the discussion above, it follows that if i commutes with all summands
including itself, it satisfies the third requirement of confluence.

Remark 6.22. Definition 6.21 can be phrased as one formula, characterising
the commutativity of two summands. An action-invisible and non-probabilistic
summand i commutes with a summand j (possibly i = j) if:

ci(v,d
′
i) ∧ cj(v,d

′
j)

=⇒






fj(v,d
′
j , e

′
j) > 0 =⇒ cj(ni(v,d

′
i),d

′
j) ∧ ci(nj(v,d

′
j , e

′
j),d

′
i)

∧ bj(v,d
′
j) = bj(ni(v,d

′
i),d

′
j)

∧ fj(v,d
′
j , e

′
j) = fj(ni(v,d

′
i),d

′
j , e

′
j)

∧ fj(v,d
′
j , e

′
j) > 0 =⇒ nj(ni(v,d

′
i),d

′
j , e

′
j) = ni(nj(v,d

′
j , e

′
j),d

′
i)







∨
(
i = j ∧ ni(v,d

′
i) = nj(v,d

′
j)
)

where v,d′
i,d

′
j and e′j universally quantify over G, Di, Dj and Ej , respect-

ively. �

As these formulas are quantifier-free and in practice often either trivially false
or true, they can generally be solved using an SMT solver for the data types
involved. For n summands, n2 formulas need to be solved; the complexity of
this procedure depends on the data types.

4. Stuttering summands. Finally, a confluence summand should only generate
transitions that do not change change the state labelling. Hence, for all v ∈ G

and d′
i ∈Di:

ci(v,d
′
i) =⇒ L(v) = L(ni(v,d

′
i))

Recall that we defined the state labelling of the MA corresponding to a
MAPA specification such that each state is labelled by the set of visible actions
it immediately enables (Definition 4.22). Hence, for a summand to be invisible
with respect to the state labelling it should leave invariant the set of enabled
visible actions. This requirement can be alleviated by hiding all actions that are
not used in the properties of interest.

If a summand i is action-invisible and commutes with all summands, we
already know that it can never disable another summand (if it disables itself
that is fine, since it cannot produce any visible actions). Hence, we only still
need to verify whether it can never enable a summand having a visible action.

Definition 6.23 (Stuttering summands). An action-invisible non-probab-
ilistic summand i that commutes with all summands is stuttering if, for each
summand j,

• The condition of j can never be enabled by i if j has a visible action, i.e.,

ci(v,d
′
i) ∧ aj 6= τ ∧ ¬cj(v,d

′
j) =⇒ ¬cj(ni(v,d

′
i),d

′
j)

for all v ∈ G, d′
i ∈Di and d′

j ∈Dj .
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Clearly, stuttering summands satisfy the fourth requirement of confluence.
Concluding, a summand that is action-invisible, non-probabilistic and stut-

tering, and that also commutes with all summands including itself, generates
only confluent transitions.

6.4.2 Heuristics for confluent summands

Although the symbolic characterisation introduced in the previous section is
sound, it may not always be feasible or efficient to apply. Only action invisibility
can easily be checked syntactically, so we introduce heuristics for checking if a
summand is non-probabilistic, commuting and stuttering. Although our heurist-
ics are rather simple and intuitive, they are widely applicable (as demonstrated
by our case studies in Chapter 9).

2. Non-probabilistic summands. In Definition 6.20 we discussed a minimal
condition for a summand i to be non-probabilistic. We check this heuristically
in the following way.

P . Instead of checking for all possible valuations of the global and local
variables whether indeed ni(v,d

′
i, e

′
i) = v′ for every e′i ∈ Ei, we just

check if |Ei| = 1. After all, summands that do have a probabilistic choice
are very likely to indeed have different next states—otherwise, this choice
could easily be eliminated. On the other hand, if there is no probabilistic
choice, indeed there is a unique next state for every v ∈ G and d′

i ∈Di.

3. Commuting summands. To check for commutativity according to Defini-
tion 6.21, we define several heuristics. As mentioned before, these are only needed
for the interactive summands; all Markovian summands are trivially disabled due
to the maximal progress assumption. Each heuristic individually is a sufficient
condition for the requirements of Definition 6.21. Hence, only one of them has
to hold. They are based on (1) two summands never being enabled at the same
time, (2) two summands coinciding and not having any local nondeterministic
choice, and (3) two summands never influencing each other’s conditions, action
parameters, probabilities and next states due to disjoint variable use.

C1. Never enabled at the same time. If two summands are never enabled at
the same time, i.e., ci(v,d

′
i) ∧ cj(v,d

′
j) does not hold for any possible

combination of valuations v ∈ G, d′
i ∈ Di and d′

j ∈ Dj , then the
commutativity requirements hold vacuously. Since the variables d′

i and
d′
j are only used locally per summand (and hence cannot disable another

summand), we focus on the global variables.
Our heuristics range over the global variables g that have a finite

domain, and check if there is at least one gk that disables either i or j for
each of its valuations. That is, we check if

∀vk ∈ Gk . ¬ci[gk := vk] ∨ ¬cj [gk := vk]

applying the expression simplification heuristics described in Section 4.5
to try to rewrite the conditions to false. If this indeed succeeds for all
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vk ∈ Gk for some global variable gk, then apparently ci(v,d
′
i) ∧ cj(v,d

′
j)

can never occur. Hence, the commutativity requirements hold due to the
fact that their premise never holds.

Example 6.24. Consider the following MLPE:

X(pc : {1, . . . , 10}, x : {1, 2, 3, 4}) =

pc = 3 ∧ x < 3⇒ τ ·X(4, 2) (1)

+ pc = 3 ∧ x ≥ 3⇒ τ ·X(5, x) (2)

+ . . .

Clearly, these two summands commute. To see why, note that for every
value of x either ci or cj can be rewritten to false. Hence, since each
state vector v ∈ G must contain one of these values, the two summands
are never enabled at the same time and thus ci(v,d

′
i) ∧ cj(v,d

′
j) can never

hold. �

C2. Coinciding summands without local choice. If the two summands for
which commutativity is analysed coincide (i.e., i = j), we can satisfy the
requirements by showing that ni(v,d

′
i) = nj(v,d

′
j) for every v ∈ G and

all d′
i,d

′
j ∈Di. We do so by checking whether |Di| = 1. Since this implies

that d′
i = d′

j , the condition reduces to ni(v,d
′
i) = ni(v,d

′
i), with d′

i the
single element of Di. Obviously, this holds for all v ∈ G.

Example 6.25. Consider the following MLPE:

X(x : N, y : N, z : N) =
∑

i:{1,2}5 < x < 10⇒ τ ·X(x+ i, y + 1) (1)

+ y > 2⇒ τ ·X(x, y − 1) (2)

The second summand clearly commutes with itself, since it does not contain
a nondeterministic choice and hence only produces at most one transition
in each state. The first summand, though, may produce two transitions.
Hence, it is not immediately clear anymore if these commute. �

C3. Disjoint variables. If the global variables that are used by summand i
(according to Definition 5.12) are disjoint from the global variables that
are changed by summand j (according to Definition 5.1), and the global
variables that are used by summand j are disjoint from the global variables
that are changed by summand i, then clearly the order of their execution
does not matter. For instance, bj(v,d

′
j) = bj(ni(v,d

′
i),d

′
j) trivially holds

since all variables needed to decide bj are used in j and hence unchanged by
i; i.e., they do not differ between v and ni(v,d

′
i). The other requirements

hold by a similar argument.
We implemented some additional heuristics that for instance take into

account that an update x := x+ 1 cannot disable a condition x > 5, and
that updates like x := x + 2, x := x + 5 and x := x − 3 commute due
to their linearity. More precisely, our heuristics that check for disjoint
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variables verify whether for every variable gk that is changed in i, the
following four conditions hold:

(a) gk does not occur in bj ;

(b) gk does not occur in fj ;

(c) gk does not occur in cj , or gk is increased by i and only used in cj
in an expression of the form gk ≥ e or gk > e such that gk does not
occur in e (possibly occurring within a conjunction or disjunction,
but not in any other function);

(d) gk is not used in nj , or gk is only used in nj to update itself and
both ni and nj change gk by adding or subtracting a concrete value.

For all variables changed in j, the symmetric conditions are checked.
Note that for condition (a) this holds by definition, since bi was already
assumed to be empty due to the summand being action-invisible. Also,
the symmetric counterpart of condition (b) can be omitted, since we also
already assumed that |Ei| = 1 by heuristic P . Therefore, fi must be 1 for
all possible valuations of its free variables and hence these valuations are
irrelevant.

Example 6.26. Consider the following MLPE:

X(x : N, y : N, z : N) =

5 < x < 10⇒ τ ·X(x+ 1, y + 1, z) (1)

+ y > 2⇒ a
∑
•

i:{1,2}
1
2 : X(x, y − 1, i) (2)

Our heuristics are able to detect that the two summands of this MLPE
commute. To see why, note that summand 1 changes variables x and y,
while summand 2 changes variables y and z.

None of the changed variables occur as action parameters in the other
summand, so condition (a) is satisfied. Also, the probability 1

2 of the
second summand does not rely on any of the variables changed in the first
summand, so also condition (b) is satisfied easily.

For condition (c), observe that y and z (the variables changed in
summand 2) are not used in the condition of summand 1. Also, x is not
used in the condition of summand 2, so it being changed in summand 1 is
fine. Finally, variable y is changed in the first summand and used in the
second. This is allowed, though, since the change is an increase that can
never disable the condition5.

For condition (d), first note that x is not used in n and z is not used
in n. The variable y is changed in both and used in both, but only to
update itself in a linear way. Hence, the condition is satisfied. Indeed, the
order of execution of the summands does not influence the final value of y,
since (y − 1) + 1 = (y + 1)− 1 = y. �

5It may enable it, though; hence, unless the action a is hidden, the requirement discussed
next is actually not satisfied.
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4. Stuttering summands. Definition 6.23 presented a sufficient condition for
the transitions of a summand i to never change the state labelling. We check it
heuristically in the following manner, for each summand j:

S. If aj = τ , the condition already holds vacuously6. Otherwise, we check
whether summand i can never enable summand j. This is guaranteed if
for every variable gk that is changed in i, either

(a) gk does not occur in cj , or
(b) ni,k is a constant value and cj [gk := ni,k] can be evaluated to false.

If a summand satisfies all heuristics, then by the reasoning above and the
characterisation from the previous section, all its transitions can safely be
considered confluent.

We conclude this section with an example illustrating our heuristic detection
of confluence.

Example 6.27. Consider the following parallel MAPA specification:

X = τ · b ·X Y = a · c · Y

System = ∂{b,c}(X ||Y )

Assuming γ(b, c) = d, linearisation yields

Z(pc1 : {1, 2}, pc2 : {1, 2}) =

pc1 = 1⇒ τ · Z(2, pc2) (1)

+ pc2 = 1⇒ a · Z(pc1, 2) (2)

+ pc1 = 2 ∧ pc2 = 2⇒ d · Z(1, 1) (3)

with initial state Z(1, 1). Assume that we are only interested in observing
the a-action; i.e., the state labelling is either ∅ (for every state that does not
enable a) or {a} (for every state that does enable a).

Due to the visible actions, only the first summand may be confluent. Heur-
istic P is satisfied by the first summand, since it indeed does not have a probab-
ilistic choice.

The first summand commutes with itself, due to the absence of a non-
deterministic local choice (I2). It also commutes with the second summand,
since there is no overlap between the variables changed by summand 1 (pc1) and
the variables used by summand 2 (pc2) and vice versa (I3). Finally, the first
summand commutes with the third summand, as they can never be enabled at
the same time (I1). This is immediate from the fact that each possible value of
pc1 either disables the first summand or the third.

6If it is already known during state space generation which actions A′ will be used for
model checking, we can already consider the state labelling invariant if the enabledness of
these actions is invariant. Hence, we can already consider the condition satisfied if aj 6∈ A′.
This is indeed what happens in our implementation. Even better, irrelevant actions can be
hidden; this additionally makes them candidates to be confluent.
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(a) The unreduced state space.

2, 1

2, 2

a

d

(b) The reduced state space.

Figure 6.10: State space generation using confluence.

Finally, for heuristic S we still need to check whether the first summand cannot
enable another summand having a visible action. Since only a is of interest, we
just need to consider the second summand. Indeed, the first summand does not
change any variables that are used in the condition of the second summand, so
also S is satisfied.

Now, this knowledge can be used for reduction during state space generation.
Whenever the confluent summand is enabled in some state it is taken immediately,
and the intermediate state is not stored. Figure 6.10 demonstrates the state
spaces obtained without and with application of the confluence information. �

Remark 6.28. To detect confluence, we range over all summands. For each
summand, we check if it has label τ and no real probabilistic choice. Additionally,
we check if it commutes with all other summands. In total, we have to check
for each pair of summands if their conditions are mutually exclusive, if they
coincide or if their variables are disjoint. Hence, in principle the complexity of
confluence checking is in O(n2), with n the size of the MLPE.

Actually, our implementation tries to detect mutual exclusion of conditions
by ranging over all possible values of the parameters with an enumerated type
(such as {1, . . . , 10}) and seeing if indeed for none of these values both conditions
are enabled. Hence, this brings the worst-case complexity to O(n2 + k · |I|2),
with k the total number of enumerated data values of all MLPE parameter
together, and |I| the number of summands. �

6.5 Failing alternatives

In the previous sections we introduced a notion of confluence for MAs, showing
that confluent transitions connect divergence-sensitive branching bisimilar states.
While developing the theory, we investigated the viability of several variations
on the definitions. In this section we discuss some of these variations, explaining
why they do not serve our purpose.
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s0 s1 s2s3s4
τ τ

ba
ττ

Figure 6.11: A counterexample for convertible confluent connectivity.

6.5.1 Convertible confluent connectivity

Given a confluent transition s −τ→T t, we require the distributions µ and ν of a
transition s −a→ µ and its mimicking transition t −a→ ν to assign equal probabilities
to each equivalence class of the relation

R ⊇ {(s, t) ∈ supp(µ)× supp(ν) | (s −τ→ t) ∈ T }

Based on the intuition that confluent transitions connect bisimilar states, it
may seem possible to relax this definition by using the larger relation

R = {(s, t) ∈ supp(µ)× supp(ν) | sև։T t}

To see why this would be incorrect, consider the system depicted in Fig-
ure 6.11. Consider the confluence classification P = {C} with C the set of all
τ -transitions in this model, and let T = {C}. According to the relaxed definition
of confluence, this set T would indeed be confluent. Since only s0 has more
than one outgoing transition, we only have to check whether they commute.
Hence, we need to show for s0 −

τ→T s1 that s0 −
τ→ s3 can be mimicked from s1,

and the other way around. Indeed, s1 −
τ→ s2 and s3 և։T s2, and s3 −

τ→ s4 and
s1 և։T s4.

Still, it would clearly be incorrect to give one of these confluent transitions
priority over the other—this would disable one of the visible transitions labelled
a and b. The reason for this is that the relaxed definition allows the transitions
to be mimicked to be used for the convertibility path. However, as in the end it
is abstracted away, this path does not exist anymore in the reduced system.

6.5.2 Joinable confluent connectivity

To solve the problem discussed in the previous section, we may be tempted to
use joinability instead of convertibility, i.e., consider

R = {(s, t) ∈ supp(µ)× supp(ν) | s։ ։T t}

Indeed, this strengthens the definition and would not consider the transitions
in Figure 6.11 emanating from s0 to be confluent anymore. However, consider

s0 s1 s2s4

τ

τ

τττ , a τ , b

Figure 6.12: A counterexample for joinable confluent connectivity.
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the system in Figure 6.12. Again, consider the confluence classification P = {C}
with C the set of all τ -transitions in this model, and let T = {C}. It is not
hard to verify that all conditions for confluence are satisfied. For instance, for
s0 −

τ→T s1 we have to show that s0 −
τ→ s4 can be mimicked from s1. Indeed,

s1 −
τ→ s0 and s0 ։ ։T s4.
Based on T , we could for instance omit the transition s0 −

τ→ s4. However,
this is clearly incorrect, as is prevents the observable a-transition from occurring
on any path emanating from s0. The problem is in the fact that while s −τ→T t1
and s −τ→T t2 imply t1 ։ ։T t2 for all pairs of transitions in the system, not
necessarily s ։T t1 and s ։T t2 imply t1 ։ ։T t2. This problem is well-
known in the context of term rewriting: the weak Church-Rosser property (local
joinability, also called local confluence in term rewriting terminology) does not
imply the Church-Rosser property (global joinability, also called confluence in
term rewriting terminology) [BN98].

This problem can be solved in multiple ways. In [TSvdP11], when defining
weak probabilistic confluence, we explicitly required ։ ։to be an equivalence
relation. While this correctly ensures that no behaviour is lost, it is hard to
verify in practice. Therefore, in this chapter we decided to solve the problem
by requiring confluent connectivity between µ and ν by having direct confluent
transitions from the support of µ to the support of ν.

6.5.3 Diamond-shaped mimicking

As discussed in Remark 6.8, the confluence classification and the corresponding
requirement that transitions are mimicked by transitions from the same class
together ensure that confluent transitions are mimicked by confluent transitions.
This was needed for representation maps to exist. Without the confluence
classification this would not be the case anymore, as can be seen from the system
in Figure 6.13(a).

Without using a confluence classification, we could consider the two outgoing
transitions from s0 to be confluent. Indeed, the conditions for confluence
are satisfied. However, confluent transitions are mimicked by non-confluent
transitions, and hence no representation map can exist. After all, the confluent
transitions from s0 to s1 and s2 imply that ϕ(s1) = ϕ(s2). However, we also
require each state to be able to reach its representative while only traversing
confluent transitions. These two requirements now contradict each other.

It may seem that confluent mimicking can also be ensured by requiring

s0 s1

s2

τc

τc

τ

τ

(a)

s0 s1

s2 s3

τc

τc τc

τc

(b)

s0 s1

s2

τc

τc

τ

τ

τc

τc

(c)

Figure 6.13: Counterexamples for the existence of a representation map.
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commutation to always happen in the shape of a diamond. This would disallow
the confluent set taken before for Figure 6.13(a). Also, for models like the one
depicted in Figure 6.13(b) indeed confluent mimicking holds; for s0 −

τ→ s1 to be
confluent s2 −

τ→ s3 has to be, and for s0 −
τ→ s2 to be confluent s1 −

τ→ s3 has to be.
However, this would still not entirely solve the problem. Consider for instance
the system in Figure 6.13(c). Now, we can show that the two transitions from
s0 and the two self-loops together form a confluent set, that does satisfy the
property of only commuting in diamonds. As before, also for this confluent set
no valid representation map can be found.

To solve this problem, we need to explicitly require confluent transitions to
be mimicked by confluent transitions. We chose to do so by grouping transitions
by means of a confluence classification, and requiring transitions to be mimicking
within their own group.

6.5.4 Explicit confluent mimicking

As discussed before, the confluence classification is used to ensure that confluent
transitions are mimicked by confluent transitions to make sure representation
maps exist. It may seem viable to just explicitly require confluent transitions
to be mimicked by confluent transitions; actually, that was how previous work
dealt with this problem [BvdP02].

To see what goes wrong, consider the following system:

s

t uv w

τ1 τ2

a b
τ

τ
τ ττ τ

When requiring confluent transitions to be mimicked by confluent transitions
(or equivalently explicitly requiring ։ ։T to be transitive) instead of using a
confluent classification, the sets

T1 = {(s, τ1, t), (t, τ, t), (u, τ, u), (v, τ, v), (w, τ, w)}

T2 = {(s, τ2, u), (t, τ, t), (u, τ, u), (v, τ, v), (w, τ, w)}

would both be perfectly valid confluent sets. Still, T = T1 ∪ T2 does not satisfy
these requirements. After all, whereas it designates s −τ1−→ t to be confluent,
its mimicking transition u −τ→ t from u (needed since s −τ2−→ u is in T ) is not
confluent. Hence, the old notions were not closed under union7.

7Since [BvdP02] constructed a confluent set per summand and then took the union of these
sets, the fact that confluent sets are not closed under unions may have broken their approach.
However, as mentioned before, no problems arise in their implementation due to the fact that
they also only check for mimicking transitions by the same summand. Hence, although their
claim that confluent sets can just be combined to get larger confluent sets was incorrect in
general, their application of this claim did not produce any problems due to the more restricted
context in which it was applied.
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By using a confluence classification and requiring transitions to be mimicked
by the same group, we ascertain that this kind of bad compositionality behaviour
does not occur. After all, for T1 to be a valid confluent set, the confluence
classification should be such that s −τ2−→ u and its mimicking transition t −τ→ u are
in the same group. So, for s −τ2−→ u to be confluent (as prescribed by T2), also
t −τ→ u would need to be confluent. The latter is impossible, since the b-transition
from u cannot be mimicked from t, and hence T2 is disallowed.

6.6 Contributions

We introduced confluence reduction for MAs: the first practical reduction
technique for this model that abstracts from invisible transitions. We showed
that it preserves divergence-sensitive branching bisimulation, and hence yields
quantitatively behavioural equivalent models. In addition to working on MAs,
our novel notion of confluence reduction has two additional advantages over
previous notions. First, it preserves divergences, and hence does not alter
minimal reachability probabilities. Second, it is closed under unions, enabling
us to separately detect confluence of different sets of transitions and combine
the results. We also showed that a representation map approach can be used
safely to reduce systems on-the-fly, and discussed how to detect confluence
syntactically on the process-algebraic language MAPA—both using a symbolic
(logical) characterisation and a set of heuristics.

Our case studies in Chapter 9 will demonstrate that significant reductions
can be obtained, reducing state spaces sometimes by an order of magnitude.
A decrease in the degree of nondeterminism, as is to be expected from con-
fluence reduction, often yields even better reductions in analysis time than
in state space size.

We conjecture that our technique can also be applied in different settings,
for instance in the PRISM model checker [KNP11]. Due to the fact that this
tool employs MTBDDs to do its analysis, an application of confluence during
model checking may be difficult. However, we could detect confluence on its
modelling language in quite the same way as described in this chapter, and use
this information to syntactically optimise specifications. For instance, we may
add guards to non-confluent commands to disable them in case at least one
confluent command is enabled. Since the representation map approach cannot
be applied in this context, it would require acyclicity of the confluent commands
to avoiding the ignoring problem.



CHAPTER 7

Confluence Reduction versus

Partial Order Reduction

A Theoretical Comparison

“In theory, theory and practice are the same.
In practice, they are not.”

Albert Einstein

T
he previous chapter introduced confluence reduction for MAs. As men-
tioned before, this technique is most closely related to the concept of

partial order reduction (POR). Both use a notion of independence between
transitions of a system, either explicitly or implicitly, and try to reduce the state
space by eliminating redundant paths in the system.

In the non-probabilistic setting, partial order reduction techniques have
been defined for a range of property classes, most notably LTL\X and CTL∗

\X

[GKPP95, GKPP99, WW96, Val96, Pel98]. Most work on confluence reduction
has been designed to guarantee that the reduced system is branching bisimilar
to the original system; thus, these techniques preserve virtually all branching
properties (in particular, CTL∗

\X). There is not so much work on weaker variants
of confluence, though [LM09] explores a variant that makes no distinction between
visible and invisible actions and does not require acyclicity—hence, it preserves
only deadlocks, similar to weaker versions of ample and stubborn sets [Val96].

While POR has not yet been defined for MAs, it was already generalised to
the probabilistic setting. In [BGC04] and [DN04], the ample sets approach was
lifted from labelled transition systems to Markov decision processes (MDPs),
providing reductions that preserve probabilistic LTL\X . These techniques were
refined in [BDG06] to also preserve PCTL∗

\X , a branching logic. Later, a
revision of partial order reduction for distributed schedulers was introduced and
implemented in PRISM [GDF09]. In [BGC09], the use of fairness constraints
in combination with ample sets for the quantitative analysis of MDPs was first
introduced. Later, the so-called weak stubborn set method was defined for a
class of safety properties of MDPs under fairness constraints [HKQ11].

Ample sets and confluent transitions are defined and detected quite differently:
ample sets are defined by first giving an independence relation for the action
labels, whereas confluence is a property of a set of (invisible) transitions in the
final state space. Even so, the underlying ideas are similar on the intuitive level.
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Indeed, [LM09] even describes them as ‘two lines of work’ in the area of partial
order reduction. Since both techniques are in general not able to achieve optimal
reductions as compared to the bisimulation-minimal quotient, we are interested
to see if there are scenarios that can be handled by one technique but not by the
other, or whether their reduction capabilities are equally powerful. Therefore,
an obvious question is: to what extent do ample sets and confluent transitions
coincide? This chapter addresses that question by comparing the notion of
probabilistic ample sets from [BDG06] to a slightly reformulated variant on the
notion of confluence from Chapter 6. We restrict to ample sets, because they are
currently the most well-established notion of partial order reduction for MDPs.

Our approach. We introduce MDPs as a restriction of MAs, and recall some
of their basic terminology. Then, we present the theory on ample set reduction
from [BDG06] by means of the concept of a reduction function. Such functions
specify for each state which actions (and hence which transitions) are enabled.
We reformulate confluence reduction in the same way, taking into account that
MDPs are insensitive to action visibility—i.e., there is no notion of τ -actions;
only the state labelling is assumed to be observable.

We compare the two notions and show that, when preserving branching
time behaviour, confluence reduction is strictly more powerful than ample set
reduction. For this purpose, we prove that every nontrivial ample set can be
mimicked by a confluent set, while also providing examples where confluent
transitions do not qualify as ample sets. In such cases, confluence reduction is
able to reduce more than ample set reduction. Mainly, confluence imposes fewer
restrictions on the independence of actions. To continue, we pinpoint precisely
in what way confluence is more general than ample sets, and show how the
definitions of both can be adjusted to make them coincide.

While revealing exactly where the extra reduction potential with confluence
comes from, the results we present support the idea that confluence reduction
is a well-suited alternative to the thus far more often used partial order reduc-
tion methods. In particular, this is a major consideration in contexts where
(1) detection of confluence using heuristics that make use of these more relaxed
conditions is possible, or where (2) the conditions of confluence are just easier to
check than their partial order reduction counterparts.

1. The first situation seems to occur in the context of statistical model
checking and simulation. In this context, [BFHH11] used partial order
reduction to remove spurious nondeterminism from models to allow them
to be analysed statistically. As the reduction is applied directly to explicit
models rather than high-level specifications, the more relaxed confluence
conditions may come in handy. Indeed, the next chapter shows that
confluence reduction is able to remove nondeterminism that partial order
reduction could not, thereby allowing more models to be analysed using
statistical model checking techniques. Our results in this chapter provide
theoretical support for this intuition.

2. The second situation seems to arise when working with process-algebraic
modelling languages. As demonstrated in [Blo01, BvdP02] for the non-
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probabilistic setting and in the previous chapter for the setting of Markov
automata, it is quite natural to detect confluence in such a context.
Although it is also possible to work with POR in this setting (see for
instance [FTW10]), the way confluence is phrased seems to be more closely
related to the models involved, making its detection more straightforward.

Alternatively, our results (in particular Theorem 7.31) allow for the use of
more relaxed definitions—incorporating a notion of local independence—if partial
order reduction is used. In addition to providing these practical opportunities,
our precise comparison of confluence and partial order reduction fills a significant
gap in the theoretical understanding of the two notions.

The theory is presented in such a way that the results hold for non-probabi-
listic automata as well, as they form a special case of the theory where all
probability distributions are deterministic. Hence, as a side effect we also answer
the question of how the non-probabilistic variants of ample set reduction and
confluence reduction relate.

Our findings imply that results and techniques applicable to confluence
can be used in conjunction with ample sets—for instance, the state space
generation technique based on representative states, already known in the context
of confluence reduction as shown in [BvdP02] and in the previous chapter.
Applying this technique to POR replaces explicit checking of the cycle condition,
in addition to further reducing the number of states and transitions. The latter
is important, especially if the MDP is to be subjected to further analysis.

Organisation of the chapter. After recalling some basic preliminaries in Sec-
tion 7.1, we present the notions of ample set reduction and confluence reduction
in Section 7.2. Then, in Section 7.3 we discuss how ample set reduction can
be thought of as a special case of confluence reduction. We show what kind
of restrictions and relaxations are needed to make them coincide, thereby pin-
pointing the exact differences of the methods. Finally, Section 7.4 concludes by
summarising the contributions of this chapter.

Origins of the chapter. This chapter is based on a journal paper that will
soon be published in Theoretical Computer Science [HT13a]. That paper was
written in collaboration with Henri Hansen from the Institute of Mathematics at
Tampere University of Technology, Tampere, Finland (working at the Temasek
Laboratories of the National University of Singapore, Singapore during some
of the work). The author updated the definitions slightly, replacing the more
complicated notion of equivalence of probability distributions used in [HT13a]
by the more simple way of dealing with this as presented in the previous chapter
(and first published in [HT13b]).

7.1 Preliminaries

Probabilistic ample set reduction has been defined on the Markov decision
process. This model is a subclass of the MA, having no Markovian rates and
finite sets of states and actions, and allowing each action to occur only once per
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state. Because of the latter restriction, the transition relation is often formalised
slightly different from what we have done in the previous chapters. In this
chapter, we conform to MDP terminology [Put05] and formalise the transition
relation as a function assigning to each pair of a state and action the probability
distribution for the next state. To allow actions to be disabled, we now use the set
Distr⊥(S) = Distr(S) ∪ {⊥} that not only contains all probability distributions
over the set of states S, but also the subdistribution ⊥ that assigns probability 0
to every state s ∈ S.

Hence, an MDP consists of states that are labelled by atomic propositions,
an initial state, and a probabilistic action-labelled transition function. From
each state s, a subset of the actions is enabled; for every enabled action a, a
probability distribution P (s, a) specifies for every other state s′ the probability
P (s, a)(s′) of ending up in s′ after taking a from s.

Recall from Section 3.2 that we assume a countable universe of actions Act.

Definition 7.1 (MDPs). A Markov decision process (MDP) is tuple M =
(S, s0, A, P,AP, L), where

• S is a finite set of states;
• s0 ∈ S is the initial state;
• A ⊆ Act is a finite set of actions;
• P : (S ×A)→ Distr⊥(S) is the probabilistic transition function;
• AP is a finite set of state labels;
• L : S →P(AP) is the state-labelling function.

If P (s, a) = ⊥, the action a is not enabled from s. Otherwise, P (s, a)(s′) is the
probability of going to s′ when executing a from s.

We still like to be able to speak about transitions of an MDP, and hence
introduce the notation (s, a, µ) for a transition from s, taking an action a and
having a next-state distribution µ. Note that such a transition is present if
P (s, a) = µ. As before, we often write s −a→ µ instead of (s, a, µ).

Definition 7.2 (Supporting notations for MDPs). Given an MDP M =
(S, s0, A, P,AP, L), we denote the set of all possible transitions of M by

∆M = {(s, a, µ) ∈ S ×A×Distr(S) | P (s, a) = µ}

Additionally,

• We write s −a→ µ if (s, a, µ) ∈ ∆M , and s −a→ if s −a→ µ for some µ ∈
Distr(S). Also, we define en(s) = {a ∈ A | s −a→} to be the set of actions
enabled from state s.
• We reuse all notations defined in Chapter 3 for extended transitions also

for transitions in an MDP—including the notations for paths, reachability,
joinability and convertibility—and subscript them with a set of transitions
T ⊆ ∆M to restrict to using only transitions from this set.
• We write s −a1a2...an−−−−−→ s′ if there exists a path

s0 −
a1,µ1−−−→ s1 −

a2,µ2−−−→ . . . −
an,µn−−−→ sn
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Figure 7.1: An MDP M representing a flow chart.

for some distributions µi ∈ Distr(S), with s0 = s and sn = s′. We write
s −a1a2...an−−−−−→ if s −a1a2...an−−−−−→ s′ for some s′ ∈ S.

A subset ∆′ ⊆ ∆M of transitions of an MDP is acyclic if there does not exist a
cycle in the subgraph of the MDP when only considering the transitions of ∆′.

Note that we used Distr(S) instead of Distr⊥(S) in Definition 7.2. Hence, µ 6= ⊥.

Example 7.3. Figure 7.1 depicts an MDP M consisting of 14 states, that will
serve as a running example throughout this chapter. It represents a flow chart,
specifying the ways in which six tasks (that all have to be executed) can be
performed. The tasks occur in pairs: first task1 and task2 need to be executed,
then task3 and task4, and finally we need to do task5 and task6. Each pair of
tasks can be executed in either order. Furthermore, the execution of task2 fails
with probability 1

10 , in which case it can be attempted again. Moreover, after
finishing the first two tasks and before starting the last two, we can quit or
choose to continue. Finally, after all tasks have been completed, it is allowed to
repeat either task5 or task6. We assume that the effect of the even-numbered
tasks is visible to the environment (indicated by a change of atomic proposition
due to such a transition), while the odd-numbered tasks are invisible.

Note that for this MDP we have

S = {si | 0 ≤ i ≤ 13} and A = {task i | 1 ≤ i ≤ 6} ∪ {quit,continue}

The probabilistic transition function is again visualised by (the absence of)
arrows. For instance, P (s0, task2) = µ such that µ(s0) =

1
10 and µ(s2) =

9
10 ,

and P (s0, quit) = ⊥. Furthermore, we have s0 = s0 and AP = {p, q, r, s, t, u}.
The labelling is indicated for each state, e.g., L(s2) = {q}. We find that

en(s3) = {quit , task3, task4}, as well as s5 −
task3 continue task5 task6−−−−−−−−−−−−−−−−→. �

The following definition introduces three important concepts for transitions
and actions: determinism, stuttering and reducibility.

Definition 7.4 (Determinism, Stuttering and Reducibility). Given an
MDP M = (S, s0, A, P,AP, L),
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• A transition s −a→ µ is deterministic if µ is deterministic (i.e., assigns
probability 1 to a single state), and an action a ∈ A is a deterministic action
in M if all a-labelled transitions in ∆M are deterministic. Assuming an
implicit MDP, we denote the set of all deterministic actions by Adet ⊆ A.
Given a deterministic transition s −a→ 1t, we write target(s, a) = t;
• A transition s −a→ µ is stuttering if L(s′) = L(s) for each s′ ∈ supp(µ),

and an action a ∈ A is a stuttering action in M if all a-labelled transitions
in ∆M are stuttering. We denote the set of all stuttering actions by
Ast ⊆ A;
• A transition s −a→ µ is reducible if it is both deterministic and stuttering,

and an action a ∈ A is a reducible action if all a-labelled transitions in ∆M

are reducible. We denote the set of all reducible actions by Ared = Ast ∩
Adet;
• A finite path s −a1a2...an−−−−−→ s′ or infinite path s −a1a2...−−−−→ is reducible if every
action ai on it is reducible.

As before, we sometimes abuse notation a little by writing s −a→ s′ instead of
s −a→ 1s′ for deterministic transitions.

Note that s −a→ µ may be a reducible transition even if a is not a reducible
action, but not vice versa. Finally, given a sequence of reducible (and thus
deterministic) actions a1a2 . . . an, talking about “the” path of this sequence from
some state s makes sense, because the states that are visited are unique. We do
so for the rest of this chapter.

Example 7.5. In the MDP M in Figure 7.1, all transitions except for the ones
labelled by task2 are deterministic. Hence, all actions except for task2 are
deterministic. All transitions labelled by odd tasks are stuttering, as well as
the continue transition, since the atomic propositions in their source and target
states all correspond. Hence, all odd-labelled task actions and the continue
action are stuttering. Combining this, we obtain

Ared = {task i | i ∈ {1, 3, 5}} ∪ {continue} �

A wide class of reductions for an MDP can be defined using the construct
called a reduction function. Such a function determines a sub-MDP by deciding
for each state which outgoing actions are enabled in the reduced MDP. The
transition function of the reduced MDP then consists of all transitions that are
still enabled after the reduction function is applied, and the set of states consists
of all states that are still reachable using the reduced transition function.

Definition 7.6 (Reduction functions). Given an MDP M = (SM , s0M , A,
PM ,AP, LM ), a reduction function for M is any function R : SM →P(A) with
R(s) ⊆ en(s) for every s ∈ SM . Given a reduction function R, the reduced
MDP for M with respect to R is the minimal MDP MR = (SR, s

0
R, A, PR,AP,

LR) such that s0R = s0M and

• If s ∈ SR and a ∈ R(s), then PR(s, a) = PM (s, a) (and hence by definition
of PR also supp(PM (s, a)) ⊆ SR);
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• If s ∈ SR and a /∈ R(s), then PR(s, a) = ⊥;
• LR(s) = LM (s) for every s ∈ SR,

where minimal should be interpreted as having the smallest set of states.
Given a reduction function R : S →P(A), we define R : S →P(A) by

R(s) =

{
∅ if R(s) = en(s)
R(s) otherwise

The transitions designated by R are called the nontrivial transitions of the
reduction. We say that a reduction function R is acyclic if the original MDP
restricted to the transitions designated by R is acyclic.

In other words, R assigns to each state s the subset of actions that are enabled
by R in case a real reduction is made for s. Otherwise, it assigns no actions to s.

Example 7.7. A reduction function R for the MDP in Figure 7.1 is given by
R(s0) = {task1}, R(s1) = {task2}, R(s3) = ∅ and R(si) = en(si) for every
other state si. The reduced MDP with respect to R consists of solely the states
s0, s1 and s3, and the two transitions connecting them. We have R(s0) = {task1}
and R(s1) = ∅, and find that R is acyclic (which is immediate, as the only
nontrivial transition is no self-loop). �

When reducing MDPs, we clearly want to retain some behaviour to still be
able to verify certain properties. The reductions we deal with preserve PCTL∗

\X

(a probabilistic variant of CTL∗
\X ; see for instance [BK08]).

7.2 Ample sets and confluence for MDPs

This section presents the theory of the ample set reduction technique. Its
correctness is based on the concepts of weight functions and probabilistic visible
(bi)simulation [Grö08]. We briefly introduce these concepts, without going into
many details. We also illustrate how the concepts developed for confluence
reduction in Chapter 6 can be applied to MDPs using reduction functions.

Definition 7.8 (Weight functions). Let R ⊆ S1 × S2 be a binary relation
and let µ ∈ Distr⊥(S1) and ν ∈ Distr⊥(S2) be probability distributions. We write
µ ⊑R ν if µ, ν 6= ⊥ and there exists a weight function w : S1 × S2 → [0, 1] such
that for all s1 ∈ S1 and s2 ∈ S2,

• w(s1, s2) > 0 implies (s1, s2) ∈ R;

•
∑

s∈S2

w(s1, s) = µ(s1) and
∑

s∈S1

w(s, s2) = ν(s2).

Example 7.9. Consider the two systems in Figure 7.2. Clearly s0 and t0 are not
equivalent, as the observable behaviour after the a-transitions differs. However,
all behaviour of s0 can be mimicked by t0; something that can be shown using
weight functions. We let R be a relation to indicate the simulation. That is, we
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Figure 7.2: Two MDPs to illustrate weight functions.

let (s, t) ∈ R denote that t can mimic all behaviour from s—below, we make
this more precise.

We want to show that R = {(s0, t0), (s1, t1), (s1, t2), (s2, t2)} is a valid simu-
lation relation. Except for the first element this is clear, since all behaviour of s1
can indeed be mimicked by t1 and t2, and all behaviour of s2 can be mimicked
by t2. Now, we want to show that also (s0, t0) ∈ R is valid. Can the a-transition
from s0 be mimicked by t0? There is an a-transition, but the probabilities differ.
We now define a weight function, as follows:

w(s1, t1) =
1
6 w(s1, t2) =

1
6 w(s2, t2) =

2
3

Basically, this weight function shows how the probability mass can ‘flow’ from
the left distribution µ to the right distribution ν. All requirements are satisfied,
and hence µ ⊑R ν. Indeed, s0 can go with probability 1

3 to a state that can do
a b-transition, and for t0 this probability is at least as high. The c-transition
can be executed from s0 with probability 2

3 , and t0 can also mimic this with a
probability that is at least as high. �

Next, we recall the notion of probabilistic visible bisimulation [Grö08]. It is
based on probabilistic visible simulation, which basically formalises our observa-
tion of mimicking behaviour in the example above. For two states (s, s′) to be
probabilistically visible similar, (1) they need to have the same state labelling,
(2) every transition s −a→ µ needs to either (a) have a reducible (deterministic
and stuttering) action and go to a state t that is also similar to s′ or (b) be
mimicked from s′ after a (possibly empty) path of reducible transitions that only
visits states that simulate s, and (3) every diverging path from s needs to be
mimicked by a diverging path from s′.

Definition 7.10 (Probabilistic visible bisimulation). Let M1 = (S1, s
0
1, A,

P1,AP, L1) and M2 = (S2, s
0
2, A, P2,AP, L2) be MDPs, and let R ⊆ S1 × S2 be

a binary relation. Then, R is a probabilistic visible simulation for (M1,M2) if
(s01, s

0
2) ∈ R and, for every (s, s′) ∈ R, the following three conditions hold:

1. L1(s) = L2(s
′);

2. If a ∈ en(s), then either

(a) a ∈ Ared and (target(s, a), s′) ∈ R, or
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(b) there is a reducible path s′ −b1...bn−−−−→ s′′ in M2 such that (s, s′i) ∈ R for
every state s′i on this path, a ∈ en(s′′) and P1(s, a) ⊑R P2(s

′′, a);

3. If there is an infinite reducible path s −b1b2...−−−→ in M1 such that (si, s
′) ∈ R

for every si on this path, then there is a finite reducible path s′ −a1...an−−−−→ s′n
in M2, n ≥ 1, such that (s, s′i) ∈ R for every s′i on this path (possibly
excluding s′n), and (sk, s

′
n) ∈ R for at least one sk (with k > 0) on the

path s −b1b2...−−−→.

A binary relation R is a probabilistic visible bisimulation for (M1,M2) if it is
a probabilistic visible simulation for (M1,M2) and R−1 is a probabilistic visible
simulation for (M2,M1).

We say that two MDPs M1,M2 are probabilistically visibly bisimilar, denoted
by M1 ≈pvb M2, if there is a probabilistic visible bisimulation that relates them.

We note that probabilistic visible bisimulation is very much related to our notion
of divergence-sensitive branching bisimulation. The only real difference is that
probabilistic visible bisimulation requires transitions to be labelled by actions
that are deterministic and stuttering globally in conditions 2a and 2b, while the
branching step only requires the transitions to be this themselves.

7.2.1 Ample sets

Although there are many techniques that are called “partial order reduction”,
we focus on the ample set method as presented in [BDG06]. This is the only
partial order reduction technique we are aware of that preserves all probabilistic
branching time properties. To present the definition, we first need to introduce
the notion of independence. Intuitively, two actions a, b are independent if they
don’t disable each other, and if the probability of ending up at any state by first
taking a and then taking b is the same as when the actions are taken the other
way around.

Definition 7.11 (Independence). Given an MDP M = (S, s0, A, P,AP, L),
two actions a, b ∈ A are independent if a 6= b and for every state s ∈ S with
{a, b} ⊆ en(s) the following conditions hold:

• If s′ ∈ supp(P (s, a)), then b ∈ en(s′) (and symmetrically);
• We have

∑

s′∈S

P (s, a)(s′) · P (s′, b)(t) =
∑

s′∈S

P (s, b)(s′) · P (s′, a)(t)

for every t ∈ S.

If a and b are not independent, we say that they are dependent. An action a is
dependent on a set B if there exists at least one b ∈ B on which a depends.

Example 7.12. In the MDP M given in Figure 7.1, the actions task1 and task2
are independent. After all, there is only one state in which both are enabled:
s0. From there, indeed, these two actions do not disable each other. Moreover,
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when first executing task1 and then executing task2, the probability of ending
up in s1 is 1

10 and the probability of ending up in s3 is 9
10 . When executing the

tasks the other way around, we obtain the same probabilities.
Similarly, it can be shown that task3 and task4 are independent. Note that

task5 and task6 are not independent, as they are both enabled in s11 and from
there can disable each other. �

Based on this notion of dependence, the ample set constraints can be defined.

Definition 7.13 (Ample set reduction). Let M = (S, s0, A, P,AP, L) be an
MDP without terminal states. Then, a reduction function R : S →P(A) for M
is an ample set reduction function if it satisfies the following conditions in every
state s ∈ S:

A0 ∅ 6= R(s) ⊆ en(s);

A1 If R(s) 6= en(s), then R(s) ⊆ Ast;

A2 For every path s −a1a2...anb−−−−−−→ t in M such that b 6∈ R(s) and b depends on R(s),
there exists an 1 ≤ i ≤ n such that ai ∈ R(s);

A3 For every cycle s −a1a2...an−−−−−→ s in MR, R(si) = en(si) for at least one state si
on this cycle;

A4 If R(s) 6= en(s), then |R(s)| = 1 and R(s) ⊆ Adet.

The sets R(s) are called ample sets.

Except for A4, the ample set provisos are standard in traditional model checking.
They make sure that no deadlocks are introduced (A0, A2) and all visible
behaviour is preserved (A1, A3). Proviso A3 is known as the cycle condition,
and prevents visible behaviour from being postponed indefinitely. The last proviso
is needed in a probabilistic branching-time setting. We refer to [Grö08, BK08]
for an extended explanation of these provisos.

Note that we could also extend these conditions to allow MDPs with terminal
states. In that case A0 should be changed to allow R(s) = ∅ if en(s) = ∅.
Note also that conditions A1 and A4 can be combined by saying that either
R(s) = en(s) or R(s) contains exactly one reducible action.

Example 7.14. A valid ample set reduction function R for M is given by
R(s0) = {task1} and R(si) = en(si) for all other states. Note that all ample
set conditions vacuously hold for all fully-expanded states, so we only need to
investigate s0. The conditions A0, A1 and A4 are trivial to verify. Also A3 is
easy, since the only possible cycle in MR is an infinite loop through s1 (although
this has probability 0): indeed R(s1) = en(s1). Finally, to see why A2 holds,
note that every path from s0 either immediately traverses task1 (which is indeed
in R(s0)) or starts with a number of times task2 and then task1; for all traces of
the second kind, task2 is independent of R(s0) and task1 is in R(s0), satisfying
the condition.

This reduction function only gets rid of state s2. Note that no additional
reduction is possible. In s3, s4, s5 and s6, no subset of the enabled actions can
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be chosen as an ample set, since none of the actions is independent of the quit
action (as quit disables all other actions). Also, in s8 no reduction is possible,
since task5 and task6 are not independent (after all, in state s11 they can disable
each other). �

The following result states that ample sets are sound for MDP reduction.

Theorem 7.15 ([BDG06]). If R is an ample set reduction function for M ,
then M ≈pvb MR, and consequently M and MR satisfy the same PCTL∗

\X-
formulae.

7.2.2 Confluence

Since MDPs are a subclass of MAs, in principle all theory developed in Chapter 6
on confluence for MAs is still valid for MDPs. However, there are some small
technical differences between the existing notions of ample set reduction and the
notion of confluence reduction defined earlier in this thesis:

• The ample set reduction technique was defined in a state-based setting,
where transitions do not have to be labelled by τ to be invisible; they just
have to connect equally-labelled states. Hence, a model does not need to
have any τ -actions for an ample set reduction to be possible, while this
is the case for the notion of confluence defined in Chapter 6. For a fair
comparison, we therefore update the definition of confluence to also be so
liberal to allow any action label to be considered invisible.

• The ample set reduction technique was defined in terms of reduction
functions, whereas we defined confluence reduction using a representation
map approach. For a fair comparison, we therefore now redefine confluence
reduction using the concept of reduction functions as well.

• Ample set reduction was shown to be correct by proving that it preserves
probabilistic visible bisimulation. This implies that PCTL∗

\X is preserved.
To apply the same notion of bisimulation to confluence reduction, we
have the strengthen the concept slightly: instead of requiring confluent
transitions to be stuttering and deterministic, we have to require their
actions to be so. As mentioned below Definition 7.4, this does make the
concept more demanding; however, it does enable a fairer comparison.

Since we are not concerned with taking unions of confluent sets, we can
simplify their definition slightly by omitting the confluence classification. We
just assume a set T of transitions, and do still require confluent transitions to
be mimicked by confluent transitions as before.

Definition 7.16 (Probabilistic confluence). Let M = (S, s0, A, P,AP, L)
be an MDP. Then, a set T ⊆ ∆M is probabilistically confluent if all its trans-

itions have a reducible action, and for all s −a→T t and all transitions s −b→ µ,
either

• ∃ν ∈ Distr(S) . t −b→ ν ∧ µ ≡RT
µ,ν

ν ∧
(
(s −b→ µ) ∈ T =⇒ (t −b→ ν) ∈ T

)
, or

• b ∈ Ared and µ = 1t,
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with RT
µ,ν the smallest equivalence relation such that

RT
µ,ν ⊇ {(s, t) ∈ supp(µ)× supp(ν) | ∃a . (s −a→ t) ∈ T }

A transition s −a→ t is confluent if there exists a Markovian confluent set T such
that s −a→T t.

Note that, compared to Definition 6.7 and as discussed above, Definition 7.16
requires confluent transitions to have a reducible action and assumes a con-
fluence classification with just one class. Also, we omitted the assumption
(s −b→ µ) 6= (s −a→ t) and added instead the clause b ∈ Ared and µ = 1t. The
reason for this is that while before there could only be one reducible transition
from s to t (since it was required to have action label τ), now there can be
multiple with different action labels. This notion of confluence is incomparable
to the one in Chapter 6: the current variant is more liberal in the sense that
actions do not have to be labelled by τ to be confluent, and more strict in the
sense that actions instead of transitions have to be reducible.

The proofs from Chapter 6 can easily be adapted to show that confluent join-
ability still coincides with confluent convertibility and that confluent transitions
connect states that are equivalent according to probabilistic visible bisimulation
(as we did in [HT13a] for a slightly stronger version).

Based on this notion of probabilistic confluence, we can easily define a
confluence reduction function. Instead of using representatives, it gives priority
to confluent transitions and ignores all their neighbouring transitions.

Definition 7.17 (Probabilistic confluence reduction). For an MDP M =
(S, s0, A, P,AP, L), a reduction function T : S →P(A) is a confluence reduction
function for M if there exists a probabistically confluent set T ⊆ ∆M such that,
for every s ∈ S either

• T (s) = en(s), or
• T (s) = {a} for some a ∈ Ared such that (s, a,1t) ∈ T for some t ∈ S.

Then, we also say that T is a confluence reduction function under T .

Note that, in every state, a confluence reduction function either fully explores
all outgoing transitions (which are then not required to be confluent) or explores
only one of them (which is then required to be confluent). This way, it may
happen that confluent transitions are taken indefinitely, ignoring the presence
of other actions. This problem is well known in the theory of partial order
reduction as the ignoring problem [Val90, EP10], and is dealt with by the cycle
condition A3 of the ample set method. For confluence we dealt with this problem
before by using the representation map approach, choosing one representative in
each BSCC. When using reduction functions, it can be dealt with by requiring
acyclicity of the reduction function.

Example 7.18. Consider again the MDP M given in Figure 7.1. We define

T = {(s0, task1,1s1), (s2, task1,1s3), (s3, task3,1s4),

(s5, task3,1s6), (s8, task5,1s9), (s10, task5,1s11)}
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Figure 7.3: An MDP reduced based on confluence.

Indeed, all of these transitions have reducible actions. Moreover, the confluence
requirements are easy to check in the same way as we illustrated in Example 6.9.

Based on T , we can define the reduction function T given by T (s0) = task1,
T (s3) = task3, T (s8) = task5 and T (s) = en(s) for all other states s. The
reduced MDP obtained in this way is shown in Figure 7.3. Note that, compared
to the maximal ample set reduction that could be obtained for this MDP, we
reduced on two more occasions in the MDP. �

Our main result of this section is Theorem 7.19, which establishes the
correctness of acyclic confluence reduction functions with respect to probabilistic
visible bisimulation (note that acyclicity was introduced in Definition 7.6). It
was proven by the author and Henri Hansen in [HT13a] for a slightly more
restrictive version of confluence, and also holds for the variant just introduced.
Since the proof is very similar to the proof of Theorem 6.18, we omit it.

Theorem 7.19. Let M be an MDP, T a probabilistically confluent set of trans-
itions from M and T an acyclic confluence reduction function under T . Let MT

be the reduced MDP. Then,
M ≈pvb MT

Proposition 3.4.10 from [Grö08] gives the following corollary.

Corollary 7.20. If T is an acyclic confluence reduction function for M , then
M and MT satisfy the same PCTL∗

\X-formulae.

7.3 Comparing ample sets and confluence

The relation between ample sets and confluence is not straightforward. In this
section, we will first see that confluence is strictly more general, by proving that
every ample set reduction also is a confluence reduction. In addition, we discuss
the aspects that differentiate ample sets from confluence. To show that these
are the only differences, we provide variations to the concepts that make them
coincide. The choice of which concept is varied in each situation, is to some
extent arbitrary. Restricting confluence or relaxing ample sets is not the issue
here, the objective is to prove that we have identified the essential differences.
However, the variations are made in such a way that the resulting notions are
useful in practice. Restrictions of confluence rule out features that are plausibly
hard to implement in practice, and relaxed features of ample sets are such that
they have been used in practice.
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7.3.1 Why confluence is strictly more powerful

The starting point of our investigation is given by Theorem 7.21 below. It shows
that, if the ample set method allows a state to explore only one of its outgoing
transitions, the confluence method also allows this. Therefore, any reduction that
can be achieved by the use of ample sets can also be achieved using confluence
(from Definition 7.16).

Theorem 7.21. Let A be an ample set reduction function for an MDP M =
(S, s0, A, P,AP, L). Then, the set TA = {(s, a, µ) ∈ ∆M | a ∈ A(s)} is acyclic,
and consists of probabilistically confluent transitions.

This result obviously also holds for weaker notions of confluence (as for
instance presented in [TSvdP11]), which are even more powerful.

In the proof of Theorem 7.21, we construct a confluent set containing all
transitions from TA. We can use this set to define a confluence reduction function,
for every state having a transition in TA choosing that transition and for every
state for which this is not the case fully exploring all transitions. Since TA is
acyclic, this reduction function is acyclic as well.

On the other hand, it is not the case that every confluent transition can be
chosen to be in a nontrivial ample set. Confluence reduction turns out to be
more liberal on several aspects: it may reduce multiple transitions between the
same two states, triangles and diamonds in which one transition is mimicked by
a differently labelled transition, and also in the presence of actions that are only
locally independent. All four cases are illustrated by the following examples.

Example 7.22. Consider the MDPs in Figure 7.4 (with the atomic propositions
per state indicated in curly brackets). For these MDPs, all transitions are
deterministic. Note also that all a-transitions are stuttering and therefore
reducible. Even more, they are constructed in such a way that the outgoing
a-transitions from every state s1 are confluent, i.e., {s1 −

a→ s2} is a confluent set
for all subfigures. Hence, confluence reduction allows us to omit the b-transition
from each state s1, thus removing six transitions and two states.

In Figure 7.4(a), the b-action is reducible too. Due to the second item of
Definition 7.16, this transition does not prohibit the a-transition from being con-
fluent. After all, this part of the definition basically allows confluent transitions
to disable other reducible transitions having the same source and target state
as the confluent transition, as illustrated here. Therefore, confluence reduction
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Figure 7.4: Confluence triumphs over ample sets.
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may choose either one of these two transitions and could for instance reduce
based on T = {(s1, a,1s2)}. The ample set conditions do not allow this; they
require complete independence between a and b for {a} to be a valid ample set
for s1. Hence, the only valid ample set for s1 is {a, b}.

In Figure 7.4(b), the b-transition is not reducible. Furthermore, a and b are
dependent, since b disables a. However, the a-transition from s1 can still be
considered confluent, taking T = {(s1, a,1s2)} as the underlying confluent set
for confluence reduction. This is due to the fact that although visible actions
must still be enabled after a confluent transition, the confluent action does not
need to be enabled after the visible action. Again, ample set reduction cannot
reduce since a and b are not independent.

Although it may seem that reduction in case of triangle constructions such as
Figure 7.4(b) only removes some transitions, it can in theory make a significant
difference in the number of states. Imagine for instance a system in which every
state has a transition quit to a single deadlock state (as is partially the case in
Figure 7.1). Then, not one action is independent of quit, and ample set reduction
would not be able to provide any reduction. However, such transitions would
not interfere with confluence. Every confluence reduction that would be possible
without the quit transitions is still possible with the quit transitions.

In Figure 7.4(c), the a-transition can be considered confluent since the
diamond shape is closed perfectly (taking T = {(s1, a,1s2), (s3, c,1s4)}). Even
though b disables a, there is a transition from s3 to s4 that can easily be shown
confluent. The ample set conditions strictly require reducible transitions to be
mimicked by equally-named transitions, disallowing any reduction for this model.

In Figure 7.4(d), the outgoing a-transition from s1 is confluent since the
diamond shape of independence is present (taking T = {(s1, a,1s2), (s3, a,1s4)}).
The fact that a can disable b later on in the system does not matter for confluence.
The ample set conditions, however, do require a and b to be globally independent
for {a} to be a valid ample set for s1. As this is not the case, no reductions can
be achieved with ample set reduction. �

Confluence mainly provides more reduction since it is defined based on the actual
low-level transitions at a given state of the model, whereas the independence
notion of ample set reduction works on higher-level actions and is considered
to be global. That is, the dependency relation is assumed to be the same for
every state. In practice, however, heuristics for detecting confluent transitions
symbolically (as in [BvdP02] and in the previous chapter) often also take this
more global point of view, which diminishes the difference.

Differences and heuristics. Our implementation in SCOOP (see Chapter 9)
only considers transitions to be potentially confluent if they are labelled by τ .
Hence, the differences between confluence and POR depicted in Figures 7.4(a)
and 7.4(c) do not occur. If differently labelled transitions were possibly con-
sidered invisible as well, situation 7.4(a) could easily be detected efficiently
during state space generation.

The heuristics implemented to decide on behaviour mimicking (basically
checking if summands do not influence each other) do not allow any reduction in
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the scenarios depicted in Figures 7.4(b) and 7.4(c). However, situations as shown
in Figure 7.4(d) can occur if a = τ and the action label b is used in multiple
summands (as demonstrated below), and are indeed reduced using our heuristics.

Example 7.23. Consider the following MAPA specification:

X(pc1 : {1, 3}, pc2 : {1, 3}) =

pc1 = 1⇒ τ ·X(2, pc2) (1)

+ pc2 = 1⇒ b ·X(pc1, 2) (2)

+ pc2 = 2 ∧ pc2 = 2⇒ (τ ·X(3, 2) + b ·X(2, 3)) (3)

This specification yields precisely the MA of Figure 7.4(d), with a = τ . In-
deed, our confluence implementation is able to reduce this system from six
to four states. �

7.3.2 Closing the gap between confluence and ample sets

To show that the differences discussed above are indeed the only differences
between confluence and ample sets, we remove them and show that the resulting
notions indeed coincide.

As a first step, we precisely prohibit all the liberal aspects of confluence that
make the reductions in Figure 7.4(a), 7.4(b) and 7.4(c) work—hence, disallowing
‘shortcuts’ and confluent transitions relying on differently labelled confluent
transitions for the diamond shape to close.

As a second step, we loosen the independence concept of ample sets so that
it corresponds better to the more local approach of confluence, allowing ample
sets to reduce Figure 7.4(d). Note that we do this safely, i.e., Theorem 7.19 is
never compromised during the process, as all these notions will still be confluent
in the sense used in that theorem.

Restricted confluence. First of all, we restrict the notion of confluence by
strengthening the requirements for two distributions to be equivalent. For
this purpose, we introduce a notion called equivalence up to T -steps to force
commutation of transitions to occur in the diamond structure of independence.
This results in a notion of confluence that can no longer reduce Figure 7.4(b).

Definition 7.24 (Equivalence up to T -steps). Let M = (S, s0, A, P,AP,
L) be an MDP, T ⊆ ∆M a set of deterministic transitions of M , and let
µ, ν ∈ Distr⊥(S) be two probability distributions. Then, we say that µ is equi-
valent up to T -steps to ν, denoted by µ  T ν, if µ, ν 6= ⊥ and there ex-
ists a partitioning supp(µ) =

⊎n
i=1 Si of the support of µ and an ordering

supp(ν) = 〈s1, . . . , sn〉 of the support of ν, such that

∀1 ≤ i ≤ n . µ(Si) = ν(si) ∧ ∀s ∈ Si . ∃a ∈ A . (s, a,1si) ∈ T

Example 7.25. Consider the MDP in Figure 7.5, and let

T = {(s0, a,1s1), (s2, a,1s6), (s3, a,1s5), (s4, a,1s5)}
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Figure 7.5: An MDP to demonstrate  T .

Moreover, let µ = P (s0, b) and ν = P (s1, b). It now follows that µ  T ν, by
taking the partitioning supp(µ) = S1 ∪ S2 with S1 = {s2} and S2 = {s3, s4},
and the ordering supp(ν) = 〈s6, s5〉. Now, indeed µ(S1) = 1

3 = ν(s6) and
µ(S2) =

2
3 = ν(s5). Also, there is a transition in T connecting s2 to s6, and

there are transitions in T connecting s3 and s4 to s5. �

It is easy to see that µ T ν implies that µ ≡RT
µ,ν

ν, with RT
µ,ν the smallest

equivalence relation such that

RT
µ,ν ⊇ {(s, t) ∈ supp(µ)× supp(ν) | ∃a . (s −a→ t) ∈ T }

Hence, we can use equivalence up to T -steps in the definition of confluence
without losing correctness.

When symbolic analysis is carried out for ample sets and similar methods,
the relations that are extracted are usually assumed symmetric: if a and b are
independent, then they do not disable each other. This is much due to the
way algorithms for generating them often work (though not always, see for
instance [HKQ11]). The above stronger version of up-to-equivalence features
this same symmetry.

In addition to strengthening equivalence of distributions, we also restrict
confluence by requiring reducible actions to be mimicked as well. Hence, we
omit the second item of Definition 7.16; the practical interpretation is similar to
the one mentioned above. After this change, no reduction is possible anymore in
the model of Figure 7.4(a).

Definition 7.26 (Restricted probabilistic confluence). Let M = (S, s0,
A, P,AP, L) be an MDP. Then, a set T ⊆ ∆M is restrictedly probabilist-
ically confluent if all its transitions have a reducible action, and for all s −a→T t

and all transitions s −b→ µ (b 6= a), it holds that

• ∃ν ∈ Distr(S) . t −b→ ν ∧ µ T ν ∧
(
(s −b→ µ) ∈ T =⇒ (t −b→ ν) ∈ T

)
.

We call a reduction function with an underlying restricted confluent set a re-
stricted confluence reduction function.

We add the restriction b 6= a, to ensure that confluent transitions still commute
with themselves. Since in the original definition every confluent transition
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also already commuted with itself, this does not weaken the concept. Hence,
Definition 7.26 is a true restriction of Definition 7.16.

Finally, we saw in Figure 7.4(c) that confluence allows reducible transitions
to be mimicked by actions with different names. If we want confluence reduction
and ample sets to coincide, we need to make sure that actions are not allowed
to rely on other actions to ‘close their diamonds’. From the point of view of
symbolic analysis, this restriction matches the practical heuristics used for ample
set reduction: only pairwise analysis of actions is required, and the algorithms
for generating ample sets or similar notions mostly rely on these sort of binary
relations. For this purpose we introduce the concept of action-separability ,
requiring that each subset of T that can be obtained by only keeping one specific
action, is confluent. That way, confluence reduction functions such as the one in
Figure 7.4(c) are not allowed anymore.

Definition 7.27 (Action-separable confluence). Let M = (S, s0, A, P,AP,
L) be an MDP, then a confluent set T ⊆ ∆M of transitions of M is action-
separable if for every action a ∈ A the subset

Ta = {(s, a, µ) ∈ S × {a} ×Distr(S) | (s, a, µ) ∈ T }

of a-labelled confluent transitions is confluent (so possibly empty).

A confluence reduction function T : S → P(A) is action-separable if its
underlying confluent set T is.

Relaxing ample sets. Independence is judged by the ample set constraints
in a global manner, whereas confluence deals with the notion of equivalent
distributions, which is much more local.

To make confluence and ample sets coincide, independence should also be
determined locally, i.e., given a state, dependency of a and b makes a difference
only in parts of the MDP that can be reached without executing the ample
action first. This corresponds to the fact that confluence only puts restrictions
on commutation of actions before a confluent transition.

The practical side of this change lies in dynamic analysis. We can, for
instance, initially consider that a and b are dependent due to symbolic analysis.
However, after finishing exploring some part of the possible states following a
state s, we may come to the conclusion that the dependency never manifests
anywhere where a has not been executed yet, and thus declare a independent of b
locally in s. This idea originates from [KP92] and [GP93], and also corresponds
exactly to the way the stubborn set definitions (see, e.g., [Val96]) deal with
dependency in the non-probabilistic case: only executions starting from the
current state that do not include any stubborn actions, are relevant from the
point of view of commutativity.

To define local independence, let Ra(s) ⊆ S be the set of states s′ such that
s −c1...cn−−−−→ s′ for some path where there is no i such that ci = a.

Definition 7.28 (Local independence). Given an MDP M = (S, s0, A, P,
AP, L), a state s ∈ S, and two actions a, b ∈ A, we say that a is independent
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of b at s if a 6= b and for every state s′ ∈ Ra(s) such that {a, b} ⊆ en(s′) the
following conditions hold:

• If s∗ ∈ supp(P (s′, a)), then b ∈ en(s∗) (and symmetrically);

• We have

∑

s∗∈S

P (s′, a)(s∗) · P (s∗, b)(t) =
∑

s∗∈S

P (s′, b)(s∗) · P (s∗, a)(t)

for every t ∈ S.

If a is not independent of b at s, we say that it is dependent of b at s.

Note that this definition coincides with the original definition of independence,
except that the conditions only have to hold for all states in Ra(s) instead of all
states in S.

Also note that local (in)dependence is not a symmetric relation. For a to be
independent of b at s we only consider the states in Ra(s); this is in general a
set different from Rb(s).

Example 7.29. In Example 7.12 we noticed that the actions task5 and task6

in Figure 7.1 were not independent, since there is a state (namely s11) in
which they can disable each other. However, taking local independence, we
see that Rtask5(s8) = {s8, s10} and Rtask6(s8) = {s8, s9}, and we can verify
that the independence conditions are satisfied by all of these states. Hence,
task5 is independent of task6 at s8 and also task6 is independent of task5 at s8.
Therefore, if the ample set conditions used local independence instead of global
independence, it would be allowed to take either task5 or task6 as an ample set
for s8. �

Under the local dependency condition, we can now relax the ample set
conditions slightly.

Definition 7.30 (Relaxed ample sets). A set A(s) is a relaxed ample set if
it meets the criteria of Definition 7.13, except that A2 is replaced by the following
condition:

A2∗ For every path s −a1a2...anb−−−−−−→ t in M such that b 6∈ A(s) and some a ∈ A(s)
is dependent on b at s, there exists an 1 ≤ i ≤ n such that ai ∈ A(s).

Comparison. Our most important theorem of this chapter is now ready to be
proven. It says that our restriction of confluence reduction and relaxation of
ample set reduction indeed coincide. Hence, the differences we identified earlier
indeed precisely characterise the gap between the two notions.

Theorem 7.31. Let M = (S, s0, A, P,AP, L) be an MDP. Then, T : S →P(A)
is an acyclic action-separable restricted confluence reduction function if and only
if T is a relaxed ample set reduction function.
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Note that an acyclic action-separable restricted confluence reduction function
is just a special case of an acyclic confluence reduction function, as used in
Theorem 7.19, so it too preserves probabilistic visible bisimulation. Since relaxed
ample set reduction functions coincide with confluence now, we immediately
have the result that they too still preserve probabilistic visible bisimulation.

As all of our propositions and theorems hold just as well in case there are no
probabilistic transitions, and the probabilistic notions of ample set reduction
and confluence reduction in that case reduce to their non-probabilistic variants
(except that we preserve divergences), the following corollary is also immediate.

Corollary 7.32. In the non-probabilistic setting, confluence reduction is able
to reduce more than ample set reduction. With some adjustments (as in Defini-
tions 7.24, 7.26, 7.27, 7.28 and 7.30), the two notions coincide.

7.3.3 Practical implications

To reduce the number of states of an MDP even more than when applying a
reduction function, we can again apply the representation map approach as
presented in Chapter 6. We demonstrate this procedure once more on the
running example of this chapter.

Example 7.33. Consider again the MDP in Figure 7.1 and the probabilistically
confluent set provided in Example 7.18. As stated there,

T = {(s0, task1,1s1), (s2, task1,1s3), (s3, task3,1s4),

(s5, task3,1s6), (s8, task5,1s9), (s10, task5,1s11)}

In the absence of cycles in T , there is only one possible representation map
under T :

ϕT (s0) = s1 ϕT (s2) = s4 ϕT (s3) = s4

ϕT (s5) = s6 ϕT (s8) = s9 ϕT (s10) = s11

and ϕT (s) = s for all other states s. The quotient MDP under this representation
map is shown in Figure 7.6. �

The representation map approach is not only useful for confluence reduction,
but also for ample set reduction. After all, from Theorem 7.21 we know that
every ample set reduction is a confluence reduction. The representation map
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9
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task4
quit
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1
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{q}

{s}{r} {s} {t}

{t}

{u}
continue task6

task5
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Figure 7.6: A quotient MDP under a representation map.
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approach serves as an alternative implementation of the cycle condition of ample
sets or the acyclicity requirement used earlier in this chapter. The cycle condition
is satisfied in the sense that the quotient MDP never indefinitely ignores any
behaviour of the original MDP.

7.4 Contributions

We redefined confluence reduction in an MDP-based setting, enabling a compar-
ison to probabilistic partial order reduction based on ample sets in branching
time. We proved that every nontrivial ample set can be mimicked by a confluent
set, and that in some cases reductions are possible using confluence but not
using ample sets. Therefore, at least in theory confluence reduction is able to
reduce more than the ample set method. We also showed the exact way in which
confluence and ample sets have to be modified for the two notions to coincide.
This way, the gap between their expressivity is identified precisely. These results
hold for the non-probabilistic variants of the two reduction techniques as well.

Our observation that probabilistic ample set reduction can be mimicked by
probabilistic confluence reduction has additional implications, some of which
are highly practical. One such implication is that the use of a representation
map for reduced state space generation, already applied earlier in combination
with confluence reduction, can also be applied for partial order reduction as a
substitute for the cycle condition.

As both ample sets and confluence are detected symbolically on the language
level, the quality of the heuristics applied there will decide which notion works
best in practice. The results in this chapter already strengthen our theoretical
understanding of the two methods, and this is independent of the heuristics that
are applied. Obviously, no matter how such heuristics are improved, the results
in this chapter will remain valid. We showed that at least one of the advantages
of confluence over POR can indeed be exploited by our heuristics.

To complement the theoretical results presented in this chapter, the next
chapter will provide a comparison of confluence reduction and partial order
reduction from a practical point of view. Although the practical difference may
be limited with regard to the number of additional reductions, we will show that
the way confluence deals with independence allows more systems to be subjected
to statistical model checking: a significant improvement.

We conjecture that the ideas presented in this chapter can easily be used to
define a notion of branching time partial order reduction for MAs, based on our
notion of confluence for MAs presented in Chapter 6. Then, a result similar to
Theorem 7.21 might be applied to prove its correctness.





CHAPTER 8

Confluence Reduction in

Statistical Model Checking

A Practical Comparison to Partial Order Reduction

“There’s no sense in being precise
when you don’t even know
what you’re talking about.”

John von Neumann

A
s mentioned before, model checking is subject to the state space explosion
problem, with probabilistic model checking being particularly affected
due to its additional numerical complexity. Several techniques have been

introduced to stretch the limits of model checking, while preserving its basic
nature of performing state space exploration to obtain results that unconditionally
hold for the entire state space. Among these techniques are the basic reduction
techniques we introduced in Section 4.5 and the dead variable reduction technique
from Chapter 5, as well as confluence reduction and partial order reduction
(POR) as discussed in Chapters 6 and 7. As discussed previously, partial order
reduction and confluence reduction both work by selecting a subset of the
transitions of a model—and thus a subset of the reachable states—in a way that
ensures that the reduced system is equivalent to the complete system.

A much different approach for probabilistic models is statistical model
checking (SMC) [HLMP04, LDB10, YS02]: instead of exploring—and storing in
memory—the entire state space, or even a reduced version of it, discrete-event
simulation is used to generate traces through the state space. This comes at
constant memory usage and thus circumvents the state space explosion entirely,
but can only approximate probabilities of interest. Statistical methods such as
sequential hypothesis testing are then used to make sure that the probability of
returning the wrong result is below a certain threshold. As a simulation-based
approach, however, SMC is in principle limited to fully stochastic models such
as Markov chains [Har10].

Previously, an approach based on POR was presented [BFHH11] to extend
SMC and simulation to the nondeterministic model of Markov decision processes
(MDPs). In that approach, simulation proceeds as usual until a nondeterministic
choice is encountered; then, an on-the-fly check is performed to find a singleton
subset of the available transitions that satisfies the ample set conditions of linear-
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time probabilistic POR [BGC04, DN04]. If such an ample set is found, simulation
can continue according to it, with the guarantee that ignoring the other transitions
does not affect the verification results—that is, the nondeterminism was spurious.
Yet, the ample set conditions are based on the notion of independence of actions,
which can in practice only feasibly be checked on a symbolic/syntactic level
(using conditions such as J1 and J2 in [BFHH11]). This limits the approach to
resolving spurious nondeterminism only when it results from the interleaving of
behaviours of concurrently executing deterministic components.

It is absolutely vital for the search for a valid singleton subset to succeed in
the approach discussed above: one choice that cannot be resolved means that
the entire analysis fails and SMC cannot safely be applied to the given model at
all. Hence, any additional reduction power is highly welcome. In this chapter,
we therefore introduce an alternative approach that uses confluence reduction
instead of POR. We demonstrate that the findings of Chapter 7—which showed
that confluence is in theory more powerful than branching time POR—indeed
enable reductions that POR did not allow. That way, some models can now be
analysed using SMC whereas this was not possible before.

We note that a confluence-based approach is not better in all cases, though,
since the approach in [BFHH11] in based on linear time POR with an added
requirement of having singleton ample sets. Compared to branching time POR,
this notion is more liberal in the sense that it allows ample actions to be
probabilistic. As confluence requires deterministic transitions, this also gives the
POR-based approach an advantage—at the cost of preserving less properties,
though LTL\X is still more than enough for SMC.

Except for potentially reducing more in some cases, an additional advantage
of confluence reduction is that it is more easily implemented on the level of the
concrete state space alone—without any need to go back to the symbolic/syntactic
level for an independence check (as was done for POR). As opposed to the
approach in [BFHH11], it thus allows even spurious nondeterminism that is
internal to components to be ignored during simulation. Of course, models
containing non-spurious nondeterminism can still not be dealt with.

Our approach. While the notion of confluence from Chapter 7 is based on
MDPs too, it is not yet suitable for use during SMC. After all, it required actions
instead of transitions to be stuttering and deterministic. In SMC we cannot
check this explicitly, as the complete state space is not available. Moreover,
we especially do not want to apply syntactic heuristics, to make the technique
as powerful as possible. Hence, we change the requirement of stuttering and
deterministic actions back to stuttering and deterministic transitions—basically
again taking the same approach as in Chapter 6. In addition to this alteration,
we also relax the definition of confluence by allowing visible transitions to be
mimicked by differently-labelled transitions. After all, simulation works with a
fully composed, closed system, where action labels have become irrelevant. We
thus achieve more reduction/detection power at no computational cost; yet, this
adapted notion of confluence still preserves PCTL∗ formulae [BK08] without the
next operator.

We introduce an algorithm for detecting our new notion of probabilistic
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approach nondeterminism probabilities memory error bounds

POR-based [BFHH11] spurious interleavings max = min s ≪ n unchanged

confluence-based spurious max = min s ≪ n unchanged

learning [HMZ+12] any max only s → n convergence

Table 8.1: SMC approaches for nondeterministic models (with n states).

confluence on a concrete state space. The algorithm is inspired by, but differ-
ent from, the one given in [GvdP00]; in particular, it does not require initial
knowledge of the entire state space and can therefore be used on-the-fly during
simulation.

Finally, we evaluate the new confluence-based approach to SMC on a set of
three representative examples using an implementation within the modes stat-
istical model checker [BHH12] for the Modest modelling language [BDHK06].
We clearly identify its strengths and limitations. Since the previous POR-based
approach has also been implemented in modes, we compare the two in terms
of reduction power and, on the one case that can actually be handled by the
POR-based implementation as well, performance. In this case, confluence reduc-
tion turns out to be somewhat faster (15%–40%), but that may well be due to a
suboptimal implementation of the POR check.

Related work. Aside from [BFHH11] and an approach that focuses on plan-
ning problems and infinite-state models [LP12], the only other solution to the
problem of nondeterminism in SMC that we are aware of is recent work by
Henriques et al. [HMZ+12]. They use reinforcement learning, a technique from
artificial intelligence, to actually learn the resolutions of nondeterminism (by
memoryless schedulers) that maximise probabilities for a given bounded LTL
property. While this allows SMC for models with arbitrary nondeterministic
choices (not only spurious ones), scheduling decisions need to be stored for every
explored state. Memory usage can thus be as in traditional model checking,
but is highly dependent on the structure of the model and the learning process.
As the number of runs of the algorithm increases, the answer it returns will
converge to the actual result, but definite error probabilities are not given.
The approaches based on confluence and POR do not introduce any additional
overapproximation and thus have no influence on the usual error bounds of SMC.
Table 8.1 gives a condensed overview of the three approaches (where we measure
memory usage in terms of the maximal number of states s stored at any time;
see Section 8.5 for concrete values).

Organisation of the chapter. Section 8.1 first provides an informal introduction
to the concept of statistical model checking. Then, we present the preliminaries
for this chapter in Section 8.2. Section 8.3 provides a slightly altered definition of
confluence, specifically suitable for use during SMC. Section 8.4 introduces our
algorithm for on-the-fly detection of this new notion of confluence, followed by
an evaluation by means of three case studies in Section 8.5. Finally, Section 8.6
concludes by summarising the contributions of this chapter.



184 8. Confluence Reduction in Statistical Model Checking

Origins of the chapter. This chapter was written in collaboration with Arnd
Hartmanns from the Dependable Systems and Software group at Saarland Uni-
versity, Saarbrücken, Germany. The author contributed most of the theoretical
part and the technical details of the algorithm, while Arnd Hartmanns made the
implementation in the Modest Toolset and performed all the case studies
along with their analysis. This work was published in the proceedings of the
5th NASA Formal Methods Symposium (NFM) [HT13b] and a corresponding
technical report [HT13c].

8.1 Statistical model checking in a nutshell

Quantitative model checking is normally concerned with the generation of a
complete state space. All states are stored, and upon the arrival at a new state
it is compared to all previously visited states to see if it is already present in
the state space. After generating the complete model, numerical algorithms are
employed to compute for instance the probability of eventually reaching a state
satisfying a certain property. These techniques aim at computing the actual
probability of such properties, at the cost of high memory usage.

8.1.1 Basics of statistical model checking

Statistical model checking does not generate entire state spaces. On the contrary,
in principle it only stores a single state in memory. Each step of the procedure
is concerned with obtaining a next state, often by means of a probabilistic
choice. This way, a single trace through the system is obtained. The procedure
requires only constant memory, since nothing is stored except for the state
visited last. While generating traces through a model in this way, a statistical
model checker basically just counts how many of them satisfy the property
under consideration—this technique is often called Monte Carlo sampling. Upon
completing a large number of traces, it can then simply report on the probability
of this property by dividing the number of traces satisfying it by the total number
of traces that were executed.
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Figure 8.2: Statistical model checking of a simple DTMC.
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Example 8.1. Consider the MDP in Figure 8.2(a). Since it does not contain
any nondeterminism, it is actually a DTMC. Suppose now that we want to
investigate the probability of eventually reaching a state that satisfies the atomic
proposition r. Analytically, this is easily seen to be 2

3 ·
1
3 = 1

3 . For larger systems,
though, this may not be so easy.

When performing statistical model checking, we start in s0 and throw a
three-sided die to decide how to move on. Sometimes we continue from s1,
sometimes we continue from s2. From the second state we visit, again the
probabilistic choice is resolved by means of a probabilistic experiment, and so on.
Upon reaching s5 we can stop, as a state satisfying r is visited. Upon reaching s3
we can also terminate, after noticing that from there it is only still possible to
continuously loop through a state not satisfying r.

Executing this procedure five times, we may end up with the traces depicted in
Figure 8.2(b). Based on this information, we can conclude that the probability of
eventually reaching a state satisfying atomic proposition r is about 2

5 . Clearly, for
a larger number of traces this probability will converge to the actual probability
of 1

3 . �

In addition to providing probabilities, statistical model checking can also provide
confidence intervals—after a large number of runs a statistical model checker
may for instance conclude that the MDP in Figure 8.2(a) has a probability of
reaching a state satisfying r within the interval [0.32, 0.34] with 95% confidence.

Note that for more complicated systems, trace length is an important con-
cern. For bounded properties (i.e., “a packet should be received before a given
timeout”), runs should be at least as long as needed to decide the property under
consideration. For unbounded properties (i.e., “a packet should be received
eventually”), we can only decide with certainty if the property holds upon either
(1) reaching a state that satisfies it, (2) reaching a deadlock state or (3) reaching
a cycle of states that cannot be escaped. A statistical model checker may be
configured to abort if neither of these conditions is satisfied after a predefined
maximum number of steps. Alternatively, we could of course still compute one-
sided confidence limits to conclude for instance that the probability of eventually
receiving a packet is larger than 0.8 with at least 95% confidence.

8.1.2 Dealing with nondeterminism

Statistical model checking is based on the idea that every trace through a model
is associated with a probability. In the presence of nondeterminism, though, this
assumption is invalidated: dice cannot decide how to continue from a state that
has several successors without an accompanying probability distribution.

Example 8.2. Consider the MDP depicted in Figure 8.3(a), and assume that
we again intend to compute the probability of eventually satisfying atomic
proposition r. The system starts with a nondeterministic choice, that actually
influences the property under consideration. After all, moving up via the
a1-transition makes it impossible to ever reach state s5. When taking the a2-
transition, on the other hand, the probability of reaching s5 is 1

2 . Hence, the
actual probability of ever reaching a state satisfying r is within the interval [0, 1

2 ].
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(b) An MDP suitable for statistical model checking.

Figure 8.3: Statistical model checking of MDPs.

Statistical model checking would not be able to come up with this interval.
At best, it could resolve the nondeterministic choice by means of a uniform
probabilistic choice. This would result in a probability around 1

4 . However, if in
practice some nondeterministic choices are not resolved in a uniform manner,
this result is not trustworthy anymore. �

Although nondeterministic choices may induce untrustworthy results, this is
not necessarily the case. It could be that the way a nondeterministic choice is
resolved does not influence the property under consideration: it is spurious. If
all nondeterministic choices in an MDP are in fact spurious, the interval that is
obtained from traditional quantitative model checking is a single point. Hence,
statistical model checking would also provide a valid result—it can just resolve
each nondeterministic choice in an arbitrary way.

Example 8.3. Consider the MDP in Figure 8.3(b). Clearly, the nondetermin-
istic choice in the beginning does not influence the probability of reaching the
state s5. Hence, we could just instruct a statistical model checking to always
take the a-transition to s1, and then continue as usual. �

The question remains how to know upfront whether a nondeterministic choice
does not influence the property under consideration. A safe underapproximation
is to check whether it does not influence any property we could imagine. Actually,
this is precisely what confluence reduction is all about: it checks if certain trans-
itions could be given priority without altering the system’s behaviour1. Hence, if
one of the transitions of a nondeterministic choice can be shown to be confluent,
it can be given priority without influencing the property under consideration.

This chapter introduces more precisely how to apply confluence reduction in
the context of statistical model checking, enabling the memory-efficient analysis

1For confluence to be checked, part of the state space has to be explored. After all, we need
to verify whether all neighbouring transitions are mimicked, as discussed in Chapter 6. Hence,
the addition of confluence reduction to statistical model checking introduces the need to store
more than one state in memory. The case studies in Section 8.5 will show that this number
depends on the model structure, but in general is rather small.
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of the subset of MDPs that contain only confluent nondeterministic choices.2

8.2 Preliminaries

Our investigation of confluence reduction for statistical model checking takes
place in the context of the Modest Toolset. This framework is based on
Markov decision processes (MDPs), almost identical to the variant defined in
the previous chapter (Definition 7.1), but slightly different in the sense that a
state is now allowed to have multiple outgoing transitions with the same label.

For convenience of the reader—though at the cost of some repetition—
we present the altered definition again instead of only explaining the (minor)
differences.

Definition 8.4 (MDPs). A Markov decision process (MDP) is a tuple M =
(S, s0, A, P,AP, L), where

• S is a countable set of states;
• s0 ∈ S is the initial state;
• A ⊆ Act is a finite set of actions;
• P ⊆ S ×A×Distr(S) is the probabilistic transition relation;
• AP is a finite set of state labels;
• L : S →P(AP) is the state-labelling function.

Given a state s ∈ S, we define its set of enabled transitions

en(s) = {(s, a, µ) ∈ {s} ×A×Distr(S) | s −a→ µ}

We will use SM , AM , . . . , to refer to the components of an MDP M . If the
MDP is clear from the context, these subscripts are omitted.

Note that the current definition of MDPs precisely coincides with the definition
of MAs (Definition 3.5) when restricting MAs to finite sets of actions and state
labels and an empty set of Markovian transitions. Hence, all notations introduced
for MAs can directly be applied to these MDPs. Also, we reuse the concepts
presented in Definition 7.4 on determinism and stuttering.

With Modest we work in a state-based verification setting where properties
only refer to the atomic propositions of states. The action labels are solely meant
for synchronisation during parallel composition. Since SMC is applied to the
result of parallel composition we consider closed systems only, and therefore
we can ignore the action labels. We do care about whether or not transitions
change the observable behaviour of the system, i.e., the atomic propositions.
As before, transitions not changing this behaviour are called stuttering. In this
chapter, we write s −τ→ µ to indicate that a transition is stuttering. Transitions
labelled by a letter different from τ can be either stuttering or not.

2In hindsight, if all nondeterministic choices turn out to be spurious, we could just as well
have taken the old approach of just resolving nondeterministic choices in a uniform probabilistic
manner. This would indeed have provided the same result. However, the old approach would
not have shown us that this result indeed is a valid result under all possible schedulers. Our
approach based on confluence does provide us with this information.



188 8. Confluence Reduction in Statistical Model Checking

As in the previous chapter, we again apply reduction functions to indicate
which transitions to keep and which to omit. Whereas in Definition 7.6 we could
specify the outgoing transitions of a state by listing their actions, this is now not
possible anymore due to the fact that there may be multiple transitions with the
same label. Hence, we alter the concept of a reduction function slightly, making
it select from the outgoing transitions of a state instead of its actions.

Definition 8.5 (Reduction functions). Given an MDP M = (SM , s0M , A,
PM ,AP, LM ), a reduction function is any function R : SM →P(PM ) such that
R(s) ⊆ en(s) for every s ∈ SM . Given a reduction function R, the reduced
MDP for M with respect to R is the minimal MDP MR = (SR, s

0
R, A, PR,AP,

LR) such that s0R = s0M and

• if s ∈ SR and (s, a, µ) ∈ R(s), then (s, a, µ) ∈ PR and supp(µ) ⊆ SR;
• LR(s) = LM (s) for every s ∈ SR,

where minimal should be interpreted as having the smallest set of states and the
smallest set of transitions.

Given a reduction function R and a state s ∈ SR, we say that s is a reduced
state if R(s) 6= en(s). All outgoing transitions of a reduced state are called
nontrivial transitions. We say that a reduction function is acyclic if there are
no cyclic paths when only nontrivial transitions are considered.

8.3 Confluence for statistical model checking

In this chapter we are dealing with a state-based context; only the atomic
propositions that are assigned to each state are of interest. Therefore, we base
our definition of confluence on the one introduced in Chapter 7. We adjust it
slightly to adapt to the setting of SMC.

8.3.1 Confluence sets for statistical model checking

In this chapter, we apply the following definition of confluence.

Definition 8.6 (Probabilistic confluence). Let M = (S, s0, A, P,AP, L) be
an MDP, then a subset T ⊆ P of transitions from M is probabilistically confluent
if it only contains deterministic stuttering transitions, and for all s −a→T t and

all transitions s −b→ µ, either

• ∃c ∈ A, ν ∈ Distr(S) . t −c→ ν ∧ µ ≡RT
µ,ν

ν ∧
(
(s −b→ µ) ∈ T =⇒ (t −c→ ν) ∈ T

)
, or

• µ = 1t,

with RT
µ,ν the smallest equivalence relation such that

RT
µ,ν ⊇ {(s, t) ∈ supp(µ)× supp(ν) | ∃a . (s −a→ t) ∈ T }

A transition is probabilistically confluent if there exists a probabilistically con-
fluent set that contains it.
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Compared to Definition 7.16, this definition is more liberal in two aspects. We
discuss them here, and explain why the correctness arguments are not influenced
by these changes.

First, not necessarily b = c anymore—previously this was needed to preserve
the rather general notion of probabilistic visible bisimulation. Equivalent systems
according to this notion preserve state-based as well as action-based properties.
However, in our current setting the actions are only for synchronisation of parallel
components, and have no purpose anymore in the final model. Therefore, we can
just as well rename them all to a single action. Then, if a transition is mimicked,
the action will be the same by construction and our definition coincides with
the old one—so, probabilistic visible bisimulation is still preserved. Even easier,
we chose to omit the required accordance of action names altogether. Although
this implies that our notion of confluence does not preserve probabilistic visible
bisimulation anymore, this does not influence the state-based properties that
may be analysed.

Second, whereas Definition 7.16 required the actions of confluent transition
to be stuttering and deterministic, we now only require the confluent transitions
to be invisible and deterministic themselves. Similarly, if µ = 1t we do not care
anymore whether b ∈ Ared, since we already do know that the transition s −b→ µ
is stuttering and deterministic in this case (since s −a→ t is). The reason for this
change is that during simulation we only know part of the state space. However,
it is also not needed for correctness, as a local argument about mimicking
behaviour until some joining point can clearly never be broken by transitions
after this point. Indeed, Definition 6.7 also only required confluent transitions
to be invisible and deterministic themselves.

Remark 8.7. Note that, just like in Definition 7.16, we do not consider a
confluence classification anymore. Again, this can be seen as a special case of the
old definition, having a confluence classification with one group that precisely
contains all transitions that we want to denote confluent. The removal of an
explicit confluence classification does make it necessary to be cautious when
taking the union of two confluent sets; this is not necessarily again a confluent
set (as discussed in Section 6.5.4). �

In contrast to probabilistic POR—as investigated in detail in the previous
chapter—confluence also allows mimicking by differently-labelled transitions,
commutativity in triangles instead of diamonds, and local instead of global
independence. Additionally, its coinductive definition is well-suited for on-the-fly
detection, as we show in this chapter. However, as confluence preserves branching
time properties, it cannot reduce probabilistic interleavings, a scenario that can
be handled by the linear time notion of POR used in [BFHH11].

Example 8.8. To illustrate Definition 8.6, consider Figure 8.4(a). Let T be
the set consisting of the transitions labelled by a, d, e and f . Note that these
transitions indeed are all deterministic and stuttering. We denote by µ the
probability distribution associated with the b-transition from s0, and by ν the
one associated with the c-transition from s1.
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Figure 8.4: An MDP to demonstrate confluence reduction.

We find RT
µ,ν ⊇ {(s2, s6), (s3, s5), (s4, s5)}, and therefore

RT
µ,ν = Id ∪ {(s2, s6), (s6, s2), (s3, s4), (s4, s3), (s3, s5), (s5, s3), (s4, s5), (s5, s4)}

with Id the identity relation. Hence, RT
µ,ν partitions the state space into the four

equivalence classes {s0}, {s1}, {s2, s6} and {s3, s4, s5}. We find that µ ≡RT
µ,ν

ν,
since

µ({s0}) = ν({s0}) = 0

µ({s1}) = ν({s1}) = 0

µ({s2, s6}) = ν({s2, s6}) =
1
3

µ({s3, s4, s5}) = ν({s3, s4, s5}) =
2
3

Based on the above, we can show that T is a valid confluent set according to
Definition 8.6. First, all its transitions are indeed stuttering and deterministic.
Second, for the transitions from s2, s3 and s4, nothing interesting has to be
checked. After all, from their source states there are no other outgoing transitions,
and every transition satisfies the condition µ = 1t for itself. For s0 −

a→ 1s1 , we do
need to check if s0 −

b→ µ can be mimicked. Indeed, there is a transition s1 −
c→ ν,

and as we saw above µ ≡RT
µ,ν

ν, as required. �

8.3.2 Confluence reduction

We now define confluence reduction functions. As before, such a function always
chooses to either fully explore a state, or to only explore one of its outgoing
confluent transitions.

Definition 8.9 (Probabilistic confluence reduction). For an MDP M =
(S, s0, A, P,AP, L), a reduction function T : S →P(P ) is a confluence reduction
function for M if there exists some probabistically confluent set T ⊆ P such that,
for every s ∈ S either

• T (s) = en(s), or
• T (s) = {(s, a,1t)} for some a ∈ A and t ∈ S such that (s, a,1t) ∈ T .

In such a case, we also say that T is a confluence reduction function under T .
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Note the resemblance with Definition 7.17—the only difference is that we now
select between the transitions instead of the actions of each state.

As discussed before in earlier chapters, confluent transitions may be taken
indefinitely, ignoring the presence of other actions—the ignoring problem [EP10].
It was dealt with by the cycle condition of the ample set method of POR, and
by the requirement of having an acyclic reduction function in the confluence
reduction technique introduced in the previous chapter. In the current context,
we again deal with it by requiring the reduction function to be acyclic. Acyclicity
can be checked during simulation and statistical model checking in the same
way as was done for POR in [BFHH11]: for some predefined constant l, always
check whether in the last l steps at least one state was fully explored (i.e., the
state already contained only one outgoing transition)3.

Example 8.10. For the system of Figure 8.4(a), we already found a valid
confluent set. Based on this set, we can define the reduction function T given
by T (s0) = {(s0, a,1s1)} and T (s) = en(s) for every other state s. That way,
the reduced system is given by Figure 8.4(b).

Note that the two models indeed share the same properties, such as that the
(minimum and maximum) probability of eventually observing r is 2

3 . �

Confluence reduction preserves PCTL∗
\X , and hence basically all interesting

quantitative properties (including LTL\X , as was preserved in [BFHH11]).

Theorem 8.11. Let M be an MDP, T a confluent set of its transitions and T
an acyclic confluence reduction function under T . Let MT be the reduced MDP.
Then, M and MT satisfy the same PCTL∗

\X formulae.

8.4 On-the-fly detection of probabilistic confluence

Non-probabilistic confluence was first detected directly on concrete state spaces to
reduce them modulo branching bisimulation [GvdP00]. Although the complexity
was linear in the size of the state space, the method was not very useful: it
required the complete unreduced state space to be available, which could already
be too large to generate. Therefore, two directions of improvements were pursued.

The first idea was to detect confluence on higher-level process-algebraic
system descriptions, as first done in [Blo01, BvdP02] for labelled transition
systems and generalised to the probabilistic setting of MAs (and hence MDPs) in
this thesis. The other direction was to use the ideas from [GvdP00] to on-the-fly
detect non-probabilistic weak or strong confluence [MW12, PLM03] during state
space generation. These techniques are based on boolean equation systems and
have not yet been generalised to the probabilistic setting.

We present a novel on-the-fly algorithm that works on concrete probabilistic
state spaces and does not require the unreduced state space, making it perfectly
applicable during simulation for statistical model checking of MDPs. Given

3As mentioned in [BFHH11], the value of l does not impact the performance at all; it just
decides how long to continue before giving up on satisfying the cycle condition and terminating.
By default, we therefore use a high value for l, e.g., l = 1000.
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a specific transition in the model it underapproximates whether or not that
transition is confluent. To do so, it explores a (generally small) part of the
model. For each state having more than one transition, we apply this algorithm
to see if at least one of these transitions is confluent. If so, we continue along
this transition; otherwise, SMC can only abort.

8.4.1 Detailed description of the algorithm

Our algorithm is presented on page 193. It assumes an implicit underlying state
space, so that it at least can request the state labelling L(s) of a given state s

and is able to iterate over all neighbours s −b→ µ of a transition s −a→ 1t.
Given a deterministic transition s −a→ 1t, the result of the function call

checkConfluence(s −a→ 1t) tells us whether or not this transition is confluent. We
first discuss this function checkConfluence, and then the function checkEquival-
ence on which it relies (which determines whether or not two distributions are
equivalent up-to confluent steps).

These functions do not yet fully take into account the fact that confluent
transitions have to be mimicked by confluent transitions. Therefore, we have an
additional function checkConfluentMimicking that is called after termination of
checkConfluence to see if indeed no violations of this condition occur.

The function checkConfluence first checks if a transition is invisible and was not
already detected to be confluent before. Then, it is added to the global set of
confluent transitions T . To check whether this is valid, a loop checks if indeed
all outgoing transitions from s commute with s −a→ 1t. If so, we return true and
keep the transition in T . Otherwise, all transitions that were added to T during
these checks are removed again and we return false. Note that it would not be
sufficient to only remove s −a→ 1t from T , since during the loop some transitions
may have been detected to be confluent (and hence added to T ) based on the
fact that s −a→ 1t was in T . As s −

a→ 1t turned out not to be confluent, we can
also not be sure anymore if these other transitions are indeed actually confluent.

The loop to check whether all outgoing transitions commute with s follows

directly from the definition of confluent sets, which requires for every s −b→ µ that
either µ = 1t, or that there exists a transition t −c→ ν such that µ ≡R ν, where

t −c→ ν has to be in T if s −b→ µ is. Indeed, if µ = 1t we immediately continue to

the next transition (this includes the case that s −b→ µ = s −a→ 1t). Otherwise, we
range over all transitions t −c→ ν to see if there is one such that µ ≡R ν. For this,

we use the function checkEquivalence(µ, ν), described below. Also, if s −b→ µ ∈ T ,
we have to check if also t −c→ ν ∈ T . We do this by checking it for confluence,
which immediately returns if it is already in T , and otherwise tries to add it.

If indeed we find a mimicking transition, we continue. If s −b→ µ cannot be
mimicked, confluence of s −a→ 1t cannot be established. Hence, we reset T as
discussed above, and return false. If this did not happen for any of the outgoing
transitions of s, then s −a→ 1t is indeed confluent and we return true.

The function checkEquivalence checks whether µ ≡R ν. Since T is constructed
on-the-fly, during this check some of the transitions from the support of µ might
have not been detected to be confluent yet, even though they are. Therefore,
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Algorithm 6: Detecting confluence on a concrete state space.

global Set〈Transition〉 T := ∅

global Set〈Transition,Transition〉 C := ∅

bool checkConfluence(s −a→ 1t) {
if L(s) 6= L(t) then

return false

else if s −a→ 1t ∈ T then

return true

Set〈Transition〉 Told := T
Set〈Transition,Transition〉 Cold := C

T := T ∪ {s −a→ 1t}

foreach s −b→ µ do

if µ = 1t then continue

foreach t −c→ ν do
if checkEquivalence(µ, ν) and

(s −b→ µ 6∈ T or (∃u . ν = 1u and checkConfluence(t −c→ 1u))) then

C := C ∪ {(s −b→ µ, t −c→ ν)}
continue outermost loop

end

T := Told
C := Cold

return false

return true

}

bool checkEquivalence(µ, ν) {
Q := {{p} | p ∈ supp(µ) ∪ supp(ν)}

foreach u −d→ 1v such that u ∈ supp(µ), v ∈ supp(ν) do

if checkConfluence(u −d→ 1v) then

Q := {q ∈ Q | u 6∈ q ∧ v 6∈ q} ∪
{

⋃

q∈Q
u∈q∨v∈q

q
}

if µ(q) = ν(q) for every q ∈ Q then

return true

else

return false

end

}

bool checkConfluentMimicking {

foreach (s −b→ µ, t −c→ ν) ∈ C do

if s −b→ µ ∈ T and t −c→ ν 6∈ T then

if checkConfluence(t −c→ ν) then
return checkConfluentMimicking

else
return false

end

return true
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instead of checking for connecting transitions that are already in T , we try to
add possible connecting transitions to T using a recursive call.

In accordance to Definition 8.6, we first determine the smallest equivalence
relation that relates states from the support of µ to states from the support of ν
in case there is a confluent transition connecting them. We do so by constructing
a set of equivalence classes Q, i.e., a partitioning of the state space according
to this equivalence relation. We start with the smallest possible equivalence
relation, in which each equivalence class is a singleton. Then, for each confluent

transition u −d→ 1v, with u ∈ supp(µ) and v ∈ supp(ν), we merge the equivalence
classes containing u and v. Finally, we can easily compute the probability of
reaching each equivalence class of Q by either µ or ν. If all of these probabilities
coincide, indeed µ ≡R ν and we return true; otherwise, we return false.

The function checkConfluentMimicking is called after checkConfluence designated
a transition to be confluent, to verify if T satisfies the requirement that confluent
transitions are mimicked by confluent transitions. After all, when a mimicking

transition for some transition s −b→ µ was found, it may have been the case that

s −b→ µ was not yet in T while in the end it is. Hence, checkConfluence keeps
track of the mimicking transitions in a global set C. If a transition s −a→ 1t is

shown to be confluent, all pairs (s −b→ µ, t −c→ ν) of other outgoing transitions
from s and the transitions that were found to mimic them from t are added
to C. If s −a→ 1t turns out not to be confluent after all, the mimicking transitions
that were found in the process are removed again.

Based on C, checkConfluentMimicking ranges over all pairs (s −b→ µ, t −c→ ν),
checking if one violates the requirement. If no such pair is found, we return true.
Otherwise, the current set T is not valid yet. However, it could be the case that

t −c→ ν is not in T , while it is confluent (but since s −b→ µ was not in T at the
moment the pair was added to C, this was not checked earlier). Therefore, we
still try to denote t −c→ ν as confluent. If we fail, we return false. Otherwise, we
check again for confluent mimicking using the new set T .

8.4.2 Correctness

The following theorem states that the algorithm is sound. We assume that C
and T are not reset to their initial value ∅ after termination of checkConfluence.

Theorem 8.12. Given a transition p −l→ 1q, checkConfluence(p −l→ 1q) and
checkConfluentMimicking together imply that p −l→ 1q is confluent.

Note that the converse of this theorem does not always hold. To see why,
consider the situation that checkConfluentMimicking fails because a transition

s −b→ µ was mimicked by a transition t −c→ ν that is not confluent, and s −b→ µ was
added to T later on. Although we then abort, there might have been another

transition t −d→ ρ that could also have been used to mimic s −b→ µ and that is
confluent. We chose not to consider this due to the additional overhead of the
implementation. Additionally, in none of our case studies this situation occurred.
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Applying the algorithm more than once. The confluence detection algorithm
often needs to be applied multiple times during SMC: every time that a non-
deterministic state is visited, the algorithm is used to detect whether it is safe
to restrict to only traversing one of the outgoing transitions. What we then
basically do, is combine several confluent sets into one larger confluent set.
As we saw in Chapter 6, taking unions of confluent sets can be problematic.
Therefore, our definition there was based on a confluence classification. However,
as mentioned in Remark 8.7, we do not take into account such a classification in
our definitions in this chapter—to make the notion easier to apply in an SMC
setting.

Hence, we need to argue why multiple executions of the algorithm indeed can
be combined to reduce the same model multiple times. We do so by noting that
confluence reduction yields an equivalent model, as can be observed by combining
Theorem 8.11 and Theorem 8.12. By transitivity of PCTL∗

\X equivalence, it
immediately follows that it is perfectly fine to reduce a model once, and then to
apply the same reduction technique again on the reduced model while completely
forgetting about the first reduction.

The only issue here is that this is not entirely what happens. After all, if a
nondeterministic state s is reached and confluence reduction allows us to remove
all but one of its outgoing transitions, this is not remembered due to the nature
of SMC. Hence, if the computation at some point returns to s, it again has all its
outgoing transitions. This implies that we are not continuing with the reduced
model, and hence that the above reasoning does not immediately apply. This
can be solved, though, in a rather intuitive manner—making sure that we indeed
are continuing working with the actual reduced model.

Let’s say we’re trying to resolve the nondeterminism in state s. It has a
transition s −a→ t, that we have shown to be confluent by a confluent set T
obtained from our algorithm. Now:

1. Make a copy s′ of s. Let s′ have all transitions of s, and let all transitions
of the original system that went to s now go to s′. Clearly, the new
system is PCTL∗

\X equivalent to the original system—for instance, by

the bisimulation relation Id ∪ {(s, s′), (s′, s)}. Basically, due to the SMC
algorithm not remembering the reductions we will apply to s, this copying
process models precisely what actually happens in practice.

2. Note that s −a→ t is also confluent in the altered system, by observing that
if a transition s −b→ µ was confluent originally, then so is the corresponding
transition from s′ in the new model. All other confluent transitions also
remain confluent, as they behave identically.

3. Reduce, by omitting all transitions from s except for s −a→ t. We know now
that the reduced system has the same properties as the original system.
So, we can forget about the confluence information and continue with this
model. Indeed, all behaviour from s is still present (but now from s′),
reflecting the fact that if simulation returns to s, the omitted transitions
are back again.

Remark 8.13. Note that if s is reachable from t, this process only increases
the size of the state space. Although in the setting of SMC this is fine (as the
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size of the state space is irrelevant anyway), it would be very undesirable in the
context of normal model checking. Hence, this is why this technique is only valid
as a way of arguing the correctness of our SMC method, but cannot be used to
more easily enable us to take unions of confluent sets in a setting such as the
one in the previous two chapters. �

8.5 Evaluation

The modes tool4 provides SMC for models specified in the Modest lan-
guage [BHH12]. It allowed SMC for MDPs using the POR-based approach
of [BFHH11]. We have now implemented the confluence-based approach presen-
ted in this chapter in modes as well. In this section, we apply it to three examples
to evaluate its applicability and performance impact. They were selected so as
to allow us to clearly identify its strengths and limitations. For each, we (1) give
an overview of the model, (2) discuss, if POR fails, why it does and which, if
any, modifications were needed to apply the confluence-based approach, and (3)
evaluate memory use and runtime.

The performance results are summarised in Table 8.5. For the runtime
assessment, we compare to simulation with uniformly-distributed probabilistic
resolution of nondeterminism. Although such a hidden assumption cannot lead
to trustworthy results in general (but is implemented in many tools), it is a good
baseline to judge the overhead of confluence checking. We generated 10 000 runs
per model instance to compute probabilities psmc for case-specific properties.
Using reasoning based on the Chernoff-Hoeffding bound [PRI13], this guarantees
the following probabilistic error bound: Prob(|p− psmc| > 0.01) < 0.017, where
p is the actual probability of the property under consideration.

We measure memory usage in terms of the maximum number of extra states
kept in memory at any time during confluence (or POR) checking, denoted by s.
We also report the maximum number of “lookahead” steps (i.e., the maximal
number of checkConfluence calls on the stack) necessary in the confluence/POR
checks as k, as well as the average length t of a simulation trace and the
average number c of nontrivial confluence checks, i.e., of nondeterministic choices
encountered, per trace.

To get a sense for the size of the models considered, we also attempted model
checking (using mcpta [HH09], which relies on PRISM [KNP11]). Note that we
do not intend to perform a rigorous comparison of SMC and traditional model
checking in this section and instead refer the interested reader to dedicated
comparison studies such as [YKNP06]. Model checking for the BEB example was
performed on a machine with 120GB of RAM [BFHH11]; all other measurements
used a dual-core Intel Core i5 M450 system with 4GB of RAM running 64-bit
Windows 7.

8.5.1 Dining cryptographers

First, we consider the classical dining cryptographers problem [Cha88]: N
cryptographers use a protocol that has them toss coins and communicate the

4modes is part of the Modest Toolset, available at www.modestchecker.net.
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uniform: partial order: confluence: model checking:

model params time time k s time k s c t states time

dining
crypto-
graphers

(N)

(3) 1 s – – – 3 s 4 9 4.0 8.0 609 1 s

(4) 1 s – – – 11 s 6 25 6.0 10.0 3 841 2 s

(5) 1 s – – – 44 s 8 67 8.0 12.0 23 809 7 s

(6) 1 s – – – 229 s 10 177 10.0 14.0 144 705 26 s

(7) 1 s – – – – timeout – 864 257 80 s

CSMA/CD

(RF ,BCmax )

(2, 1) 2 s – – – 4 s 3 46 5.4 16.4 15 283 11 s

(1, 1) 2 s – – – 4 s 3 46 5.4 16.4 30 256 49 s

(2, 2) 2 s – – – 10 s 3 150 5.1 16.0 98 533 52 s

(1, 2) 2 s – – – 10 s 3 150 5.1 16.0 194 818 208 s

BEB

(K,N,H)

(4, 3, 3) 1 s 3 s 3 4 1 s 3 7 3.3 11.6 >103 > 0 s

(8, 7, 4) 2 s 7 s 4 8 4 s 4 15 5.6 16.7 >107 > 7 s

(16,15,5) 3 s 18 s 5 16 11 s 5 31 8.3 21.5 – memout –

(16,15,6) 3 s 40 s 6 32 34 s 6 63 11.2 26.2 – memout –

Table 8.5: Confluence simulation runtime overhead and comparison.

outcome with some of their neighbours at a restaurant table in order to find
out whether their master or one of them just paid the bill, without revealing
the payer’s identity in the latter case. We model this problem as the parallel
composition of N instances of a Cryptographer process that communicate via
synchronisation on shared actions, and consider as properties the probabilities
of (a) protocol termination and (b) correctness of the result.

The model is a nondeterministic MDP. In particular, the order of the syn-
chronisations between the cryptographer processes is not specified, and could
conceivably be relevant. It turns out that all nondeterminism can be discarded
as spurious by the confluence-based approach, though, allowing the application
of SMC to this model. The computed probability psmc is 1.0 for both properties,
which coincides with the actual probabilities.

The POR-based approach does not work: although the nondeterministic
ordering of synchronisations between non-neighbouring cryptographers is due to
interleaving, the choice of which neighbour to communicate with first for a given
cryptographer process is a nondeterministic choice within that process—such
nondeterminism cannot be resolved with the POR implementation.

Concerning performance, we see that runtime increases drastically with the
number of cryptographers, N . An increase is expected, since the number of steps
until independent paths from nondeterministic choices join again (k) depends
directly on N . It is so drastic due to the sheer amount of branching that is
present in this model. At the same time, the model is extremely symmetric and
can thus be handled easily with a symbolic model checker like PRISM.

8.5.2 IEEE 802.3 CSMA/CD

As a second example, we take the Modest model of the Ethernet (IEEE 802.3)
CSMA/CD approach that was introduced in [HH09]. It consists of two identical
stations attempting to send data at the same time, with collision detection and
a randomised backoff procedure that tries to avoid collisions for subsequent
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retransmissions. We consider the probability that both stations eventually
manage to send their data without collision. The model is a probabilistic timed
automaton (PTA), but delays are fixed and deterministic, making it equivalent
to an MDP (with real variables for clocks, updated on transitions that explicitly
represent the delays; modes does this transformation automatically and on-the-
fly). The model has two parameters: a time reduction factor RF (i.e., delays of t
time units with RF = 1 correspond to delays of t

2 time units with RF = 2), and
the maximum value used in the exponential backoff part of the protocol, BCmax .

Unfortunately, modes immediately reports nondeterminism that cannot be
discarded as spurious. Inspection of the reported lines in the model quickly
shows a nondeterministic choice between two probabilistic transitions—which
confluence cannot handle. Fortunately, this problem can easily be eliminated
through an additional synchronisation, leading to psmc = 1.0 (which is the
correct result). POR still fails, for reasons similar to the previous example:
initially, both stations send at the same time, the order being determined
nondeterministically. In the process representing the shared medium, this must
be an internal nondeterministic choice. In contrast to the problem for confluence,
this cannot be fixed easily.

In terms of runtime, the confluence checks incur a moderate overhead for
this example. Compared to the dining cryptographers, the slowdown is much
less even where more states need to be explored in each check (s); performance
appears to more directly depend on k, which stays low in this case.

8.5.3 Binary exponential backoff

The previous two examples clearly indicate that the added power of confluence
reduction pays off, allowing SMC for models where it is not possible with POR.
Still, we also need a comparison of the two approaches. For this purpose, we
revisit the MDP model of the binary exponential backoff (BEB) procedure that
was used to evaluate the POR-based approach in [BFHH11]. The probability we
compute is that of some host eventually getting access to the shared medium, for
different values of the model parameters K (maximum backoff counter value), N
(number of tries per station before giving up) and H (number of stations/hosts
involved).

Again, for the confluence check to succeed, we first need to minimally modify
the model by making a probabilistic transition synchronise. This appears to be
a recurring issue, yet the relevant model code could quite clearly be identified as
a modelling artifact without semantic impact in both examples where it appears.
We then obtain psmc = 0.91 for model instance (4, 3, 3), otherwise psmc = 1.0.

The runtime overhead necessary to get trustworthy results by enabling
either confluence or POR is again moderate. This is despite longer paths being
explored in the confluence checks compared to the CSMA/CD example (k). The
confluence-based approach is somewhat faster than POR in this implementation.
As noted in [BFHH11], large instances of this model cannot be solved with
classical model checking due to the state space explosion problem.
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8.6 Contributions

We defined a more slightly more liberal variant of probabilistic confluence than
the one defined in Chapter 7, tailored for the core simulation step of statistical
model checking. It has more reduction potential at no extra computational cost,
but still preserves PCTL∗

\X . We provided an algorithm for on-the-fly detection
of confluence during simulation and implemented this algorithm in the modes

SMC tool5.
Compared to a previous approach based on partial order reduction [BFHH11],

the use of confluence allows new kinds of nondeterministic choices to be handled,
in particular lifting the limitation to spurious interleavings—now, also spuri-
ous nondeterminism within a process may be resolved. Heuristics for partial
order reduction generally consider all actions within the same process to be
dependent [BK08, HP95, BFHH11].

In fact, for two of the three examples we presented, SMC is only possible using
the new confluence-based technique, showing the additional power to be relevant.
In terms of performance, it is somewhat faster than the POR-based approach,
but the impact relative to (unsound) simulation using an arbitrary scheduler
largely depends on the amount of lookahead that needs to be performed, for
both approaches. Again, on two of our examples, the impact was moderate and
should in general be acceptable to obtain trustworthy results. Most importantly,
the memory overhead is negligible, and one of the central advantages of SMC
over traditional model checking is thus retained.

As confluence preserves branching time properties, it cannot handle the
interleaving of probabilistic choices. Although—as we showed—these can often
be avoided, for some models POR might work while confluence does not. Hence,
neither of the techniques subsumes the other, and it is best to combine them: if
one cannot be used to resolve a nondeterministic choice, the SMC algorithm can
still try to apply the other. Implementing this combination is trivial and yields
a technique that handles the union of what confluence and POR can deal with.

5Note that, as also mentioned at the beginning of this chapter, the implementation and
case studies were not done by the author, but by Arnd Hartmanns.
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CHAPTER 9

Implementation and Case Studies

“It doesn’t matter how beautiful your theory is,
it doesn’t matter how smart you are.

If it doesn’t agree with experiment, it’s wrong.”

Richard P. Feynman

T
he previous chapters described the process-algebraic language MAPA
for modelling MAs, as well as several reduction techniques for optimising
MAPA specifications and generating their corresponding MAs.

To validate the applicability of MAPA and the significance of its reduction
techniques, we developed a prototype tool called SCOOP. It takes as input either
a MAPA specification or a generalised stochastic Petri net (GSPN), linearises
to an MLPE and applies all our reduction techniques while generating an MA.
These MAs can be subjected to analysis by a tool called IMCA, developed by
Dennis Guck at RWTH Aachen University and Hassan Hatefi at Saarland Uni-
versity [GHKN12, HH12, GHH+13a]. We briefly present the analysis techniques
that are available for MAs, as implemented in IMCA. These techniques have
not been developed by the author, but provide purpose to the MAPA language
and the MAs that can be generated. We do not go into any technical details,
but only discuss IMCA’s features from a user perspective.

Together with IMCA and the tool GEMMA for parsing GSPN specifications,
SCOOP is part of the MaMa (Modelling and Analysis of Markov Automata) tool
chain. We provide four case studies that illustrate the capabilities of SCOOP as
part of this tool chain: an ingenious construction of a handshake register, a well-
known leader election protocol, a polling system and a processor grid architecture.
We illustrate how to model such systems in MAPA and what kind of properties
can be computed. Our results confirm that the basic reduction techniques
(Section 4.5), dead variable reduction (Chapter 5) and confluence reduction
(Chapter 6) all are valuable tools when generating and analysing MAPA models.

Organisation of the chapter. In Section 9.1 we introduce the tool SCOOP,
describing its input and output formats and discussing the MaMa tool chain in
which it is embedded. Section 9.2 presents the analysis techniques implemented
by IMCA. Then, Section 9.3 presents our case studies and discusses their indi-
vidual results. Finally, Section 9.4 concludes by summarising the contributions
of this chapter and providing an overarching discussion on the merits of our
reduction techniques as illustrated by the case studies.
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Origins of the chapter. An earlier version of SCOOP was introduced by a tool
paper in the proceedings of the 8th International Conference on Quantitative
Evaluation of Systems (QEST) [Tim11], whereas the last version was described
by a regular paper in the proceedings of the 10th International Conference on
Quantitative Evaluation of Systems (QEST) [GHH+13a] and a corresponding
technical report [GHH+13b]). Additionally, part of the case studies already
appeared throughout the papers that introduced the techniques described in the
previous chapters.

9.1 Implementation

We developed the prototype tool SCOOP1 in Haskell, based on a simple data
language that allows the modelling of several kinds of protocols and systems.
Excluding the generated parser, it has just over 3,100 lines of code.

A web-based interface (developed by Axel Belinfante using his Puptol tool2)
makes the tool convenient to use, but it can also be used stand-alone. The
tool is capable of linearising MAPA specifications, as well as applying parallel
composition, hiding, encapsulation and renaming (as explained in Chapter 4).
Since Haskell is a functional language, the algorithms in our implementation are
almost identical to their mathematical representations presented in this thesis.
The tool also implements all reduction techniques introduced in Section 4.5,
Chapter 5 and Chapter 6. Where applicable, it encodes MLPEs as LPPEs as
explained in Section 4.2.5.

9.1.1 Input

SCOOP takes as input any specification in the MAPA language, and allows
the use of a couple of built-in data types and several built-in functions for
these data types. By default it supports booleans, integers, rational numbers,
lists and stacks. Additionally, users can define enumerative types for modelling
convenience.

For booleans, we support the basic operations: negation, conjunction and
disjunction. Also, we include conditional expressions. For integers and rationals,
we support the standard numerical operations: addition, subtraction, multi-
plication, division and exponentiation. Additionally, we implemented functions
for obtaining the minimum or maximum of two numbers and for modulo com-
putation. Finally, integers and rationals can be compared using the standard
mathematical operators <, ≤, =, ≥ and >. For lists and stacks we allow elements
to be appended, read, updated, deleted, pushed or popped, and we can obtain
their size.

The syntax expected by SCOOP largely corresponds to the notations we
introduced in Chapter 4. The most important concepts are presented in Table 9.1,
linking the MAPA notations introduced in Chapter 4 to the corresponding textual

1The implementation, including a web-based interface, can be found at http://fmt.

cs.utwente.nl/~timmer/scoop. A list of all features and the way to use them is shown
at http://fmt.cs.utwente.nl/~timmer/scoop/manual.html.

2See http://fmt.ewi.utwente.nl/puptol/.
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Concept MAPA SCOOP
Nondeterministic sum

∑

d:D p sum(d:D, p)

Probabilistic sum a(m)
∑
•

d:D f : p a(m) . psum(d:D, f : p)

Markovian rate (5) · p <5> . p

Process instantiation X(. . . ) X[...]

Hiding τ{a,b}(q) hide(a,b : q)

Encapsulation ∂{a,b}(q) encap(a,b : q)

Renaming ρ(a 7→b)(q) rename((a,b) : q)

Communication γ(a, b) = c comm (a,b,c)

Initial process X(. . . ) ||Y (. . . ) init X[...] || Y[...]

Table 9.1: Syntax of SCOOP.

representations in SCOOP3. The specifications presented in this chapter should
be understandable using this table.

To complement SCOOP, Bamberg developed the GEMMA tool [Bam12] to
transform GSPN specifications to the MAPA language. We apply this tool as a
preprocessor for SCOOP. We will not discuss the syntax and semantics of GSPNs;
rather, we refer the interested reader to [Bam12] for a detailed introduction.

9.1.2 Output

After generating an MLPE—applying any subset of the reduction techniques—
SCOOP can also generate its state space (an MA) and display it in several ways.
Most importantly, SCOOP can export an MA to the input language for the
IMCA model checker [GHH+13a] for further analysis. Also, it can provide a
human-readable enumeration of all states and transitions, just count how many
there are, or show the deadlock states.

For the subclass of PAs, it can also export to the AUT format for analysis
with the CADP toolset [GLMS13], or to a transition matrix for analysis using
PRISM [KNP11]. For PA specifications using booleans and integers only, the tool
can also translate a (possibly reduced) LPPE directly to a PRISM specification,
enabling the user to use this probabilistic model checker to symbolically compute
quantitative properties of the model. In case a PA is actually a DTMC, the
resulting AUT file can easily be translated to a pair of TRA and LAB files
for analysis with MRMC [KZH+11]4. For CTMCs we did not yet implement a
translation for analysis with MRMC, but this would be an easy extension.

9.1.3 The MaMa tool chain

We connected the three tools GEMMA, SCOOP and IMCA into a single tool
chain, by having GEMMA export MLPEs and having SCOOP export the

3We refer to http://fmt.cs.utwente.nl/~timmer/scoop/syntax.html for a detailed over-
view of the syntax of SCOOP’s input language.

4See http://fmt.cs.utwente.nl/~timmer/scoop/casestudies/roulette for an application
of this trajectory.
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Figure 9.2: Analysing Markov Automata using MaMa.

(reduced) state space of an MLPE in the IMCA input language. Together, these
tools are called the MaMa tool chain, visualised in Figure 9.2.

For analysis purposes, SCOOP is able to translate properties, based on the
actions and parameters of a MAPA specification, to a set of goal states in the
underlying MA. That way, in one easy process systems and their properties
can be modelled in MAPA (or as a GSPN and then translated to MAPA by
GEMMA), translated to an optimised MLPE by SCOOP, and exported to the
IMCA tool for analysis.

9.1.4 Coupling SCOOP with LTSmin

At the time of writing, Stefan Blom is working on a coupling between SCOOP
and the LTSmin tool [BvdPW10]. This tool has extensive functionality for very
efficient state space generation, optimising memory usage, applying caching and
employing multi-core and distributed model checking techniques. Preliminary
results indicate that this indeed significantly speeds up the generation of MAs
based on MLPEs. According to Blom, this is mostly due to the caching function-
ality that takes into account which summands update which parameters. This
functionality was already present in LTSmin. All MLPE-optimising reduction
techniques implemented by SCOOP, except for confluence reduction, can directly
be used, as the coupling is implemented in such a way that LTSmin builds the
state space efficiently while relying on SCOOP to deliver the successors of a
given state. Confluence reduction, on the other hand, is also active during state
space generation due to the search for representatives. Therefore, this is not
immediately applicable. It is currently in the process of being implemented in
LTSmin’s state space generation procedure.

Basically, LTSmin just takes over SCOOP’s state space generation routine,
and hence can hopefully soon be used without even being visible to the user.
Together, SCOOP and LTSmin behave precisely as SCOOP did so far, taking
in MAPA specifications and producing MAs for analysis in IMCA—only signi-
ficantly faster. We envision significant performance gains from the coupling of
SCOOP and LTSmin, combining SCOOP’s syntactic reductions with LTSmin’s
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meticulously optimised state space generation.

9.1.5 Confluence implementation

When applying confluence reduction, the target states of each transition are
substituted by their representatives. These representatives are found by following
confluent transitions until arriving in a BSCC, as discussed earlier in Chapter 6.
During this search, several states are visited but not stored in the reduced
state space. The actual number of states that are visited during state space
generation is therefore larger than the number displayed in our tables—the
number presented there is the actual number of states in the reduced state space.

To keep memory usage in the order of the reduced state space, the represent-
ation map is deliberately not stored by default. Therefore, if non-representative
states are visited for the second time they are not recognised and their repres-
entative is recomputed. In principle, the number of states visited during state
space generation may thus even be larger than the original number of states.

For models with a lot of cyclicity, not remembering anything may not be
the most efficient approach. Therefore, SCOOP also allows to store part of the
representation map, trading speed for memory usage. Whenever a state s is
reached and its representative t is computed, the pair (s, t) is then stored in a
hash table. That way, whenever s is visited again, its representative t does not
need to be recomputed. For one of our case studies (the leader election protocol)
this variant of confluence reduction is applied. This is also indicated in the table
presenting its results. We investigated the possibility of additionally storing
pairs (s′, t) for all states s′ visited on the path from s to t while looking for a
representative for s. However, that did not turn out to be beneficial.

Depending on the model structure and the specific confluence implementation
that is used, confluence reduction sometimes only marginally improves or even
slows down state space generation time. Nonetheless, the reduction in state
space size is still useful if the model is subject to further analysis, as it often is.

9.1.6 Compositional analysis

An interesting approach is to generate state spaces by building them compos-
itionally [BCS10, LM09]. That is, first, two components are generated and
composed and the result is minimised. Then, the minimised composition is again
composed with a third component and the result is minimised. This continues,
until the complete system has been generated in a compositional manner.

Although in principle this approach seems to be applicable to MAPA spe-
cifications as well, we did not implement it yet. One important reason for not
choosing such an approach is that some reduction techniques benefit from the
fact that an MLPE contains information about the full system. For instance,
dead variable reduction may reset variables based on a global specification; those
variables may not have been reset in the individual components. Therefore,
compositional state space generation may even yield larger (intermediate) state
spaces than we obtain in our approach. Still, compositional state space genera-
tion (including for instance compositional confluence detection) is an interesting
direction for future work.
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9.2 Analysing MAs with the MaMa tool chain

With the MaMa tool chain, four types of properties of an MA can be computed.
All are defined based on a subset of the states of the MA: the set of goal states.
As mentioned before, SCOOP allows for a set of goal states to be generated based
on the actions and properties of a MAPA specification. More specifically, we
have two options for generating goal states: either (1) we provide SCOOP with
a list of actions, or (2) we provide SCOOP with a condition over the MLPE’s
variables. In the first case, the set of goal states will consist of all states that
enable at least one of the actions in the list. Hence, goal states in general have
not executed the specified action(s) yet, but they are always able to execute at
least one. In the second case, the set of goal states will consist of all states that
satisfy the condition that was specified.

9.2.1 Analysis techniques

SCOOP’s job is to provide an MA together with a set of goal states. Based on
this information, IMCA is able to compute the following properties:

Unbounded reachability This type of analysis computes the probability of
eventually reaching at least one of the goal states. It ignores all timing
information, as if the MA were a PA. Unbounded reachability analysis
may be used to compute properties that are not concerned with timing,
but for instance with valid termination of a protocol.

Time-bounded reachability This type of analysis does take timing into ac-
count. Parameterised in a lower bound l and an upper bound u, it computes
the probability that at least one goal state is visited within the interval
[l, u]. It is not concerned with the question whether one or more goal states
are also already visited before time l. Time-bounded reachability analysis
may be used for properties to investigate for instance how likely a system
completes a certain task within a given amount of time.

Expected time This type of analysis computes the expected time until reaching
a goal state for the first time. Expected time analysis may be used for
performance analysis, computing for instance how long a system is expected
to work on a set of tasks.

Long-run average This type of analysis computes the fraction of time, in the
long run, that an MA resides in a goal state. Long-run average analysis
may be used to compute throughput, for instance, or to see how often a
system is idling.

We note that time-bounded reachability grows to unbounded reachability if l = 0
and u goes to ∞.

9.2.2 Zeno behaviour

In principle, MAs are not allowed to have any Zeno behaviour . That is, no loop
of internal transitions may be present. After all, since such transitions take no
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time and prevent Markovian delays from happening, they would prevent time
from progressing—this is often not allowed.

SCOOP and IMCA do not check their input for this restriction. Hence,
in contrast to many theoretical papers they do allow MAs to contain Zeno
behaviour. In many cases, such MAs still allow valid reasoning. For instance,
for a system first delaying according to a rate of 1, then executing an action a
and then looping indefinitely, we can say that the expected time until reaching
the action a is 1. On the other hand, the long-run average of being in the
infinite loop may be counterintuitive. Although from some point on we stay
there indefinitely, time does not progress anymore. Hence, the long-run average
computed by IMCA is 0.

Both tools also allow MAs to have deadlock states. IMCA prevents Zeno
behaviour by adding Markovian self-loops to such states.

9.3 Case studies

The modelling power of MAPA in combination with the reduction techniques
implemented by SCOOP allow a wide variety of systems to be modelled and
analysed. We worked on several, such as a handshake register, a leader election
protocol, a polling system, a processor grid architecture, a perfect strategy
for roulette5, the gambler’s ruin problem [Blo12], a stripped-down version of
Yahtzee [Blo12], the game of the goose [Blo12], and a mutual exclusion al-
gorithm [TKvdPS12a].

In this section we describe the first four studies mentioned above. They are
modelled in the MAPA language and optimised by the latest version of SCOOP
using the reduction techniques introduced in this thesis. Except for the first
case study, all are also analysed by means of the IMCA tool (version 1.5 beta).
These case studies should be interpreted as a proof-of-concept for our modelling
language and reduction techniques. They show that all our techniques work
really well in some cases, and maybe less in others. To fully investigate how
well our techniques work, how scalable they are and precisely what modelling
artifacts influence their impact, many more experiments are needed—we leave
this for future work. Still, the current treatment is sufficient for concluding that
all our techniques are valuable contributions to the field of quantitative model
checking.

Measurements. All measurements were taken on a 2.4 GHz 4 GB Intel Core 2
Duo MacBook running Mac OS X 10.6.8. For each case study we first present
the number of states and transitions obtained using SCOOP when not applying
any of our reduction techniques. We also present the time to generate these
state spaces, both with and without our basic reduction techniques. The timing
measurements include the whole process of parsing, linearisation, optimisation
and generation: we just measure the real time SCOOP takes to display the state
space size after being invoked6.

5http://wwwhome.cs.utwente.nl/~timmer/scoop/casestudies/roulette/roulette.html.
6Since our Haskell-implementation is rather inefficient in I/O at the moment, we excluded

the time to write the state space to disk from our measurements.
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We also present the effects of our reduction techniques on the state space
sizes and the generation and analysis times. We perform three categories
of measurements: one applying only dead variable reduction in combination
with the basic reduction techniques, one applying only confluence reduction in
combination with the basic reduction techniques, and one applying all at the
same time. Increases and decreases are presented as reduction percentages with
respect to the setting of only applying the basic reduction techniques.

Since all algorithms implemented by SCOOP and IMCA are deterministic, we
ran all experiments only once. All other user processes were killed, for accuracy
of our results. When rerunning some of the experiments to check if this approach
is indeed valid, we noticed at most deviations of a few percent in the timing
results.

9.3.1 Handshake register

Our first case study is a model of a handshake register , modelled and verified
by Hesselink [Hes98]. A handshake register is a data structure that is used
for communication between a single reader and a single writer. It guarantees
recentness and sequentiality ; any value that is read was at some point during
the read action the last value written, and the values of sequential reads occur
in the same order as they were written. Also, it is waitfree; both the reader
and the writer can complete their actions within a bounded number of steps,
independent of the other process.

Hesselink provided a method to implement a handshake register of an arbit-
rary data type based on four so-called safe registers and four atomic boolean
registers. Each safe register can be used to store one value, and only guarantees
to provide the actual value to the reader if no write action is in progress at the
same time. Hence, the safe registers on their own do not satisfy the recentness
requirement: if a safe register is read during a write operation, this may result
in any value. Still, Hesselink managed to combine four copies of such a safe
register with four atomic boolean registers in such a way that the result does
have all the required properties for a handshake register. The algorithm is far
from trivial, and Hesselink’s correctness proof involves several invariants.

As an alternative to the manual proof, we present a model checking approach
to show the correctness of this construction. The handshake register’s specifica-
tion and its construction based on the four safe register were already modelled
in µCRL by Arjan Mooij, Aad Mathijssen and Jan Friso Groote. We translated
these models to MAPA, generated their state spaces and compared these modulo
τ∗a equivalence7 [FM91] using µCRL’s ltscmp tool. Indeed, as expected, the
specification and implementation yield identical minimal quotients. Therefore,
the construction satisfies its requirements. Below, we go into more details about
the models and their analysis.

7The concept of τ∗a equivalence is similar to weak bisimulation. For two states p, q to be
τ∗a-equivalent, each path p −τ...τa−−−→ p′ has to be mimicked by a path q −τ...τa−−−→ q′ such that p′

and q′ are again τ∗a-equivalent. Here, the sequences τ . . . τ may be of distinct length and are
allowed to be empty; hence, the term τ∗a equivalence.
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type D = {1..DataSize}

type Pos = {1..3}

Register(readstatus:Pos, writestatus:Pos,v:D,vw:D,vr:D) =

readstatus = 1 => begin_read . Register[readstatus := 2 ]

++ readstatus = 2 => tau . Register[readstatus := 3, vr := v ]

++ readstatus = 3 => end_read(vr) . Register[readstatus := 1 ]

++ writestatus = 1 =>

sum(w:D, begin_write(w) . Register[writestatus := 2, vw := w ])

++ writestatus = 2 => tau . Register[writestatus := 3, v := vw]

++ writestatus = 3 => end_write . Register[writestatus := 1 ]

init Register[1,1,1,1,1]

Figure 9.3: A MAPA model of a handshake register’s specification.

Modelling. The specification is rather straightforward, as depicted in Figure 9.3.
The data type of the item that is stored is assumed to be the set of integers
from 1 to DataSize, the upper bound being a constant that can be varied. The
register allows read and write actions to be interleaved, using two status variables
to keep track of the current position. Reading consists of a begin_read action,
an internal action that copies the contents of variable v (which is assumed to
be available to both reader and writer) to variable vr, and an end_read action
parameterised in the value that was read. Writing consists of a begin_write

action parameterised in a value of the given data type (storing this value in
the variable vw), an internal action that copies the contents of variable vw to
variable v, and an end_write action. Note that, indeed, this specification always
reads a value that was previously written—under the assumption that the initial
value of v is considered a written value as well. Additionally, values can never be
read out of order, and readers and writers do not rely on the other to complete
their operations.

The model of Hesselink’s construction is more complicated: it consists of
several processes, as depicted in Figure 9.4. The process Y models the safe
registers. It is as the specification of the handshake register in Figure 9.3, except
that it only correctly copies v to vr if no writing action is in progress. Otherwise,
an arbitrary value is written to vr. The processes A, B and C model the atomic
boolean registers. Finally, the Reader and Writer process model the ingenious
part of Hesselink’s construction: they one-to-one implement the algorithm to
employ the atomic boolean registers and four copies of the safe register to mimic
the behaviour of a handshake register [Hes98]. The system consists of the parallel
composition of all these components, including (rather trivial) information on
communication, hiding and encapsulation. The action names have been chosen
to illustrate information flow: w2s means ‘writer to safe register’, s2r means
‘safe register to reader’, and so on.

Results. Both the model of the specification and the model of the implementa-
tion were fed to SCOOP to generate their state spaces and compare the results,
for several instances of the variable DataSize. Indeed, the resulting state spaces
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type D = {1..DataSize}

type Pos = {1..3}

Y(i:Bool, j:Bool, readstatus:Pos, writestatus:Pos, v:D, vw:D, vr:D) =

readstatus = 1 => begin_s2r_s(i, j) . Y[readstatus := 2 ]

++ readstatus = 2 & writestatus = 1

=> tau . Y[readstatus := 3, vr := v ]

++ readstatus = 2 & not(writestatus = 1)

=> sum(w:D, tau . Y[readstatus := 3, vr := w ])

++ readstatus = 3 => end_s2r_s(i, j, vr) . Y[readstatus := 1 ]

++ writestatus = 1 =>

sum(w:D, begin_w2s_s(i, j, w) . Y[writestatus := 2, vw := w ])

++ writestatus = 2 => tau . Y[writestatus := 3, v := vw]

++ writestatus = 3 => end_w2s_s(i, j) . Y[writestatus := 1 ]

A(a:Bool) = readA_(a) . A[a]

++ sum(la:Bool, writeA_(la) . A[la])

B(b:Bool) = readB_(b) . B[b]

++ sum(lb:Bool, writeB_(lb) . B[lb])

C(i:Bool, c:Bool) = readC_(i,c) . C[i,c]

++ sum(lc:Bool, writeC_(i,lc) . C[i,lc])

Reader = begin_read . -- procedure read:

sum(b:Bool, readA(b) . writeB(b) . -- b := A; B := b;

sum(c:Bool, readC(b,c) . -- c := C[b];

begin_s2r_r(b,c) . --

sum(y:D, end_s2r_r(b,c,y) . -- y := Y[b,c];

end_read(y) . Reader[]))) -- return y;

Writer = sum(x:D, begin_write(x) . -- procedure write(x):

sum(a:Bool, readB(not(a)) . -- a := not(B);

sum(d:Bool, readC(a,d) . -- d := C[a];

begin_w2s_w(a, not(d), x) . -- Y[a, not(d)] := x;

end_w2s_w(a,not(d)) . --

writeC(a,not(d)) . -- C[a] := not(d);

writeA(a) . -- A := a;

end_write . Writer[]))) -- return;

init Reader || Writer || Y[T,T,1,1,1,1,1] || Y[T,F,1,1,1,1,1] ||

Y[F,T,1,1,1,1,1] || Y[F,F,1,1,1,1,1] || A[T] || B[T] || C[T,T] || C[F,T]

comm (begin_w2s_w,begin_w2s_s,begin_w2s), (end_w2s_w,end_w2s_s,end_w2s),

(begin_s2r_s,begin_s2r_r,begin_s2r), (end_s2r_s,end_s2r_r,end_s2r),

(readA,readA_,readA__), (writeA,writeA_,writeA__),

(readB,readB_,readB__), (writeB,writeB_,writeB__),

(readC,readC_,readC__), (writeC,writeC_,writeC__)

hide begin_w2s, end_w2s, begin_s2r, end_s2r,

readA__,readB__,readC__,writeA__,writeB__,writeC__

encap begin_w2s_w, end_w2s_w, begin_s2r_s, end_s2r_s,

begin_w2s_s, end_w2s_s, begin_s2r_r, end_s2r_r,

readA , readB , readC , writeA , writeB ,writeC ,

readA_, readB_, readC_, writeA_, writeB_,writeC_

Figure 9.4: A MAPA model of a handshake register’s implementation.
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Original state space Dead variable reduction
|D| States Trans. Time (s) States Trans. Time (s)
1 2,064 4,128 0.5 ( 0.9) 2,064 (− 0%) 4,128 (− 0%) 1.6 (+220%)
2 540,736 1,115,712 132.9 (264.0) 45,504 (− 92%) 94,080 (− 92%) 12.9 (− 90%)
3 13,834,800 29,028,240 timeout 290,736 (− 98%) 613,008 (− 98%) 121.8
4 142,081,536 301,349,376 timeout 1,107,456 (− 99%) 2,365,440 (− 99%) 3,101.3

Original state space Confluence reduction
|D| States Trans. Time (s) States Trans. Time (s)
1 2,064 4,128 0.5 ( 0.9) 1,208 (− 41%) 2,416 (− 41%) 1.0 (+100%)
2 540,736 1,115,712 132.9 (264.0) 314,048 (− 42%) 651,584 (− 42%) 145.7 (+ 10%)

Original state space All reductions together
|D| States Trans. Time (s) States Trans. Time (s)
1 2,064 4,128 0.5 ( 0.9) 1,208 (− 41%) 2,416 (− 41%) 2.1 (+360%)
2 540,736 1,115,712 132.9 (264.0) 25,280 (− 95%) 52,608 (− 95%) 12.8 (− 90%)
3 13,834,800 29,028,240 timeout 155,304 (− 99%) 331,776 (− 99%) 78.5
4 142,081,536 301,349,376 timeout 574,976 (−100%) 1,251,328 (−100%) 322.7

Table 9.5: State space generation for Hesselink’s implementation of a handshake
register. Times for the original state spaces are provided with (and without) the
basic MLPE reduction techniques. Negative percentages indicate reductions.
State spaces that could not be generated explicitly anymore by SCOOP were
generated symbolically with LTSmin [BvdPW10] to still be able to compute the
reduction in state space size. The timeout was set at 10,000 seconds.

were weak trace equivalent (as implied by τ∗a equivalence), and hence the
implementation also features recentness, sequentiality and waitfreeness.

Although the specification still only has 50,625 states if |DataSize| = 25, the
implementation blows up rather quickly. Hence, we demonstrate the significance
of our reduction techniques by applying them to this model and showing their
impact on the number of states and transitions (Table 9.5).

Discussion. It is immediately clear from the table that the basic reduction
techniques are of great help—they halve the state space generation time, even
though they do not reduce the number of states or transitions. Considering for
example the variation with DataSize = 3, we observed that constant elimina-
tion reduces the number of MLPE parameters from 50 to 32, that summation
elimination reduces the number of nondeterministic summations from 23 to
6 and that expression simplification in combination with the other two basic
techniques reduces the MLPE from 3,089 to 2,087 symbols.

Furthermore, dead variable reduction provides extremely large reductions:
for DataSize = 4, less than 1 percent of the state space remains. The reason
for the significant success of this technique can easily be explained from the
observation that there are four safe registers (process Y) that each remember
their values for vr, vw and v much longer than necessary. Resetting these when
possible, the combinatoric explosion is partly avoided. Note that the reduction
works relatively better for larger values of DataSize. This was to be expected
as well, since a larger data type for values that are irrelevant results in a larger
number of equivalent states.

Confluence reduction is of less help time-wise, although it does still reduce
the state space a bit. This is due to the writer being the only process who
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writes to atomic boolean register C. Therefore, when it is reading a value from
this register, it may interleave in any order with the system’s other possible
transitions without influencing the result. Confluence reduction detects this
and gives priority to the τ -transition obtained from hiding readC(a,d). The
same holds for the τ -transitions corresponding to the actions begin_s2r_s and
end_s2r_s(i, j, vr). The former does not use or change any variables (except
for using the constants i and j—but they are removed by constant elimination
first). The latter does use vr, but this variable can only be updated in states
that can never be enabled at the same time (since it requires a different value for
readstatus). No write actions are confluent, as they change the writestate

variable, which is used to decide whether or not to provide the correct result
during a (possibly simultaneous) read action. Due to the excessive growth of
the model, confluence reduction alone is not sufficient to analyze the model for
|D| ≥ 3. However, the impact of confluence on larger models can be seen from
its effect in combination with dead variable reduction. Then, for |D| ≥ 3, it does
significantly reduce the state space generation time compared to the situation of
only applying dead variable reduction.

The reason for dead variable reduction not always positively affecting the
state space generation time for the smallest model is the additional overhead of
deciding which variables can be reset (taking about 1.0 second for each model).
For confluence reduction, there is the overhead to check which summands are
confluent (taking about 0.5 seconds) and the additional overhead of recomputing
representatives, as discussed above. For the larger models, though, these concerns
completely vanish compared to the significant reductions that are obtained.

9.3.2 Leader election protocol

For our second case study, we investigate a leader election protocol: Algorithm B
from [FP05]. It is an adaptation of the Itai-Rodeh protocol [IR81, IR90] for
deciding on a leader in an asynchronous ring with an arbitrary number of nodes.
Basically, the algorithm breaks the symmetry by rolling dice, choosing the node
that rolled highest as leader. If multiple nodes roll the same high number, the
process is repeated.

More precisely, each node is either active (still in the running to become the
leader) or passive (only passing on messages). Initially, all nodes are active and
they randomly choose a natural number within a certain interval {1, . . . , k}, i.e.,
they roll a k-sided die. We assume that this takes some time, governed by an
exponential distribution with rate 1. After having chosen a value c, each node
sends a message (c, 1) to the channel on its right-hand side, with 1 representing
the number of hops the message has taken. The hop count is included to be
able to notice that a message makes it all the way around the ring, back to its
original sender.

After having sent its message, each node ni keeps reading messages (o, h)
from the channel on its left-hand side. Upon receiving a message, four conditions
apply from the point of view of node ni:

• If o < c, then apparently a node on the left of ni rolled a lower number
than ni did, so the message is discarded.
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• If o > c, then apparently ni did not roll the highest number. Since o
may still be the highest number, ni forwards the message while updating
the hop count, i.e., it sends the message (o, h+ 1) to the channel on its
right-hand side. Additionally, node ni becomes passive.

• If o = c and h is smaller than the number of nodes, then apparently some
node on the left of ni rolled the same number. To break the symmetry, ni

discards the message, chooses a new value c′, sends a new message (c′, 1)
to the channel on its right-hand side and continues as above.

• If o = c and h equals the number of nodes, then apparently the message
from ni made it all the way across the ring. Considering the three conditions
described above, this implies that all other nodes rolled a lower number
than ni did (and hence became passive), and therefore ni can declare itself
leader.

After a node became passive, it will only still forward messages while incrementing
the hop counter.

Since each node always either discards a message or forwards it while becoming
or staying passive, each message always leaves behind a trail of passive nodes.
Hence, since a leader is only chosen if a message makes it all the way across the
ring, it should be obvious that indeed at most one leader will be declared. It
may be less obvious that a leader is eventually chosen, or how long this would
take. Hence, a model checking approach comes in handy.

Modelling. The specification is depicted in Figure 9.6. We separately modelled
the processes and the channels. Each Channel has an identification number
id (for communication purposes) and can hold a value val of the type D =

{1..DataSize} and a hop number. Additionally, due to its asynchronous nature
we keep track of whether it is set. If not, a message can be stored. Otherwise,
the message can be read and set is reset to F (false).

Each Process also has an identification number, as well as a status. The
status indicates whether the process should (1) choose a new value, (2) read
a message, or (3) passively forward all messages. After having chosen a new
value from type D (each with probability 1

DataSize
), it is sent to the channel

with the same identification number as the process itself and in the process’
variable chosen. Messages are read from the channel that has an identification
number that is one lower than the process’ number, and are treated precisely
as prescribed by the protocol. Passive processes just forward messages while
incrementing the hop count, as required.

The system is composed of three channels and three processes. The put ac-
tion from Process is made to communicate with the putInChannel action from
Channel, and similarly they communicate to receive messages. We hide all irrel-
evant actions (send, receive) and encapsulate the actions that were needed only
for communication. Additionally, for efficiency we keep the leader action visible
only in one of the three processes. That way, confluence will be able to reduce
more, while we are still able to compute the properties we are interested in.
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constant NODES = 3

type D = {1..DataSize}

type Id = {0..NODES-1}

type Hop = {1..NODES}

type Status = {1..3}

Channel(id:Id, set:Bool, val:D, hop:Hop) =

not(set) => sum(v:D, sum(h:Hop, putInChannel(id, v, h) .

Channel[set := T, val := v, hop := h]))

++ set => getFromChannel(id, val, hop) . Channel[set := F]

Process(id:Id, status:Status, chosen:D) =

status = 1 => <1> . roll(id) . psum(c:D, 1/DataSize : put(id, c, 1) .

Process[status := 2, chosen := c])

++ status = 2 => sum(o:D, sum(h:Hop, get(mod(id-1, NODES), o, h) .

( h = NODES => leader(id) . Deadlock[]

++ chosen < o => put(id, o, h+1) . Process[status := 3]

++ o < chosen => Process[]

++ h < NODES & o = chosen => Process[status := 1])))

++ status = 3 => sum(o:D, sum(h:Hop, get(mod(id-1, NODES), o, h) .

put(id, o, h+1) . Process[]))

Deadlock = finished.Deadlock[]

init Channel[0, F, 1, 1] || Channel[1, F, 1, 1] || Channel[2, F, 1, 1] ||

Process[0,1,1] ||

hide(leader : Process[1,1,1]) ||

hide(leader : Process[2,1,1])

comm (put, putInChannel, send), (get, getFromChannel, receive)

hide send, receive

encap putInChannel, getFromChannel, get, put

reach leader(0)

-- reach finished

Figure 9.6: A MAPA model of a leader election protocol with three nodes.

Properties of interest. After having modelled the protocol, we used it to compute
three properties of interest:

1. What is the probability that the first node is eventually elected to be
leader? (unbounded reachability objective)

2. What is the probability that a leader is elected within 5 time units?
(time-bounded reachability objective, error bound 0.01)

3. What is the expected time until a node is elected to be leader? (expected
time objective)

Note that, in principle, the nondeterministic nature of the model implies that
these properties each have no single answer but an interval of values. However,
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for this model the nondeterminism is only involved with the ordering of events.
Since this ordering does not influence the observable behaviour in any way,
the minimum and maximal probabilities and expected times referred to by
these properties coincide. Hence, we only computed the minimal properties and
expected times, and present these together with their computation times.

Results. We used the reachability condition reach leader(0) (as depicted in
Figure 9.6) for SCOOP to generate the goal sets for the first property. For the
second and third property, we changed this to reach finished8. We generated
and analysed the model for different values of the variable DataSize, and also
(easily) extended the model to incorporate four nodes instead of three. For
all instances, we computed the three properties of interest in the presence and
absence of our reduction techniques.

The results are presented in Table 9.7, where we denote by leader-i-j the
variant with i nodes and j-sided dice. As expected, for N nodes the probability
of becoming leader is 1

N . Additionally, the expected time until a leader is chosen
decreases when using a die with more sides and increases in the presence of
more nodes. This is no surprise either, since larger dice decrease the probability
that two nodes roll the same number, while an increase in the number of nodes
increases this probability.

Discussion. Our basic reduction techniques are of significant importance to
quickly generate the model’s state space with SCOOP, as demonstrated by
reductions of up to 98% due to these techniques. Indeed, for the variation with
three nodes the number of MLPE parameters decreases from 42 to 26, and the
complete MLPE decreases in size from 7,576 to 1,678 symbols. This reduces
the size of the representation of states, makes it faster to compute a state’s
successors, and speeds up reduction techniques.

The results also indicate that dead variable reduction becomes more powerful
when the size of the data type increases. This was to be expected, since variable
resets obviously have more impact in this case. After all, more states are then
mapped to the same state and hence relatively more reduction is obtained. We
note that the resets take place in the asynchronous channels. If we altered the
channel processes to not store the messages but just immediately forward them,
no resets would be needed anymore. The exceptional 32% increase in state space
generation time for leader-4-2 with dead variable reduction is due to a 1.1
seconds overhead to find all variable resets. Since the model is rather small, this
overhead is not fully compensated by the decrease in state space size.

Confluence reduction appears to work quite well for this model. State space
reduction of up to 91% and analysis time reduction of up to 97% demonstrate the
great potential of this technique. This may be attributed to the large degree of
interleaving with little communication of this system. For this model it turned out

8This change slightly influences the reduction power of confluence in a positive way.
The results we present on state space generation and reduction in the first few columns of
Table 9.7 all concern the first model. Hence, they are a conservative illustration of confluence’s
capabilities—for the model used for checking the second and third property some more reduction
is obtained.
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Table 9.7: State space generation and analysis for a leader election protocol.
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that SCOOP’s default mode—which does not store the representation map and
recomputes representatives if needed again—slowed down state space generation
considerably. For instance, leader-3-6 took about 12 seconds to generate
against 8.8 seconds without confluence reduction. Although the reduction of
217.4 seconds (96%) for time-bounded reachability analysis significantly makes
up for this, we decided to have SCOOP remember part of the representation
map—as discussed on page 207. This way, at the cost of some additional memory
usage (in this case it roughly doubles), generation time is reduced to 6.1 seconds.

The combination of all our reduction techniques proves to be the most efficient.
On average, IMCA analysis is sped up by a factor of more than 20 (i.e., −95%).

9.3.3 Polling system

Next, we investigate a polling system based on the description in Example 1.1.
Again, inspired by [Sri91] we consider the idea of having a server processing
jobs that arrive at multiple stations. As often happens in queueing theory,
the arrival times as well as the service times are assumed to be exponentially
distributed. As opposed to the description before, we now allow more than two
arrival stations, as illustrated in Figure 9.8. These arrival stations receive jobs
from the environment, and can store several of them until polled by the server
in last-in-first-out manner—obviously, other strategies are conceivable.

We assume that the deletion of jobs from a station fails with some probability,
and we follow previous work by not deterministically fixing the order in which the
stations are polled by the server. However, whereas [Sri91] took a probabilistic
approach to fix this order (to enable manual mathematical reasoning), we are
able to omit these probabilities and rely on nondeterminism. That way, we can
investigate the impact of the polling order by computing minimal and maximal
values for each property of interest. Hence, this case study really requires all
essential features of MAs: Markovian delays, probability and nondeterminism.

To make the system more interesting and more easily scalable, we assume

Station 1 Station 2 · · · Station N − 1 Station N

3 5 2 ·N − 1 2 ·N + 1

Server

poll

poll poll

poll

5 · j

Figure 9.8: A polling system. Jobs arrive with rates that are different per arrival
station. The server polls the stations for work, and processes jobs with a service
rate depending on the type of job j.
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type Stations = {1..3}

type Jobs = {1..NrOfJobTypes}

Station(i:Stations, q:Queue) =

size(q) < QueueSize

=> <2 * i + 1> . sum(j:Jobs, arrive(j) .

Station[q := add(q,j)])

++ size(q) > 0

=> deliver(i, head(q)) . psum(0.9 -> Station[q := tail(q)]

++ 0.1 -> Station[])

Server = sum(n:Stations, sum(j:Jobs, poll(n,j) . <5*j> .

complete(j) . Server[]))

init Station[1, empty] || Station[2, empty] || Station[3, empty] || Server[]

comm (poll, deliver, copy)

hide copy, arrive, complete

encap poll, deliver

reachCondition size(q_1) = QueueSize &

size(q_2) = QueueSize &

size(q_3) = QueueSize

Figure 9.9: A MAPA model of a polling system with three arrival stations.

that there are several types of jobs. The service time of each job depends on its
type, but its arrival time does not. We do allow arrival times to depend on the
arrival stations; each arrival station can have a different rate of incoming jobs.
We assume the failure probability of deletion to be 1

10 .

Modelling. The specification is depicted in Figure 9.9. We chose to have an
arbitrary number of job types, depending on a variable NrOfJobTypes. Job
types are represented as integers starting from 1, and job type j has a service
rate given by 5j. In the specification depicted here we assume the existence of
three arrival stations, numbered from 1 to 3, each station i having an arrival
rate given by 2i+ 1.

The Server process is rather simple: it nondeterministically chooses an
arrival station n to poll a job from, and then is able to receive any job j by the
action poll(n,j). After receiving a job, it processes it with rate 5*j, completes
and tries to poll the next job. The Station processes are identified by a natural
number and contain a queue to store incoming jobs. If a station’s queue is not
full yet, jobs can arrive. As mentioned before, the arrival rate is fixed per arrival
station, but we do not assume anything about the incoming jobs themselves;
there is a nondeterministic choice deciding their type. If a station’s queue
contains at least one job, it can be polled by the server. Then, with probability
9
10 it is indeed removed from the queue, otherwise it erroneously remains there.

The complete system is composed of one server and (in this case) three
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arrival stations. Since our properties will be concerned with the situation that all
arrival stations have reached their full capacity, we added a reachability condition
(using the keyword reachCondition) that checks for precisely this situation. A
reachCondition is specified over the global state space of the system; hence,
we must refer to the q variables of the individual arrival stations. SCOOP has
been implemented in such a way that each variable gets suffixed by an index,
indicating the position of its process in the init specification. Hence, we can
refer to the first arrival station’s queue by q_1, and so on.

Properties of interest. Our analysis is focused on the situation that all arrival
buffers are full, as in this case no jobs can arrive anymore. We use IMCA to
compute three properties concerning this situation:

1. What is the expected time until reaching full capacity for the first time?
(expected time objective)

2. What is the probability that full capacity is already reached within the first
two time units? (time-bounded reachability objective, error bound 0.01)

3. What is the fraction of time that all arrival stations are at full capacity in
the long run? (long run objective)

Due to nondeterminism in both the polling order and the job types that arrive,
none of these properties has one definite answer. They all depend on how these
two nondeterministic choices are resolved. Clearly, to keep the long-run average
fraction of reaching full capacity low, the server should always first poll the
arrival station with the lowest arrival rate. Additionally, the environment could
help keeping this fraction low by only providing jobs that have a high service
rate. Hence, for each property we provide an interval [min,max] that contains
all values that may be obtained for different schedulings.

Results. We investigate the effect of changes in the number of job types, the
queue sizes in the arrival stations, and the number of arrival stations. For each
dimension we provide three experiments, showing the intervals computed by
IMCA for all three properties of interest, the time to generate and analyse
these models and the reductions in these times as well as the state space sizes.
Additionally, since confluence reduction seemed to be particularly powerful in
the presence of many arrival stations and little data, we included a variation with
nine stations all having just a single-element buffer and one type of incoming
job. The results are presented in Table 9.10, where polling-i-j-k denotes a
system with i stations, all having buffers of size of j and k types of jobs.

Discussion. It turns out that the model does not allow for much reduction
by our main techniques dead variable reduction and confluence reduction, but
still they decrease analysis time slightly. Dead variable reduction automatically
deduces that the job type is irrelevant after the delay 5j in the Server process,
due to the complete(j) action being hidden.

Confluence reduction automatically detects that the hidden complete(j)

action is confluent and hence does not need to interleave with other actions.
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Table 9.10: State space generation and analysis for a polling system. The
combination of dead variable reduction and confluence reduction is omitted, as
these results correspond to the situation of applying only confluence reduction.
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1 2

3 4

Figure 9.11: A 2× 2 processor grid.

However, since there are never other actions enabled at the same time, no non-
determinism is removed due to this action being confluent—as nondeterminism
is the main source of complexity of the analysis algorithms, not much reductions
in analysis time are obtained. The only impact is that the intermediate states
between 5*j and complete(j) can be omitted. This yields some reduction in
state space size (actually quite a large reduction if the number of arrival stations
increases), but also renders unnecessary the reset made by dead variable reduc-
tion. Hence, the reductions made due to confluence in this case study subsume
those obtained by means of dead variable resets. Therefore, confluence reduction
and dead variable reduction together behave exactly the same as confluence
reduction on its own, and so we excluded the results for the combination of these
techniques from the table.

9.3.4 Processor grid

Our last case study is a 2× 2 concurrent processor architecture, parameterised
in the level k of multitasking (taken from Figure 11.7 in [ABC+94] and shown in
Figure 9.12). The model was given as a Generalised Stochastic Petri Net (GSPN),
so we used the GEMMA tool [Bam12] to transform it to the MAPA language.

Every processor is assumed to have k tasks to work on, each consisting of two
parts. First, the processor needs to do some work itself during the task’s local
operation phase, which is assumed to be exponentially distributed with rate 1.
Second, some help is needed from a neighbouring processor; to this end, a request
is send to one of the neighbours to work on this second phase of the task. The
neighbour works on the task for a period of time assumed to be exponentially
distributed with rate 10. During the time that a neighbour is working on the
second phase of a task, a processor can already start working on the local part of
the next task. Each processor has two neighbours: one in the vertical dimension
of the grid and one in the horizontal dimension (as illustrated in Figure 9.11).

The specification is based on preemptive interaction. That is, helping out
neighbours with the second phase of their task is considered to have a higher
priority than working on one’s own local operation phase. Hence, if neighbours
ask for help, local work is interrupted (but work for one neighbour is not
interrupted by a request from another neighbour). After finishing a neighbour’s
job, local work is restarted9.

9Due to the assumption that service times are distributed exponentially and hence are
memoryless, there is no difference between restarting and resuming a job.
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k

kk

k

Figure 9.12: GSPN model of a 2 × 2 processor grid with multitasking and
preemptive interaction (taken from [ABC+94]).

Modelling. For this case study we did not have to design a model ourselves;
it was already provided by [ABC+94] in the form of the GSPN depicted in
Figure 9.12. We note that the figure does not present all necessary information;
the upper two timed transitions (indicated by open rectangles) have rate 1, the
four timed transitions below have rate 10, and similarly for the lower half of the
model. Additionally, all immediate transitions (indicated by closed rectangles)
have weight 1. We do not go into details on the specifics on the model, neither
do we discuss the semantics of GSPNs. Rather, we refer to [ABC+94] for both
and to [Bam12] for a detailed explanation on how to translate GSPN models to
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MAPA. For this chapter it suffices to say that the GSPN represents the system
described above, and that we used the PIPE (Platform Independent Petri net
Editor) tool [PIP13] to draw this model and the GEMMA tool to obtain an
equivalent MAPA specification (actually, an MLPE). That way, every place of
the GSPN is modelled as a variable and every transition as a summand.

The GSPN community is used to assign weights to immediate transitions,
basically resolving nondeterminism by changing it into probabilistic branching.
Hence, previous analysis always required weights for all immediate transitions,
requiring complete knowledge of the mutual behaviour of all these transitions.
That way, GSPNs reduce to CTMCs and relatively simple calculations can be
employed to compute for instance the long-run average fraction of time that
a GSPN is in a certain state or set of states. Analysis in [ABC+94] on the
GSPN of the processor grid described above indeed assumed all nondeterministic
choices to be resolved uniformly. That is, if N immediate transitions are enabled
simultaneously, only one of them is taken and the probability for each of them
to be chosen is 1

N . For the 2× 2 processor grid, this most importantly specifies
that a processor randomly chooses between its two neighbours for requesting
work on the second phase of its tasks. This, however, may not always be the
best strategy, neither may it accurately represent actual behaviour in a practical
scenario.

When translating GSPNs to MAPA, we now are able to retain nondetermin-
ism [Kat12, EHKZ13]. We actually even allow a weight assignment to just a
(possibly empty) subset of the immediate transitions—reflecting the practical
scenario of only knowing the mutual behaviour for a selection of the transitions.

Properties of interest. As in [ABC+94], we are interested in computing the
throughput of one of the processors (say processor 1 in Figure 9.11), given by
the long-run average of having a token in a certain place of the GSPN (the place
below the one on the top-left containing the letter k in Figure 9.12). In [ABC+94],
symmetry dictated that all processors have exactly the same behaviour. Hence, it
did not matter which processor was under investigation. However, when breaking
the symmetry by giving one processor a nondeterministic choice between its
neighbours for service requests, differences may occur. Hence, we compute three
properties for various instances of the system:

1. What is the throughput of processor 1? (long run objective)
2. What is the throughput of processor 2? (long run objective)
3. What is the throughput of processor 4? (long run objective)

To investigate the impact of the amount of nondeterminism on the throughput
as well as the effects of the reduction techniques, we consider three variations in
the assumptions on the behaviour of the grid:

• All nondeterministic choices are resolved uniformly. That is, we retain all
weights from the original specification [ABC+94]. This variation has no
nondeterminism, only probability.

• Processors 2, 3 and 4 still use a uniform distribution to decide on their
neighbour to send a service request to. Hence, these weights are retained.
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All other nondeterministic behaviour, including processor 1’s choice of
neighbour, stays nondeterministic.
• No nondeterministic choices are resolved uniformly. That is, all weights

from the original specification are omitted. This variation has no probab-
ility, only nondeterminism.

The second variation still has three of the four processors choose their neighbour
to send a service request to uniformly, while the remaining processor has the
liberty of choosing in any way it wants to. This situation contains nondeterminism
as well as probability (and Markovian delays), and hence asks for the full spectrum
of MAs. Clearly, the introduction of nondeterminism for the second and third
variation implies that each answer will again be an interval instead of a single
value. Also, note that all processors are completely equivalent in the first and
third variation. Therefore, we only compute the first property for these two
scenarios; processor 2 and 4 have the same throughput anyway.

Results. Table 9.13 presents the results of this case study. We denote by
grid-o-k the original model (with all weights retained and hence all non-
deterministic choices resolved probabilistically) and k concurrent tasks. Similarly,
grid-i-k is the intermediate model with some weights retained and k concurrent
tasks, and grid-n-k is the fully nondeterministic model with k concurrent tasks.
The results for grid-o-2, grid-o-3 and grid-o-4 indeed correspond to the
results in Table 11.5 from [ABC+94]. However, existing work was not yet able to
indicate the accuracy of these results in case processors do not resolve their non-
deterministic choices uniformly. We now were able to investigate this, resulting
in the intervals presented for the moderately and fully nondeterministic variants
of the model. This shows us that for instance in the presence of two tasks, the
throughput of our first processor is at least 0.81 and at most 1.00, depending
on the processors’ behaviour. This information is much more trustworthy than
the original result of 0.903, which tells us nothing if the strong assumption on
uniform resolutions is violated.

The results also indicate that the intermediate situation where only pro-
cessor 1 can choose freely allows just a slight variation in throughput. This can be
explained by noticing that it could send its service requests to the neighbour that
is currently not already working on another service request (either coincidentally
or maybe due to some shared information on who is working on what). That
way, work immediately starts and no additional waiting is necessary. As service
requests are dealt with rather quickly, the potential increase or decrease in
throughput for processor 1 is rather small. However, the neighbouring processors
may endure a much larger decrease in throughput as a result of processor 1
slightly increasing its throughput. This is explained by the fact that processor 1
may try to preempt neighbours that are working on their local operation phase.
Since that phase on average takes much longer than the service requests, the
preemptions may severely impact their throughput (as the memoryless aspect
of the exponential distribution dictates that preempted work basically starts
all over). If all processors can choose freely, processor 1 may obtain an almost
perfect throughput. This presumably is due to its possibility of selecting a
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Table 9.13: State space generation and analysis for a processor grid.



228 9. Implementation and Case Studies

neighbour that is currently not already working on a service request, and on the
neighbours’ possibility of sparing processor 1 from any work. On the other hand,
the neighbours 2 and 3 may also direct all their work to processor 1, lowering its
throughput significantly.

Discussion. Based on the results, we can conclude that the basic reduction
techniques do not help us much. This is understandable, as the construction of
an MLPE based on a GSPN does not introduce any summations or constants;
hence, at most some very basic expression simplifications may be possible.
Additionally, dead variable reduction has no impact—therefore, these results
have even been omitted. This was to be expected as well, since the only variables
in an MLPE based on a GSPN are the ones that represent the number of tokens
in each place. This number can only become irrelevant for places that have no
outgoing transitions or that are somehow reset at some point. As neither of
these situations occurs in the model at hand, indeed dead variable reduction is
not applicable.

Confluence reduction may only reduce in the presence of invisible non-
probabilistic transitions. Hence, in the original model not much reduction is
possible. The fact that some state space reduction is still obtained is due to
the fact that states having only one outgoing τ -transition may sometimes be
omitted. As expected, more reduction is possible if more nondeterminism is
present (since indeed some of this nondeterminism turns out to be spurious).
State space reductions of about 40% and decreases in analysis time around 60%
save a significant amount of time.

9.4 Contributions

In this chapter we presented our tool SCOOP, implementing the MAPA linearisa-
tion procedure, a state space generation algorithm and all reduction techniques in-
troduced for MAPA in this thesis. We discussed four case studies, showing how to
model and analyse them and illustrating the power of our reduction techniques.

Our case studies show that several types of systems can easily be modelled
in MAPA. Enabling the full spectrum of MAs, and supported by IMCA, our
techniques for the first time allow the efficient modelling, generation and ana-
lysis of systems incorporating both nondeterminism, probabilistic choice and
Markovian delays. For the GSPN case study on a processor grid, this made it
possible to compute intervals of probabilities, taking into account the effects of
how nondeterministic choices are resolved. This was not possible in earlier work.

Our results also clearly show the significant potential of confluence reduction,
dead variable reduction and the basic reduction techniques. We demonstrated
that all of them may greatly reduce state space generation time. Additionally,
dead variable reduction and confluence reduction often cut back the state space
itself and hence the analysis time. In the remainder of this section we discuss to
what extent our reduction techniques approach the smallest possible representa-
tions of our case studies. Additionally, we touch upon some trends regarding
the reduction power of the individual techniques. Finally, we briefly discuss the
reductions in analysis time.
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9.4.1 Reduction potential

Although our techniques reduce state spaces significantly, they in general do not
obtain the smallest possible model that still satisfies the same properties. After
all, in general this would require the entire state space to be known upfront.

Hence, we are interested to know how much of the potential reductions are
indeed obtained by means of our techniques. Since there are no tools available yet
to compute the branching bisimulation minimal quotient for MAs, we actually
have no means to derive the maximal possible reduction for models that exhibit
nondeterminism, probability as well as Markovian delays at the same time.
However, for subsets of these features we can rely on older tools that compute
traditional branching bisimulation in the presence of only nondeterminism (as
is the case for the handshake register), probabilistic branching bisimulation in
the presence of only nondeterminism and probabilistic choice (as is the case
for a slight variation of the leader election protocol) and stochastic branching
bisimulation in the presence of only nondeterminism and Markovian delays (as
is the case for one of the variations of the processor grid).

Handshake register. The case study of the handshake register contains no
quantitative information; hence, we can just apply µCRL’s ltsmin tool for
computing its minimal quotient with respect to branching bisimulation.

For the handshake register with |D| = 2, the state space went down from
540,736 to 25,280 states due to our techniques. In the minimal quotient, it turns
out to have only 72 states. Hence, some additional reduction is still possible.
Nonetheless, we managed to cut back over 95% of the maximum number of states
that could have been omitted (515,456 of the maximum number of 540,664).
For |D| = 3, we went down from 13,834,800 to 155,304 states, while the minimal
quotient has 189 states.

Leader election protocol. We omitted the Markovian delay from the specification
of the leader election protocol to make it into a PA. Then, CADP’s bcg_min
tool can be applied to obtain a minimal quotient with respect to probabilistic
branching bisimulation. Since CADP represents each probabilistic transition by
means of an intermediate state with outgoing probabilistic edges, the number of
states and transitions is not fully comparable to the numbers we provide. Still,
we can report that the number of states in CADP of leader-3-4 in the absence
of Markovian delays is 21,232 without our reduction techniques, 2,939 when
applying all reduction techniques and 242 in the branching bisimulation minimal
quotient. This again shows that some additional reduction may be achieved,
but also that we were able to reduce quite significantly: we omitted 87% of
the maximum number of states that could be removed (18,293 out of 20,990).
For leader-3-8 the number of states without any reduction was 274,476, with
reductions 21,151 and after minimisation 666—hence, here we found 93% of the
maximal reduction.

Processor grid. For the GSPN case study of the processor grid, we took the
variation without any weights (and hence without any discrete probabilitistic
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behaviour). Since that model is an IMC, we are able to apply CADP’s bcg_min
tool to obtain the minimal quotient with respect to stochastic branching bisimu-
lation. For grid-n-4 the number of states without any transitions was 31,832,
which went down to 19,025 when applying all reduction techniques. The minimal
quotient turned out to consist of 11,901 states. So, for this model our techniques
managed to find 64% of the maximal reduction possible.

9.4.2 Individual reduction techniques

Based on the results for the four case studies, we draw conclusions about
the applicability of the individual reduction techniques (the basic reduction
techniques, dead variable reduction and confluence reduction). For each of these
three categories, we also conjecture some model properties that seem to be
indicators to expect a lot of reduction.

As demonstrated by the case studies, often the combination of all our tech-
niques is most efficient. After all, this combines their forces (which are mostly
rather orthogonal).

Basic reduction techniques. We noticed from the processor grid case study that
the basic reduction techniques do not influence state space generation much for
MAPA models generated from GSPNs. This was to be expected, due to the fact
that the translation procedure does not introduce any real data. No summations
are introduced and no variables can ever be constant (unless a place in the GSPN
is never used). Hence, summation elimination and constant elimination are not
applicable.

For the handshake register and polling system generation times roughly
halved, while for the leader election protocol reduction factors of more than
70 were observed (requiring less than 1.5% of the original time to generate
the state space). This could be explained from the relatively large number of
parallel components, introducing a lot of constant parameters and reducible
nondeterministic summations.

The reduction of the number of MLPE parameters reduces the size of the
states that need to be stored in memory (vectors of values of these parameters).
Additionally, smaller states and smaller specifications make it easier to check
which summands are enabled for a given state. Both aspects speed up state
space generation, and this speed up can be quite significant—as illustrated by
our case studies.

Best results if a model is constructed as the parallel composition of many
components having extensive interactions based on data parameters (in-
troducing reducible summation and constant parameters), and if a model
has lots of data and expressions over this data (introducing reducible
expressions).

Dead variable reduction. The potential of dead variable reduction is most
convincingly shown by the handshake register case study. There, state spaces
were reduced by more than a factor of 100, leaving less than a percent of the
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original number of states and transitions. This way, a model could be generated
that would have been much too big without dead variable reduction. On the
other hand, the processor grid confirmed our expectation that GSPN-based
models are not suitable for dead variable reduction. After all, these only contain
variables storing the number of tokens in each place; often, this information
never becomes irrelevant (as it basically encodes the control flow) and hence no
variable resets are possible.

For the leader election protocol and the polling system, dead variable reduc-
tion was able to achieve significant reductions. As expected, these reductions
become more powerful in case larger data types are used. After all, this implies
that variable resets map more states on the same state than when using only
small data types. For the polling systems moderate results were found, redu-
cing analysis times by about 10%. This can be explained by the fact that this
model only allowed one variable reset of rather limited influence. For the leader
election protocol, on the other hand, more impressive reduction were obtained.
Depending on the model parameters, dead variable reduction sometimes cut
back analysis time to less than 3% of the time needed to analyse the unreduced
model. This made the analysis of much larger models feasible in reasonable
amounts of time (minutes instead of hours).

Best results if a model has many parameters with large data types, storing
values that regularly become irrelevant.

Confluence reduction. Like dead variable reduction, also confluence reduction
depends heavily on the structure of the model under consideration. For the
handshake register state spaces reduced by approximately 40%, for the leader
election protocol by approximately 80%–90%, for the polling system by approx-
imately 25%-30% and for the processor grid by approximately 20%–40%. The
case studies show little difference in the effect of confluence reduction when
varying the parameters of the model. The processor grid did show that, as was
to be expected, a nondeterministic model allows for more confluence reduction
than a probabilistic model.

For the leader election protocol and the processor grid analysis times dropped
even more significantly than the number of states of the model due to con-
fluence reduction. This can be explained by the observation that the degree
of nondeterminism reduced more than the number of states. For instance, for
leader-3-6 without confluence reduction there are 51,253 states of which 13,599
have a nondeterministic choice. With confluence reduction, 6,880 states remain, of
which only 120 have a nondeterministic choice. Hence, the degree of nondetermin-
ism goes down from 27% to 2%—apparently confluence reduction is able to detect
that almost all nondeterministic choices are spurious. Since nondeterminism is
the main source of complexity in the algorithms, this explains why the reduction
in analysis time is even larger than the reduction in state space size.

The generation times by SCOOP are not reduced as much, due to the addi-
tional overhead of (re)computing representative states. To keep memory usage in
the order of the reduced state space, the representation map is deliberately not
stored by default and therefore potentially recomputed for some states. As ex-
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plained in Section 9.3.2, we did store the representation map for the leader election
protocol case study to save time at the cost of some additional memory usage.

Best results if a model is constructed as the parallel composition of many
loosely connected components, all having many internal transitions that
may interleave in any order. Since probabilistic transitions cannot be conflu-
ent, confluence reduction prefers nondeterminism over probabilistic choice.

Our heuristics underapproximate the confluent transitions, and hence may
not find them all. Since no algorithm has yet been implemented to find the
complete set of confluent transitions on a concrete state space, it is at this point
infeasible to say if all confluent transitions were discovered. We can, however,
take the state space when applying dead variable reduction as our baseline, and
compare confluence reduction’s performance to the maximal obtainable reduction
with respect to branching bisimulation. For the handshake register with |D| = 2,
confluence brought the state space down from 45,504 to 25,280 states, with a
minimal quotient of 72 states. Hence, 45% of the maximal reduction is obtained.
Since confluence is more strict than branching bisimulation, we can reasonably
expect more than 45% of the confluent transitions to have been detected.

For leader-3-6 confluence got the number of states down from 44,581 to
9,267, with 430 as the absolute minimum. Hence, for this model at least 80%
of the maximal possible reduction was obtained. For grid-4 no dead variable
reduction was possible, and hence the 64% discussed earlier is completely due to
confluence reduction.

9.4.3 Reductions in analysis time

For the three case studies that were analysed with IMCA, we noticed (as
expected) that decreases in the number of states resulted in decreases in the
time needed for the computation of the various properties that we checked.
Most of the algorithms used by IMCA (linear programming, value iteration)
are rather expensive regarding their worst-case time complexity [ZN10], but are
often reasonably fast in practice—as shown by our experiments. Therefore, no
strong theoretical statements can be made about the impact of our reduction
techniques on IMCA’s analysis.

However, we did observe that if models were reduced by dead variable reduc-
tion, the relative reductions in analysis time corresponded quite well to the relat-
ive reductions in state space size. For the models where confluence reduction was
able to actually decrease the amount of nondeterminism (leader election protocol
and processor grid), the reduction in analysis time was relatively even larger.

In addition to (mostly) reducing state space generation time, our reduction
techniques always reduced IMCA’s analysis time. With only a few excep-
tions, this decrease was at least as large as the decrease in the number of
states, relatively. Hence, especially if a model is to be analysed by IMCA,
our techniques really pay off.



CHAPTER 10

Conclusions

“A moral being is one who is capable of reflecting
on his past actions and their motives—

of approving of some and disapproving of others.”

Charles Darwin

W
e introduced MAPA: a novel process-algebraic language for specifying
Markov automata (MAs). The MA is a recently introduced state-based

modelling formalism incorporating nondeterminism, probabilistic choice
and stochastic timing—all these features are also supported by MAPA. We
defined several reduction techniques, working symbolically on specifications to
optimise state space generation and analysis without ever having to generate an
unreduced state space. Experimental validation shows that significant reductions
are obtained, reducing the larger models between 35% and 99%.

10.1 Summary

10.1.1 The MAPA language: efficient modelling

The MAPA language is data driven, even allowing specifications that rely on
dynamic data types such as stacks or lists. To simplify symbolic translations of
MAPA specifications, we presented the notion of derivation-preserving bisimula-
tion. We used it to show under which circumstances techniques can be defined
for our language without even taking into account stochastic timing, while still
being applicable to all specifications by means of an encoding of rates in actions.

We defined the MLPE as a restricted part of MAPA, easy to use for state
space generation, parallel composition and symbolic optimisations. We demon-
strated how to transform (linearise) each MAPA specification into an equivalent
representation as MLPE, allowing MLPE-based reduction techniques to be ap-
plied to all specifications. The linearisation procedure is defined only on the
subset of MAPA not including stochastic timing, but can be applied to the full
language by means of our encoding scheme.

10.1.2 Reduction techniques: efficient generation and analysis

MAPA specifications often generate large state spaces—a well-known problem in
(quantitative) model checking. This may be due to the presence of data, or due
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to a large number of parallel components. To alleviate this state space explosion,
we presented five reduction techniques. All are defined on the MLPE, as hence
are enabled through our linearisation procedure.

First we defined three basic reduction techniques: constant elimination,
expression simplification and summation elimination. They syntactically clean-
up an MLPE, making it more human friendly to read and speeding up state
space generation. However, they do not influence the underlying state space.
Our two other reduction techniques—dead variable reduction and confluence
reduction—do aim to shrink a specification’s MA, while preserving all properties
of interest. As they work on the MLPE instead of the actual models, they
prevent having to generate the unreduced state space.

Dead variable reduction automatically performs variable resets, reducing state
spaces by merging several equivalent states. It incorporates a control flow analysis
technique on MLPEs that does not only take into account control flow dictated
by the program counters of the constituent processes, but also by control flow
encoded in the data parameters. Although some of these resets may also be
introduced manually, our technique relieves the user of that burden. Additionally,
while manual optimisations are error-prone, our technique guarantees to only
provide a bisimilar state space that is at most as large as the unreduced one.

Confluence reduction focusses on spurious interleavings. It basically gives priority
to invisible transitions that do not disable any observable behaviour and hence
can always be taken at the cost of other transitions emanating from the same
state. We generalised a non-quantitative variant of this technique, while at the
same time fixing a subtle mistake in the old definitions concerning closure under
unions. We showed how to apply confluence to reduce state spaces on-the-fly,
and discussed how to detect confluence symbolically based on the MLPE.

Additionally, we compared confluence reduction to partial order reduction in
two ways. First, we provided a theoretical comparison between the two notions
in branching time, demonstrating that confluence is slightly more powerful in
that setting. We pinpointed precisely how the two techniques can be altered to
make them coincide, showing that the differences we observed indeed completely
characterise the gap. Second, we provided a practical comparison between
confluence reduction an partial order reduction in the context of statistical model
checking. We demonstrated how to apply confluence to its full potential on
the partial concrete state spaces that are available during this type of model
checking, and indeed showed that the advantages over partial order reduction
can make a difference in practice.

10.1.3 Implementation and validation

We developed a tool called SCOOP, implementing a parser, lineariser and state
space generator for our language MAPA. The tool applies all five reduction
techniques presented in this thesis. It is linked to the preprocessor GEMMA to
work with GSPNs as well, and to the model checker IMCA for the verification
of time-bounded and unbounded reachability properties, expected times and
long-run averages. Together, this tool chain (called MaMa) for the first time
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enables the efficient specification, generation and analysis of Markov automata.
We presented four case studies, on a handshake register, a leader election

protocol, a polling system and a processor grid. They demonstrated that
MAPA can be used to specify a large variety of systems. The fact that systems
are represented as MAs allowed for the computation of minimal and maximal
probabilities in the presence of stochastic timing, discrete probabilistic choice
and nondeterminism, whereas earlier work required all nondeterminism to be
resolved and hence always yielded single probabilities.

Experimental results showed that our techniques significantly reduce state
space generation and analysis times. As expected, all reduction techniques
turned out to have their own strengths. We were able to provide guidelines
indicating for what type of systems each reduction technique is most applicable.

10.2 Discussion

The framework we presented enables the efficient modelling, generation and
analysis of MAs. It contributes in several ways to the state of the art in
quantitative model checking:

• The data-driven language MAPA supports the efficient modelling of systems
incorporating nondeterminism, probabilistic choice and stochastic timing.

• The notion of derivation-preserving bisimulation provides the opportunity
to reuse techniques developed for PAs also for specifications of MAs.

• The basic reduction techniques contribute to the efficient generation of
MAs based on MAPA specifications.

• Dead variable reduction and confluence reduction alleviate the state space
explosion by means of reductions in the number of states and transitions,
allowing faster analysis.

• Our comparison of confluence reduction and partial order reduction resolves
the long-standing uncertainty about the relation between these two concepts
in branching time.

The practical applicability of our approach for specific case studies mainly
depends on two aspects: (1) how accurate can the case study be represented as
an MA, and (2) how severe is the state space explosion?

Accuracy of the model. Since MAs generalise LTSs, DTMCs, CTMCs, PAs and
IMCs, all systems that can be modelled as one of these can also be modelled
as an MA. Based on the abundant number of case studies that indeed have
been modelled in one of these formalisms (for instance, [BG94a, KS94, FGK97,
SvdZ98, GPW03, PS07, HHK00, FG06, KNP12, QWP99, YKNP06, KNP08,
HKN+08, KNS03, NS06, NM10, BCS10, BHH+09]), we can conclude that there
is a large target set of cases.

Already for CTMCs and IMCs, the main concern is whether the exponential
distribution accurately describes the timing in a system. This is often assumed,
for instance in queueing systems [BB96] and systems biology [Wil11, KNP08].
Additionally, it is well-known that every probability distribution can be approx-
imated arbitrarily well by a phase-type distribution, i.e., a network of exponential
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distributions [BGdMT06, Nel95]. Although this is not always easy to achieve in
practice [Bla05], a combination of exponential distributions may still be used to
at least partly improve the accuracy of the model.

Surviving the state space explosion. Although our techniques mitigate the state
space explosion to quite some extent, this does not yet fully solve the problem.
In the presence of large data that cannot be reset, or multiple interleavings
that do make a difference, the state space may still grow rather quickly. Hence,
although we did lift the bar significantly, quantitative model checking of systems
representable as MAs remains to be bound by the complexity of these systems.
Nonetheless, our case studies (as well as many other case studies in quantitative
model checking) demonstrated that interesting results can still be obtained, for
instance by abstracting systems or protocols to their core or by only considering
part of a system.

10.3 Future work

Our work gives rise to several directions for future work. Most obviously,
the development of additional minimisation techniques preserving strong or
branching bisimulation could be very useful. As our case studies demonstrated
that a large fraction of the potential reduction is often already obtained by our
current techniques, it would also be interesting to investigate the possibilities
for reductions techniques preserving less properties, for instance only traces or
even only deadlocks.

Instead of developing additional reduction techniques, future work may also
focus on conducting more case studies, to evaluate the effects of our current
reduction techniques and verify the generalisability of our results. Also, the
potential of compositional state space generation may be explored. Additionally,
the existing techniques may be investigated some more, as discussed below.

10.3.1 Reduction techniques

Dead variable reduction. It would be interesting to find additional applications
for the control flow reconstructed as part of our dead variable reduction technique.
One possibility is to use it for invariant generation, another is to visualise it
such that process structure can be understood better. Also, it might be used to
optimise confluence detection, since it could assist in determining which pairs of
summands may be confluent. As also conjectured by [Pel08], such collaboration
between reduction techniques could be useful.

Another direction for future work is based on the insight that the control
flow graph is an abstraction of the state space. It could be investigated whether
other abstractions, such as a control flow graph containing also the values of
important data parameters, may result in more accurate data flow analysis.

Confluence reduction. As future work on confluence reduction we envision
to search for even more powerful ways of using commutativity for state space
reduction, for instance by allowing confluent transitions to be probabilistic.
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Preferably, such extensions will enable more aggressive reductions that, instead
of preserving the rather conservative notion of bisimulation we used, preserve
the more powerful weak bisimulation from [EHZ10b]. Future work may also
focus on finding more powerful heuristics for detecting confluence based on the
MLPE, enabling more reduction in practice.

Another obvious direction of future work is to generalise the ample set method
of partial order reduction to MAs, and prove its correctness by demonstrating
again the subsumption by confluence reduction.

Finally, although we already showed that confluence reduction preserves
branching bisimulation, it is still unknown precisely what types of properties
are left invariant by this notion of equivalence. We conjectured (and confirmed
empirically by all our experiment) that this is the case for all properties that can
be verified by IMCA. Ongoing work in the Software Modeling and Verification
group at RWTH Aachen University already formally showed this for strong
bisimulation, and is currently concerned with also showing this for weak and
branching bisimulation.

10.3.2 Long-term perspective

From a more long-term perspective, we would be interested to see if our modelling
language and reduction techniques can be extended to include even more features,
such as deterministic timing or non-exponential distributions.

Also, it would be useful to incorporate our techniques in a larger variety of
tools. We already discussed the coupling with LTSmin, but for instance also
foresee useful applications of dead variable reduction and confluence reduction
in PRISM. The symbolic (BDD / MTBDD) aspect of these tools complicates
matters, but in combination with our techniques may also open up even more
possibilities.

Finally, whereas we now only focused on techniques based on equivalences,
another interesting direction for future work is to consider abstraction. That
is, instead of preserving all behaviour of the original system, only a subset is
preserved. In some cases this may already be enough to show that a certain
property is violated, while reducing more significantly than the type of reduction
techniques discussed in this thesis.
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APPENDIX A

Proofs

“Very impressive, colleague . . . but does it also work in theory?”

Fokke & Sukke

I
n many of the proofs in this appendix we use the fact that, given a countable
set S, two distributions µ, ν ∈ Distr(S) and two equivalence relations R,R′

over S such that R′ ⊇ R, it holds that µ ≡R µ′ implies µ ≡R′ µ′. This result
immediately follows from Propositions 5.2.1.1 and 5.2.1.5 from [Sto02a]. We use
this result in the proofs, without every time referring to these propositions again.

Many proofs of the propositions and theorems presented throughout the
thesis rely on some auxiliary lemmas. These are each time presented directly
before the results in which they are applied for the first time.

A.1 Proofs for Chapter 3

A.1.1 Proof of Proposition 3.32

Lemma A.1. Let M = 〈S, s0, A, −֒→, ,AP, L〉 be an MA, and let s ∈ S,
α ∈ Aχ, and µ ∈ Distr(S). Then,

s −α→ µ =⇒ s
α
=⇒R µ

for any equivalence relation R over S.

Proof. Assume that s −α→ µ. To show that s
α
=⇒R µ, we need to provide a

scheduler S such that

• FS
M(s) = µ

• For every maximal path

s −
α1,µ1−−−→ s1 −

α2,µ2−−−→ . . . −
αn,µn−−−→ sn ∈ maxpathsSM(s)

it holds that αn = α. Moreover, for every 1 ≤ i < n we have αi = τ ,
(s, si) ∈ R and L(s) = L(si).

Let S be defined by S(s) = {(s, α, µ) 7→ 1} and S(π) = 1⊥ for every path π 6= s.
Clearly, FS

M(s) = µ. Also, all maximal path in

maxpathsSM(s) = {s −
α,µ
−−→ s′ | s′ ∈ supp(µ)}
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indeed trivially satisfy the requirements above for any equivalence relation R
over S (since n = 1 for all of these maximal paths). �

Lemma A.2. Let M = 〈S, s0, A, −֒→, ,AP, L〉 be an MA, R ⊆ S × S a
branching bisimulation for M, and R′ ⊇ R an equivalence relation such that
L(p) = L(q) for every (p, q) ∈ R′. Then, for every (s, t) ∈ R and all α ∈ Aχ, µ ∈
Distr(S), it holds that

s
α
=⇒R′ µ =⇒ ∃µ′ ∈ Distr(S) . t

α
=⇒R′ µ′ ∧ µ ≡R′ µ′.

Proof. Let (s, t) ∈ R, and assume that s
α
=⇒R′ µ. If α = τ and µ = 1s, then the

trivial branching transition t
τ

=⇒R′ 1t completes the proof. Otherwise, assume
that there exists a scheduler S such that

• FS
M(s) = µ

• For every maximal path

s −
α1,µ1−−−→ s1 −

α2,µ2−−−→ . . . −
αn,µn−−−→ sn ∈ maxpathsSM(s)

it holds that αn = α. Moreover, for every 1 ≤ i < n we have αi = τ ,
(s, si) ∈ R′ and L(s) = L(si).

As every single transition of s can be mimicked by t (due to (s, t) being in a
bisimulation relation R), we can define a scheduler S ′ that mimics every choice
of S. So, assume that S(s) = {s −α1−→ µ1 7→ p1, . . . , s −

αn−→ µn 7→ pn}. Then, we
let S ′ schedule the transitions necessary for t

αi=⇒R µ′
i (with µi ≡R µ′

i) with
probability pi. That is, if for instance t −α2−→ ν1 and t −α3−→ ν2 should both be
assigned probability 0.5 as a first step to obtaining t

α1=⇒R µ′
1, we let S ′ schedule

them each with probability 0.5p1. This way, with probability p1 the tree starting
from t reaches a distribution over states that is R-equivalent to µ1. As we
can then again mimic the transitions of S from there, and this can continue
until the end of each maximal path of S, we obtain a scheduler S ′ for which
FS′

M(t) = µ′ with µ ≡R µ′. Moreover, all states visited before the α-actions in
the tree starting from t also remain in the same R′ equivalence class because of
the restrictions of the =⇒R′ relation and the fact that the mimicked steps yield
an R-equivalent distribution. Therefore, indeed t

α
=⇒R′ µ′ ∧ µ ≡R µ′. Since

R′ ⊇ R, this implies µ ≡R′ µ′.
Figure 1.1 illustrates the proof for a simplified non-probabilistic setting. �

Proposition 3.32. LetM = 〈S, s0, A, −֒→, ,AP, L〉 be an MA. Then, an equi-
valence relation R ⊆ S × S is a branching bisimulation forM if and only if for
every (s, t) ∈ R and all α ∈ Aχ, µ ∈ Distr(S), it holds that L(s) = L(t) and

s
α
=⇒R µ =⇒ ∃µ′ ∈ Distr(S) . t

α
=⇒R µ′ ∧ µ ≡R µ′

Proof. (if) First, assume that R is an equivalence relation satisfying the re-
quirements of this proposition. Hence, if (s, t) ∈ R, then L(s) = L(t) and
every branching transition s

α
=⇒R µ can be mimicked by t. By Lemma A.1,

this immediately implies that also every transition s −α→ µ can be mimicked.
Therefore, R is a bisimulation relation.
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Figure 1.1: Visualisation of the proof of Lemma A.2. Since R is an equivalence
relation, (s, t) ∈ R and (s, t1) ∈ R imply that (t, t1) ∈ R, and hence (t, t1) ∈ R′

since R′ ⊇ R. Then, (s, t) ∈ R, (s, s1) ∈ R′ and (s1, t2) ∈ R together with
R′ ⊇ R imply that (t, t2) ∈ R′. This reasoning can be continued to see that
t

α
=⇒R′ t6.

(only if) If R is a bisimulation relation forM and (s, t) ∈ R, then L(s) = L(t)
by definition of bisimulation, and the implication immediately follows from
Lemma A.2 (instantiating it with R′ = R; as R is a bisimulation relation, by
definition indeed L(p) = L(q) for every (p, q) ∈ R′). �

A.1.2 Proof of Proposition 3.33

Lemma A.3. Let M = 〈S, s0, A, −֒→, ,AP, L〉 be an MA, and let s ∈ S,
α ∈ Aχ, and µ ∈ Distr(S). Also, let R,R′ be two equivalence relations over S
such that R′ ⊇ R. Then

s
α
=⇒R µ =⇒ s

α
=⇒R′ µ

Proof. Assume that s
α
=⇒R. If α = τ and µ = 1s, then by definition of the

branching transition we immediately obtain s
α
=⇒R′ µ for any R′. Otherwise,

there exists a scheduler S such that
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• FS
M(s) = µ

• For every maximal path

s −
α1,µ1−−−→ s1 −

α2,µ2−−−→ . . . −
αn,µn−−−→ sn ∈ maxpathsSM(s)

it holds that αn = α. Moreover, for every 1 ≤ i < n we have αi = τ ,
(s, si) ∈ R and L(s) = L(si).

The same scheduler proofs the validity of s
α
=⇒R′ µ. After all, the only thing

that has to be checked is that (s, si) ∈ R′ still holds for all 1 ≤ i < n. As
(s, si) ∈ R is assumed and R′ ⊇ R, this is immediate. �

Proposition 3.33. The relation ≈b is an equivalence relation.

Proof. Let M = 〈S, s0, A, −֒→, ,AP, L〉 be an MA. We show that ≈b is an
equivalence relation, by showing reflexivity, symmetry and transitivity.

Reflexivity holds, as the identity relation {(s, s) | s ∈ S} is a branching
bisimulation. This immediately follows by definition of branching bisimulation,
Lemma A.1 and the fact that ≡R is reflexive.

For symmetry, let s, t ∈ S and assume that s ≈b t. Then, there must exist
a branching bisimulation R ⊆ S × S such that (s, t) ∈ R. As every branching
bisimulation is an equivalence relation, also (t, s) ∈ R, and hence t ≈b s.

For transitivity, let (p, q) ∈ S and assume that p ≈b q as well as q ≈b r.
Then, using Proposition 3.32, there exists an equivalence relation R1 ⊆ S × S
such that (p, q) ∈ R1, and for all (s, t) ∈ R1 it holds that

s
α
=⇒R1

µ =⇒ ∃µ′ ∈ Distr(S) . t
α
=⇒R1

µ′ ∧ µ ≡R1
µ′.

Similarly, there exists an equivalence relation R2 ⊆ S × S such that (q, r) ∈ R2,
and for all (s, t) ∈ R2 it holds that

s
α
=⇒R2

µ =⇒ ∃µ′ ∈ Distr(S) . t
α
=⇒R2

µ′ ∧ µ ≡R2
µ′.

We define R3 = (R2 ◦ R1) ∪ (R1 ◦ R2), and let R be the transitive closure
of R3. We first prove that R is an equivalence relation by showing (1) reflexivity,
(2) symmetry, and (3) transitivity.

(1) As R1 are R2 are equivalence relations, they are reflexive; thus, for every
state s ∈ S it holds that (s, s) ∈ R1 and (s, s) ∈ R2. Therefore, also
(s, s) ∈ R2 ◦ R1 and thus (s, s) ∈ R.

2) First observe that when (x, z) ∈ R2 ◦R1, then there must be a state y ∈ S
such that (x, y) ∈ R1 and (y, z) ∈ R2, and therefore by symmetry of R1

and R2 also (y, x) ∈ R1 and (z, y) ∈ R2, and thus (z, x) ∈ R1 ◦ R2.
Now let (s, t) ∈ R. Then there is an integer n ≥ 2 such that there exists

a sequence of states s1, s2, . . . , sn such that s1 = s and sn = t, and for all
1 ≤ i < n it holds that (si, si+1) ∈ (R2 ◦ R1) or (si, si+1) ∈ (R1 ◦ R2).
By the observation above we can reverse the order of the states, obtaining
the sequence sn, sn−1, . . . , s1 such that still sn = t and s1 = s, and for all
1 ≤ i < n it holds that (si, si+1) ∈ (R2 ◦ R1) or (si, si+1) ∈ (R1 ◦ R2). To
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be precise, when (si, si+1) ∈ (R2 ◦ R1), then (si+1, si) ∈ (R1 ◦ R2), and
when (si, si+1) ∈ (R1 ◦ R2), then (si+1, si) ∈ (R2 ◦ R1). The sequence
obtained in this way proves that (t, s) ∈ R.

(3) By definition.

We now prove that p ≈b r, by showing that (p, r) ∈ R, and that for all (s, u) ∈ R

s −α→ µ =⇒ ∃µ′ ∈ Distr(S) . u
α
=⇒R µ′ ∧ µ ≡R µ′

As (p, q) ∈ R1 and (q, r) ∈ R2, it follows immediately that (p, r) ∈ R2 ◦ R1

and therefore indeed (p, r) ∈ R. We prove the second part by induction on the
number of transitive steps needed to include (s, u) in R.

Base case. Let (s, u) ∈ R because (s, u) ∈ R2 ◦ R1 (the case that (s, u) ∈ R
because (s, u) ∈ R1 ◦ R2 can be proven symmetrically). This implies
that there exists a state t such that (s, t) ∈ R1 and (t, u) ∈ R2. Let
s −α→ µ. Then, by definition of bisimulation we know that there exists a
µ′ ∈ Distr(S) such that t

α
=⇒R1 µ′ and µ ≡R1 µ′. By Lemma A.3 it follows

that t
α
=⇒R µ′, and since R ⊇ R1, we obtain µ ≡R µ′.

Note that R ⊇ R2 and L(p) = L(q) for every (p, q) ∈ R. The latter
follows from the fact that, if (p, q) ∈ R, there is a sequence of states
s1, s2, . . . , sn such that s1 = s and sn = t, and for all 1 ≤ i < n it holds
that (si, si+1) ∈ (R2 ◦ R1) or (si, si+1) ∈ (R1 ◦ R2). Since R1 and R2

only relate equally-labelled states, this immediately implies that also p
and q are equally labelled. Now, Lemma A.2 applies, and hence for all
(t, u) ∈ R2 it holds that

t
α
=⇒R µ′ =⇒ ∃µ′′ ∈ Distr(S) . u

α
=⇒R µ′′ ∧ µ′ ≡R µ′′.

We thus showed that s −α→ µ implies t
α
=⇒R µ′ (with µ ≡R µ′), and

that t
α
=⇒R µ′ implies u

α
=⇒R µ′′ (with µ′ ≡R µ′′). Therefore, it follows

that if s −α→ µ, indeed there exists a µ′′ ∈ Distr(S) such that u
α
=⇒R µ′′.

As ≡R is an equivalence relation, µ ≡R µ′′ follows by transitivity.

Inductive step. Assume that if (s, t) ∈ R by k transitive steps,

s −α→ µ =⇒ ∃µ′ ∈ Distr(S) . t
α
=⇒R µ′ ∧ µ ≡R µ′.

Now, let (s, u) ∈ R by k + 1 transitive steps. That is, there exists a t such
that (s, t) ∈ R by means of k transitive steps, and either (t, u) ∈ R2 ◦ R1

or (t, u) ∈ R1 ◦ R2. We then need to show that

s −α→ µ =⇒ ∃µ′′ ∈ Distr(S) . u
α
=⇒R µ′′ ∧ µ ≡R µ′′.

By the induction hypothesis we already know that s −α→ µ implies
t

α
=⇒R µ′ for some µ′ ≡R µ. Moreover, using the same reasoning as for

the base case, we know that t
a

=⇒R µ′ implies that u
a

=⇒R µ′′ for some
µ′′ ≡R µ. Therefore, by transitivity of ≡R the statement holds. �
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A.2 Proofs for Chapter 4

A.2.1 Proof of Proposition 4.18

Proposition 4.18. The target µ of every transition derived using the SOS-rule
PSum is a probability distribution over closed process terms.

Proof. For µ to be a probability distribution function over closed process terms,
it should hold that µ : S → [0, 1] such that

∑

s∈S µ(s) = 1, where the sample
space S consists of all process terms without free variables.

Note that µ is only defined to be nonzero for process terms p′ that can be
found by evaluating p[x := d] for some d ∈D. Since we assumed a(t)

∑
•

x:D f : p
to be a closed process term, the only variables in p that are allowed to be free
are variables from x. Hence, every process term p[x := d] is again closed. Let
P = {p[x := d] | d ∈D} be the set of these process terms. Now, indeed,

∑

p′∈P

µ(p′) =
∑

p′∈P

∑

d′∈D
p′=p[x:=d′]

f [x := d′]

=
∑

d′∈D

∑

p′∈P
p′=p[x:=d′]

f [x := d′]

=
∑

d′∈D

f [x := d′] = 1

In the first step we apply the definition of µ from Figure 4.5; in the second
we interchange the summand indices (which is allowed because f [x := d′] is
always non-negative); in the third we omit the second summation as for every
d′ ∈ D there is exactly one p′ ∈ P satisfying p′ = p[x := d′]; in the fourth
we use the fact that f is a real-valued expression yielding values in [0, 1] such
that

∑

d∈D f [x := d] = 1 (due to Definitions 4.10 and 4.16 on syntax and
well-formedness). �

A.2.2 Proof of Theorem 4.35

Lemma A.4. Let S be any set and R,R′ two equivalence relations over S × S
such that R ⊆ R′. Let [r]R′ ∈ S/R′ be an arbitrary equivalence class of R′.
Then, [r]R′ ∈ S/R′ can be partitioned into equivalence classes of R.

Proof. Let [p]R ∈ S/R be one of the equivalence classes of R. We show that
either [p]R ⊆ [r]R′ or [p]R ∩ [r]R′ = ∅. To see this, let s ∈ [p]R, so (s, p) ∈ R.
Since R ⊆ R′, this implies (s, p) ∈ R′. Now, we make a case distinction based
on whether or not p ∈ [r]R′ .

• Let p ∈ [r]R′ , and hence, (p, r) ∈ R′. Since (s, p) ∈ R′, by transitivity we
obtain (s, r) ∈ R′ and thus s ∈ [r]R′ .
• Let p 6∈ [r]R′ . If s ∈ [r]R′ , then (s, r) ∈ R′ and hence by transitivity also

(p, r) ∈ R′ and thus p ∈ [r]R′ . As this is a contradiction, s 6∈ [r]R′ .
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Hence, if p ∈ [r]R′ then every element of [p]R is in [r]R′ and thus [p]R ⊆ [r]R′ ,
and if p 6∈ [r]R′ then no element of [p]R is in [r]R′ and thus [p]R ∩ [r]R′ = ∅.
Since every equivalence class of R is either fully contained in [r]R′ or does not
overlap with it at all, [r]R′ indeed can be partitioned into equivalence classes
of R. �

We now show that derivation-preserving bisimulation is a congruence for all
prCRL operators. We allow prCRL process terms to contain free variables. In
that case, we require the bisimulation relation to be valid under all possible
valuations for these variables. For instance, d > 5⇒ p and d > 5 ∧ d > 3⇒ p
are clearly bisimilar for every value of d, but d > 5⇒ p and d > 3⇒ p are not
bisimilar if for example d is substituted by 4.

Theorem 4.35. Derivation-preserving bisimulation is a congruence for all op-
erators in prCRL.

Proof. Let p, p′, q, and q′ be prCRL process terms (possibly containing unbound
data variables) such that p ∼dp p′ and q ∼dp q′ for every valuation of their free
variables. We show that, for every such valuation and every D, c, a, t and f ,
also

p+ q ∼dp p′ + q′ (A.1)
∑

x:D

p ∼dp

∑

x:D

p′ (A.2)

c⇒ p ∼dp c⇒ p′ (A.3)

a(t)
∑

•
x:D

f : p ∼dp a(t)
∑

•
x:D

f : p′ (A.4)

Y (t) ∼dp Y ′(t) (A.5)

where Y (g : G) = p and Y ′(g : G) = p′ (assuming that no non-decodable
construct is introduced).

Let Rp and Rq be the derivation-preserving bisimulation relations relating p
and p′, and q and q′, respectively. Also, assume some arbitrary valuation for all
free variables of p, p′, q and q′.

For each of the statements above, we construct a relation R and show that it
is a derivation-preserving bisimulation relation. In each case, we first prove that
(a) R is a bisimulation relation relating the left-hand side and right-hand side of
the equation, and then that (b) it is derivation preserving.

(A.1). We choose R to be the symmetric, reflexive, transitive closure of the set

Rp ∪ Rq ∪ {(p+ q, p′ + q′)}

(a) Let p+ q −α→ µ. We show that p′ + q′ −α→ µ′ such that µ ≡R µ′. By the
operational semantics, either p −α→ µ or q −α→ µ. We assume the first possibility
without loss of generality. Since p ∼dp p′ (by the bisimulation relation Rp),
we know that p′ −α→ µ′ for some µ′ such that µ ≡Rp

µ′, and therefore, by the
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operational semantics, also p′ + q′ −α→ µ′. Since Rp ⊆ R, by Proposition 5.2.1
of [Sto02a] we obtain that µ ≡R µ′. The fact that transitions of p′ + q′ can be
mimicked by p+ q follows by symmetry.

For any other element (s, t) ∈ R, the required implications follow from the
assumption that Rp and Rq are bisimulation relations. Since R is the smallest
set containing Rp, Rq and (p + q, p′ + q′) such that (s, s) ∈ R, (s, t) ∈ R =⇒
(t, s) ∈ R and (s, t) ∈ R ∧ (t, u) ∈ R =⇒ (s, u) ∈ R, we can do induction over
the number of applications of these closure rules for (s, t) to be in R. The base
case, (s, t) ∈ Rp or (s, t) ∈ Rq, follows immediate from the fact that Rp and Rq

are bisimulation relations and Proposition 5.2.1 of [Sto02a]. Otherwise, (s, t) ∈ R
is due to reflexivity, symmetry or transitivity. For reflexivity, s = t, and they
trivially mimic each other. For symmetry, (t, s) ∈ R can mimic each other by the
induction hypothesis, and therefore (s, t) also satisfy the requirements because
of symmetry of mimicking. If (s, t) ∈ R since (s, u) ∈ R and (u, t) ∈ R, then by
the induction hypothesis any transition s −α→ µ can be mimicked by a transition
u −α→ µ′ such that µ ≡R µ′, which in turn can be mimicked by a transition
t −α→ µ′′ such that µ′ ≡R µ′′. By transitivity of ≡R, indeed µ ≡R µ′′.

(b) Let [r]R be any equivalence class of R, and λ an arbitrary rate. Also, let

X = {D ∈ ∆ | ∃r′ ∈ [r]R . p + q −
rate(λ)
−−−−→D 1r′}

X ′ = {D ∈ ∆ | ∃r′ ∈ [r]R . p′ + q′ −
rate(λ)
−−−−→D 1r′}

be the sets of all derivations from p + q and p′ + q′, respectively, with action
rate(λ) to a state in [r]R. We need to show that |X| = |X ′|. Note that |X| <∞
and |X ′| <∞ since infinite outgoing rates are prohibited.

Note that X can be partitioned into two sets: X = Xp ∪ Xq, where Xp

contains all derivations that start with NChoiceL (and hence correspond to
transitions of p), and Xq contains all derivations that start with NChoiceR
(corresponding to transitions of q). That is:

Xp = {D ∈ ∆ | ∃D′ ∈ ∆ . D = NChoiceL+D′ ∧ ∃r′ ∈ [r]R . p −
rate(λ)
−−−−→D′ 1r′}

Xq = {D ∈ ∆ | ∃D′ ∈ ∆ . D = NChoiceR+D′ ∧ ∃r′ ∈ [r]R . q −
rate(λ)
−−−−→D′ 1r′}

Similarly, we can partition X ′ into two sets X ′
p and X ′

q. Since every derivation
in Xp corresponds to exactly one derivation of p, it follows that the size of Xp is
given by

|Xp| = |{D ∈ ∆ | ∃r′ ∈ [r]R . p −
rate(λ)
−−−−→D 1r′}|

and similarly for Xq, X
′
p and X ′

q.

Since Rp ⊆ R, by Lemma A.4 we know that [r]R can be partitioned into
[p1]Rp

, [p2]Rp
, . . . , [pn]Rp

for some p1, p2, . . . pn. Therefore:

|Xp| =
n∑

i=1

|{D ∈ ∆ | ∃r′ ∈ [pi]Rp
. p −

rate(λ)
−−−−→D 1r′}|
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=

n∑

i=1

|{D ∈ ∆ | ∃r′ ∈ [pi]Rp
. p′ −

rate(λ)
−−−−→D 1r′}| = |X

′
p|

where the second equality is due to the fact that (p, p′) ∈ Rp and Rp is derivation
preserving. In the same way, we find that |Xq| = |X

′
q|, and hence |X| = |X ′|.

The fact that all other elements of R satisfy the derivation preservation
property follows from an easy inductive argument and the fact that Rp and Rq

are derivation preserving (in the same way as above for (a)).

(A.2). We choose R to be the symmetric, reflexive, and transitive closure of
the set

Rp ∪

{(
∑

x:D

p,
∑

x:D

p′

)}

(a) Let
∑

x:D p −α→ µ. Then, by the operational semantics, there is a d ∈D

such that p[x := d] −α→ µ. From the assumption that p ∼dp p′ for all valuations,
it immediately follows that p[x := d] ∼dp p′[x := d] for any d ∈ D, so if we
have p[x := d] −α→ µ, then also p′[x := d] −α→ µ′ and hence

∑

x:D p′ −α→ µ′ with
µ ≡Rp

µ′ and thus µ ≡R µ′ due to R ⊇ Rp and Proposition 5.2.1 of [Sto02a].
The fact that transitions of

∑

x:D p′ can be mimicked by
∑

x:D p follows by
symmetry. For all other elements of R, the required implications follow from the
assumption that Rp is a bisimulation relation as above.

(b) Let [r]R be any equivalence class of R, and λ an arbitrary rate. Also, let

X = {D ∈ ∆ | ∃r′ ∈ [r]R .
∑

x:D

p −
rate(λ)
−−−−→D 1r′}

X ′ = {D ∈ ∆ | ∃r′ ∈ [r]R .
∑

x:D

p −
rate(λ)
−−−−→D 1r′}

be the sets of all derivations from
∑

x:D p and
∑

x:D p′, respectively, with action
rate(λ) to a state in [r]R. We need to show that |X| = |X ′|. Again, neither X
nor X ′ can be infinite.

Note that X can be partitioned into as many sets as there are elements in
the set D: X =

⋃

d∈D Xd, where Xd contains all derivations that start with
NSum(d) (and hence correspond to transitions of p with d substituted for x).
That is:

Xd = {D ∈ ∆ | ∃D′ ∈ ∆ . D = NSum(d) +D′ ∧

∃r′ ∈ [r]R . p[x := d] −
rate(λ)
−−−−→D′ 1r′}

Similarly, we can partition X ′ into sets X ′
d. Since every derivation in Xd

corresponds precisely to one derivation of p[x := d], it follows that the size of
Xd is given by

|Xd| = |{D ∈ ∆ | ∃r′ ∈ [r]R . p[x := d] −
rate(λ)
−−−−→D 1r′}|
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and similarly for X ′
d.

Since Rp ⊆ R, by Lemma A.4 we know that [r]R can be partitioned into
[p1]Rp

, [p2]Rp
, . . . , [pn]Rp

for some p1, p2, . . . pn. Therefore:

|Xd| =
n∑

i=1

|{D ∈ ∆ | ∃r′ ∈ [pi]Rp
. p [x := d] −

rate(λ)
−−−−→D 1r′}|

=
n∑

i=1

|{D ∈ ∆ | ∃r′ ∈ [pi]Rp
. p′[x := d] −

rate(λ)
−−−−→D 1r′}| = |X

′
d|

where the second equality is due to the fact that (p, p′) ∈ Rp and Rp is derivation
preserving for every valuation. As this holds for all Xd, we obtain |X| = |X ′|.

The fact that all other elements of R satisfy the derivation preservation
property follows again from the fact that Rp is derivation preserving.

(A.3). We choose R to be the symmetric, reflexive, and transitive closure of
the set

Rp ∪ {(c⇒ p, c⇒ p′)}

(a) Let (c⇒ p) −α→ µ. By the operational semantics, this implies that c holds
for the given valuation and p −α→ µ. Now, since p ∼dp p′ (by the bisimulation
relation Rp), we know that p′ −α→ µ′, and therefore also (c⇒ p′) −α→ µ′, such
that µ ≡Rp

µ′. Since Rp ⊆ R, by Proposition 5.2.1 of [Sto02a] we obtain that
µ ≡R µ′. The fact that transitions of c⇒ p′ can be mimicked by c⇒ p follows
by symmetry. For all other elements of R, the required implications follow from
the assumption that Rp is a bisimulation relation, as above.

(b) If c does not hold for the given valuation, then both c⇒ p and c⇒ p′

have no derivations at all. If c does hold, the proof is analogous to the proof of
1(b) and 2(b).

(A.4). We choose R to be the symmetric, reflexive, and transitive closure of
the set

Rp ∪

{(

a(t)
∑

•
x:D

f : p, a(t)
∑

•
x:D

f : p′

)}

(a) Let (a(t)
∑
•

x:D f : p) −α→ µ. Then, by the operational semantics α = a(t),
and

∀d ∈D . µ(p[x := d]) =
∑

d′∈D
p[x:=d]=p[x:=d′]

f [x := d′]

Then, also (a(t)
∑
•

x:D f : p′) −α→ µ′, where α = a(t) and

∀d ∈D . µ′(p′[x := d]) =
∑

d′∈D
p′[x:=d]=p′[x:=d′]

f [x := d′]

From the assumption that p ∼dp p′ for all valuations (by the bisimulation
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relation Rp), it immediately follows that p[x := d] ∼dp p′[x := d] for any d ∈D,
so (p[x := d], p′[x := d]) ∈ Rp. Since µ and µ′ both assign probability f [x := d]
to these process terms, they assign equal probabilities to each equivalence class
of Rp; hence, µ ≡Rp

µ′ and thus µ ≡R µ′ due to R ⊇ Rp and Proposition 5.2.1
of [Sto02a]. (Note that for instance µ might have p[x := d] = p[x := d′] and
therefore assign probability f [x := d] + f [x := d′] to this term. However, even
if p′[x := d] 6= p′[x := d′] and therefore µ′ does not combine these probabilities,
still all terms are in the same equivalence class, and therefore everything still
matches.)

Again, the mimicking the other way around follows by symmetry. For all
other elements of R, the required implications follow from the assumption that
Rp is a bisimulation relation, as above.

(b) The proof is analogous to the proof of 1(b) and 2(b).

(A.5). We choose R to be the symmetric, reflexive, transitive closure of the set

Rp ∪ {(Y (t), Y ′(t)}

Recall that Y (g : G) = p, Y ′(g : G) = p′ and p ∼dp p′ for all valuations.

(a) Let Y (t) −α→ µ. Then, by the operational semantics, also p[x := t] −α→ µ.
From the assumption that p ∼dp p′ for all valuations, it immediately follows
that p[x := t] ∼dp p′[x := t]. Therefore, also p′[x := t] −α→ µ′ with µ ≡Rp

µ′ and
thus µ ≡R µ′ due to R ⊇ Rp and Proposition 5.2.1 of [Sto02a]. The fact that
transitions of Y ′(t) can be mimicked by Y (t) follows by symmetry. For all other
elements of R, the required implications follow from the assumption that Rp is
a bisimulation relation.

(b) The proof is analogous to the proof of 1(b) and 2(b). �

A.2.3 Proof of Theorem 4.36

The following lemma states that, if µ ≡R µ′, then also µf ≡Rf
µ′
f , where Rf is

the lifting of R over a bijective function f .

Lemma A.5. Let S, T be countable sets, µ, µ′ ∈ Distr(S), and R ⊆ S × S an
equivalence relation such that µ ≡R µ′. Given a bijective function f : S → T ,
the set

Rf = {(t, t′) ∈ T 2 | (f−1(t)), f−1(t′)) ∈ R}

is an equivalence relation and µf ≡Rf
µ′
f .

Proof. For any t ∈ T , we have (t, t) ∈ Rf since (f−1(t), f−1(t)) ∈ R due to
reflexivity of R; hence, Rf is also reflexive. For any (t, t′) ∈ Rf it holds that
(f−1(t), f−1(t′)) ∈ R, so by symmetry of R also (f−1(t′), f−1(t)) ∈ R and
hence (t′, t) ∈ Rf . Therefore, Rf is also symmetric. For any (t, t′) ∈ Rf

and (t′, t′′) ∈ Rf , we find (f−1(t), f−1(t′)) ∈ R and (f−1(t′), f−1(t′′)) ∈ R, so
(f−1(t), f−1(t′′)) ∈ R by transitivity of R, and hence also (t, t′′) ∈ Rf . Therefore,
Rf is also transitive.
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Now, let [t]Rf
be an arbitrary equivalence class of Rf , then

µf ([t]Rf
) { Def. of probability of sets }

=
∑

t′∈[t]Rf

µf (t
′) { Def. of lifting of distributions }

=
∑

t′∈[t]Rf

µ(f−1(t′)) { Disjointness of inverses }

= µ(
⋃

t′∈[t]Rf

{f−1(t′)}) { Def. of inverse }

= µ(
⋃

t′∈[t]Rf

{s ∈ S | f(s) = t′}) { Easy rewriting }

= µ({s ∈ S | f(s) ∈ [t]Rf
}) { See below }

=
∑

[s]R∈S/R
f(s)∈[t]Rf

µ([s]R)

To see why the final equality holds, we show that f(s) ∈ [t]Rf
if and only

if f(s′) ∈ [t]Rf
for every s′ ∈ [s]R (note that the ‘if’ part of this statement is

trivial, since s ∈ [s]R). Then, the total probability of all states s such that
f(s) ∈ [t]Rf

clearly corresponds to the total probability of all classes of states
for which at least one state has this property.

Let s ∈ S such that f(s) ∈ [t]Rf
, and let s′ ∈ [s]R. So, by definition of

equivalence classes, (s, s′) ∈ R. Hence, by definition of Rf also (f(s), f(s′)) ∈ Rf .
Since f(s) ∈ [t]Rf

, therefore by definition of equivalence classes (f(s), t) ∈ Rf .
Finally, by symmetry and transitivity of Rf we obtain (f(s′), t) ∈ Rf and thus
f(s′) ∈ [t]Rf

.
In exactly the same way as above, we can show that

µ′
f ([t]Rf

) =
∑

[s]R∈S/R
f(s)∈[t]Rf

µ′([s]R)

Now, since µ([s]R) = µ′([s]R) for every s ∈ S (by definition of ≡ and due to the
assumption µ ≡R µ′), we obtain µf ([t]Rf

) = µ′
f ([t]Rf

) and hence µf ≡Rf
µ′
f .�

Based on the encoding and decoding rules, we can prove the following results.
Note that the Lemma A.6 implies that dec and enc are bijective (when restricting
to decodable prCRL specifications).

Lemma A.6. Restricting to MAPA specifications without any rate-actions and
decodable prCRL specifications, the functions dec and enc are each others’ inverse.
That is,

dec ◦ enc = idm and enc ◦ dec = idp
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where idm is the identity function on MAPA process terms and idp is the identity
function on prCRL process terms.

Proof. We show that dec (enc (p)) = p for every MAPA process term p, by
induction on the structure of p. It can be shown similarly that enc (dec (p)) = p
for every prCRL term p (using the assumption that p is decodable).

Base case. Let p = Y (t). Then,

dec (enc (p)) = dec (enc (Y (t))) = dec (Y (t)) = Y (t) = p

Inductive case. Let dec (enc (p)) = p and dec (enc (q)) = q. Now:

dec (enc (c⇒ p)) { Def. of enc () }

= dec (c⇒ enc (p)) { Def. of dec () }

= c⇒ dec (enc (p)) { Induction hypothesis }

= c⇒ p

We can show in exactly the same way that

dec (enc (p+ q)) = p+ q

dec (enc (
∑

x:D p)) =
∑

x:D p

dec (enc (a(t)
∑
•

x:D f : p)) = a(t)
∑
•

x:D f : p

where for the last equation, we need the assumption that a 6= rate. Finally,

dec (enc ((λ) · p)) = dec (rate(λ)
∑

•
x:{∗}

1 : enc (p))

= (λ) · dec (enc (p)) = (λ) · p �

The following lemma states that enc is similar to a functional bisimulation (i.e.,
a bisimulation relation that is actually a function), except that it relates MAPA
process terms to prCRL process terms.

Lemma A.7. Let m be a MAPA process term. Then, for every action a 6= rate

and distribution µ,

m a−֒→ µ ⇐⇒ enc (m) −a→ µenc

Proof. Let m a−֒→ µ. We prove that enc (m) −a→ µenc by induction on the structure
of m. The reverse can be proven symmetrically, noting that dec indeed decodes
a transition like enc (m) −a→ µenc to an interactive transition if a 6= rate.
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Base case. Let m = b(t)
∑
•

x:D f : m′. Since m a−֒→ µ, by the SOS rules it must
hold that a = b(t) and

∀d ∈D . µ(m′[x := d]) =
∑

d′∈D
m′[x:=d]=m′[x:=d′]

f [x := d′]

Now, by definition of enc we have enc (m) = b(t)
∑
•

x:D f : enc (m′). Hence, by
the SOS rules for prCRL it holds that enc (m) −a→ µ′, where

∀d ∈D . µ′(enc (m′) [x := d]) =
∑

d′∈D

enc(m′)[x:=d]=enc(m′)[x:=d′]

f [x := d′]

Since the enc function does neither introduce nor remove variables, it follows
that, for every d′ ∈ D, enc (m′) [x := d] = enc (m′) [x := d′] holds if and only
if m′[x := d] = m′[x := d′] holds. Hence, the right-hand sides of the two equa-
tions coincide. Also, note that enc (m′) [x := d] = enc (m′[x := d]). Therefore
µ′(enc (m′′)) = µ(m′′) for every MAPA process term m′′. By definition, this
implies that µ′ = µenc.

Inductive case. Let m = m′ +m′′. Since m a−֒→ µ, by the SOS rules it must
hold that either m′ a−֒→ µ or m′′ a−֒→ µ. By induction, this implies that either
enc (m′) −a→ µenc or enc (m′′) −a→ µenc. Since enc (m) = enc (m′) + enc (m′′), the
SOS rules for prCRL imply that enc (m) −a→ µenc.

The cases where m = Y (t), m = c ⇒ m′ or m =
∑

x:D m′ are proven in
the same way. Note that m 6= (λ) ·m′, since such a process term cannot do an
interactive transition. �

Lemma A.8. Let m be a MAPA process term. Then, for every process term
m′, rate λ and Markovian derivation D,

m −λ→D m′ ⇐⇒ enc (m) −
rate(λ)
−−−−→D′ 1enc(m′)

where D′ is obtained from D by substituting PSum for MStep.

Proof. Let m −λ→D m′. We prove that enc (m) −
rate(λ)
−−−−→D′ 1enc(m′), by induction

on the structure of m. The reverse can be proven symmetrically.

Base case. Let m = (κ) ·m′. Since m −λ→D m′, by the SOS rules it must hold
that κ = λ and D = 〈MStep〉. Hence, enc (m) = rate(λ)

∑
•

x:{∗} 1 : enc (m′).

The derivation D′, corresponding to D, is 〈PSum〉. Note that, by the SOS
rules of prCRL and the fact that x does not occur in enc (m′) by definition of
enc, indeed enc (m) −

rate(λ)
−−−−→D′ 1enc(m′).

Inductive case. Let m = m1 + m2. Since m −λ→D m′, by the SOS rules it

must hold that either m1 −
λ→D1

m′ and D = 〈NChoiceL〉+D1 or m2 −
λ→D2

m′
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s α−֒→ µ

enc (s) −α→ µenc enc (t) −α→ ν

t α−֒→ νdecMAPA

prCRL

µ ≡R′ νdec

µenc ≡R ν

µ(dec ◦ enc) ≡R′ νdec
Lemma A.7

(enc (s) , enc (t)) ∈ R

Lemma A.7

Definition 3.26

Lemma A.5

Lemma A.6

Figure 1.2: Visualisation of the proof of Lemma A.9 part (1).

and D = 〈NChoiceR〉+D2. Assume the first (the proof for the other option
is symmetrical). By induction, this implies that enc (m1) −

rate(λ)
−−−−→D′

1
1enc(m′).

Since enc (m) = enc (m1) + enc (m2), the SOS rules for prCRL imply that
enc (m) −

rate(λ)
−−−−→D′′

1
1enc(m′), where D

′′
1 = 〈NChoiceL〉 + D′

1. Since we already
saw that D = 〈NChoiceL〉+D1, indeed D

′′
1 = D′.

The cases where m = Y (t), m = c⇒ m′ or m =
∑

x:D m′ are proven in the
same way. Note that m 6= b(t)

∑
•

x:D f : m′, since such a process term cannot do
a Markovian transition. �

Lemma A.9. Let P1, P2 be decodable prCRL specifications. Then,

P1 ∼dp P2 ⇒ dec (P1) ≈s dec (P2) .

Proof. Assume P1 ∼dp P2, and letM1 = 〈S, s01, A, −֒→, 〉 andM2 = 〈S, s02, A,
−֒→, 〉 be the MAs that represent the semantics of dec (P1) and dec (P2). Let R
be the derivation-preserving bisimulation relating P1 and P2.

Now, consider the bisimulation relation R′ over MAPA terms, given by
R′ = {(dec (p) , dec (q)) | (p, q) ∈ R}. It is easy to see that R′ is an equivalence
relation, since R is one. We now show that it is a bisimulation relation relating
M1 andM2, and therefore proving the result.

First, since the initial states of P1 and P2 are related by R, the initial states of
dec (P1) and dec (P2) are related by R′ by definition of dec. Second, let (s, t) ∈ R′

and assume that s −α→ µ. We show that t −α→ µ′ such that µ ≡R′ µ′. Note that
either (1) α ∈ A and s α−֒→ µ, or (2) α = χ(rate(s)), rate(s) > 0, µ = Ps and
there is no µ′ such that s τ−֒→ µ′. Also note that α 6= rate, by definition of dec.

(1) Let s α−֒→ µ for some α ∈ A such that α 6= rate. We need to show that t α−֒→ µ′

such that µ ≡R′ µ′. First note that, by Lemma A.7, we have enc (s) −α→ µenc. We
know that (s, t) ∈ R′, so (enc (s) , enc (t)) ∈ R. Since enc (s) −α→ µenc and R is a
bisimulation relation, this implies that enc (t) −α→ ν such that µenc ≡R ν. Then,
t α−֒→ νdec by Lemma A.7.

Now, note that R′ can be seen as Rdec as defined in Lemma A.5. Hence, by
this lemma µenc ≡R ν implies µ(dec ◦ enc) ≡R′ νdec. By Lemma A.6, this reduces
to µ ≡R′ νdec, which is what we wanted to show.

Figure 1.2 illustrates this part of the proof.
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(2) Let α = χ(rate(s)), rate(s) > 0, µ = Ps and let there be no µ′ such
that s τ−֒→ µ′. We need to show that t −α→ ν such that µ ≡R′ ν, i.e., that
(a) rate(t) = rate(s), that (b) Ps ≡R′ Pt and that (c) there is no µ′ such that
t τ−֒→ µ′.

For (a), note that

rate(s) =
∑

s′∈S

rate(s, s′) =
∑

s′∈S

∑

(s,λ,s′)∈ 

λ

by Definition 3.5, and that by the operational semantics, we have (s, λ, s′) ∈ 
if and only if MD(s, s′) 6= ∅ and λ =

∑

(λi,D)∈MD(s,s′) λi. Combining this, we
obtain

rate(s) =
∑

s′∈S

∑

(λi,D)∈MD(s,s′)

λi =
∑

(λi,D)∈MD(s)

λi

where MD(s) =
⋃

s′∈S MD(s, s′) = {(λi,D) ∈ R×∆ | ∃s′ ∈ S . s −λi−→D s′}. This
rewriting is valid since all sets MD(s, s′) are disjoint, because every Markovian
derivation D yields a single target state s′.

Now, let

MD′(enc (s)) = {(λi,D) ∈ R×∆ | ∃s′ ∈ S . enc (s) −
rate(λi)−−−−→D′ 1enc(s′)}

where D′ is again obtained from D by substituting PSum for MStep. By
Lemma A.8, it follows that MD(s) = MD′(enc (s)). Hence, enc (s) has the same
outgoing transitions as s, except that the derivations are slightly different and
that the target states are encoded too.

Similarly, rate(t) =
∑

(λi,D)∈MD(t) λi with MD(t) = {(λi,D) ∈ R×∆ | ∃t′ ∈

S . t −λi−→D t′}, and MD(t) = MD′(enc (t)) = {(λi,D) ∈ R × ∆ | ∃t′ ∈ S .

enc (t) −
rate(λi)−−−−→D′ 1enc(t′)}.

To show that rate(s) = rate(t), it therefore remains to show that

∑

(λi,D)∈MD′(enc(s))

λi =
∑

(λi,D)∈MD′(enc(t))

λi

To see why this is the case, first note that, since the bisimulation relation R
is derivation-preserving, by definition we know that for every (p, q) ∈ R, every
equivalence equivalence class [r]R and every rate λ, it holds that

|{D ∈ ∆ | ∃r′ ∈ [r]R . p −
rate(λ)
−−−−→D 1r′}| = |{D ∈ ∆ | ∃r′ ∈ [r]R . q −

rate(λ)
−−−−→D 1r′}|

Hence, as (enc (s) , enc (t)) ∈ R, this also holds for enc (s) , enc (t), and therefore

|{D ∈ ∆ | ∃enc (r′) ∈ [enc (r)]R . enc (s) −
rate(λi)−−−−→D 1enc(r′)}| =

|{D ∈ ∆ | ∃enc (r′) ∈ [enc (r)]R . enc (t) −
rate(λi)−−−−→D 1enc(r′)}|
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Lemma A.8

Figure 1.3: Visualisation of the proof of Lemma A.9 part (2).

for every action rate(λi) and every equivalence class [enc (r)]R.

Note that the size of each of these sets is equal to the total number of
derivations from enc (s) and enc (t) with action rate(λi) to a certain equivalence
class [enc (r)]R. This equality immediately implies that, for every action rate(λi),
the total number of rate(λi)-derivations from enc (s) and enc (t) is also equal.
Clearly, if there are as many rate(λi)-derivations from enc (s) and enc (t) for
every rate(λi), then by definition

∑

(λi,D)∈MD′(enc(s))

λi =
∑

(λi,D)∈MD′(enc(t))

λi

which is what we needed to show.

Figure 1.3 illustrates this part of the proof, and can be helpful for next part
as well.

For (b), note that Ps(s
′) = rate(s,s′)

rate(s) and Pt(s
′) = rate(t,s′)

rate(t) . To show Ps ≡R′ Pt, we

need to prove that Ps([p]R′) = Pt([p]R′) for every equivalence class [p]R′ ∈ S/R′.

Let [p]R′ ∈ S/R′, then

Ps([p]R′) =
∑

p′∈[p]R′

Ps(p
′) =

∑

p′∈[p]R′

rate(s, p′)

rate(s)
=

∑

p′∈[p]R′
rate(s, p′)

rate(s)

Similarly, Pt([p]R′) =

∑
p′∈[p]

R′
rate(t,p′)

rate(t) . Since we already showed in part (b) that

rate(s) = rate(t), it remains to show that the numerators of these two fractions
coincide.

As above, we can derive

∑

p′∈[p]R′

rate(s, p′) =
∑

p′∈[p]R′

∑

(λi,D)∈MD(s,p′)

λi =
∑

(λi,D)∈MD(s,[p]R′ )

λi

where MD(s, [p]R′) = {(λi,D) ∈ R × ∆ | ∃s′ ∈ [p]R′ . s −λi−→D s′}. Using
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Lemma A.8 we find that MD(s, [p]R′) = MD′(enc (s) , [enc (p)]R), where

MD′(enc (s) , [enc (p)]R)

= {(λi,D) ∈ R×∆ | ∃enc (p′) ∈ [enc (p)]R . enc (s) −
rate(λi)−−−−→D′ 1enc(p′)}

Similar derivations can be made for t, so it remains to show that

∑

(λi,D)∈MD′(enc(s),[enc(p)]R)

λi =
∑

(λi,D)∈MD′(enc(t),[enc(p)]R)

λi

Just as in part (b), by assumption we have

|{D ∈ ∆ | ∃enc (p′) ∈ [enc (p)]R . enc (s) −
rate(λi)−−−−→D 1enc(p′)}| =

|{D ∈ ∆ | ∃enc (p′) ∈ [enc (p)]R . enc (t) −
rate(λi)−−−−→D 1enc(p′)}|

for every action rate(λi).

Note again that the size of each of these sets is equal to the total number of
derivations from enc (s) and enc (t) with action rate(λi) to a certain equivalence
class [enc (p)]R. Hence, the fact that these two sets are of equal size implies that
every transition enc (s) −

rate(λi)−−−−→D 1enc(s′) with enc (s′) ∈ [enc (p)]R corresponds
one-to-one to a transition enc (t) −

rate(λi)−−−−→D′ 1enc(t′) such that enc (t′) ∈ [enc (p)]R.

This immediately implies that, for every action rate(λi), the total number of
rate(λi)-derivations to [enc (p)]R from enc (s) and enc (t) is also equal. Therefore,
by definition

∑

(λi,D)∈MD′(enc(s),[enc(p)]R)

λi =
∑

(λi,D)∈MD′(enc(t),[enc(p)]R)

λi

which is what we needed to show.

For (c), note that (enc (s) , enc (t)) ∈ R since (s, t) ∈ R′. As there is no τ -
transition from s, by Lemma A.7 there is also no τ -transition from enc (s).
Since R is a bisimulation relation, also enc (t) does not have a τ -transition, and
applying Lemma A.7 again also t does not have a τ -transition. �

Theorem 4.36. Let f : prCRL→ prCRL be a function such that f(P ) ∼dp P
for every prCRL specification P , and such that if P is decodable, then so is f(P ).
Then, dec (f(enc (M))) ≈s M for every MAPA specification M without any
actions labelled by rate.

Proof. Let M be an arbitrary MAPA specification without any rate action. Since
f(P ) ∼dp P for every prCRL specification P , also f(enc (M)) ∼dp enc (M). Ad-
ditionally, since enc (M) is decodable by construction, by the assumption on f also
f(enc (M)) is. Lemma A.9 therefore yields dec (f(enc (M))) ≈s dec (enc (M)).
Moreover, M = dec (enc (M)) by Lemma A.6, and thus also M ≈s dec (enc (M)).
By transitivity of strong bisimulation, the result follows. �
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A.2.4 Proof of Theorem 4.45

Lemma A.10. Algorithm 1 terminates for every finite specification P .

Proof. The algorithm terminates when toTransform eventually becomes empty.
Note that every iteration removes exactly one element from toTransform. So, if
the total number of additions to toTransform is finite (and the call to Algorithm 2
never goes into an infinite recursion), the algorithm will terminate.

The elements that are added to toTransform are of the form X ′
i(pars) = pi,

where pi ∈ subterms(P ) (recall that subterms were introduced in Definition 4.52).
Since P has a finite set of equations with finite right-hand sides, there exists
only a finite number of such pi. Moreover, every process equation X ′

i(pars) = pi
that is added to toTransform is also added to bindings. This makes sure that
no process equation X ′

k(pars) = pi is ever added to toTransform again, as can
be observed from line 3 of Algorithm 2. Hence, the total number of possible
additions to toTransform is finite.

The fact that Algorithm 2 always terminates relies on not allowing specifica-
tions with unguarded recursion. After all, the base case of Algorithm 2 is the
action prefix. Therefore, when every recursion in a specification is guarded at
some point by an action prefix, this base case is always reached eventually. �

Lemma A.11. Let P = (E,X1(v)) be a decodable input prCRL specification
for Algorithm 1 (having unique variable names), and let v′ be the computed new
initial vector. Then, before and after an arbitrary iteration of the algorithm’s
while loop,

(E ∪ done ∪ toTransform, X ′
1(v

′)) ∼dp P

and (E ∪ done ∪ toTransform, X ′
1(v

′)) is decodable.

Proof. The fact that (E ∪ done ∪ toTransform, X ′
1(v

′)) stays decodable is
immediate from the observation that the algorithm uses the process terms
from P (which is assumed to be decodable) and never changes or introduces any
new probabilistic sums. Hence, from now on we only focus on the ∼dp part of
the lemma.

For brevity, in this proof we write ‘bisimilar’ if we actually mean ‘derivation-
preserving bisimilar for all valuations’ (since there may be unbound variables).
Also, the notation p ∼dp q will be used for this.

We prove that (E ∪ done ∪ toTransform, X ′
1(v

′)) ∼dp P before and after an
arbitrary iteration of the algorithm’s while loop, by induction on the number of
iterations that have already been performed. We let

E = {X1(x : D) = p1, . . . , Xn(xn : Dn) = pn}

and hence we have

P = ({X1(x : D) = p1, . . . , Xn(xn : Dn) = pn}, X1(v))
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Base case. Before the first iteration, the parameters of the new processes are
determined. Every process will have the same parameters: x : D,x

′ : D′.
This is the union of all process variables of the original processes, extended with a
parameter for every nondeterministic or probabilistic sum binding a variable that
is used later on. Also, the new initial state vector v′ is computed by taking the
original initial vector v, and appending dummy values for all added parameters.
Furthermore, done is set to ∅ and toTransform to {X ′

1(x : D,x
′ : D′) = p1}.

Clearly, X ′
1(v

′) is identical to X1(v), except that it has more global variables
(without overlap, as we assumed specifications to have unique variable names).
However, these additional global variables are not used in p1, otherwise they
would be free in X1(x : D) = p1 (which is not allowed by Definition 4.16).
Therefore, (E ∪ done ∪ toTransform, X ′

1(v
′)) and P are obviously bisimilar (by

the smallest equivalence relation that relates X1(v) to X ′
1(v

′) and contains the
identity relation).

Since the additional unused variables do not affect the possible derivations
in any way, this bisimulation is derivation preserving.

Inductive case. Now assume that k ≥ 0 iterations have passed. Without loss of
generality, assume that each time a process (X ′

i(pars) = pi) ∈ toTransform had
to be chosen, it was the one with the smallest i. Then, after these k iterations,

done = {X ′
1(x : D,x

′ : D′) = p′1, . . . , X
′
k(x : D,x

′ : D′) = p′k}

Also,

toTransform = {X ′
k+1(x : D,x

′ : D′) = p′k+1, . . . , X
′
l(x : D,x

′ : D′) = p′l}

for some l ≥ k. We have (E ∪ done ∪ toTransform, X ′
1(v

′)) ∼dp P by the
induction hypothesis.

We prove that after k + 1 iterations, (E ∪ done ∪ toTransform, X ′
1(v

′)) is
still derivation-preserving bisimilar to P . During iteration k + 1 three things
happen:

1. The process equation X ′
k+1(x : D,x

′ : D′) = p′k+1 is removed from
toTransform;

2. An equation X ′
k+1(x : D,x

′ : D′) = p′′k+1 is added to done;

3. potentially, one or more equations of the form

X ′
l+1(x : D,x

′ : D′) = p′l+1, . . . , X
′
m(x : D,x

′ : D′) = p′m

are added to toTransform.

As the other equations in E ∪ done ∪ toTransform do not change, The-
orem 4.35 implies that (E ∪ done ∪ toTransform, X ′

1(v
′)) ∼dp P still holds if

p′k+1 ∼dp p′′k+1. We show this by induction on the number of recursive calls
to Algorithm 2 (which depends on the structure of p′k+1). Since unguarded
recursion is not allowed by our well-formedness criteria, indeed every process
term needs only a finite number of recursive calls.



A.2. Proofs for Chapter 4 261

The base case is when Algorithm 2 terminates without any recursive calls;
this is when p′k+1 = a(t)

∑
•

x:D f : q. We now make a case distinction based on
whether there already is a process equation in either done or toTransform whose
right-hand side is an IRF corresponding to the normal form of q (which is just q
when q is not a process instantiation, otherwise it is the right-hand side of the
process it instantiates), as indicated by the variable bindings.

Case 1a. There does not already exist a process equation X ′
j(pars) = q′ in

bindings such that q′ is the normal form of q.

A new process equation X ′
l+1(pars) = q′ is added to toTransform via line 6

of Algorithm 2, and p′′k+1 = a(t)
∑
•

x:D f : X ′
l+1(actualPars).

When q was not a process instantiation, the actual parameters for X ′
l+1

are just the unchanged global variables, with those that are not used in
q reset (line 4 of Algorithm 3). Since (by definition of the normal form)
the right-hand side of X ′

l+1 is identical to q and actualPars takes care
that all data parameters keep the same value, clearly X ′

l+1(actualPars) is
derivation-preserving bisimilar to q: every derivation D of q corresponds to
the derivation Inst+D of X ′

l+1(actualPars). Therefore, by Theorem 4.35
indeed also p′′k+1 ∼dp p′k+1.

When q = Y (t1, t2, . . . , tn), there should occur some substitutions to
ascertain that X ′

l+1(actualPars) is bisimilar to q. Since we know that
X ′

l+1(actualPars) = q′, with q′ the right-hand side of Y , the actual para-
meters to be provided to X ′

l+1 should include t1, t2, . . . , tn for the global
variables of X ′

l+1 that correspond to the original global variables of Y .
All other global variables can be reset, as they cannot be used by Y
anyway. This indeed happens in line 2 of Algorithm 3, so all behaviours
of q are present in X ′

l+1(actualPars) are vice versa, and all derivations
of q map one-to-one to the derivations of X ′

l+1(actualPars). So, we find
that q ∼dp X ′

l+1(actualPars), and therefore, by Theorem 4.35, indeed also
p′′k+1 ∼dp p′k+1.

Case 1b. There exists a process equation X ′
j(pars) = q′ in bindings such that

q′ is the normal form of q.

We obtain
p′′k+1 = a(t)

∑

•
x:D

f : X ′
j(actualPars)

from line 4 of Algorithm 2. By Theorem 4.35, we only need to show that q
is derivation-preserving bisimilar to X ′

j(actualPars).
Note that the fact that X ′

j(pars) = q′ is in bindings implies that at
some point X ′

j(pars) = q′ was in toTransform. In case it was already
transformed in an earlier iteration there is now a process X ′

j(pars) = q′′

in done such that q′′ ∼dp q′ (by induction). Otherwise, X ′
j(pars) = q′

is still in toTransform. In both cases, done ∪ toTransform ∪ P contains
a process X ′

j(pars) = q′′ such that q′′ ∼dp q′, and therefore it is correct
to take p′′k+1 = a(t)

∑
•

x:D f : X ′
j(actualPars). The reasoning to see that
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indeed p′′k+1 ∼dp p′k+1 then only depends on the choice of actualPars, and
is the same as for Case 1a.

Now, we assume that Algorithm 2 functions correctly (i.e., provides a
derivation-preserving bisimilar result) for all process terms that require k or less
recursive calls. Let q1 and q2 be two such process terms, for which Algorithm 2
provided the bisimilar process terms p′′′k+1 and p′′′′k+1 in k steps. Also, assume
that p′k+1 yields k + 1 recursive calls. We prove that p′′k+1 (as obtained from
Algorithm 2) is bisimilar to p′k+1 by means of a case distinction over the possible
structures of p′k+1. (Note that p′k+1 cannot be an action prefix, since that would
not require any recursive calls.)

Case 2. p′k+1 = c⇒ q1.

Algorithm 2 yields p′′k+1 = c⇒ p′′′k+1, which according to Theorem 4.35 is
bisimilar to p′k+1, since q1 ∼dp p′′′k+1.

Case 3. p′k+1 = q1 + q2.

Algorithm 2 yields p′′k+1 = p′′′k+1 + p′′′′k+1, which according to Theorem 4.35
is bisimilar to p′k+1, since q1 ∼dp p′′′k+1 and q2 ∼dp p′′′′k+1.

Case 4. p′k+1 = Y (t), where we assume that Y (x : D) = q1.

Algorithm 2 yields p′′k+1 = p′′′k+1, with x substituted by t, which is bisimilar
to p′k+1 (as it precisely follows the SOS rule Inst). To see that the
bisimulation preserves derivations, note that every derivation D of p′′′k+1

corresponds one-to-one to a derivation Inst+D of p′k+1.

Case 5. p′k+1 =
∑

x:D q1.

In this case, Algorithm 2 yields p′′k+1 =
∑

x:D p′′′k+1, which according to
Theorem 4.35 is bisimilar to p′k+1, since q1 ∼dp p′′′k+1. �

Since in all cases the process term p′′k+1 obtained from Algorithm 2 is derivation-
preserving bisimilar to p′k+1 for all valuations, the lemma holds.

Theorem 4.45. Let P be a decodable prCRL specification such that all variables
are named uniquely. Given this input, Algorithm 1 terminates and provides a
specification P ′ such that P ′ ∼dp P , P ′ is in IRF and P ′ is decodable.

Proof. Let P = (E,X1(v)) be an arbitrary input prCRL specification for Al-
gorithm 1 (having unique variable names), and let v′ be the computed new
initial vector. Lemma A.10 already provided termination, and Lemma A.11
provided the invariant that (E ∪ done ∪ toTransform, X ′

1(v
′)) ∼dp P and that

(E ∪ done ∪ toTransform, X ′
1(v

′)) is decodable. As at the end of the algorithm
only the equations in done are returned, it remains to prove that upon ter-
mination X ′

1(v
′) in done does not depend on any of the process equations in

E ∪ toTransform, and that done is in IRF.
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First of all, note that upon termination toTransform = ∅ by the condition of
the while loop. Moreover, note that the processes that are added to done all have
a right-hand side determined by Algorithm 2, which only produces process terms
that refer to processes in done or toTransform (in line 4 and line 6). Therefore,
X ′

1(v
′) in done indeed can only depend on process equations in done.

Finally, to show that done is indeed in IRF, we need to prove that all
probabilistic sums immediately go to a process instantiation, and that process
instantiations do not occur in any other way. This is immediately clear from
Algorithm 2, as process instantiations are only constructed in line 4 and line 6;
there, they indeed are always preceded by a probabilistic sum. Moreover,
probabilistic sums are also only constructed by these lines, and are, as required,
always succeeded by a process instantiation. Finally, all processes clearly have the
same list of global variables (because they are created on line 10 on Algorithm 1
using pars, and pars never changes). �

A.2.5 Proof of Theorem 4.48

Theorem 4.48. Let P ′ be a decodable specification in IRF without a variable
pc, and let the output of Algorithm 4 applied to P ′ be the specification X. Then,
P ′ ∼dp X and X is decodable.

Let Y be like X, except that for each summand all nondeterministic sums have
been moved to the beginning while substituting their variables by fresh names,
and all separate nondeterministic sums and separate conditions have been merged
(using vectors and conjunctions, respectively). Then, Y is an LPPE, Y ∼dp X
and Y is decodable.

Proof. The fact that X and Y stay decodable is immediate from the observation
that the algorithm uses the process terms from P ′ (which is assumed to be
decodable) and never changes or introduces any new probabilistic sums. Hence,
from now on we only focus on the ∼dp part of the theorem.

Algorithm 4 transforms a specification

P ′ = ({X ′
1(x : D) = p′1, . . . , X

′
k(x : D) = p′k}, X

′
1(v))

to an LPPE
X = ({X(pc : {1, . . . , k},x : D)}, X(1,v))

by constructing one or more summands for X for every process in P ′. Basically,
the algorithm just introduces a program counter pc to keep track of the process
that is currently active. That is, instead of starting in X ′

1(v), the system will
start in X(1,v). Moreover, instead of advancing to X ′

j(v), the system will
advance to X(j,v).

The bisimulation relation R to prove the theorem is the smallest equivalence
relation containing

R = {(X ′
i(u), X(i,u)) | 1 ≤ i ≤ k,u ∈D}

By definition the initial states are related: (X ′
1(v), X(1,v)) ∈ R. We addi-
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tionally need to prove that

X ′
i(u) −

α→ µ =⇒ ∃µ′ . X(i,u) −α→ µ′ ∧ µ ≡R µ′

and vice versa, for all 1 ≤ i ≤ k and u ∈D, and that these pairs (X ′
i(u), X(i,u))

have the same number of rate(λ)-transitions to each equivalence class. We do
so by assuming an arbitrary X ′

l(u), and showing that each derivation (and
hence each transition) of X ′

l(u) maps one-to-one to a derivation of X(l,u), by
induction over the structure of X ′

l(x : D).
The base case is X ′

l(x : D) = a(t)
∑
•

y:E f : X ′
j(t

′
1, . . . , t

′
k). For this process,

Algorithm 4 constructs the summand pc = l⇒ a(t)
∑
•

y:E f : X(j, t′1, . . . , t
′
k). As

every summand constructed by the algorithm contains a condition pc = i, and
the summands produced for X ′

l(x : D) are the only ones producing a summand
with i = l (all others require pc to have a different value), it follows that X ′

l(u)
and X(l,u) have precisely the same derivations, except that each target state
X ′

j(u
′) of X ′

l(u) is mimicked by X(l,u) using a target state X(j,u′). Since
these are all R-related, indeed X ′

l(u) and X(l,u) have the same derivations (and
hence transitions) modulo R.

Now assume that X ′
l(x : D) = c⇒ q. By induction, X ′′

l (x : D) = q would
result in the construction of one or more summands such that X ′′

l (u) and X(l,u)
have the same derivations. For X ′

l(x : D) the algorithm takes those summands,
and adds the condition c to all of them. Therefore, X ′

l(u) and X(l,u) also have
the same derivations (and hence transitions). Similar arguments can be used for
X ′

l(x : D) = q1 + q2 or X ′
l(x : D) =

∑

x:D q. Hence, P ′ ∼dp X.
Now, let Y be equal to X, except that within each summand all nondetermin-

istic sums have been moved to the beginning while substituting their variables
by fresh names, and all separate nondeterministic sums and separate conditions
have been merged (using vectors and conjunctions, respectively).

To see that Y is an LPPE, first observe that X already was a single process
equation consisting of a set of summands. Each of these contains a number of
nondeterministic sums and conditions, followed by a probabilistic sum. Further-
more, each probabilistic sum is indeed followed by a process instantiation, as
can be seen from line 6 of Algorithm 4.

The only discrepancy for X to be an LPPE is that the nondeterministic sums
and the conditions are not yet necessarily in the right order, and there may be
several of them. For instance, we may have something like

d > 0⇒
∑

d:D1

e > 0⇒
∑

f :D2

act(d).X(d, f)

However, since the nondeterministic sums and conditions are swapped in Y such
that all nondeterministic sums precede all conditions, and since conditions are
merged using conjunctions, and summations using vectors, Y is an LPPE. In
case of the example before, we obtain

∑

(d′,f):D1×D2

d > 0 ∧ e > 0⇒ act(d′).X(d′, f)
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Note that, indeed, some renaming had to be done such that Y ∼dp X. After all,
by renaming the summation variables, we can rely on the obvious equality of the
process terms c⇒

∑

d:D p and
∑

d:D c⇒ p, given that d is not a free variable in
c. Thus, swapping the conditions and nondeterministic sums this way does not
modify the process’ semantics in any way. Also, it is easy to see from the SOS
rules in Table 4.5 that merging nondeterministic sums and conditions does not
influence the transitions or the number of rate(λ)-derivations of the process in
any way. Therefore, indeed Y ∼dp X. �

A.2.6 Proof of Proposition 4.51

Proposition 4.51. Let P be a prCRL specification such that size(P ) = n.
Then, the worst-case time complexity of linearising P is O(n3). The worst-case
size of the resulting LPPE is in O(n2).

Proof. Let P = (E, I) be a specification such that size(P ) = n. First of all, note
that

∣
∣pars

∣
∣ ≤

∑

(Xi(xi:Di)=pi)∈E

|xi|+
∣
∣subterms′(P )

∣
∣ ≤ n (A.6)

after the initialisation of Algorithm 1, where |pars| denotes the numbers of new
global variables and subterms′(P ) denotes the multiset containing all subterms
of P (counting a process term that occurs twice as two subterms, and including
nondeterministic and probabilistic choices over a vector of k variables k times).
When mentioning the subterms of P in this proof, we will be referring to this
multiset (for a formal definition of subterms, see Definition 4.52 on page 95).

The first inequality follows from the fact that pars is defined to be the
sequence of all xi appended by all local variables of P (that are syntactically
used), and the observation that there are at most as many local variables as
there are subterms. The second inequality follows from the definition of size and
the observation that size(pi) counts the number of subterms of p plus the size of
their expressions.

Time complexity. We first determine the worst-case time complexity of Al-
gorithm 1. As the function transform is called at most once for every subterm
of P , it follows from Equation (A.6) that the number of times this happens
is in O(n). The time complexity of every such call is governed by the call to
normalForm.

The function normalForm checks for each global variable in pars whether
or not it can be reset; from Equation (A.6) we know that the number of such
variables is in O(n). To check whether a global variable can be reset given
a process term p, we have to examine every expression in p; as the size of
the expressions is accounted for by n, this is also in O(n). So, the worst-case
time complexity of normalForm is in O(n2). Therefore, the worst-case time
complexity of Algorithm 1 is in O(n3).

As the transformation from IRF to LPPE by Algorithm 4 is easily seen to
be in O(n), we find that, in total, linearisation has a worst-case time complexity
in O(n3).
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LPPE size complexity. Every summand of the LPPE X that is constructed has
a size in O(n). After all, each contains a process instantiation with an expression
for every global variable in pars, and we already saw that the number of them
is in O(n). Furthermore, the number of summands is bound from above by
the number of subterms of P , so this is in O(n). Therefore, the size of X is in
O(n2). �

A.2.7 Proof of Proposition 4.56

Proposition 4.56. For all v ∈ G,v′ ∈ G′, it holds that

Z(v,v′) ≈iso X(v) ||Y (v′)

Proof. The only processes an MLPE Z(v,v′) can become, are of the form
Z(v̂, v̂′), and the only processes a parallel composition X(v) ||Y (v′) can become,
are of the form X(v̂) ||Y (v̂′). Therefore, the isomorphism h needed to prove the
proposition is as follows:

h(X(v) ||Y (v′)) = Z(v,v′) and h(Z(v,v′)) = X(v) ||Y (v′)

for all v ∈ G,v′ ∈ G′, and h(p) = p for every process term p of a different form.
Clearly, h is bijective. We will now show that indeed X(v) ||Y (v′) −α→ µ if and
only if Z(v,v′) −α→ µh. We do so by showing that

X(v) ||Y (v′) a(q)−֒−−→ µ if and only if Z(v,v′) a(q)−֒−−→ µh

and

X(v) ||Y (v′) λ
 X(v̂′) ||Y (v̂′) if and only if Z(v,v′) λ

 µ(X(v̂′) ||Y (v̂′))

Let v ∈ G and v′ ∈ G′ be arbitrary global variables vectors for X and Y . Then,
by the operational semantics of parallel MAPA, X(v) ||Y (v′) a(q)−֒−−→ µ is enabled
if and only if at least one of the following three conditions holds.

(1) X(v) a(q)−֒−−→ µ′ ∧ ∀v̂ ∈ G . µ(X(v̂) ||Y (v′)) = µ′(v̂)

(2) Y (v′) a(q)−֒−−→ µ′ ∧ ∀v̂′ ∈ G′ . µ(X(v) ||Y (v̂′)) = µ′(v̂′)

(3) X(v) a′(q)−֒−−→ µ′ ∧ Y (v′) a′′(q)−֒−−−→ µ′′ ∧ γ(a′, a′′) = a ∧

∀v̂ ∈ G, v̂′ ∈ G′ . µ(X(v̂) ||Y (v̂′)) = µ′(v̂) · µ′′(v̂′)

It immediately follows from the construction of Z that Z(v,v′) a(q)−֒−−→ µh is
enabled under exactly the same conditions, as condition (1) is covered by the
first set of summands of Z, condition (2) is covered by the second set of summands
of Z, and condition (3) is covered by the third set of summands of Z.

We now show that X(v) ||Y (v′) λ
 X(v̂) ||Y (v̂′) if and only if Z(v,v′) λ

 

h(X(v̂) ||Y (v̂′)), by making a case distinction between (1) v̂ = v and v̂′ = v′,
(2) v̂ 6= v and v̂′ = v′, (3) v̂ = v and v̂′ 6= v′, and (4) v̂ 6= v and v̂′ 6= v′.

(1) If v̂ = v and v̂′ = v′, then by the operational semantics a transition
X(v) ||Y (v′) λ

 X(v̂) ||Y (v̂′) is enabled if λ is the sum of all rates λi
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such that there is a derivation X(v) −λi−→D X(v) or Y (v′) −λi−→D Y (v′). By
construction of Z, it follows immediately that Z(v,v′) has precisely the
same number of derivations with the same rates to go to Z(v,v′), via its
fourth and fifth set of summands. Hence, Z(v,v′) λ

 Z(v,v′) is enabled
under exactly the same conditions as X(v) ||Y (v′) λ

 X(v̂) ||Y (v̂′). Since
Z(v,v′) = h(X(v) ||Y (v′)) = h(X(v̂) ||Y (v̂′)), this completes the proof.

(2) If v̂ 6= v and v̂′ = v′, then by the operational semantics a transition
X(v) ||Y (v′) λ

 X(v̂) ||Y (v̂′) is enabled if λ is the sum of all rates λi such
that there is a derivation X(v) −λi−→D X(v̂). By construction of Z, it follows
immediately that Z(v,v′) has precisely the same number of derivations
with the same rates to go to Z(v̂,v′), via its fourth set of summands.
Hence, Z(v,v′) λ

 Z(v̂,v′) is enabled under exactly the same conditions
as X(v) ||Y (v′) λ

 X(v̂) ||Y (v̂′). Since Z(v̂,v′) = h(X(v̂) ||Y (v′)) =
h(X(v̂) ||Y (v̂′)), this completes the proof.

(3) Symmetric to the previous case.
(4) It immediately follows from the operational semantics and the construction

of Z that neither X(v) ||Y (v′) nor Z(v,v′) has any Markovian transitions
that change both v and v′. So, if v̂ 6= v and v̂′ 6= v′, then trivially
X(v) ||Y (v′) λ

 X(v̂) ||Y (v̂′) if and only if Z(v,v′) λ
 h(X(v̂) ||Y (v̂′)).�

A.2.8 Proof of Proposition 4.59

Proposition 4.59. For all v ∈ G, U(v) ≈iso τH(X(v)), V (v) ≈iso ρR(X(v)),
and W (v) ≈iso ∂E(X(v)).

Proof. We will prove that U(v) ≈iso τH(X(v)) for all v ∈ G; the other two
statements are proven similarly.

The only processes an MLPE X(v) can become are of the form X(v′).
Moreover, as hiding does not change the process structure, the only processes
that τH(X(v)) can become, are processes of the form τH(X(v′)). Therefore, the
isomorphism h needed to prove the proposition is easy: for all v ∈ G, we define
h(τH(X(v))) = U(v) and h(U(v)) = τH(X(v)), and h(p) = p for every p of a
different form. Clearly, h is bijective.

We now show that h indeed is an isomorphism. To do so, we first show that
(1) τH(X(v)) a(q)−֒−−→ µ if and only if h(τH(X(v))) a(q)−֒−−→ µh, i.e., if and only if
U(v) a(q)−֒−−→ µh. Second, we show that (2) τH(X(v)) λ

 τH(X(v′)) if and only if
U(v) λ

 U(v′).

(1) First, recall that X(v) a(q)−֒−−→ µ is enabled if and only if there is a summand
i ∈ I and a local variables vector d′

i ∈Di such that

ci(v,d
′
i) ∧ ai(bi(v,d

′
i)) = a(q) ∧ µ = target i(v,di)

where target i(v,d
′
i) is the distribution µ′ such that

∀e′i ∈ Ei . µ
′(ni(v,d

′
i, e

′
i)) =

∑

e′′
i ∈Ei

ni(v,d
′
i,e

′
i)=ni(v,d

′
i,e

′′
i )

fi(v,d
′
i, e

′′
i )
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We now make a case distinction between (a) a 6= τ or q 6= ( ), and (b) a = τ
and q = ( ).

(a) If a 6= τ or q 6= ( ), then the operational semantics imply that
τH(X(v)) a(q)−֒−−→ µ is enabled if and only if X(v) a(q)−֒−−→ µ ∧ a 6∈ H.
Moreover, U(v) a(q)−֒−−→ µh is enabled if and only if there is a summand
i ∈ I and a local variables vector d′

i ∈Di such that

ci(v,d
′
i) ∧ a′i(b

′
i(v,d

′
i)) = a(q) ∧ µ = target i(v,di)

which indeed corresponds to X(v) a(q)−֒−−→ µ ∧ a 6∈ H by definition of
a′i and b′i and the assumption that a 6= τ or q 6= ( ).

(b) If a = τ and q = ( ), then the operational semantics imply that
τH(X(v)) τ−֒→ µ is enabled if and only if X(v) τ−֒→ µ is enabled or
there exists some a ∈ H with parameters q′ such that X(v) a(q′)−֒−−→ µ
is enabled. It immediately follows by definition of a′i and b′i that
U(v) τ−֒→ µh is enabled under exactly these conditions.

(2) Second, note that, since Markovian transitions cannot be hidden, we have
τH(X(v)) λ

 τH(X(v′)) if and only if X(v) λ
 X(v′) and there is no µ

such that τH(X(v)) τ−֒→ µ. Additionally, as X(g : G) and U(g : G) have
exactly the same Markovian summands, we find that U(v) λ

 U(v′) if and
only if X(v) λ

 X(v′) and there is no µ such that U(v) τ−֒→ µ (the ‘only
if’ part is due to the fact that X(v) τ−֒→ µ implies that there is a µ′ such
that U(v) τ−֒→ µ′).

By the first part of this proof, there is no µ such that τH(X(v)) τ−֒→ µ
if and only if there is no µ such that U(v) τ−֒→ µ. Hence, when combining
this with the findings above, we see that

τH(X(v)) λ
 τH(X(v′)) if and only if U(v) λ

 U(v′)

Since we defined U(v′) = h(τH(X(v′)), this completes the proof. �

A.2.9 Proof of Proposition 4.61

Proposition 4.61. The underlying MAs of an MLPE before and after constant
elimination are isomorphic.

Proof (sketch). We first show that every parameter that is marked constant by
the procedure, indeed has the same value in every reachable state of the state
space. Let x be a parameter with initial value x0 that is not constant, so there
exists a state v where x is not equal to x0. Then there must be a summand
that semantically changes x to a value different from x0. If the next state of x
in this summand is syntactically given by the expression x, and x is changed
because it is bound to a value x′ 6= x0 by a nondeterministic or probabilistic
sum, this is detected by the procedure in the first iteration. If the next state
is given by an expression e not equal to x, then e must also be different from
x0 (otherwise the value of x would still not change). This will also be detected
in the first iteration, except if e is the name of another parameter y that is
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initially, but not constantly, equal to x0. Either the first iteration detects y to be
non-constant and the second iteration will then see that x is also non-constant,
or y is also non-constant because of a valuation based on another parameter.
In the latter case, it may take some more iterations, but as y is non-constant
this recursion clearly ends at some point (as a cyclicity would imply that x is
constant, violating our assumption).

Now, as the procedure correctly computes the parameters of an MLPE that
are constant, it is trivial that changing all their occurrences to their initial values
is a valid transformation; it does not change the semantics of the MLPE and
therefore leaves the reachable state space (including its transitions) untouched.
Moreover, as the constant parameters are not used anymore after this step,
they have no influence on the semantics of the MLPE, and removing them also
does also not change anything (except for state names, which is allowed by
isomorphism). �

A.2.10 Proof of Proposition 4.65

Proposition 4.65. The underlying MAs of an MLPE before and after summa-
tion elimination are isomorphic.

Proof (sketch). Assume a summand with a summation
∑

d:D and a condition c.
Clearly, when c is given by d = e or e = d, and e does not contain d, the condition
can indeed only be satisfied when d is equal to e, so, for any other value the
summand would not be enabled. Given a condition e1 ∧ e2, the summand is
only enabled when both e1 and e2 hold, so clearly indeed only when d has a
value in the intersection of the sets containing the values for those two conditions
to hold. For a disjunction e1 ∨ e2, knowing that for ei to hold d should have a
value in Si, clearly it should have a value in S1 ∪ S2 for the disjunction to hold.
However, when either S1 or S2 is empty, this implies that we don’t know the
values that satisfy this disjunct, so then we also don’t know anything about the
complete disjunction.

If in the end there is precisely one value d′ that enables the condition c, this
means that the summand can only be taken for this value. Therefore, clearly
we can just as well omit the nondeterministic choice and substitute d′ for every
free occurrence of d in the resulting summand. This obviously changes nothing
about the underlying MA, so the transformation preserves isomorphism.

It should also be immediately obvious from the operational semantics that
summations over unused variables can be omitted in interactive summands, and
that summations in Markovian summands over variables that are only used
directly after the summation can be changed as explained in Section 4.5.3. �

A.3 Proofs for Chapter 5

To simplify the proofs for this chapter, we first define a notation for the target of a
summand. As in Section 4.2.4, we sometimes use state vectors v as abbreviations
for process terms X(v) when the process is clear from the context.
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Definition A.12 (LPPE target function). Given an LPPE

X(g : G) =
∑

i∈I

∑

di:Di

ci ⇒ ai(bi)
∑

•
ei:Ei

fi : X(ni)

we define, for each i ∈ I, the function target i : G×Di → Distr(G) by

target i(v,d
′
i) = µ such that

∀e′i ∈ Ei . µ(ni(v,d
′
i, e

′
i)) =

∑

e′′
i ∈Ei

ni(v,d
′
i,e

′
i)=ni(v,d

′
i,e

′′
i )

fi(v,d
′
i, e

′′
i )

Hence, target i(v,d
′
i) provides the next-state distribution of X(v) after taking

summand i with a local variable vector d′
i (assuming that summand i is indeed

enabled given v and d′
i).

A.3.1 Proof of Proposition 5.11

Proposition 5.11. After executing Algorithm 5, the set Reachj contains all
values that a CFP gj may obtain.

Proof. The proof is by induction on the number of transitions by summands in
the cluster of gj that have to be taken to reach a value. We prove that all values
that gj may take in n such transitions are included before or during iteration n
(where the first iteration has index 0). Note that the number of values gj can
take is finite, as it is limited by the number of summands.

The only value gj can have after 0 transitions is initj . By the first line of the
algorithm, this value is indeed included, so all values gj may take in 0 transitions
are included in Reachj before or during iteration 0.

Now assume that all values gj may take in k transitions are included in
Reachj before or during iteration k. Furthermore, let v be a value gj can obtain
in k + 1 transitions, so initj = v0 → v1 → · · · → vk → vk+1 = v. By the
induction hypothesis vk ∈ Reachj during iteration k + 1. Furthermore, since
vk → v, there must be some summand i ∈ Rgj such that vk = source(i, gj) and
v = dest(i, gj). Also, v

k 6∈ Prev during iteration k + 1, otherwise v would have
been reachable in less than k + 1 steps. Hence, vk+1 is added during iteration
k + 1 by the innermost statement of the algorithm.

Termination of the algorithm immediately follows from the observation that
the number of values a CFP may take is finite. �

A.3.2 Proof of Theorem 5.21

Lemma A.13. Given a decodable LPPE

X(g : G) =
∑

i∈I

∑

di:Di

ci ⇒ ai(bi)
∑

•
ei:Ei

fi : X(ni)
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and an equivalence relation R ⊆ G×G, if

ci(v,d
′
i) =⇒ ci(v

′,d′
i) ∧ bi(v,d

′
i) = bi(v

′,d′
i) ∧

target i(v,d
′
i) ≡R target i(v

′,d′
i)

for every (v,v′) ∈ R, i ∈ I and d′
i ∈ Di, then R is a derivation-preserving

bisimulation.

Proof. To see that R is a strong bisimulation relation, take an arbitrary pair
(v,v′) ∈ R and let v α−֒→ µ. Note that, by the operational semantics, this implies
that for at least one summand i ∈ I, there is a local choice d′

i ∈Di such that
ci(v,d

′
i) holds, α = ai(bi(v,d

′
i)) and target i(v,d

′
i) = µ.

Then, by the assumption on R, we have

ci(v
′,d′

i) ∧ bi(v,d
′
i) = bi(v

′,d′
i) ∧ target i(v,d

′
i) ≡R target i(v

′,d′
i)

By the operational semantics this immediately implies that v′ α−֒→ µ′ such that
µ ≡R µ′, which is what we needed to show for strong bisimulation.

It remains to show that for every equivalence equivalence class [w]R and
every rate λ:

|{D ∈ ∆ | ∃w′ ∈ [w]R . v −
rate(λ)
−−−−→D 1w′}| =

|{D ∈ ∆ | ∃w′′ ∈ [w]R . v′ −
rate(λ)
−−−−→D 1w′′}|

It is easy to see from the LPPE’s structure and the operational semantics that
every derivation v −

rate(λ)
−−−−→D 1w′ corresponds to selecting a summand i and a

local variable vector d′
i such that ci(v,d

′
i) holds, rate(λ) = ai(bi(v,d

′
i)) and

target i(v,d
′
i) = 1w′ . Hence, we can specify a derivation by a pair (i,d′

i).
Given such a derivation (i,d′

i), the assumption on R implies that (i,d′
i) is

also a derivation for v′, yielding a transition v′ −
rate(λ)
−−−−→D µ such that µ ≡R 1w′ .

Since we assumed that the LPPE is decodable, this implies that µ = 1w′′ for
some w′′ ∈ [w′]R. Hence, every derivation for a transition v −

rate(λ)
−−−−→D 1w′ for

some w′ ∈ [w]R is also a derivation for v′ −
rate(λ)
−−−−→D 1w′′ for some w′′ ∈ [w]R.

Therefore,

|{D ∈ ∆ | ∃w′ ∈ [w]R . v −
rate(λ)
−−−−→D 1w′}| ≤

|{D ∈ ∆ | ∃w′′ ∈ [w]R . v′ −
rate(λ)
−−−−→D 1w′′}|

Now, by symmetry we obtain the inequality in the other direction, and hence
these two sets have the same cardinality. �

The next lemma states that if a CFP gj rules a summand i, and i is enabled
for some state vector v = (v1, . . . , vj , . . . , vn) and local variable vector d′

i ∈Di,
then the control flow graph of gj contains an edge from vj to ni,j(v,d

′
i, e

′
i) (where

e′i ∈ Ei can be taken arbitrarily due to the uniqueness of the destination).

Lemma A.14. Let gj be a CFP, v a state vector, d′
i ∈ Di a local variable

vector and e′i ∈ Ei a probabilistic choice. Then, if gj rules i and ci(v,d
′
i) holds,
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it follows that
(vj , i, ni,j(v,d

′
i, e

′
i)) ∈ Egj

Proof. Since gj rules i, by definition source(i, gj) 6= ⊥. Then, by definition
of source, ci(v,d

′
i) implies that vj = source(i, gj). By definition of rules also

dest(i, gj) 6= ⊥, and by the definition of dest we then know that ci(v,d
′
i) implies

that dest(i, gj) = ni,j(v,d
′
i, e

′
i). Thus, using the definition of the control flow

graph, indeed (vj , i, ni,j(v,d
′
i, e

′
i)) ∈ Egj . �

Lemma A.15. Let v and v′ be state vectors such that v ∼= v′, and assume that
Relevant(gk,v

′) for some gk. Then, also Relevant(gk,v).

Proof. If gk is a CFP, then Relevant(gk,v) by definition. From now on we
therefore assume that it is a DP.

Assume that v ∼= v′ and Relevant(gk,v
′). Let gj be one of the CFPs gk

belongs to. Then, by definition of Relevant , we have R(gk, gj , v
′
j). Because gj is

a CFP we know that Relevant(gj ,v), so by the definition of ∼= we have vj = v′j .
Since R(gk, gj , v

′
j), this immediately implies R(gk, gj , vj). Since this argument

holds for all gj that gk belongs to, we obtain Relevant(gk,v). �

Lemma A.16. The relation ∼= is an equivalence relation.

Proof. Reflexivity is trivial. For symmetry, assume that v ∼= v′. For all gk ∈ J ,
if Relevant(gk,v

′), then by Lemma A.15 also Relevant(gk,v). Therefore, by
definition of ∼= and the assumption that v ∼= v′, we obtain vk = v′k, hence v

′ ∼= v.
For transitivity, assume that v ∼= v′ and v′ ∼= v′′. If Relevant(gk,v),

then by definition vk = v′k. Using symmetry and Lemma A.15 it follows that
Relevant(gk,v

′), and hence v′k = v′′k . Therefore, v
∼= v′′. �

Now, we show that if a summand i is enabled given some state vector v,
then it is also enabled given a state vector v′ such that v ∼= v′.

Lemma A.17. Let v and v′ be state vectors such that v ∼= v′, i ∈ I a summand
and d′

i ∈Di a local variable vector for i. Then, ci(v,d
′
i) implies ci(v

′,d′
i).

Proof. It has to be shown that for all gk ∈ pars(ci) it holds that vk = v′k. Since
this is trivially true for CFPs, we from now on assume that gk is a DP. Assume
that ci(v,d

′
i) holds. Let an arbitrary gk ∈ pars(ci) be given, and let gj be a CFP

that gk belongs to. Then, since gk is directly used in i, by definition of belongs-to
gj rules i. Therefore, by Lemma A.14 and Definition 5.9, vj = source(i, gj), and
because gk is used directly in i by definition R(gk, gj , vj). Since this holds for all
gj to which gk belongs, we obtain Relevant(gk,v), and, using the definition of ∼=,
also vk = v′k. Since gk was chosen arbitrary, this is the case for all gk ∈ pars(ci),
so ci(v

′,d′
i) also holds. �

We can also show that if a summand i is taken given some state vector v,
the resulting action parameters are identical to when i is taken given a state
vector v′ such that v ∼= v′.
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Lemma A.18. Let v and v′ be state vectors such that v ∼= v′, i ∈ I a summand
and d′

i ∈Di a local variable vector for i. Then, bi(v,d
′
i) = bi(v

′,d′
i).

Proof. Identical to the proof of Lemma A.17, when taking the elements of bi
instead of ci. �

Lemma A.19. Let v and v′ be state vectors such that v ∼= v′, i ∈ I a summand,
d′
i ∈ Di a local variable vector for i and e′i ∈ Ei a probabilistic choice for i.

Then, fi(v,d
′
i, e

′
i) = fi(v

′,d′
i, e

′
i).

Proof. Identical to the proof of Lemma A.17, when taking the elements of fi
instead of ci. �

Finally, we show that taking a summand i given some state vector v and
taking it given a state vector v′ such that v ∼= v′ yield next-state vectors that
are equivalent with respect to ∼=.

Lemma A.20. Let v and v′ be state vectors such that v ∼= v′, i ∈ I a summand,
d′
i ∈ Di a local variable vector for i and e′i ∈ Ei a probabilistic choice for i.

Then, ci(v,d
′
i) implies that

ni(v,d
′
i, e

′
i)
∼= ni(v

′,d′
i, e

′
i)

Proof. By definition of ∼=, it has to be shown that for all parameters gk such
that Relevant(gk, ni(v,d

′
i, e

′
i)), it holds that ni,k(v,d

′
i, e

′
i) = ni,k(v

′,d′
i, e

′
i). For

CFPs this is immediate, since by definition these are either unchanged or have a
unique destination in each summand; hence, from now on we assume that gk is
a DP.

To show that ni,k(v,d
′
i, e

′
i) = ni,k(v

′,d′
i, e

′
i), we show that vm = v′m for all

parameters gm ∈ pars(ni,k). Since CFPs are always relevant they cannot differ
between v and v′, therefore we also assume that gm is a DP from now on.

So, let gk, gm ∈ D such that Relevant(gk, ni(v,d
′
i, e

′
i)) and gm ∈ pars(ni,k).

Furthermore, let gl be a CFP that gm belongs to. Now, we distinguish between
whether gk belongs to gl or not.

• Suppose that gk belongs to gl. Because Relevant(gk, ni(v,d
′
i, e

′
i)) and gk

belongs to gl, by definition of Relevant we have R(gk, gl, ni,l(v,d
′
i, e

′
i)).

Now, if gl rules gi, then by Lemma A.14 (and the initial assumption
that ci(v,d

′
i) holds), we have (vl, i, ni,l(v,d

′
i, e

′
i)) ∈ Egl . Now it imme-

diately follows from the second clause of the definition of relevance that
R(gm, gl, vl).

On the other hand, if gl does not rule i, then by definition of belongs-
to gk is unchanged in i, so ni,k = gk. This implies that gm = gk.
Since gl does not rule i, but it is a CFP, it follows that ni,l = gl. So,
R(gk, gl, ni,l(v,d

′
i, e

′
i)) = R(gm, gl, vl), and therefore R(gm, gl, vl) follows

trivially.
• Suppose that gk does not belong to gl. Since gm does belong to gl, gm 6= gk.

So, i uses gm (because gm occurs in pars(ni,k) and gm 6= gk), hence gl rules
i. Using Lemma A.14, we obtain (vl, i, ni,l(v,d

′
i, e

′
i)) ∈ Egl , which implies
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that vl = source(i, gl). Next, let gp be some CFP that gk belongs to. Then,
by definition of Relevant and the fact that Relevant(gk, ni(v,d

′
i, e

′
i)), we

know that R(gk, gp, ni,p(v,d
′
i, e

′
i)). Because gm 6= gk and gm ∈ pars(ni,k)

we know that gk is changed by i, and because gk belongs to gp it follows
that gp rules i. Applying Lemma A.14 again, (vp, i, ni,p(v,d

′
i, e

′
i)) ∈ Egp .

Then, by the third clause of the definition of relevance, R(gm, gl, vl).

Since in all cases we have shown that R(gm, gl, vl) for an arbitrary gl that gm
belongs to, by definition Relevant(gm,v). Therefore, since v ∼= v′, by definition
of ∼= it follows that vm = v′m. �

Theorem 5.21. The relation ∼= is a derivation-preserving bisimulation.

Proof. As we assumed the LPPE X to be decodable, derivation-preserving
bisimulation can indeed be defined for its state vectors. Also, we already saw in
Lemma A.16 that ∼= indeed is an equivalence relation.

Let v and v′ be state vectors such that v ∼= v′. We show that

ci(v,d
′
i) =⇒ ci(v

′,d′
i) ∧ bi(v,d

′
i) = bi(v

′,d′
i) ∧

target i(v,d
′
i) ≡∼= target i(v

′,d′
i)

for every i ∈ I and d′
i ∈ Di. Then, by Lemma A.13 it follows that ∼= is a

derivation-preserving bisimulation.
So, take an arbitrary i ∈ I and d′

i ∈Di and assume that ci(v,d
′
i). Now, by

Lemma A.17 we know that ci(v
′,d′

i) holds, and by Lemma A.18 that bi(v,d
′
i) =

bi(v
′,d′

i). Finally, Lemma A.20 tells us that

ni(v,d
′
i, e

′
i)
∼= ni(v

′,d′
i, e

′
i)

for every e′i, and hence target i(v,d
′
i) ≡∼= target i(v

′,d′
i) since additionally

fi(v,d
′
i, e

′
i) = fi(v

′,d′
i, e

′
i) for every e′i (by Lemma A.19). �

A.3.3 Proof of Theorem 5.23

In the following lemmas, we use n′
i to refer to the transformed next state as

given in Definition 5.22.

Lemma A.21. For every summand i ∈ I, state vector v and local variable
vector d′

i ∈Di such that ci(v,d
′
i) holds, we have ni(v,d

′
i, e

′
i)
∼= n′

i(v,d
′
i, e

′
i) for

every probabilistic choice e′i ∈ Ei.

Proof. To show that ni(v,d
′
i, e

′
i)
∼= n′

i(v,d
′
i, e

′
i), by definition of ∼= we need to

show that for all parameters gk such that Relevant(gk, ni(v,d
′
i, e

′
i)), it holds

that ni,k(v,d
′
i, e

′
i) = n′

i,k(v
′,d′

i, e
′
i). Assume such a gk ∈ J . Then, by definition

of Relevant we have

∧

gj∈C
gk belongs to gj

R(gk, gj , ni,j(v,d
′
i, e

′
i))



A.3. Proofs for Chapter 5 275

and thus also ∧

gj∈C
gj rules i

gk belongs to gj

R(gk, gj , ni,j(v,d
′
i, e

′
i))

By definition of n′ and the fact that dest(i, gj) = ni,j(v,d
′
i, e

′
i) when gj rules i

and ci(v,d
′
i) holds (as is the case), we obtain n′

i,k(v,d
′
i, e

′
i) = ni,k(v,d

′
i, e

′
i). �

Lemma A.22. Let ≅ be the smallest equivalence relation such that

v ∼= v′ =⇒ X(v) ≅ X ′(v′)

where the relation ∼= is used as it was defined for X. Then, ≅ is a derivation-
preserving bisimulation.

Proof. In this proof, we use primed notations c′i, n
′
i and so on to refer to the

elements of X ′. It is easy to see that the reasoning behind Lemma A.13 still
applies, except for the symmetric argument. It now suffices to show for an
arbitrary pair of state vectors v,v′ such that X(v) ≅ X ′(v′), that both

ci(v,d
′
i) =⇒ c′i(v

′,d′
i) ∧ bi(v,d

′
i) = b′i(v

′,d′
i) ∧

X(target i(v,d
′
i)) ≡≅ X ′(target ′i(v

′,d′
i))

and

c′i(v,d
′
i) =⇒ ci(v

′,d′
i) ∧ bi(v,d

′
i) = b′i(v

′,d′
i) ∧

X(target i(v,d
′
i)) ≡≅ X ′(target ′i(v

′,d′
i))

for every i ∈ I and d′
i ∈ Di, where we use X(target i(v,d

′
i)) to denote the

probability distribution µ such that µ(X(v′)) = target i(v,d
′
i)(v

′). We prove the
first statement; the second follows by an almost-identical reasoning. Note that
X(v) ≅ X ′(v′) implies v ∼= v′, due to the fact that ∼= is an equivalence relation.

So, take an arbitrary i ∈ I and d′
i ∈ Di and assume that ci(v,d

′
i). Now,

by Lemma A.17 we know that ci(v
′,d′

i) holds, and since c′i = ci also c′i(v
′,d′

i).
Similarly, Lemma A.18 yields bi(v,d

′
i) = bi(v

′,d′
i), and due to b′i = bi we find

bi(v,d
′
i) = b′i(v

′,d′
i). Finally, Lemma A.20 yields ni(v,d

′
i, e

′
i)
∼= ni(v

′,d′
i, e

′
i)

for every e′i, and combining this with Lemma A.21 and the fact that ∼= is an
equivalence relation, shows that

ni(v,d
′
i, e

′
i)
∼= n′

i(v
′,d′

i, e
′
i)

Hence, since f ′
i = fi and fi(v,d

′
i, e

′
i) = fi(v

′,d′
i, e

′
i) for every e′i (as shown by

Lemma A.19), also target i(v,d
′
i) ≡∼= target ′i(v

′,d′
i), and by definition of ≅ and ≡

this directly implies that X(target i(v,d
′
i)) ≡≅ X ′(target ′i(v

′,d′
i)), completing

the proof. �

Theorem 5.23. Let X be a decodable LPPE, X ′ its transform, and v a state
vector for X. Then, X(v) ∼dp X ′(v).

Proof. Immediate from Lemma A.22. �
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A.3.4 Proof of Proposition 5.24

Proposition 5.24. For any state vector v reachable by the process X ′(init),
invariably ¬Relevant(gk,v) implies that vk = initk.

Proof. For the initial state the invariant is trivially true. Now assume that the
invariant holds for an arbitrary gk for some reachable state vector v. We prove
by induction that it still holds for all states reachable by an arbitrary summand i
given a local state vector d′

i ∈Di such that ci(v,d
′
i) holds and a probabilistic

choice e′i ∈ Ei. If

∧

gj∈C
gj rules i

gk belongs to gj

R(gk, gj , dest(i, gj)) (A.7)

is false, then by definition we have n′
i,k = initk and the invariant holds. From now

on we therefore assume that this conjunction is true, so n′
i,k = ni,k by definition.

We make a case distinction between Relevant(gk,v) and ¬Relevant(gk,v), i.e.,
whether or not gk is relevant in the current state.

• Assume that Relevant(gk,v), so by definition

∧

gj∈C
gk belongs to gj

R(gk, gj , vj)

For gj ∈ C such that gk belongs to gj and gj does not rule i, by definition
gj is unchanged in i, so from R(gk, gj , vj) it immediately follows that
R(gk, gj , ni,j(v,d

′
i, e

′
i)). Now we easily obtain

∧

gj∈C
gk belongs to gj

R(gk, gj , ni,j(v,d
′
i, e

′
i))

since we already assumed R(gk, gj , dest(i, gj)) for all gj ∈ C such that gk
belongs to gj and gj does rule i (and for those gj by definition dest(i, gj) =
ni,j(v,d

′
i, e

′
i)). Since CFPs do not belong to any CFPs, n′

i,j = ni,j for all
gj ∈ C, and therefore

∧

gj∈C
gk belongs to gj

R(gk, gj , n
′
i,j(v,d

′
i, e

′
i))

Now, by definition we have Relevant(gk, n
′
i(v,d

′
i, e

′
i)), so the invariant

holds.
• Assume that ¬Relevant(gk,v). If there exists a gj such that gk belongs to

gj and gj does not rule i, then by definition of belongs-to gk is unchanged
in i. By the induction hypothesis vk = initk, and since n′

i,k = ni,k we find
that

n′
i,k(v,d

′
i, e

′
i) = ni,k(v,d

′
i, e

′
i) = vk = initk
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and the invariant holds.
From now on assume that all gj that gk belongs to rule i. Therefore,

by the assumed truth of Equation (A.7) and the fact that dest(i, gj) =
ni,j(v,d

′
i, e

′
i) for all gj that rule i, it follows that

∧

gj∈C
gk belongs to gj

R(gk, gj , ni,j(v,d
′
i, e

′
i))

and, since n′
i,j = ni,j for all gj ∈ C, we obtain

∧

gj∈C
gk belongs to gj

R(gk, gj , n
′
i,j(v,d

′
i, e

′
i))

Hence, by definition Relevant(gk, n
′
i(v,d

′
i, e

′
i)) and the invariant holds. �

A.3.5 Proof of Theorem 5.25

Lemma A.23. Let h be a function over state vectors, given for any v by

hk(v) =

{

vk if Relevant(gk,v)

initk otherwise

and let H be the smallest equivalence relation H such that

h(v) = v′ =⇒ (X(v), X ′(v′)) ∈ H

Then, H is a derivation-preserving bisimulation relating the reachable states of
X(init) and X ′(init).

Proof. Note that indeed (X(init), X ′(init)) ∈ H, since each element of a state
vector is either left alone by h or reset to its initial value. Since all values of init
are already equal to their initial value, we find that h(init) = init.

To see that H is a derivation-preserving bisimulation, we first note that
Lemma A.22 already provided a derivation-preserving bisimulation ≅, relating
all states X(v) and X ′(v′) such that v ∼= v′. To see how H and ≅ relate, we
first show that H ⊆ ≅:

• If (X(v), X ′(v′)) ∈ H, then this must be due to h(v) = v′. Hence, by
definition v ∼= v′ and thus X(v) ≅ X ′(v′).

• If (X ′(v′), X(v)) ∈ H, then by symmetry of H also (X(v), X ′(v′)) ∈ H
and hence X(v) ≅ X ′(v′) as in the previous case. Applying symmetry of
≅, this yields X ′(v′) ≅ X(v).

• If (X ′(v′
), X

′(v′
)) ∈ H, then it can only be the case that v′

 = v′
 (since

h is a function). Hence, v′

∼= v′

 and thus X(v′
) ≅ X ′(v′

). Since ∼=
is an equivalence relation, also v′


∼= v′

 and thus X(v′
) ≅ X ′(v′

). By
symmetry and transitivity of ≅, we obtain X ′(v′

) ≅ X ′(v′
).
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• If (X(v), X(v)) ∈ H , then this must be due to h(v) = h(v). We know
that v

∼= h(v) and v
∼= h(v). Using h(v) = h(v) and the fact that ∼=

is an equivalence relation, this yields v
∼= v and thus X(v) ≅ X ′(v).

Since X(v) ≅ X ′(v) by reflexivity of ∼=, this yields X(v) ≅ X(v).

So, indeed H ⊆ ≅.

Now, consider an arbitrary equivalence class C of ≅, given by

C = {X(v), X(v), . . . , X(vn), X
′(w), X

′(w), . . . , X
′(wm)}

As mentioned in the proof of Lemma A.22, X(v) ≅ X ′(v′) implies v ∼= v′.
Hence, vi

∼= wj for all i, j. Due to the fact that ∼= is an equivalence relation,
this implies that also vi

∼= vj and wi
∼= wj for all i, j.

Let w = h(v). By definition of h and ∼=, this implies that v
∼= w. By

definition of ≅, this in turn implies that X(v) ≅ X ′(w). Hence, it must be the
case that wj = w = h(v) for some j. Without loss of generality, we assume that
w = h(v). It is easy to see that v ∼= v′ implies h(v) = h(v′). Hence, actually
w = h(vi) for all i. For all other states wj with j > 1, we find wj 6= h(vi) for
all i since each vi can only be associated with one h(vi).

Hence, in H the above equivalence class will be split into the following classes:

C1 = {X(v), X(v), . . . , X(vn), X
′(w)}

C2 = {X ′(w)}

...

Cm = {X ′(wm)}

Note that for each state vector wj with j > 1, there also cannot be a state
vector z different from any of the vectors vi such that h(z) = wj . After all, this
would imply that (X(z), X ′(wj)) ∈ H, while X(z) 6≅ X ′(wj) and we already
showed that H ⊆ ≅. As we took an arbitrary equivalence class, the same
splitting as above happens for all equivalence classes of ≅.

We first show that H is a strong bisimulation. Let v and v′ be state vectors
such that h(v) = v′. Assuming X(v) −a→ µ, we show that there exists a transition
X ′(v′) −a→ ν such that µ ≡H ν (the other direction can be shown symmetrically).
Since ≅ is a strong bisimulation relation and h(v) = v′ implies v ∼= v′ and hence
X(v) ≅ X ′(v′), we already know that there exists a transition X ′(v′) −a→ ν such
that µ ≡≅ ν. It remains to show that also µ ≡H ν.

So, take an arbitrary equivalence class of H. It will be like one of the
equivalence classes Ci discussed above. Without loss of generality, we assume
that m = 2. We find µ(C2) = 0, since it only contains an X ′-process. Now, we
show by contradiction that also ν(C2) = 0, so assume that ν(C2) 6= 0, and hence
ν(X ′(w)) > 0. Since µ ≡≅ ν, there must be at least one state u such that
µ(X(u)) > 0 and X(u) ≅ X ′(w), and hence u ∼= w. Since Proposition 5.24
tells us that every reachable state of X ′ has all its irrelevant variables reset
(and we do not care about unreachable states), this implies that h(u) = w.
This is a contradiction, since we already concluded that there is no state z
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such that h(z) = w. So, ν(C2) = 0. Since µ(C) = ν(C) due to µ ≡≅ ν, and
µ(C2) = ν(C2), the fact that C = C1 ∪ C2 yield µ(C1) = ν(C1).

As the argument above can be repeated for all equivalence classes of H, we
can indeed conclude that µ ≡H ν.

Finally, to see why H is derivation preserving, note that ≅ was already shown
to be derivation preserving. Also, recall that we showed above that H and ≅

are very similar; the only difference is that some equivalence classes of H are a
bit smaller due to some unreachable states having been separated. Since these
new equivalence classes are all singletons, nothing about derivation preservation
has to be proven for the states that they contain. For the equivalence classes
such as C1 above, all states have the same number of derivations to for instance
an equivalence class D1 of H as to the equivalence class D of ≅ (using the same
naming convention as above). Hence, since ≅ was derivation preserving, so
is H. �

Theorem 5.25. The number of reachable states of X ′(init) is at most the
number of reachable states of X(init).

Proof. The bisimulation relation H provided by Lemma A.23 relates each state
of X to precisely one state of X ′ (due to its functional aspect). Hence, the
number of reachable states of X ′ cannot be larger than the number of reachable
states of X, otherwise some reachable states of X ′ would be unrelated to X and
hence H could not have been a bisimulation relation. �

A.4 Proofs for Chapter 6

In the proofs for this chapter, whenever a confluent set T is given, we abuse
notation by writing confluent transition to denote a transition in this set T .
Note that, in general, there may also be confluent transitions that are not in T .

A.4.1 Proof of Proposition 6.10

Proposition 6.10. LetM = 〈S, s0, A, −֒→, ,AP, L〉 be an MA, P ⊆P(−֒→) a
confluence classification forM and T a Markovian confluent set for P . Then,

s։ ։T t if and only if sև։T t

Proof. We separately prove both directions of the equivalence.

(=⇒) Let s ։ ։T t. Then, by definition there is a state u such that s ։T u
and t։T u. This immediately implies that sև։T t.

(⇐=) Let sև։T t. This means that there is a path from s to t such as

s0 ← s1 → s2 → s3 ← s4 ← s5 → s6,

where s0 = s, s6 = t and each of the transitions is in T . Note that si ։ ։T si+1

for all si, si+1 on this path. After all, if si → si+i then they can join at si+1,
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otherwise they can join at si. Hence, to show that s։ ։T t, it suffices to show
that ։ ։T is transitive.

Let s′ ։ ։T s and s ։ ։T s′′. We show that s′ ։ ։T s′′. Let t′ be a
state such that s ։T t′ and s′ ։T t′, and likewise, let t′′ be a similar state
for s and s′′. If we can show that there is some state t such that t′ ։T t and
t′′ ։T t, we have the result. Let a minimal confluent path from s to t′ be given
by s0 →T s1 →T · · · →T sn, with s0 = s and sn = t′. By induction on the
length of this path, we show that for each state si on it, there is some state
t such that si ։T t and t′′ ։T t. Since t′ is also on the path, this completes
the argument.

Base case. There clearly is a state t such that s0 ։T t and t′′ ։T t, namely t′′

itself. After all, s0 = s and s։T t′′, and ։T is reflexive.

Inductive case. Let there be a state tk such that sk ։T tk and t′′ ։T tk. We
show that there exists a state tk+1 such that sk+1 ։T tk+1 and t′′ ։T tk+1.
Let sk −

τ→ u be the first transition on the T -path from sk to tk. Let sk −
τ→ sk+1

be the T -transition between sk and sk+1. Since it is in T , there must be at least
one group C ∈ P ∩ T such that sk −

τ→C sk+1.
By definition of confluence, since (sk −

τ→ u) ∈ T and sk −
τ→C sk+1 for some

C ∈ P , either (1) sk+1 = u (the transitions coincide), or (2) there is a transition
u −τ→C u′ such that 1sk+1

≡R 1u′ , with R the equivalence relation given in
Definition 6.7.

In case (1), we directly find sk+1 ։T tk. Hence, we can just take tk+1 = tk.
In case (2), either sk+1 = u′ or sk+1 −

τ→T u′. In both cases, if u = tk, we can
take tk+1 = u′ and indeed sk+1 ։T tk+1 and t′′ ։T tk+1. Otherwise, we can
use the same reasoning to show that there is a state tk+1 such that u′

։T tk+1

and t′′ ։T tk+1, based on u ։T tk, t
′′
։T tk and u −τ→T u′. Since the path

from u to tk is one transition shorter than the path from sk to tk, this argument
terminates. �

A.4.2 Proof of Theorem 6.11

Theorem 6.11. Let M = 〈S, s0, A, −֒→, ,AP, L〉 be an MA, P ⊆ P(−֒→) a
confluence classification forM and T1, T2 two Markovian confluent sets for P .
Then, T1 ∪ T2 is also a Markovian confluent set for P .

Proof. Let T = T1 ∪ T2. Clearly, T still only contain invisible transitions with
Dirac distributions, since T1 and T2 do. Consider a transition (s −τ→T t), and
another transition s −a→ µ. We need to show that

{
∀C ∈ P . s −a→C µ =⇒ ∃ν ∈ Distr(S) . t −a→C ν ∧ µ ≡R ν , if (s −a→ µ) ∈ P

∃ν ∈ Distr(S) . t −a→ ν ∧ µ ≡R ν , if (s −a→ µ) 6∈ P

where R is the smallest equivalence relation such that

R ⊇ {(s, t) ∈ supp(µ)× supp(ν) | (s −τ→ t) ∈ T }.

Without loss of generality, assume that s −τ→T1
t. Hence, by definition of
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Markovian confluence, we find that

{
∀C ∈ P . s −a→C µ =⇒ ∃ν ∈ Distr(S) . t −a→C ν ∧ µ ≡R1 ν , if (s −a→ µ) ∈ P

∃ν ∈ Distr(S) . t −a→ ν ∧ µ ≡R1 ν , if (s −a→ µ) 6∈ P

where R1 is the smallest equivalence relation such that

R1 ⊇ {(s, t) ∈ supp(µ)× supp(ν) | (s −τ→ t) ∈ T1}

Note that R ⊇ R1 since T ⊇ T1. Therefore, µ ≡R1 ν implies µ ≡R ν (using
Proposition 5.2.1.5 from [Sto02a]). The result now immediately follows. �

A.4.3 Proof of Theorem 6.13

Lemma A.24. LetM = 〈S, s0, A, −֒→, ,AP, L〉 be an MA, s, s′ ∈ S two of its
states, a ∈ A, µ ∈ Distr(S), P ⊆P(−֒→) a confluence classification forM and
T a Markovian confluent set for P . Then,

s։T s′ ∧ s −a→ µ =⇒ (a = τ ∧ µ ≡R 1s′) ∨
(
∃ν ∈ Distr(S) . s′ −a→ ν ∧ µ ≡R ν

)

where R = {(u, v) | u։ ։T v}.

Proof. First of all, we note that R is indeed an equivalence relation, as shown in
Proposition 6.10.

Let s, s′ ∈ S be such that s ։T s′, and assume a transition s −a→ µ. Let
R = {(u, v) | u։ ։T v}. We show that either a = τ ∧ µ ≡R 1s′ or that there
exists a transition s′ −a→ ν such that µ ≡R ν, by induction on the length of the
confluent path from s to s′. Let s0 −

τ→T s1 −
τ→T . . . −τ→T sn−1 −

τ→T sn, with
s0 = s and sn = s′, denote this path. Then, we show that

(a = τ ∧ µ ≡R 1s′) ∨
(
∃ν ∈ Distr(S) . si −

a→ ν ∧ µ ≡R ν
)

holds for every state si on this path. For the base case s this is immediate, since
s −a→ µ and the relation ≡R is reflexive.

As induction hypothesis, assume that the formula holds for some state si
(0 ≤ i < n). We show that it still holds for state si+1. If the above formula was
true for si due to the clause a = τ ∧ µ ≡R 1s′ , then this still holds for si+1. So,
assume that si −

a→ ν such that µ ≡R ν.

Since si −
τ→T si+1 and si −

a→ ν, by definition of confluence either (1) a = τ
and ν = 1si+1 , or (2) there is a transition si+1 −

a→ ν′ such that ν ≡R′ ν′, where
R′ is the smallest equivalence relation such that

R′ ⊇ {(s, t) ∈ supp(ν)× supp(ν′) | (s −τ→ t) ∈ T }

(1) In the first case, ν = 1si+1
implies that ν ≡R 1s′ as there is a T -path from

si+1 to s′ and hence (si+1, s
′) ∈ R. Since we assumed that µ ≡R ν, and

the relation ≡R is transitive, this yields µ ≡R 1s′ . Together with a = τ ,
this completes the proof.
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(2) In the second case, note that R ⊇ R′. After all, R =։ ։T =և։T (by
Proposition 6.10), and obviously (s, t) ∈ R′ implies that sև։T t. Hence,
ν ≡R′ ν′ implies ν ≡R ν′ (using Proposition 5.2.1.5 from [Sto02a]). Since
we assumed that µ ≡R ν, by transitivity of ≡R we obtain µ ≡R ν′. Hence,
there is a transition si+1 −

a→ ν′ such that µ ≡R ν′, which completes the
proof. �

Theorem 6.13. Let M = 〈S, s0, A, −֒→, ,AP, L〉 be an MA, s, s′ ∈ S two of
its states, P ⊆ P(−֒→) a confluence classification for M and T a Markovian
confluent set for P . Then,

sև։T s′ implies s ≈div
b s′

Proof. We show that s։ ։T s′ implies s ≈div
b s′. By Proposition 6.10, this is

equivalent to the theorem. So, assume that s։ ։T s′. To show that s ≈div
b s′,

consider the relation
R = {(u, v) | u։ ։T v}

Clearly (s, s′) ∈ R, and from Proposition 6.10 and the obvious fact that և։T

is an equivalence relation, it follows that R is an equivalence relation as well.
It remains to show that R is a divergence-sensitive branching bisimulation.

First, (p, q) ∈ R indeed implies L(p) = L(q) by the requirements that confluent
transitions are invisible (Definition 6.7). Second, let (p, q) ∈ R, i.e., p։ ։T q.
We need to show that for every extended transition p −a→ µ there is a transition
q

a
=⇒R µ′ such that µ ≡R µ′.
So, assume such a transition p −a→ µ. Let r be a state such that p ։T r

and q ։T r. By Lemma A.24, either (1) a = τ ∧ µ ≡R 1r or (2) there is a
distribution ν ∈ Distr(S) such that r −a→ ν ∧ µ ≡R ν.

(1) In the first case, note that q ։T r immediately implies that q
τ

=⇒R 1r.
After all, we can schedule the (invisible) confluent transitions from q to
r and then terminate. Indeed, all intermediate states are clearly related
by R. Together with the assumption that µ ≡R 1r, this completes the
argument.

(2) In the second case, note that q ։T r and r −a→ ν together immediately
imply that q

a
=⇒R ν. After all, we can schedule the (invisible) confluent

transitions from q to r, perform the transition r −a→ ν and then terminate.
Indeed, all intermediate states before the a-transition are clearly related
by R. Together with the assumption that µ ≡R ν, this completes the
argument.

It remains to show that R is divergence sensitive. So, let (s, s′) ∈ R (and hence
s։ ։T s′) and assume that there is a scheduler S such that

∀π ∈ finpathsSM(s) . Ared(π) ∧ S(π)(⊥) = 0

It is well known that we can assume that such diverging schedulers are memoryless
and deterministic.



A.4. Proofs for Chapter 6 283

We show that there also is a diverging scheduler from s′. First, note that
since s։ ։T s′, there is a state t such that s։T t and s′ ։T t. We show that
there is a diverging scheduler from t; then, the result follows as from s′ we can
schedule to first follow the confluent (and hence invisible) transitions to t and
then continue with the diverging scheduler from t.

Let s0 −
τ→T s1 −

τ→T s2 −
τ→T . . . −τ→T sn be the confluent path from s to t;

hence, s0 = s and sn = t. It might be the case that some states on this path also
occur on the tree associated with S; hence, for those states a diverging scheduler
already exists. Let si be the last state on the path from s0 to sn that occurs on
the tree of S. We show that sn also has a diverging scheduler by induction on
the length of the path from si to sn; note that the base case is immediate.

Assume that sj (with i ≤ j < n) has a diverging scheduler S ′. We show
that sj+1 has one too. If sj+1 occurs on the tree associated with S ′ this is
immediate, so from now on assume that it does not. From sj there now is a
confluent transition sj −

τ→T sj+1 and an invisible (not necessarily confluent)
transition sj −

τ→ µ (chosen by S ′ as first step of the diverging path form sj). By
definition of confluence, either these transitions coincide or there is a transition
sj+1 −

τ→ ν such that µ ≡R′ ν, with R′ the smallest equivalence relation such that
R ⊇ {(s, t) ∈ supp(µ)× supp(ν) | (s −τ→ t) ∈ T }. The first option is impossible,
since we assumed that sj+1 is not on the tree associated with S ′. Therefore,
there is a transition sj+1 −

τ→ ν such that µ ≡R′ ν.

Since sj −
τ→ µ is invisible, L(u) = L(sj) for all states u ∈ supp(µ). Ad-

ditionally, by definition of R′, µ ≡R′ ν implies that each state v ∈ supp(ν)
is either (1) in supp(µ) as well or (2) has an incoming confluent transition
u −τ→T v with u ∈ supp(µ). Hence, since confluent transitions are invisible, also
L(v) = L(sj) for all states v ∈ supp(ν). Finally, since sj −

τ→ sj+1 is confluent,
also L(sj) = L(sj+1). Together, these facts imply that L(v) = L(sj+1) for all
states v ∈ supp(ν), and hence that sj+1 −

τ→ ν is invisible. We schedule this
transition from sj+1 in order to diverge. So, we still need to show that it is
possible to diverge from all states q ∈ supp(ν).

By definition of R′, µ ≡R′ ν implies that each state v ∈ supp(ν) is either
(1) in supp(µ) as well or (2) has an incoming confluent transition u −τ→T v with
u ∈ supp(µ). In the first case, we can diverge from v using S ′. In the second case,
we have reached the situation of a state v with an incoming confluent transition
from a state u that has a diverging scheduler. Now, the above reasoning can
be applied again, taking sj = u and sj+1 = v. Either at some point overlap
with the scheduler of u occurs, or this argument is repeated indefinitely; in both
cases, divergence is obtained. �

A.4.4 Proof of Proposition 6.18

Theorem 6.18. Let M = 〈S, s0, A, −֒→, ,AP, L〉 be an MA, T a Markovian
confluent set forM, and ϕ : S → S a representation map forM under T . Then,

M/ϕ ≈div
b M

Proof. We denote the extended transition relation ofM by →, and the one of
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M/ϕ by →ϕ. We take the disjoint union M′ of M and M/ϕ, to provide a
bisimulation relation over this state space that contains their initial states. We
denote the transition relation ofM′ by −→′. Note that, based on whether s ∈M
or s ∈M/ϕ, a transition s −a→′ µ corresponds to either s −a→ µ or s −a→ϕ µ.

To distinguish between for instance a state ϕ(s) ∈M and the corresponding
state ϕ(s) ∈M/ϕ, we denote all states s, ϕ(s) fromM just by s, ϕ(s), and all
states s, ϕ(s) fromM/ϕ by ŝ, ϕ̂(s).

Let R be the smallest equivalence relation containing the set

{(s, ϕ̂(s)) | s ∈ S},

i.e., R relates all states from M that have the same representative to each
other and to this mutual representative from M/ϕ. Clearly, (s0, ϕ̂(s0)) ∈ R.
Also, (p, q) ∈ R implies L(p) = L(q) by definition of the representation map
(prescribing all states that have the same representative to be connected by
confluent transitions), the fact that confluent transitions are invisible and the
construction of the quotient (leaving the state labelling invariant).

Note that given this equivalence relation R, for every probability distribu-
tion µ we have µ ≡R µϕ (no matter whether µϕ is inM or inM/ϕ). After all,
the lifting over ϕ just changes the states in the support of µ to their represent-
atives; as R relates precisely such states, clearly µ ≡R µϕ. This observation is
used several times in the proof below.

Now, let (s, s′) ∈ R and assume that there is an extended transition s −a→′ µ.
We show that also s′

a
=⇒′

R µ′ such that µ ≡R µ′. Note that there are four
possible cases to consider with respect to the origin of s and s′, indicated by the
presence or absence of hats:

• Case 1: (ŝ, ŝ′). Since every equivalence class of R contains precisely
one representative from M/ϕ, we find that ŝ = ŝ′. Hence, the result
follows directly by the scheduler that takes the transition s −a→′ µ and then
terminates.

• Case 2: (s, s′). If both states are inM, then the quotient is not involved and
ϕ(s) = ϕ(s′). By definition of the representation map, we find s։ ։T s′.
Using Theorem 6.13, this immediately implies that s′

a
=⇒R′ µ′ such that

µ ≡R′ µ′ for R′ = {(u, v) | u ։ ։T v}. Since all states connected by T -
transitions are required to have the same representative, we have R ⊇ R′.
Hence, also s′

a
=⇒R µ′, as this is then less restrictive. Moreover, µ ≡R µ′

by Proposition 5.2.1.5 from [Sto02a]. Finally, note that s′
a

=⇒R µ′ implies
s′

a
=⇒′

R µ′.

• Case 3: (ŝ, s′). Since ŝ is in M/ϕ and s′ is not, by definition of R we
find that ŝ = ϕ̂(s′). Hence, by assumption ϕ̂(s′) −a→ϕ µ, and thus by
definition of the extended arrow either (1) a ∈ A and ϕ̂(s′) a−֒→ϕ µ, or (2)
a = χ(λ) for λ = rate(ϕ̂(s′)), λ > 0, µ = Pϕ̂(s′) and there is no µ′ such
that ϕ̂(s′) τ−֒→ϕ µ′. We make a case distinction based on this.

(1) Let a ∈ A and ϕ̂(s′) a−֒→ϕ µ. By definition of the quotient, this
implies that there is a transition ϕ(s′) a−֒→ µ′ inM such that µ = µ′

ϕ. By
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definition of the representation map, there is a T -path (which is invisible
and deterministic) from s′ to ϕ(s′) inM. Hence, s′

a
=⇒R µ′ (and therefore

also s′
a

=⇒′
R µ′) by the scheduler from s′ that first goes to ϕ(s′) and then

executes the ϕ(s′) a−֒→ µ′ transition. Note that the transition is indeed
branching, as all steps in between have the same representative and thus
are related by R.

It remains to show that µ ≡R µ′. We already saw that µ = µ′
ϕ; hence,

the result follows from the observation that µ ≡R µϕ for every µ.

(2) Let a = χ(λ) for λ = rate(ϕ̂(s′)), λ > 0, µ = Pϕ̂(s′) and there is no
µ′ such that ϕ̂(s′) τ−֒→ϕ µ′. Note that this means that from ϕ̂(s′) there is a
total outgoing rate of λ, spreading out according to µ. Hence, given an
arbitrary state û inM/ϕ, we have

µ(û) =
rate(ϕ̂(s′), û)

λ

By definition of the quotient there is at most one Markovian transition
between any pair of states in M/ϕ, so for every û ∈ supp(µ), there
is precisely one Markovian transition ϕ̂(s′) λ′

 ϕ û with λ′ = µ(û) · λ. By
definition of the quotient we then also find that λ′ is the sum of all outgoing
Markovian transitions in M from ϕ(s′) to states t such that ϕ(t) = u.
Since each state in M has precisely one representative and ϕ̂(s′) has a
Markovian transition to all representatives of states reached from ϕ(s′) by
Markovian transitions, it follows that the total outgoing rate of ϕ(s′) is
also λ.

Additionally, there is no outgoing τ -transition from ϕ(s′), since by
definition of the quotient this would have resulted in a τ -transition from
ϕ̂(s′), which we assumed is not present. Hence, there is an extended
transition ϕ(s′) −

χ(λ)
−−→ µ′ in M. As the total outgoing rates of ϕ(s′) and

ϕ̂(s′) are equal, and the sum of all outgoing Markovian transitions from
ϕ(s′) to states t such that ϕ(t) = u equals the rate from ϕ̂(s′) to û, we find
that µ ≡R µ′ since R equates states to their representative and to other
states with the same representative.

By definition of the representation map, there is a T -path (which is
invisible and deterministic) from s′ to ϕ(s′) inM. Hence, ϕ(s′) −

χ(λ)
−−→ µ′

implies that s′
χ(λ)
=⇒R µ′ and therefore also s′

χ(λ)
=⇒′

R µ′. As χ(λ) = a and
we already saw that µ ≡R µ′, this completes this part of the proof.

• Case 4: (s, ŝ′). Since ŝ′ is inM/ϕ and s is not, by definition of R we find
that ŝ′ = ϕ̂(s). By definition of the representation map, there is a T -path
from s to ϕ(s) inM. Hence, since s −a→ µ, by Lemma A.24 we have either
(1) a = τ ∧ µ ≡R′ 1ϕ(s), or (2) there exists a transition ϕ(s) −a→ ν such
that µ ≡R′ ν, for R′ = {(u, v) | u ։ ։T v}. Again, as in case 2 we can
safely substitute R′ by R.

(1) We need to show that ϕ̂(s)
τ

=⇒′
R µ′ such that 1ϕ(s) ≡R µ′. By

definition of branching steps, we trivially have ϕ̂(s)
τ

=⇒′
R 1ϕ̂(s). Note that

indeed 1ϕ(s) ≡R 1ϕ̂(s), since (ϕ(s), ϕ̂(s)) ∈ R.
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(2) If ϕ(s) −a→ ν, by definition of the extended arrow either (2.a) a ∈ A
and ϕ(s) a−֒→ µ, or (2.b) a = χ(λ) for λ = rate(ϕ(s)), λ > 0, µ = Pϕ(s) and
there is no µ′ such that ϕ(s) τ−֒→ µ′.

In case of (2.a), by definition of the quotient we find that ϕ̂(s) a−֒→ϕ νϕ.

Hence, also ϕ̂(s)
a

=⇒′
R νϕ. As observed above, νϕ ≡R ν. Also, since

µ ≡R ν by assumption, transitivity of ≡R yields µ ≡R νϕ.
In case of (2.b), ϕ(s) has a total outgoing rate of λ and this is spread

out according to µ. That is, for each state t, there is a rate of λ · µ(t) from
ϕ(s) to t. Let C = [t]R for some state t, and let λ′ be the total rate from
ϕ(s) to C. By definition of the quotient, this implies that there is a rate of
λ′ from ϕ̂(s) to ϕ̂(t) inM/ϕ as well. Since the only element of C reachable
from ϕ̂(s) is ϕ̂(t), this implies that there is a rate from ϕ̂(s) to C of λ′.
Hence, for an arbitrary equivalence class C we find identical rates from
ϕ(s) to C and from ϕ̂(s) to C. This immediately implies that the outgoing
rates of ϕ(s) and ϕ̂(s) coincide, and that Pϕ(s) ≡R Pϕ̂(s). By definition of
extended transitions now ϕ̂(s) −

χ(λ)
−−→ϕ Pϕ̂(s), and hence ϕ̂(s)

a
=⇒′

R Pϕ̂(s).
Since µ = Pϕ(s) and Pϕ(s) ≡R Pϕ̂(s), this completes this part of the proof.

It remains to show that R is divergence sensitive. So, let (s, s′) ∈ R. Again,
we make a case distinction based on the origin of s and s′. Like before, if both
states are inM/ϕ then they coincide, and hence the result immediately follows.
Also, if both states are in M, then divergence of s′ is implied by divergence
of s. After all, having the same representative they must be connected by
confluent transitions, and hence Theorem 6.13 and the fact that the quotient is
not involved give the result.

So, we only need to show (1) whether divergence in a state s inM implies
divergence in its representative ϕ̂(s) inM/ϕ, and (2) whether divergence in a
state t̂ ∈M/ϕ implies divergence in all states s inM such that ϕ(s) = t.

(1) Assume that there is a diverging scheduler for some state s inM. We need
to show that there also is a diverging scheduler for ϕ̂(s) inM/ϕ. First of
all note that, by Theorem 6.13, divergence of s implies divergence of ϕ(s)
inM. Hence, we can assume that there is a scheduler S such that

∀π ∈ finpathsSM(ϕ(s)) . Ared(π) ∧ S(π)(⊥) = 0

It is well known that we can assume that this diverging scheduler is
memoryless and deterministic.

By the existence of S, there must be some transition ϕ(s) τ−֒→ µ
such that every state t ∈ supp(µ) is also diverging and has the same
labelling as ϕ(s). By the definition of the quotient, then there also is a
transition ϕ̂(s) τ−֒→ϕ µϕ inM/ϕ. Since µϕ is obtained from µ by taking the
representatives of all states in its support, ϕ̂(s) τ−֒→ϕ µϕ is also invisible by
definition of the representation map, the fact that confluent transitions are
invisible and the fact that the quotient leaves the state labelling invariant.

We can now construct a diverging scheduler for ϕ̂(s) that starts with
this transition. Then, it invisibly ends up in either one of a set of states
that are all representatives of diverging states. From all those states, the
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above argument can be repeated to take the next invisible transition. As
this process can be extended indefinitely, indeed ϕ̂(s) is diverging too.

(2) Assume that there is a scheduler S such that

∀π ∈ finpathsSM/ϕ(ŝ) . Ared(π) ∧ S(π)(⊥) = 0

for some state ŝ inM/ϕ. It is well known that we can assume that this
diverging scheduler is memoryless and deterministic.

We need to show that there also is a diverging scheduler for every state
s′ in M such that ϕ(s′) = s. First of all note that, by Theorem 6.13,
divergence of ϕ(s′) implies divergence of s′ in M. Hence, it suffices to
show divergence of ϕ(s′) based on divergence of ϕ̂(s′) (= ŝ).

By the existence of S, there must be an invisible transition ϕ̂(s′) τ−֒→ϕ µ
such that every state t̂ ∈ supp(µ) is also diverging. By the definition of the
quotient, then there also is a transition ϕ(s′) τ−֒→ ν inM such that νϕ = µ.
Again, it can easily be seen that ϕ(s′) τ−֒→ ν is also invisible. Hence, we
can now construct a diverging scheduler for ϕ(s′) that starts with this
transition. Then, it invisibly ends up in either one of a set of states that all
have a diverging representative. From all those states, the above argument
can be repeated to take the next invisible transition. As this process can
be extended indefinitely, indeed ϕ(s′) (and hence s′) is diverging too. �

A.5 Proofs for Chapter 7

A.5.1 Proof of Theorem 7.21

Lemma A.25. Let M = (S, s0, A, P,AP, L) be an MDP, and a, b ∈ A two
independent actions such that a ∈ Adet. Let s ∈ S such that {a, b} ⊆ en(s), and

assume that s −a→ s′ and s −b→ µ.

If T contains all outgoing a-transitions from states in the support of µ, i.e.,

T ⊇ {(t, a, µ) ∈ ∆M | t ∈ supp(µ)}

then there is a distribution ν ∈ Distr(S) such that s′ −b→ ν and µ ≡R ν, with R
the smallest equivalence relation such that

R ⊇ {(s, t) ∈ supp(µ)× supp(ν) | (s −a→ t) ∈ T }

Proof. Since a and b are independent, by definition {a, b} ⊆ en(s) and s −a→ s′

imply that there is a distribution ν ∈ Distr(S) such that s′ −b→ ν.

For any t ∈ supp(ν), let Rt = {r ∈ supp(µ) | r −a→ t} be the set of states from
the support of µ that can reach t by an a-action. As a and b are independent, Rt

is not empty, and when taking into account the assumption that a is deterministic
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it follows that {Rt | t ∈ supp(ν)} is a partitioning of supp(µ). Note that

ν(t) =
∑

s′′∈S

P (s, a)(s′′) · P (s′′, b)(t) =
∑

s′′∈S

P (s, b)(s′′) · P (s′′, a)(t)

=
∑

s′′∈Rt

P (s, b)(s′′) · P (s′′, a)(t) = P (s, b)(Rt) = µ(Rt).

The first equality follows from the fact that a is deterministic, the second from
the independence of a and b, the third from the definition of Rt and the fourth
from the fact that a is deterministic.

Note that R is the smallest equivalence relation relating each state t ∈ supp(ν)
to all states in Rt. From the above it follows that µ ≡R ν. �

Recall that A(s) contains the actions that are enabled from s by a reduction
function A in case s is not fully explored (the nontrivial transitions); otherwise,
A(s) is the empty set (Definition 7.6).

Theorem 7.21. Let A be an ample set reduction function for an MDP M =
(S, s0, A, P,AP, L). Then, the set TA = {(s, a, µ) ∈ ∆M | a ∈ A(s)} is acyclic,
and consists of probabilistically confluent transitions.

Proof. Firstly, the fact that TA is acyclic follows from the ample set condition A3:
a cycle of nontrivial transitions would violate the condition. Secondly, to show
that all the transitions in TA are confluent, we need to find a confluent set of
transitions T ∗

A ⊇ TA in which they are contained. Let T ∗
A be defined as the

minimal set that satisfies the following:

• TA
∗ ⊇ TA;

• If (s, a,1t) ∈ T
∗
A and b ∈ en(s) (b 6= a), then

{(s0, a, µ) ∈ ∆M | s0 ∈ supp(P (s, b))} ⊆ T ∗
A

To prove that T ∗
A is confluent, first note that by conditions A1 and A4 of the

definition of ample sets and by construction of T ∗
A , only transitions with invisible

actions are ever added to the set. Second, let (s −a→ t) ∈ T ∗
A and let s −b→ µ be

a transition of M . If b equals a, then the condition for confluence is trivially
fulfilled, so assume that b 6= a. If we can prove that a and b are independent,
confluence follows from Lemma A.25. Note that this lemma is indeed applicable,
since by construction T ∗

A contains all a-transitions from the support of P (s, b).

By definition of T ∗
A , there must be some state s∗ and a (possibly trivial)

path s∗ −b1...bn−−−−→ s such that bi 6= a for each i, and a ∈ A(s∗). Then, A(s∗) = {a},
by condition A4 of ample sets. Condition A2 guarantees that if b depends on
a, we would have at least one bi ∈ A(s∗), contradicting A4. Thus, a and b are
independent.

Also note that, if (s −b→ µ) ∈ T ∗
A too, then for confluence it has to be mim-

icked by a confluent transition. Indeed, since (s −b→ µ) ∈ T ∗
A and a ∈ en(s), by

construction also the b-transition from t is in T ∗
A. �
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A.5.2 Proof of Theorem 7.31

Lemma A.26. Let M = (S, s0, A, P,AP, L) be an MDP, a ∈ Adet a determin-
istic action, s ∈ S a state, and T ⊇ {(t, a, µ) ∈ ∆M | t ∈ Ra(s)} a set containing
all a-labelled transitions enabled from some state that is reachable from s without
doing any a-transitions. For any action b ∈ A such that b 6= a, the implication

{a, b} ⊆ en(s′) =⇒ P (s′, b) T P (target(s′, a), b)

holds for every s′ ∈ Ra(s) if and only if a is independent of b at s.

Proof. (⇒) To prove the “only if” part of this lemma, take an arbitrary action
b 6= a and consider any state s′ ∈ Ra(s) such that {a, b} ⊆ en(s′). According
to the assumptions of the lemma the a-transition from s′ has to be in T , so let
(s′, a,1t) ∈ T .

Due to the implication assumed by this lemma, P (s′, b)  T P (t, b). Now,
from this and the fact that T only contains a-transitions, using the part
∀s∗ ∈ Si . ∃a ∈ A . (s∗, a,1si) ∈ T of the conjunction in the definition of  T ,
the first condition for independence is satisfied. For the second condition, observe
that
∑

s∗∈S

P (s′, a)(s∗) · P (s∗, b)(u) = P (t, b)(u) =
∑

s∗∈Su

P (s′, b)(s∗)

=
∑

s∗∈S

s∗−a→u

P (s′, b)(s∗) =
∑

s∗∈S

P (s′, b)(s∗) · P (s∗, a)(u)

where the first and last step follow from the fact that a is deterministic, the
second and third from the definition of  T . We used Su to denote the class in
the partitioning according to  T , corresponding to state u.

(⇐) For the “if” part of this lemma, assume that a is independent of b at
s, and let s′ ∈ Ra(s) be an arbitrary state such that {a, b} ⊆ en(s′). Carrying
out exactly the same calculations as in Lemma A.25 for s′ (note that T indeed
contains all a-transitions from the support of P (s′, b) since all these states are
also in Ra(s)), we see that P (s′, b) T P (target(s′, a), b). �

Theorem 7.31. Let M = (S, s0, A, P,AP, L) be an MDP. Then, T : S →P(A)
is an acyclic action-separable restricted confluence reduction function if and only
if T is a relaxed ample set reduction function.

Proof. (⇒) To prove the “only if” part of the theorem, let T be the action-
separable restricted confluent set underlying T , and let s ∈ S be an arbitrary
state. In this proof, when we write that a transition is confluent we mean that
it is confluent and that it is in T . If T (s) = en(s), then all ample set conditions
hold vacuously, so assume that T (s) 6= en(s). Thus, by definition of confluence
reduction functions, T (s) = {a} for some action a ∈ Ared such that (s, a,1t) ∈ T
for some state t ∈ S.

Condition A0 is clearly satisfied. Moreover, A1 follows from fact that only
transitions with invisible (and thus stuttering) actions can be confluent, A3 from
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the acyclicity of T and A4 by construction and from the fact that all confluent
transitions are deterministic.

For condition A2∗, we prove the contrapositive: given an arbitrary path

s −a1a2...anb−−−−−−→ t in M such that b 6∈ T (s) and ai 6∈ T (s) for every i, we show that
T (s) is independent of b at s. For each action ai on this path, let si be the
state reached immediate after taking this action. Due to Lemma A.26, it is
enough to prove that (s′, a,1target(s′,a)) ∈ T for every s′ ∈ Ra(s) and additionally
P (s′, b) T P (target(s′, a), b) if {a, b} ⊆ en(s′).

Let s′ ∈ Ra(s), so there is a path s −a1a2...am−−−−−−→ sm such that ai 6= a for
every i and sm = s′. Again, for each action ai on this path, let si be the
state reached immediate after taking this action. Since there is a confluent
a-transition from s and also a1 ∈ en(s) and a1 6= a, by definition of restricted
confluence P (s, a1) T P (target(s, a), a1). Now, by definition of  and using
action-separability, there has to be a confluent a-labelled transition from s1.
Repeating this argument from s1 we find that P (s1, a2) T P (target(s1, a), a2)
and that there is a confluent a-labelled transition from s2, and continuing this
way that P (sm−1, am) T P (target(sm−1, a), am) and that there is a confluent
a-labelled transition from sm. So, since sm = s′, indeed (s′, a,1target(s′,a)) ∈ T .
Now, if {a, b} ⊆ en(s′), then the same argument can be applied once more from
s′, obtaining P (s′, b)  T P (target(s′, a), b). (b 6= a since it was assumed that
b 6∈ T (s).)

(⇐) To prove the “if” part of the theorem, let Ta be the set of nontrivial
actions of the relaxed ample set reduction function that are labelled by a. Now,
the construction and proof of confluence of a set T ∗

a ⊇ Ta works almost exactly
as in Theorem 7.21: the construction never adds actions that have a label that
is different from a to the set (so action-separability is guaranteed), and the proof
of confluence does not rely in any way on the liberal parts that we removed from
the definitions.

The only difference is that now, due to the relaxed condition A2∗, a and b
are not necessarily globally independent anymore. However, confluence can still

be proven. To see this, let (s, a,1t) ∈ T
∗
a and let s −b→ µ be a transition of M .

If b equals a, then again the condition for confluence is trivially fulfilled, so
assume that b 6= a. Now, by definition of T ∗

a , there must be some state s∗ and a
(possibly empty) path s∗ −b1...bn−−−−→ s such that bi 6= a for each i, and a ∈ T (s∗).
Then, T (s∗) = {a}, by condition A4 of ample sets. Condition A2∗ guarantees
that if a depends on b at s∗, we would have at least one bi ∈ T (s∗), contradicting
A4. Thus, a is independent of b at s∗. As s ∈ Ra(s

∗), the conditions of local
independence hold at s. Now, confluence follows from Lemma A.25. (Note
that, technically, this lemma is not applicable: although by construction T ∗

a

contains all a-transitions from the support of P (s, b), a and b are not globally
independent. However, the fact that the independence equations hold at s is the
only thing that is used in the proof of Lemma A.25, so the result is still valid.)

Note that the union of these confluent sets Ta is an action-separable confluent
set, as the action-specific subsets are exactly the sets Ta constructed above. Thus,
we get the result by taking the union of every Ta, as a ranges over all (invisible)
actions: the resulting action-separable confluent set T contains all nontrivial
transitions of T and therefore proves that T is an acyclic action-separable



A.6. Proofs for Chapter 8 291

restricted confluence reduction function.

The fact that we indeed can take the union of these sets Ta follows from the
same argument as discussed in the end of Theorem 7.21. �

A.6 Proofs for Chapter 8

A.6.1 Proof of Theorem 8.11

Theorem 8.11. Let M be an MDP, T a confluent set of its transitions and T
an acyclic confluence reduction function under T . Let MT be the reduced MDP.
Then, M and MT satisfy the same PCTL∗

\X formulae.

Proof. This theorem precisely corresponds to Corollary 7.20. That corollary is
based on Theorem 7.19, which states that M ≡pvb MT . Although those results
were for MDPs where each state can have only one outgoing transition for each
action label, this property is not used in any of the proofs. Hence, the results
apply just as well for our type of MDPs. Additionally, we now allow countable
state spaces, while in Chapter 7 finiteness was assumed. However, as we only
consider finite subparts of an MDP during simulation, this also does not matter.

More importantly, the results in Chapter 7 were based on a slightly more
restrictive notion of confluence. Although technically probabilistic visible bisim-
ulation is not preserved anymore under the new definition of Chapter 8, the
bisimulation notion could be altered to also just require invisible transitions
instead of invisible actions, and also allow transitions to be mimicked by trans-
itions with a different action. As discussed in detail in Section 8.3, this would
not change anything to the fact that PCTL∗

\X properties are preserved. �

A.6.2 Proof of Theorem 8.12

Lemma A.27. Given two distributions µ, ν,

checkEquivalence(µ, ν) =⇒ µ ≡RT
µ,ν

ν

where T is the set of confluent transitions at termination of checkEquivalence.

Proof. First of all, note that T only grows during checkEquivalence. After all,
each call to checkConfluence may only add transitions to it, or leave it unchanged.

Assume that checkEquivalence(µ, ν) yields true. Hence, µ(q) = ν(q) for every
q ∈ Q, using the set Q after the loop. Note that Q is a partitioning of the set
supp(µ) ∪ supp(ν), since initially it contains all singletons, and the loop only
merges some of its elements. Now let Q′ = Q ∪ {{q} | q 6∈ supp(µ) ∪ supp(ν)}
be a partitioning of the complete set of states S. We also have µ(q) = ν(q) for
every q ∈ Q′, as both µ and ν assign probability 0 to all newly added classes.
Let Q′′ be the equivalence relation associated with Q′, i.e., (s, t) ∈ Q′′ if and
only if there is a set q′ ∈ Q′ such that s, t ∈ q′. Since the function returns true,
by definition we have µ ≡Q′′ ν.
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It remains to show that Q′′ ⊆ RT
µ,ν ; by Proposition 5.2.1.5 of [Sto02a], then

indeed µ ≡RT
µ,ν

ν. Recall that RT
µ,ν is the smallest equivalence relation containing

the set

R′ = {(s, t) | s ∈ supp(µ), t ∈ supp(ν), ∃ a . s −a→ t ∈ T }

where we chose T to be the set at termination of checkEquivalence. Hence,
(s, t) ∈ RT

µ,ν if and only if s = t or there are states s0, s1, . . . , sn such that s0 = s,
sn = t and either (si, si+1) ∈ R′ or (si+1, si) ∈ R′ for every 0 ≤ i < n.

So, let (s, t) ∈ Q′′. We show that also (s, t) ∈ RT
µ,ν . If s = t, this is immediate,

so assume that s 6= t. By construction, there is a set q′ ∈ Q such that s, t ∈ q′.
For s and t to be in the same set, some merges must have taken place in the loop.

If s ∈ supp(µ), s1 ∈ supp(ν) and s −a→ s1 ∈ T (at some point, so since T only
grows also at the end), then {s} and {s1} are merged. Hence, this corresponds
to (s, s1) ∈ R′. Alternatively, the same merge also happens if s ∈ supp(ν),
s1 ∈ supp(µ) and s1 −

a→ s ∈ T , hence, (s1, s) ∈ R′. The set {s, s1} can grow
further in the same way, until it at some point contains t. This procedure
corresponds exactly to the requirement that (s, t) ∈ RT

µ,ν .

(In this proof we used s −a→ µ ∈ T and checkConfluence(s −a→ µ) inter-
changeably; after all, if checkConfluence(s −a→ µ) returns true then indeed also
s −a→ µ ∈ T , and if s −a→ µ ∈ T then checkConfluence(s −a→ µ) returns true.) �

Theorem 8.12. Given a transition p −l→ 1q, checkConfluence(p −l→ 1q) and
checkConfluentMimicking together imply that p −l→ 1q is confluent.

Proof. We need to show that there exists a confluent set of transitions containing

p −l→ 1q. We show that, upon termination of the algorithm and returning true,

the set T fulfills this condition. Clearly, p −l→ 1q ∈ T , since it is always added
immediately at the beginning of checkConfluence (except in case that false is
returned due to it being visible), and only removed before returning false. Since

we assumed that true is returned, indeed p −l→ 1q ∈ T .
To show that T is a confluent set, let s −a→ 1t ∈ T be an arbitrary element.

Note that indeed any element of T is deterministic, since the inner foreach
loop of checkConfluence ascertains that only for such transitions the function
checkConfluence is called (and hence only they are potentially added to T ). We

have to prove that s −a→ 1t is invisible and that, for every s −b→ µ we have either
µ = 1t or there exists a transition t −c→ ν such that µ ≡RT

µ,ν
ν. Also, we need to

show that t −c→ ν is in T if s −b→ µ is. We postpone this last part to the end.
Since s −a→ 1t ∈ T , at some point checkConfluence(s −a→ 1t) must have been

called, s −a→ 1t was added to T and subsequently not removed. This implies
that L(s) = L(t) (and hence indeed the transition is invisible) and that the
algorithm terminated with the final return true statement. Hence, the outermost
foreach loop never reached the end of its body, but was always cut short before

by a continue statement. So, for each s −b→ µ it holds that either µ = 1t or
there exists a transition t −c→ ν for which the second foreach loop reached its
continue statement. In the second case, checkEquivalence(µ, ν) yielded true,
and by Lemma A.27, this implies that µ ≡RT

µ,ν
ν was true at the end of each
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iteration of the loop. Since T can only grow during the loop, and also afterwards

no transitions are removed from T anymore (because otherwise p −l→ 1q would
have been removed too), the set T at the end of the algorithm is a superset of
the set T at the moment that µ ≡RT

µ,ν
ν was established. Hence, we also have

µ ≡RT
µ,ν

ν for the final T (based on Proposition 5.2.1.5 of [Sto02a]), as required.

Finally, we show that if s −b→ µ is mimicked by t −c→ ν and s −b→ µ ∈ T ,
then so is t −c→ ν. This follows from checkConfluentMimicking. After all, each
transition and its mimicking transition that are found, are added to C in the
body of checkConfluence. Only when T is reset also C is, since the mimickings
that were found in that call are then clearly not relevant anymore. At the end,
checkConfluentMimicking checks all of the mimicking pairs. If one fails the test,
the function checks to see if it can still add t −c→ ν to T to make things right. Since
we assumed that it returns true, apparently no irreparable violation was found,
and indeed all confluent transitions are mimicked by confluent transitions. �
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Symbols

τ∗a equivalence, 210

A

ACP, 10
action, 31, 34
action independence, 159, 167, 182

local independence, 176
action-separability, 176
action-separable confluence reduction func-

tion, 176
acyclic reduction function, 165, 191
acyclicity, 133, 170
alternating model, 10
alternative composition, 10
ample set, 159, 168, 181
ample set reduction, 168
arity, 60
associativity, 75
atomic proposition, 4, 31, 34, 162, 187
axiom, 60
axiomatisation, 10

B

basic reduction techniques, 102, 209, 230
bijection, 21
binary decision diagram, 12, 76
binary operator, 60
binary relation, 20
BNF grammar, 64
boolean equation system, 191
Borel σ-algebra, 24
bottom strongly connected component, 142
bound variable, 68
branching bisimulation, 47, 50, 53

divergence sensitivity, 51
branching probability distribution, 36
branching transition, 49
branching-time domain, 4
BSCC, see bottom strongly connected com-

ponent

C

CADP, 105, 205

cardinality, 21

Cartesian product, 20

changed parameter, 109

characterising logic, 52

closed MA, 35

closed MDP, 187

closed process term, 61

combinatorial explosion, see state space
explosion

combined transition, 49

communication function, 96

commutativity, 129, 136

completeness, 52

compositional analysis, 207

Computation Tree Logic, see CTL

condition, 66

conditional probability, 25

cones and foci, 76

confidence interval, 185

confluence, 135, 207

closure under union, 138, 141, 157,
189, 280

coincidence with POR, 177, 289

divergence preservation, 144

heuristics, 145, 150, 160

on-the-fly detection, 191

preservation of divergence-sensitive
branching bisimulation, 142, 145

relation with POR, 171

confluence classification, 138, 146, 189

confluence reduction, 13, 14, 76, 129, 131,
143, 159, 181, 209, 231

confluence reduction function, 170, 190

confluent action, 169

confluent set, 129, 132, 139

confluent summand, 146

confluent transition, 139, 170

constant elimination, 13, 102

continuous probability theory, 27

continuous random variable, 27

continuous stochastic logic, see CSL

continuous-time Markov chain, see CTMC
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contributions, 14, 54, 105, 124, 158, 179,
199, 228

control flow graph, 107, 112
control flow parameter, 107, 111

belonging to, 114, 122
convertibility, 40, 141, 155, 162
countable additivity, 23
countable set, 21
countably infinite set, 22
CSL, 4, 52
CTL, 4
CTL∗

\X , 159
CTL∗, 5
CTMC, 5, 7, 31, 225
cumulative distribution function, 27
cycle condition, 133, 161, 170, 191

D

data parameter, 111
relevance for CFP value, 117
relevance in state vector, 118

dead variable, 107
dead variable reduction, 14, 76, 120, 209,

230
idempotency, 120

deadlock state, 35
decodable, 109
decoding, 81
density, see probability density function
density function, see probability density

function
derivation, 59, 63, 71, 72
derivation preservation, 82
derivation-labelled transition, 73
derivation-preserving bisimulation, 82, 118,

274
destination function, 110

heuristics, 111
determinism, 164, 187
Dirac distribution, 26, 138
directly used parameter, 113
discrete probability distribution, 26
discrete probability theory, 26
discrete random variable, 26
discrete-time Markov chain, see DTMC
disjoint sets, 20
disjoint union, 20
distributed model checking, 12, 76
distributed scheduler, 159
distribution, see discrete probability dis-

tribution

divergence, 51
divergence-sensitive branching bisimula-

tion, 51
domain, 21
DTMC, 5, 6, 31
dynamic fault tree, 7

E

empty sequence, 22
empty set, 19
enabled action, 162
enabled transition, 187
encapsulation, 96
encoding, 81
equivalence class, 20
equivalence relation, 20
equivalence up to T -steps, 174
essential state abstraction, 142
event, 23
exit rate, see outgoing rate
expected time, 208
expected value, 28
experiment, 22
exponential distribution, 28
expression simplification, 13, 103
extended action set, 38
extended transition, 38
external nondeterminism, 32

F

final state probability, 43
finite path under a scheduler, 41
finite set, 21
formal methods, 1
formal verification, 3
free variable, 68
function, 21

G

GEMMA, 205, 223
generalised stochastic Petri net, see GSPN
global variable, 76
goal state, 208
GSPN, 7, 203, 205, 223

H

handshake register, 123, 210
hiding, 96
hypothesis testing, 181

I

ignoring problem, 133, 170, 191
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image, 21
IMC, 5, 7, 31, 33, 45, 53
IMCA, 9, 203, 205, 232
IML, 10, 11
independence, see action independence
initial process, 68, 96
initial state, 34
initial vector, 77, 109
injection, 21
instantiated transition rule, 62
interactive Markov chain, see IMC
interactive state, 35
interactive summand, 77
interactive transition, 34
interactive transition relation, 73
intermediate regular form, see IRF
internal action, 34
internal nondeterminism, 32
invariant, 76
inverse image, 21
invisibility, 39, 139, 160
invisible action, see internal action
IRF, 84

process equation, 86
process term, 86
specification, 86

isomorphism, 46
Itai-Rodeh, 214

J

joinability, 40, 141, 155, 162
joint distribution, 26

L

leader election protocol, 214
lifting, 26
linear probabilistic process equation, see

LPPE
linear process equation, see LPE
Linear Temporal Logic, see LTL
linear-time domain, 4
linearisation, 59, 84, 109

complexity, 94
LiQuor, 5
local variable, 76
long-run average, 208
lookahead, 196
LOTOS NT, 57
LPE, 10, 58, 75
LPPE, 84, 109, 204

decodable, 120

global variable, 109
initial state, 119
local variable, 109
parameter, 109
probabilistic variable, 109
transformation, 120

LTL, 4
LTL\X , 159, 182, 191
LTS, 31, 32
LTSmin, 206

M

µ-calculus, 76
µCRL, 10, 57, 65, 210
MA, 2, 5, 7, 34

goal state, see goal state
MaMa, 205
MAPA, 11, 31, 58, 65, 203

bisimulation, 75
built-in data types, 204
built-in functions, 204
data, 204
encapsulation, 96, 204
hiding, 96, 204
isomorphism, 75
operational semantics, 74
parallel composition, 96, 204
process equation, 96
process term, 65
renaming, 96, 204
semantics, 71
SOS rules, 71
specification, 68
well-formedness, 69

Markov Automata Process Algebra, see
MAPA

Markov automaton, see MA
Markov decision process, see MDP
Markov reward model, 5
Markovian confluence, 138
Markovian derivation, 73
Markovian linear process equation, see

MLPE
Markovian state, 35
Markovian summand, 77
Markovian transition, 34
Markovian transition relation, 73
maximal path under a scheduler, 41
maximal progress assumption, 35
mCCS, 10, 11
mcpta, 196
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MDP, 5, 161, 187
acyclicity, 163
probabilistic confluence, 169

measurable random variable, 24
measurable space, 24
memorylessness, 29
mimicking, 132
MLPE, 15, 58, 77, 145, 204

encapsulation, 101
hiding, 101
operational semantics, 77
parallel composition, 98
renaming, 101

model checking, 3
model-based testing, 2
modes, 183, 196
Modest, 11, 105, 183, 187
Monte Carlo sampling, 184
MRMC, 5
multi-transition system, 73
multiset, 19

N

naive weak bisimulation, 8, 50
natural number, 19
non-terminal, 64
nondeterminism, 2, 5, 32, 185, 225
nondeterministic choice, 66
nontrivial transition, 165, 188
normal form, 90

O

on-the-fly confluence detection, 191
open MA, 36
open process term, 61
operator, 60
outcome, 22
outgoing rate, 36, 69, 79

P

PA, 5, 6, 31, 32, 45, 53
parallel composition, 9, 44, 96, 187

congruence, 47
parallel MAPA, 96

parallel composition, 96
process term, 96
SOS rules, 96
specification, 96
well-formedness, 96

parallelisation, 12
partial function, 21

partial order reduction, 13, 14, 76, 130,
159, 167, 181

partial schedulers, 40
partition, 20
path, 39, 162
path prefix, 39
path probability, 42
PCTL, 53
PCTL∗
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Samenvatting

K
wantitatiefmodel checking houdt zich bezig met de verificatie van zowel
kwantitatieve als kwalitatieve eigenschappen van modellen die kwantita-
tieve informatie bevatten. Een toename in expressiviteit van de modellen

waar aan gerekend wordt zorgt ervoor dat meer soorten systemen geanalyseerd
kunnen worden, maar vergroot ook de moeilijkheid van de berekeningen.

Drie jaar geleden werd de Markov-automaat (MA) gëıntroduceerd. Dit model
is een generalisatie van de probabilistische automaat (PA) en de interactieve
Markov-keten (IMC). Het bevat nondeterminisme, discrete probabilistische
keuze en stochastische tijd. Later werd bovendien de tool IMCA ontwikkeld,
waarmee tijdsgebonden bereikbaarheidseigenschappen, tijdsverwachtingswaarden
en langetermijngemiddelden bepaald kunnen worden voor een verzameling van
doeltoestanden in een MA. Echter, tot nu toe was er nog geen efficiënt formalisme
voor het modelleren en genereren van MAs. Bovendien loert de toestandsruimte-
explosie altijd om de hoek, waardoor modellen al snel te groot worden om te
analyseren. Dit proefschrift lost het eerste probleem op, en levert een significante
bijdrage aan het verminderen van het tweede.

Ten eerste introduceren we de procesalgebräısche taal MAPA voor het model-
leren van MAs. Deze taal kan gebruikmaken van zowel statische als dynamische
data (zoals lijsten), zodat systemen efficiënt gemodelleerd kunnen worden. Een
transformatie van MAPA-specificaties naar een beperking van de taal—mogelijk
gemaakt door een codering van Markoviaanse snelheden in acties—vereenvoudigt
parallelle compositie, toestandsruimtegeneratie en syntactische optimalisaties
(reductietechnieken).

Ten tweede introduceren we vijf reductietechnieken voor MAPA-specificaties:
constanteneliminatie, expressievereenvoudiging, sommatie-eliminatie, dodeva-
riabelenreductie en confluentiereductie. De eerste drie hebben als doel om de
toestandsruimtegeneratie te versnellen door het vereenvoudigen van de spe-
cificatie, terwijl de laatste twee zich richten op efficiëntere analyse door een
vermindering van het aantal toestanden. Dodevariabelenreductie reset datavaria-
belen op het moment dat hun waarde niet meer relevant is, en confluentiereductie
detecteert en vermindert oneigenlijk nondeterminisme (dat vaak ontstaat door
de parallelle compositie van beperkt samenwerkende componenten). Aangezien
MAs zowel gelabelde transitiesystemen, Markov-ketens, Markov-processen, pro-
babilistische automaten als interactive Markov-ketens generaliseren, zijn onze
technieken en resultaten ook van toepassen op al deze deelmodellen.

Ten derde vergelijken we confluentiereductie met de ‘ample set’-variant van
partial order reduction (POR). Aangezien POR nog niet gedefinieerd was voor
MAs, vindt onze vergelijking plaats in de context van probabilistische automaten.
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We stellen exact vast hoe de twee methoden theoretisch verschillen, en lossen
daarmee een langdurige onzekerheid op over hoe deze concepten verband houden.
Als we ons richten op ‘branching-time’ eigenschappen, blijkt confluentiereductie
strikt krachtiger te zijn dan POR. Aansluitend hierop vergelijken we de twee
technieken ook in praktische zin, in de context van statistische model checking.
We demonstreren dat de aanvullende kracht van confluentie inderdaad tot extra
reducties kan leiden (zelfs vergeleken met de POR-methode die slechts ‘linear-
time’ eigenschappen bewaart).

We hebben een tool genaamd SCOOP ontwikkeld, waarin alle zojuist be-
schreven reductietechnieken zijn verwerkt. SCOOP kan exporteren naar de
IMCA-tool, en vormt samen daarmee de eerste softwareketen voor de analyse
van MAs. Case studies omtrent een handshake-register, een verkiezingsprotocol,
een polling-systeem en een processorarchitectuur demonstreren de variëteit aan
systemen die gemodelleerd kunnen worden met MAPA. Experimentele resultaten
laten bovendien zien dat significante reducties behaald kunnen worden met onze
technieken, waarmee de toestandsruimten soms krimpen tot minder dan een
procent van hun oorspronkelijke grootte. Onze resultaten stellen ons bovendien
in staat om richtlijnen te geven die voor iedere techniek aangeven wat voor
eigenschappen in een case study indicatoren zijn voor grote reducties.

Uiteindelijk biedt MAPA ons de mogelijkheid om efficiënt systemen te model-
leren met nondeterminisme, discrete probabilistische keuze en stochastische tijd.
De taal staat ons bovendien toe om geavanceerde reductietechnieken eenvoudig
te definiëren, wat inderdaad tot een aantal nieuwe technieken heeft geleid. Onze
vergelijkingen tussen confluentiereductie en POR verschaffen nieuwe inzichten
in hun relatie. Experimenten laten bovendien zien dat onze technieken van
grote waarde kunnen zijn ter voorkoming van de toestandsruimte-explosie: een
belangrijke stap voorwaards in efficiënte kwantitatieve verificatie.

Kan je dit ook uitleggen aan niet-informatici?

Het laatste gedeelte van dit proefschrift is bedoeld voor mijn oma—en voor alle
andere lezers die weinig weten van informatica, maar wel enigszins benieuwd
zijn wat ik de afgelopen jaren heb gedaan1. Ik zal beginnen met een versimpelde
inleiding in mijn vakgebied, en vervolgens kort proberen uit te leggen wat mijn
bijdrage hieraan is geweest. In de praktijk worden de technieken waar wij aan
werken vaak gebruikt voor de kwaliteitsverbetering van ingewikkelde en essentiële
computersystemen. Ik heb de voorbeelden echter bewust eenvoudig en binnen
de belevingswereld van velen gehouden, om het één en ander begrijpelijker uit te
kunnen leggen dan als ik realistische voorbeelden zou hebben gebruikt.

1Met dank aan ‘wiskundemeisje’ Ionica Smeets voor de tip om hier op het eind toch nog
even wat aandacht aan te besteden.
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Model checking

Mijn werk speelt zich af in het werkveld model checking, een onderdeel van
de informatica. Om te begrijpen waar model checking goed voor is, gebruik
ik het voorbeeld van de kerncentrale versus het boekhoudprogramma. Bij
een boekhoudprogramma werkt het prima om een eerste versie te produceren,
vervolgens te testen in hoeverre deze versie correct werkt, en op basis hiervan
verbeteringen aan te brengen. Eventuele resterende fouten die tijdens het gebruik
aan het licht komen kunnen wellicht door middel van updates verholpen worden.
Bij een kerncentrale (of bijvoorbeeld een raket) is deze methode minder wenselijk;
een klein foutje kan dan al snel leiden tot desastreuze gevolgen. Het is daarom
essentieel om correctheid van de belangrijkste componenten van een dergelijk
systeem zo goed mogelijk vooraf te garanderen.

In de informatica probeert men onder andere bij te dragen aan zulke ga-
ranties door middel van model checking. Deze aanpak bestaat uit het wiskun-
dig modelleren van een systeem en het wiskundig formuleren van een aantal
correctheidseigenschappen. Vervolgens kan een model checker (een speciaal
computerprogramma) gebruikt worden om automatisch te controleren of het
model aan alle eigenschappen voldoet. Vaak maken we hiervoor gebruik van ge-
dragsmodellen die precies alle mogelijke toestanden van een systeem beschrijven,
evenals alle overgangen tussen deze toestanden. Het model wordt daarom ook
vaak een toestandsruimte genoemd.

Een eenvoudig voorbeeld van een toestandsruimte wordt weergegeven in het
volgende plaatje. Het betreft een lamp met drie mogelijke standen: uit, zwak
en fel. Door op een knop te drukken springt de lamp naar de volgende stand.
De bolletjes representeren de toestanden van het systeem, terwijl de pijlen de
acties van de gebruiker modelleren. De pijl ‘uit het niets’ linksboven wijst naar
de initiële toestand van het systeem.

uit zwak fel
druk druk

druk

Een mogelijke correctheidseigenschap zou kunnen zijn: “het is altijd mogelijk
om de lamp uit te schakelen”. In dit model komt dat neer op de eis dat het
vanuit iedere toestand mogelijk is om de toestand uit te bereiken; er moet
altijd een pad (van mogelijk meerdere stappen) zijn naar deze toestand. Een
model checker zou dit automatisch kunnen verifiëren. Uiteraard kunnen we in
dit eenvoudige voorbeeld zelf ook direct zien dat inderdaad aan deze eigenschap
wordt voldaan.

In mijn werk houd ik me bezig met ingewikkeldere modellen, waarin ook
kwantitatieve aspecten (kansen en tijd) verwerkt zijn. Hier kom ik later op terug.
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Toestandsruimte-explosie

In de praktijk zijn modellen van systemen vaak ontzettend groot; een paar miljoen
toestanden is zeker niet ongebruikelijk, en realistische systemen komen al snel uit
op miljarden of zelfs nog meer mogelijke toestanden. Dit is voornamelijk te wijten
aan het feit dat systemen vaak uit verschillende componenten bestaan, die zich al-
lemaal in meerdere toestanden kunnen bevinden. De combinatie van deze compo-
nenten leidt tot de zogeheten toestandsruimte-explosie (state space explosion).

Om de aard van de toestandsruimte-explosie te begrijpen, beschouwen we het
aantal manieren om een diner samen te stellen op basis van een menukaart. Er
zijn drie gangen: we hebben vier keuzes voor het voorgerecht, zes keuzes voor het
hoofdgerecht en drie keuzes voor het toetje. Hoeveel mogelijkheden zijn er nu in
totaal? Bij ieder van de vier voorgerechten kan je uit zes hoofdgerechten kiezen.
Dit maakt daarom 4×6 = 24 combinaties van voorgerecht en hoofdgerecht. Voor
ieder van deze combinaties kan je bovendien uit drie toetjes kiezen; dat resulteert
in 24× 3 = 72 mogelijkheden in totaal. Dit is al een behoorlijke hoeveelheid.
Als we nu nog een extra keuze uit twee soorten amuses toevoegen, verdubbelt
het aantal mogelijke menu’s naar 72× 2 = 144. Voor iedere extra gang vindt
een soortgelijke verdubbeling of wellicht verdrievoudiging of verviervoudiging
plaats in het aantal mogelijkheden.

Precies hetzelfde is er aan de hand bij het modelleren van een systeem dat
uit meerdere componenten bestaat: het totale aantal toestanden (de bolletjes in
het model) is grofweg de vermenigvuldiging van het aantal toestanden van de
individuele componenten. Even voor het idee: een combinatie van 10 systemen
die ieder uit 100 toestanden bestaan, levert

10010 = 100 · 100 · . . . · 100
︸ ︷︷ ︸

10 keer

= 100.000.000.000.000.000.000

toestanden op: het astronomische aantal van een 1 met 20 nullen. Dit is zo’n
tien keer zoveel als het aantal zandkorrels op alle stranden van de wereld bij
elkaar (volgens een grove schatting). Als een computer een miljoen toestanden
per seconde zou doorrekenen, zou deze hier ruim drie miljoen jaar mee aan
het werk zijn. Het feit dat het aantal toestanden zo snel uit de hand loopt
is precies wat wordt bedoeld met de toestandsruimte-explosie. Aangezien een
combinatie van 10 systemen die ieder uit 100 toestanden bestaan helemaal niet
onrealistisch is, vormt deze eigenaardigheid een van de belangrijkste problemen
in ons vakgebied—systemen in de praktijk hebben vaak een dusdanig grote
toestandsruimte dat analyse niet meer mogelijk is binnen afzienbare tijd.

Procesalgebra

We hebben zojuist gezien dat modellen al snel onhandelbaar groot kunnen
worden. Toch zijn er gelukkig ook genoeg nuttige (deel)systemen of protocollen
die efficiënt gemodelleerd kunnen worden in bijvoorbeeld een miljoen toestanden
of zelfs nog minder. Modellen van zo’n formaat kunnen met moderne computers
nog prima doorgerekend worden. Echter, het is natuurlijk niet zo prettig om
handmatig een model van bijvoorbeeld 500.000 toestanden op te schrijven.
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Onze aanpak is daarom om bij een systeem dat uit meerdere componenten
bestaat ook daadwerkelijk de individuele componenten van een systeem los van
elkaar te modelleren. Hiervoor wordt een bepaald wiskundig formalisme (een
procesalgebra) gebruikt, waarbij we aan kunnen geven hoe deze componenten
met elkaar communiceren. Vergelijk het maar met de eerdergenoemde menu-
kaart: hier willen we ook niet alle 144 mogelijke menu’s onder elkaar noteren.
In plaats daarvan kunnen alle keuzemogelijkheden toch beknopt worden opge-
schreven door gewoon de componenten (in dit geval de gangen) los van elkaar
te beschrijven en dus de 15 mogelijke gerechten onder elkaar op te schrijven.
Zo wordt de toestandsruimte-explosie (de vermenigvuldiging) nog even uitge-
steld. Op deze manier kunnen reusachtige systemen vaak op zeer beknopte wijze
gemodelleerd worden; het komt regelmatig voor dat systemen met miljoenen
toestanden gerepresenteerd worden door minder dan een A4’tje procesalgebra.
Een computerprogramma kan dan automatisch het volledige model genereren op
basis van zo’n beschrijving.

In een procesalgebra wordt het gedrag van processen gerepresenteerd. Je zou
het kunnen zien als een wiskundige taal. In principe kan bijna alles als proces
worden opgevat: een computerprogramma, een protocol, een spelletje of zelf een
persoon. Simpel gezegd geeft de beschrijving de volgorde van de mogelijke acties
van het proces aan. Een (voor de leesbaarheid zeer vereenvoudigd) voorbeeld
van het gedrag van het proces BABY zou als volgt kunnen zijn:

BABY = (huilen · eten+ huilen · drinken) · ontlasting · slapen · BABY

In deze procesalgebräısche beschrijving is BABY de naam van het proces dat
beschreven wordt. De verschillende woorden geven de acties aan. De punt wordt
gebruikt voor sequentiële compositie (volgorde): acties vinden na elkaar plaats
van links naar rechts. Slapen komt dus bij deze baby altijd pas na ontlasting. De
plus wordt gebruikt voor alternatieve compositie (keuze): ofwel het gedrag links
van de plus wordt uitgevoerd, ofwel het gedrag rechts ervan. In dit geval wordt
dus aangenomen dat een baby eerst huilt en eet, of eerst huilt en drinkt, en dan
zijn behoefte doet en gaat slapen. Het woord BABY op het eind geeft aan dat het
gedrag zich vervolgens weer herhaalt, wat leidt tot de volgende toestandsruimte:

BABY

huilen

huilen

eten

drinken

ontlasting

slapen

Hoewel de procesalgebräısche beschrijving geen namen geeft aan de tus-
senliggende toestanden, zijn deze in dit geval prima te bedenken (honger,
dorst, vol, moe). We zien in dit plaatje duidelijk dat de actie huilen tot
twee verschillende toestanden kan leiden: één waarin de baby honger heeft
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en één waarin de baby dorst heeft. Dit fenomeen wordt non-determinisme
genoemd: als ouder moet je maar gokken in welke toestand je baby zich be-
vindt, dat is niet af te leiden uit de observeerbare acties (in ieder geval niet
volgens deze vereenvoudigde representatie).

Procesalgebra staat naast sequentiële en alternatieve compositie ook parallelle
compositie (gelijktijdige uitvoering) toe. Dit is de grote kracht van het paradigma,
aangezien hiermee op eenvoudige wijze deelsystemen samengesteld kunnen worden
tot een totaalsysteem waarin allerlei gedrag van de deelsystemen onafhankelijk
van elkaar kan gebeuren. Als illustratie modelleren we naast het gedrag van de
baby ook het (wederom extreem vereenvoudigde) gedrag van een van zijn ouders:

OUDER = (geefVoedsel+ geefFles+ legInBed+ kijkTV · wc) · OUDER

Deze ouder kan de baby voeden, de fles geven en in bed leggen. De resterende tijd
besteedt hij aan televisie kijken, wat altijd direct gevolgd wordt door een bezoek
aan het toilet. (Uiteraard is dit geen realistische weergave van de werkelijkheid,
aangezien ouders onder andere ook luiers moeten verschonen, met kinderen
spelen en zelf moeten eten en slapen, maar dat laten we even buiten beschouwing
om de modellen niet te ingewikkeld te maken). De eenvoudige beschrijving van
de ouder leidt tot de volgende toestandsruimte:

OUDER

geefVoedsel

geefFles legInBed

kijkTV

wc

Merk op dat er slechts twee toestanden zijn: normaal gesproken kan deze
ouder de baby voeden, de fles geven of in bed stoppen, tenzij hij al begonnen is
met televisie kijken. In dat geval moet hij eerst naar de wc voordat hij zich weer
om de baby kan bekommeren.

We kunnen deze twee processen nu in parallel zetten; we verkrijgen hiermee
het totale gedrag van de ouder en de baby als eenheid. In overeenkomst met
de werkelijkheid, eisen we synchronisatie van de acties eten (van BABY) en
geefFles (van OUDER); deze twee acties moeten dan altijd tegelijk gebeuren.
Een baby kan immers niet eten als de ouder niet aan het voeden is. Hetzelfde
geldt voor drinken en de fles geven, en voor slapen en in bed stoppen. De
parallelle compositie van beide processen ziet er dan uit zoals weergegeven in
figuur 2.1 op de volgende pagina.

Het moge duidelijk zijn dat we blij zijn dat de computer dergelijke paral-
lelle composities voor ons kan construeren op basis van de veel eenvoudigere
procesalgebräısche beschrijvingen. In mijn werk heb ik een nieuwe procesalge-
bra ontwikkeld waarmee eenvoudig grote modellen van geavanceerde systemen
gegenereerd kunnen worden.
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OUDER || BABY

kijkTVwc

huilen huilen

wc wckijkTV kijkTV

huilen huilen

eten drinken

ontlasting

kijkTVwc

ontlasting

wc kijkTV

slapen

Figuur 2.1: Toestandsruimte van de parallelle compositie van de (zeer abstracte)
representaties van een baby en zijn ouder.

Reductietechnieken

Zoals gezegd worden toestandsruimten al snel ontzettend groot. Hoewel pro-
cesalgebra’s ons helpen om dergelijke systemen toch nog beknopt te kunnen
representeren, is het boven bepaalde grenzen niet meer mogelijk om analyses
uit te voeren op de verkregen modellen—het resultaat van de toestandsruimte-
explosie. De afgelopen decennia is er veel onderzoek gedaan naar methodes om
de toestandsruimte-explosie tegen te gaan. Er is gewerkt aan efficiëntere opslag
van de modellen, aan het combineren van meerdere computers tot een grote
rekenmachine die meer aan kan dan iedere computer individueel, en er is gewerkt
aan methodes (reductietechnieken) die ervoor zorgen dat we slechts een gedeelte
van de toestandsruimte hoeven te genereren. Deze laatstgenoemde aanpak is
degene die in dit proefschrift veelvuldig wordt toegepast.

Om een reductietechniek te illustreren komen we terug op het voorbeeld van
de baby en de ouder. Het model hierboven geeft de volgordes van alle acties
precies weer. In de praktijk komt het echter regelmatig voor dat we uiteindelijk
slechts gëınteresseerd zijn in een kleine selectie van de acties van het uiteindelijke
model; de rest was slechts benodigd ter constructie van het model. In dat geval
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huilen huilen

eten drinken

slapen

kijkTV

kijkTV

kijkTV

kijkTV

Figuur 2.2: Gereduceerde toestandsruimte van de parallelle compositie van de
(zeer abstracte) representaties van een baby en zijn ouder.

kunnen we een aantal acties verbergen. Het is vervolgens mogelijk om het model
automatisch te verkleinen tot een vergelijkbaar model, waarin de acties die niet
verborgen zijn nog steeds in de juiste volgorde te vinden zijn, maar de verborgen
acties zoveel mogelijk weggewerkt zijn.

Stel nu dat we alleen gëınteresseerd zijn in het verband tussen de acties
kijkTV, huilen, drinken, eten en slapen. Het blijkt dan mogelijk om het
model van figuur 2.1 automatisch te reduceren tot het model in figuur 2.2. Nu
is het model een stuk kleiner en overzichtelijker geworden, terwijl alle informatie
betreffende de acties kijkTV, huilen, drinken, eten en slapen nog steeds
aanwezig is. Zo is snel te zien dat de baby eerst huilt, dan eet of drinkt en als
laatste slaapt. Ook is duidelijk dat de ouder volgens de versimpelde beschrijving
op ieder moment kan besluiten om tv te kijken en de baby te negeren—uiteraard
is dat in de praktijk echter niet de beste keuze!

In mijn werk heb ik me veel beziggehouden met de ontwikkeling van nieuwe
reductietechnieken, waarbij gecompliceerde modellen automatisch gereduceerd
kunnen worden tot kleinere modellen met nog wel dezelfde eigenschappen.

Kwantitatieve modellen

In het bovenstaande ben ik telkens uitgegaan van ‘ouderwetse’ modellen (de
zogeheten gelabelde transitiesystemen vanwege hun transities die gelabeld zijn
met actienamen). De enige informatie die dit type modellen bevat is de on-
derlinge volgorde van de acties. In de laatste jaren is er echter steeds meer
aandacht gekomen voor kwantitatieve modellen. Dergelijke modellen bevatten
naast informatie over de volgorde van acties eventueel ook gegevens over tijds-
duur en/of waarschijnlijkheid. Zo zou ons babyvoorbeeld uitgebreid kunnen
worden door informatie toe te voegen over de lengte van een gemiddelde voe-
ding. Bovendien zou de keuze tussen eten en drinken verder ingevuld kunnen
worden; waar we eerder aannamen dat een baby nou eenmaal wil eten of drinken
(non-determinisme), zouden we ook specifieker kunnen zeggen dat beide gevallen
een kans van 50% hebben als een baby huilt.
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De toevoeging van kansen maakt het mogelijk om processen te modelleren die
zich niet altijd op dezelfde manier gedragen, zoals een geboorte (ongeveer 50%
kans op een jongen) of het versturen van een ansichtkaart vanuit een ver land
naar Nederland (enige kans dat de kaart kwijtraakt). Bovendien kunnen we voor
dit soort modellen ook kwantitatieve eigenschappen formuleren en deze door een
model checker op waarheid laten controleren. Te denken aan eigenschappen zoals
“de kans dat het programma een correct resultaat produceert is tenminste 99%”.

De toevoeging van tijdsinformatie maakt het mogelijk om eigenschappen
te controleren betreffende prestaties en betrouwbaarheid: “de kans dat de
cassières gezamenlijk minder dan 100 klanten in een uur kunnen helpen is kleiner
dan 5%”, of “de kans dat het systeem pas kapot gaat meer dan 1,000 uur
gebruik is tenminste 95%”.

Mijn bijdrage

Door het lezen van het bovenstaande heeft u een klein kijkje gekregen in de
keuken van een gedeelte van mijn vakgebied. Tot zover is alles nog redelijk
standaard, in de zin dat de meeste mensen in mijn vakgebied dit al weten en
er ook niks genoemd is wat door mij bedacht is. Hoofdstuk 2 en 3 vatten deze
achtergrondinformatie samen op een wiskundigere manier.

Wat heb ik dan wel zelf gedaan? Mijn bijdrage is grofweg op te splitsen in
drie delen.

Nieuwe procesalgebra. Ten eerste heb ik een nieuwe procesalgebra (MAPA)
ontwikkeld om modellen te genereren die zowel non-determinisme, kansen als
tijdsduren bevatten (de zogeheten Markov-automaten). Ik heb voortgeborduurd
op een eerdere niet-kwantitatieve aanpak die gebruikmaakte van data: een
methode om op een efficiëntere manier nog complexere toestandsruimtes te
kunnen genereren. Tot dusver bestond er nog geen procesalgebra die dit kon
doen; het was daarom zonder mijn werk nog niet mogelijk om op een eenvoudige
wijze Markov-automaten te genereren.

Ik heb bovendien een variant op MAPA ontwikkeld (de MLPE), die erg
beperkt is en daarom voor computers handiger is om mee te werken. Zo heeft
de MLPE geen parallelle compositie en moet iedere actie direct gevolgd worden
door een procesnaam—onze voorbeelden hierboven zouden dus al niet eens
voldoen. Aangezien de volledige procesalgebra handiger is voor mensen om mee
te werken, heb ik een algoritme (een soort recept) ontwikkeld dat automatisch
ieder model van de gebruiksvriendelijke procesalgebra MAPA omzet in een
simpelere representatie in de taal MLPE. Daar kan de computer vervolgens
makkelijker mee overweg.

Dit alles is beschreven in hoofdstuk 4.

Nieuwe reductietechnieken. Ten tweede heb ik verscheidene reductietechnie-
ken ontwikkeld, die ervoor zorgen dat het aantal toestanden van een model
binnen de perken blijft. Hoewel het theoretisch mogelijk zou zijn om eerst
de originele toestandsruimte van een systeem te genereren, is dat natuurlijk
niet zo efficiënt. Mijn aanpak maakt daarom gebruik van de eenvoud van de
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MLPE (een procesalgebräısche beschrijving). Er worden allerlei analyses op deze
beknopte representaties uitgevoerd, waarna ze automatisch herschreven worden
tot specificaties die uiteindelijk een veel kleinere toestandsruimte opleveren. Zo
proberen we de toestandsruimte-explosie enigszins te omzeilen.

Om een idee te krijgen van hoe dergelijke technieken werken pakken we nog
eenmaal de menukaart erbij. Stel dat er aan de kassa berekend moet worden
wat een gekozen menu kost, en dat we weten dat alle toetjes even duur zijn. In
dat geval maakt het niets uit welk toetje er gekozen wordt, en kunnen we net
zo goed doen alsof iedereen de verse vruchtjes heeft genomen. Dat beperkt het
aantal mogelijkheden, en maakt het model van de situatie kleiner (terwijl het
voor de eigenschappen die bekeken worden—in dit geval de totale kosten—nog
identiek functioneert).

Drie van zulke door mij ontwikkelde technieken worden besproken in hoofd-
stuk 4, en twee uitgebreidere technieken in hoofdstuk 5 en hoofdstuk 6.

Vergelijking van reductietechnieken. Ten derde heb ik een van de door mij ont-
wikkelde technieken (confluence reduction) vergeleken met een eerdere reductie-
techniek voor kwantitatieve systemen (partial order reduction). Een overduidelijk
voordeel van mijn techniek is dat deze de enige techniek in zijn soort is die werkt
voor systemen met zowel kansen als tijdsduren. Dus, als een dergelijk model
gebruikt wordt, is er geen andere keus—partial order reduction werkt alleen als
er hooguit kansen gebruikt worden, maar niet in de aanwezigheid van tijdsduren.
Om toch meer inzicht te krijgen in het verband tussen de technieken, heb ik
gekeken in hoeverre ze overeenkomen als we ons beperken tot systemen zonder
tijdsduren. Ik heb bovendien precies de verschillen ertussen gëıdentificeerd.
Hierdoor is ook direct duidelijk hoe de niet-kwantitatieve varianten van de tech-
nieken (die al wel eerder bestonden) relateren; dat was ook nog niet bekend. Het
blijkt dat mijn techniek net iets beter presteert voor systemen die al dan niet
voorzien zijn van kansen—onder de aanname dat we een bepaalde verzameling
van eigenschappen willen bewaren. De vergelijkingen tussen confluence reduction
en partial order reduction zijn te vinden in hoofdstuk 7 en hoofdstuk 8.

Het proefschrift wordt afgerond in hoofdstuk 9 met een bespreking van het
programma dat ik heb gemaakt om automatisch en efficiënt modellen met kansen
en tijdsduren te genereren op basis van procesalgebräısche beschrijvingen. Ook
bespreek ik daar case studies die laten zien dat mijn procesalgebra hier inderdaad
prima voor gebruikt kan worden, en laat ik zien dat mijn reductietechnieken ook
in de praktijk voor aanzienlijke snelheidswinst zorgen.
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