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Abstract
This paper presents formulation of computationally efficient models of photoionization produced by
non-thermal gas discharges in air based on three-group Eddington and improved Eddington (SP3)
approximations to the radiative transfer equation, and on effective representation of the classic integral
model for photoionization in air developed by Zheleznyak et al (1982) by a set of three Helmholtz
differential equations. The reported formulations represent extensions of ideas advanced recently by
Ségur et al (2006) and Luque et al (2007), and allow fast and accurate solution of photoionization
problems at different air pressures for the range 0.1 < pO2

R < 150 Torr cm, where pO2
is the partial

pressure of molecular oxygen in air in units of Torr (pO2
= 150 Torr at atmospheric pressure) and R in

cm is an effective geometrical size of the physical system of interest. The presented formulations can be
extended to other gases and gas mixtures subject to availability of related emission, absorption and
photoionization coefficients. The validity of the developed models is demonstrated by performing direct
comparisons of the results from these models and results obtained from the classic integral model.
Specific validation comparisons are presented for a set of artificial sources of photoionizing radiation
with different Gaussian dimensions, and for a realistic problem involving development of a
double-headed streamer at ground pressure. The reported results demonstrate the importance of
accurate definition of the boundary conditions for the photoionization production rate for the solution of
second order partial differential equations involved in the Eddington, SP3 and the Helmholtz
formulations. The specific algorithms derived from the classic photoionization model of Zheleznyak
et al (1982), allowing accurate calculations of boundary conditions for differential equations involved in
all three new models described in this paper, are presented. It is noted that the accurate formulation of
boundary conditions represents an important task needed for a successful extension of the proposed
formulations to two- and three-dimensional physical systems with obstacles of complex geometry (i.e.
electrodes, dust particles, aerosols, etc), which are opaque for the photoionizing UV photons.

1. Introduction

Plasma discharges at atmospheric pressure have received

renewed attention in recent years due to their ability to

enhance the reactivity of a variety of gas flows for applica-

tions ranging from surface treatment to flame stabilization

and ignition. In air at atmospheric pressure, discharges usu-

ally take the form of filamentary streamers. These discharges

are characterized by a high electron concentration in a nar-

row filament and produce high concentrations of chemically

active species that can effectively enhance the reactivity

to a level sufficient for many applications of interest (e.g.

van Veldhuizen 2000). The examples of related applications

include ozone production, pollution control, surface process-

ing (Raizer 1991, van Veldhuizen 2000 and references cited

therein), and triggering of combustion in spark ignition engines
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(Tardiveau et al 2001, Tardiveau and Marode 2003). An ex-

cellent recent review of various applications of streamers is

provided by Ebert et al (2006).

The concept of streamer discharges was introduced in

the 1930s to explain naturally occurring spark discharges

(Loeb and Meek 1940). Streamers are regarded as the

precursor of spark discharges. They can initiate spark

discharges in relatively short (several cm) gaps at near ground

pressures in air. In ground air pressure applications a

typical transverse scale of individual streamer filaments is

a fraction of a millimetre (e.g. Bastien and Marode 1979,

Pancheshnyi et al 2005, Briels et al 2005), and may be

substantially wider depending on the circuit and the peak

applied voltage characteristics of a particular experiment

(Briels et al 2006). Lightning is a natural phenomenon

directly related to streamer discharges. A streamer

zone consisting of many highly-branched streamers usually

precedes leader channels initiating lightning discharges in

large volumes at near ground pressure (Raizer 1991, p 364).

About two decades ago, large-scale electrical discharges

were discovered in the mesosphere and lower ionosphere

above large thunderstorms, which are now commonly referred

to as sprites (e.g. Franz et al 1990, Sentman et al 1995,

Stanley et al 1999, Neubert 2003, Lyons 2006). Recent

telescopic imaging of sprites at standard video rates

(i.e. with ∼16 ms time resolution) revealed an amazing

variety of generally vertical fine structure with transverse

spatial scales ranging from tens to a few hundred meters

(Gerken et al 2000, Gerken and Inan 2002, 2003, 2005). The

most recent continuous high-speed video recordings of

sprites at ∼10 000 frames per second further confirm

that filamentary structures are abundantly present in

sprite discharges (Cummer et al 2006, McHarg et al 2007,

Stenbaek-Nielsen et al 2007). It is interesting to note

that the filamentary structures observed in sprites are the

same phenomenon as streamer discharges at atmospheric

pressure only scaled by reduced air density at higher

altitudes (Pasko et al 1998, Liu and Pasko 2004, 2005, 2006,

Liu et al 2006). An overview of the physical mechanism and

molecular physics aspects of sprite discharges in comparison

with laboratory discharges can be found in Pasko (2007).

Various models have been developed to study

propagation of streamers (see Raizer 1991 p 352 and

Bazelyan and Raizer 1998 p 176). Well before numerical

modelling techniques were applied to this field of research,

two simple models of the streamer process had been proposed

to qualitatively study streamers: an isolated head model and

a model treating the streamer channel as ideally conducting.

The first one considers the head of a streamer as a charged

sphere. As it moves, it leaves behind a quasi-neutral ionized

channel. However, the conductivity of the channel is assumed

to be negligibly low and the head is not connected to the anode

(Raizer 1991, p 352). The second one assumes that the con-

ductivity of the streamer channel is infinite, and its surface is

equipotential. The charges induced by the external field are

distributed along the surface (Raizer 1991, p 356). There has

been no answer to the question of which model is valid until

recently. Numerical simulation results from a two-dimensional

streamer model based on a diffusion–drift approximation have

indicated that the streamer channel has finite conductivity

(Dhali and Williams 1987). Since then, the streamer model

proposed by Dhali and Williams (1987) has been improved

and is now widely used in the modeling of streamer prop-

agation for many purposes (e.g. Vitello et al 1994, Babaeva

and Naidis 1997, Kulikovsky 2000, Pancheshnyi et al 2001,

Arrayas et al 2002).

It is generally recognized that streamers are driven by

highly nonlinear space charge waves (e.g. Raizer 1991, p 327),

and develop in a self-consistent manner. Streamers are known

to have two polarities: positive (cathode-directed) and negative

(anode-directed), defined by the sign of the charge in their

heads. The positive streamer propagates against the direction

of the electron drift, while the negative one moves in the same

direction as the electron drift. The photoionization produced

by UV photons originating from a region of high electric field

in the streamer head is responsible for creation of seed electrons

in front of the head of a propagating streamer, and is believed

to play a critical role in the spatial advancement of streamers

of both polarities (e.g. Babaeva and Naidis 1997, Rocco et al

2002, Kulikovsky 2000, Pancheshnyi et al 2001, Luque et al

2007).

In a diffusion–drift or hydrodynamic-like approach to

streamer modelling, the motion of electrons, ions and excited

molecules is governed by continuity equations coupled to

Poisson’s equation (e.g. Dhali and Williams 1987). The pho-

toionization process is taken into account through a source

term which is added to the continuity equations of elec-

trons and ions. During early attempts of numerical simu-

lations of streamers, the photoionization term was ignored

and the pre-ionization needed for stable advancement of

streamers of both polarities was provided by introducing

a uniform neutral background ionization of the gas (e.g.

Dhali and Williams 1987, Vitello et al 1994). In the current

literature, the photoionization term is usually calculated using

integral models with coefficients based either on the classi-

cal experiments of Penney and Hummert 1970 and Teich 1967

(e.g. Wu and Kunhardt 1988, Kunhardt and Tzeng 1988,

Morrow and Lowke 1997), or on the description proposed by

Zheleznyak et al 1982 for air (e.g. Babaeva and Naidis 1997,

Kulikovsky 2000, Pancheshnyi et al 2001, Liu and Pasko

2004, 2006).

The accurate and efficient evaluation of the effects of

photoionization remains one of the most challenging tasks

in streamer modelling. For the integral approach men-

tioned above, the calculation of the photoionization source

term at a given point of the volume studied requires a

quadrature over the complete volume of the discharge.

Therefore, the calculation of the photoionization source

term in streamer discharges is computationally expen-

sive. To accelerate the simulation of streamers, different

approximations are proposed in the literature to reduce the

computation time spent on calculation of the photoioniza-

tion source term (Kulikovsky 2000, Pancheshnyi et al 2001,

Hallac et al 2003). Kulikovsky (2000) proposed to confine

the emitting volume of the photoionizing radiation to a

small cylinder around the main axis of the discharge and to

divide it into small rings. For a two-dimensional model-

ing of streamers assuming cylindrical symmetry, the effects

of an emitting ring at a point of interest can be effec-

tively characterized by their relative locations (described by
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a geometric factor in Kulikovsky (2000)). This geomet-

ric factor only needs to be calculated once before the sim-

ulation for a specific computational geometry and can be

repeatedly reused in the simulations. In Kulikovsky (2000)

and Hallac et al (2003) photoionization is calculated on a

coarse grid and interpolation is used to obtain needed values

on the main grid. Finally, in Pancheshnyi et al (2001) cal-

culations are carried out in a small area around the streamer

head. Pancheshnyi et al (2001) also compared the streamer

discharge characteristics obtained by using spatially uniform

background pre-ionization level with those obtained by the

integral model. They found that although it is possible to

obtain an agreement of some characteristics by varying the

pre-ionization level, the agreement cannot be reached for all

the characteristics at a given pre-ionization level. We note that

all the approximate models reviewed above reduce the compu-

tation time to a certain degree but the accuracy of these models

has not yet been rigorously evaluated and demonstrated in the

existing literature.

Recently, two different approaches to calculate the pho-

toionization term have been proposed to avoid the calculation

of the global quadrature over the simulation domain. The first

approach was tested a few years ago (Djermoune et al 1995a,

1995b) and improved recently (Ségur et al 2006). This

method is based on the direct numerical solution of an

improved Eddington approximation of the radiative transfer

equation. The second approach has been proposed recently by

Luque et al (2007). These authors proposed to approximate

the absorption function of the gas in order to transform the

integral expression of the photoionization term into a set of

Helmholtz differential equations.

In this paper, we discuss several models based on

the differential equation approach currently proposed in the

literature for the calculation of the photoionization term

(Ségur et al 2006, Luque et al 2007), and develop improved

models based on the same principles by more accurately

accounting for the spectral dependence of the photoionization.

The validity and range of applicability of the developed

models are demonstrated by performing direct comparisons

of the results from these models and results obtained from the

classic integral model of Zheleznyak et al (1982). Specific

validation comparisons are presented for a set of artificial

sources of photoionizing radiation with different Gaussian

dimensions and for a realistic problem involving development

of a double-headed streamer at ground pressure.

2. Model formulation

2.1. Classical integral model for photoionization in air

In the widely used model derived by Zheleznyak et al

(Zheleznyak et al 1982, Liu and Pasko 2004, Naidis 2006)

for photoionization in air, the photoionization rate at point of

observation �r due to source points emitting photoionizing UV

photons at �r ′ is

Sph(�r) =
∫ ∫ ∫

V ′

I (�r ′)g(R)

4πR2
dV ′, (1)

where R = |�r − �r ′|. In this model, to simplify calculations,

the production of photons is assumed to be proportional to the

Figure 1. (a) Elementary emitting volume (ring) for photoionization
calculations. (b) Schematic illustration of the inhomogeneous grid
for efficient photoionization calculations using the integral model.
(c) Illustration of an inhomogeneous grid system for acceleration of
photoionization calculations using the integral model.

ionization production rate Si, and then I (�r) is given by

I (�r) = ξ
nu(�r)
τu

= pq

p + pq

ξ
νu

νi

Si(�r), (2)

where ξ is the photoionization efficiency, nu(�r) is the density

of the radiative excited species u, the ratio pq/(p + pq) is

a quenching factor, τu is the lifetime of the excited state

u accounting for the effects of spontaneous emission and

quenching (i.e. τu = pq/(Au(p+pq)), where Au is the Einstein

coefficient), νu is the electron impact excitation frequency for

level u, and Si = νine, where ne is the electron number density

and νi is the ionization frequency. The function g(R) in (1) is

defined by

g(R)

pO2

= exp(−χminpO2
R) − exp(−χmaxpO2

R)

pO2
R ln(χmax/χmin)

, (3)

where χmin = 0.035 Torr−1 cm−1, χmax = 2 Torr−1 cm−1

and where pO2
is the partial pressure of molecular oxygen

(=150 Torr at atmospheric pressure). We note that in

equation (3) we divided g(R) by pO2
to make the result

conveniently dependent on the product pO2
R, which is an

important parameter for photoionization in N2–O2 mixtures

as shown by Zheleznyak et al (1982). The dependence of the

right-hand side of equation (3) on the pO2
R product makes it

easily scalable to different pressures.

The above described model has typically been employed

in a cylindrical coordinate system to model the dynamics of

two-dimensional azimuthally symmetric streamers. Following

the approach proposed by Kulikovsky (2000), the emitting

volume in this kind of coordinate system (r, φ, z) is divided

into small rings centred at the symmetry axis (figure 1(a)), and

the photoionization rate at point of observation (r, z) due to all

source rings (rs, zs) in cm−3 s−1 is

Sph(r, z) =
∫

drs

∫

dzsI (rs, zs)Mph(r, rs, |z − zs|). (4)

In equation (4) the integration is performed over all source

regions with significant production of photoionizing radiation

and the function Mph is defined as

Mph(r, rs, |z − zs|) = rs

4π

∫ 2π

0

g[R(φs)]

R(φs)2
dφs, (5)
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where R(φs) = |�r − �r ′| = [r2
s + r2 + (z − zs)

2−
2rrs cos(φs)]

1
2 .

The geometric factor Mph depends on r, rs and |z − zs|,
and it is possible to calculate Mph once and store it as a

three-dimensional array, which can be repeatedly reused for

computation of Sph at each time step in the simulation. Even

with this simplification the integral model for photoionization

is computationally very expensive because a two-dimensional

integration (equation (4)) has to be carried out for each

observation point (r, z). To further improve the computation

efficiency, a straightforward technique of using a coarse grid

for photoionization calculation instead of the main grid can

be employed. A homogeneous coarse grid is utilized for this

purpose in Kulikovsky (2000) and Hallac et al (2003).

A more accurate and efficient grid system is an

inhomogeneous one with fine resolution around the streamer

head and coarse resolution in the region away from the head as

shown schematically in figure 1(b). In this approach every time

when the photoionization is calculated, a new grid is generated

with the origin at the streamer tip, where the electric field is

maximum. The photoionizing emission source is assumed to

be confined in the shaded region shown in figure 1(b). The

value of Sph at each point of the new grid is calculated using

equation (4) by accounting for the sources in the shaded region

only. A linear or exponential interpolation is used to obtain Sph

at the main grid points. The Mph required for integration (4)

still needs to be calculated only once and stored in a three-

dimensional array for a repeated use.

Figure 1(c) provides an example of practical implementa-

tion of the above discussed ideas. If the size of the simulation

domain is 0.5×0.125 cm2, a grid for the calculation of Mph can

be set up as shown in figure 1(c), where the effective diameter

of the shaded region shown in figure 1(b) is assumed to be

l = 0.2 cm. In the z direction the simulation domain is divided

into equal intervals with length l/2 = 0.1 cm. The grid size in

each of these intervals is constant, and increases exponentially

with the distance from the origin from one interval to the next.

If the grid size in a particular interval becomes greater than the

interval itself (l/2), then l/2 is used as the grid size instead,

as shown, for example for the interval from z = 0.4 to 0.5 cm

in figure 1(c). The grid in the r direction is generated follow-

ing the same procedure. Mph can then be calculated on this

grid using equation (5). The grid for the problem geometry

shown in figure 1(b) can be generated by following the same

ideas with the origin placed at the streamer tip and with the

l/2 intervals with reduced grid resolution extending in both

positive and negative z directions from the shaded region. The

calculation of the contribution to Sph(r, z) due to a source ring

at (rs, zs) is significantly accelerated by a simple call of the

corresponding pre-calculated element of the three-dimensional

matrix Mph (r, rs, |z − zs|). Finally, the contributions from all

the rings constituting the shaded source shown in figure 1(b)

are summed up to obtain the total Sph(r, z).

The integral approach with variable size grids based on the

Zheleznyak et al (1982) model outlined above is used for the

streamer calculations reported in section 3.2 of this paper. It

should be noted that for a double-headed streamer reported in

section 3.2, there are two grid systems generated with the origin

of each grid system positioned at the tip of the corresponding

streamer head. However, the same pre-calculated Mph matrix

is used for both heads.

2.2. Two and three-exponential Helmholtz models for

photoionization in air

Luque et al (2007) have recently proposed a novel approach

allowing to effectively replace the calculation of integral (1)

of the classic photoionization model with a solution of a set of

Helmholtz differential equations, which can be very efficiently

solved using well-developed techniques available for solution

of the elliptic partial differential equations. In terms of the

notation adopted in this paper the approach proposed by

Luque et al (2007) involves fitting of the g(R)/R ratio in (1)

with a sum of exponential functions leading to a set of integrals,

each of which can effectively be interpreted as an integral

solution of a separate Helmholtz differential equation. After

this equivalent representation is established the problem can be

solved by solving the set of Helmholtz differential equations,

instead of direct evaluation of integrals. However, the two-

exponential fit provided in Luque et al (2007) is applied to low

pressure experimental data of Penney and Hummert (1970)

effectively corresponding to the function g(R), rather than to

g(R)/R required for the correct solution of the problem. In this

section we present the correct solution of this problem using

two and three-exponential fits. In section 3.1 we demonstrate

that the two-exponential fit is generally not sufficient and

the three-exponential fit is needed for obtaining the accurate

solution of the problem for a full range of pO2
R values in which

the Zheleznyak et al (1982) photoionization model remains

valid.

We note that the Zheleznyak et al (1982) photoion-

ization model, discussed in the previous section, is

formulated using experimental data obtained at low pres-

sure (Penney and Hummert 1970, Teich 1967) and agrees

well with the results of more recent experiments at atmo-

spheric pressure (Naidis 2006 and references cited therein).

Therefore, in contrast to Luque et al (2007) in our deriva-

tion below we do not employ the low pressure data of

Penney and Hummert (1970), but rather formulate the two and

three-exponential Helmholtz models using the g(R) function

(3) appearing in the classic integral model for photoionization

in air (Zheleznyak et al 1982).

The function Sph(�r) given by (1) can be represented in

the form

Sph(�r) =
∑

j

S
j

ph(�r) (6)

with terms

S
j

ph(�r) =
∫ ∫ ∫

V ′

I (�r ′)Ajp
2
O2

e−λj pO2
R

4πR
dV ′ (7)

satisfying the Helmholtz differential equations

∇2S
j

ph(�r) − (λjpO2
)2S

j

ph(�r) = −Ajp
2
O2

I (�r). (8)

Having compared equations (1) and (7) it can be easily verified

that
g(R)

pO2

= (pO2
R)

∑

j

Aj e−λj pO2
R. (9)

The solution of the problem requires fitting of the function

g(R)/pO2
by series of exponents multiplied by (pO2

R). After

the fitting, the photoionization problem can be solved by

solving differential equations (8) and performing summation
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Figure 2. Solid line: The g(R)/pO2
function given by equation (3)

from the model of Zheleznyak et al (1982). Dashed line:
two-exponential fit of the form specified by equation (9), performed
for the range 1 < pO2

R < 60 Torr cm and with the parameters of
table 1. Dot-dashed line: three-exponential fit with the parameters of
table 2 performed for the range 1 < pO2

R < 150 Torr cm.

Table 1. Parameters of the two-exponential fit of g(R)/pO2
/(pO2

R)
as a function pO2

R.

j Aj (cm−2 Torr−2) λj (cm−1 Torr−1)

1 0.0021 0.0974
2 0.1775 0.5877

(6). In practice, it appears to be easier to fit the function

g(R)/pO2
/(pO2

R) with a sum of exponents
∑

j Aj e−λj pO2
R

and then multiply the result by (pO2
R) to obtain the desired

representation of g(R)/pO2
given by (9).

The function g(R)/pO2
is shown in figure 2 by the solid

line and a two-exponential fit performed by MATLAB function

fminsearch (based on the Nelder–Mead simplex direct search

method) is shown by the dashed line. The two-exponential fit

was performed for the range 1 < pO2
R < 60 Torr cm, which

directly corresponds to the pO2
R range shown in figure 3 of

Zheleznyak et al (1982). The two-exponential fit parameters

are shown in table 1. We emphasize that the fit shown in figure 2

by the dashed line is a product of (pO2
R) and

∑

j Aj e−λj pO2
R

as required for solution of the problem and represented by

the right-hand side in equation (9). It is also noted that it is

very difficult to fit the g(R)/pO2
function with two exponents

multiplied by pO2
R and the fit given by parameters in table 1

and in figure 2 becomes invalid for pO2
R < 1 Torr cm and

pO2
R > 60 Torr cm. The implications of this are discussed in

section 3.1.

Djakov et al (1998) have applied a three-exponential fit

in the context of the Zheleznyak et al (1982) photoionization

model to obtain a fast recursive algorithm for solution of

the photoionization problem in a quasi-two-dimensional (the

1.5D or ‘disk’ based) streamer model. Although the fit

proposed in Djakov et al (1998) is not directly applicable in

the context of the Helmholtz equations based photoionization

model discussed in this section, we note that the employment

of three-exponential fits represents a natural and logical step to

remove the above discussed limitations of the two-exponential

model for the range 1 < pO2
R < 60 Torr cm.

Table 2. Parameters of the three-exponential fit of
g(R)/pO2

/(pO2
R) as a function pO2

R.

j Aj (cm−2 Torr−2) λj (cm−1 Torr−1)

1 1.986 × 10−4 0.0553
2 0.0051 0.1460
3 0.4886 0.89

As part of this work we also performed a three-exponential

fit of g(R)/pO2
using three exponents multiplied by (pO2

R).

The related fit is shown in figure 2 by the dot-dashed line.

The parameters of the three-exponential fit are summarized

in table 2. The three-exponential fit is valid in the range of

pO2
R from 1 to 150 Torr cm. We note that this range translates

into 1/150 = 0.0067 to 1 cm at ground pressure. The fit

for pO2
R > 1 Torr cm is generally improved in comparison

with the two-exponential case, but it is very difficult to fit this

function even with three exponents at pO2
R < 1 Torr cm. We

note that the upper limit of validity of the developed three-

exponential fit (pO2
R = 150 Torr cm) exceeds the pO2

R ≃
100 Torr cm (i.e. pR ≃ 500 Torr cm, where p is air pressure)

validity threshold of the Zheleznyak et al (1982) model for

photoionization in air, as discussed recently in Naidis (2006).

The accurate numerical solution of Helmholtz equa-

tions (8) requires knowledge about values of S
j

ph(�r) func-

tions at the boundaries of the simulation domain. In

Luque et al (2007) these values are assumed to be zero. In

section 3.1 we demonstrate that the definition of the bound-

ary conditions for different components S
j

ph(�r) represents an

important part of an accurate solution of the photoionization

problem. A practical solution of this problem, which is ex-

tensively demonstrated in section 3.1, involves definition of

the boundary conditions for S
j

ph(�r) component with the small-

est λj (i.e. the longest photoionization range) using the classic

integral model of Zheleznyak et al (1982), and assumption of

zero boundary conditions for the rest of the S
j

ph(�r) components.

For both two and three-exponential models presented in this

section the smallest λj are associated with the first terms in

the corresponding series (i.e. with the j = 1 term), as can be

directly seen from tables 1 and 2. It is expected that this ap-

proach may lead to inaccurate results for situations when the

photoionization source is positioned very close to the bound-

ary (i.e. for a streamer head approaching an electrode or a

dust particle (Babaeva et al 2006)). The enhancement of the

electric field due to the conducting surface (i.e. image) effects

in this kind of simulation geometry may result in a relatively

small contribution of the photoionization rate in comparison

with the electron-ion pair production rate due to the direct

electron impact ionization. Nevertheless, this type of simula-

tion scenarios should be carefully tested with the integral pho-

toionization model (Zheleznyak et al 1982) before two and

three-exponential Helmholtz models and the Eddington and

SP3 models discussed in the following section, which also rely

on the above discussed boundary conditions, can be reliably

applied.

2.3. Three-group Eddington and SP3 approximations for

photoionization in air

In Ségur et al (2006), the photoionization source term Sph(�r)
is calculated using direct numerical solutions of the first
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(we also refer to it as Eddington approximation in this paper)

and the third order (we also refer to it as SP3 in this paper

following Ségur et al (2006)) Eddington approximations of

the radiative transfer equation. Ségur et al (2006) introduce

a simple monochromatic approach (we also refer to it as

one-group method in this paper following Ségur et al (2006))

and derive the physical parameters required for applying this

method to calculating Sph(�r) for non-thermal gas discharges

in air at atmospheric pressure by making the model results as

consistent as possible with the classical Zheleznyak model.

In order to achieve a better agreement with the Zheleznyak

model for the Eddington and SP3 approximations, we

propose to consider j = 1, Ng effective monochromatic

radiative transfer equations. For each frequency, the effective

monochromatic radiative transfer equation can be written as

(Ségur et al 2006):

�� · �∇	j (�r, ��) + λjpO2
	j (�r, ��) = nu(�r)

4πcτu

, (10)

where the time dependence of the equation is dropped for

convenience in this paper, λjpO2
is the absorption coefficient

and only one excited state u is considered in order to simplify

notations. It is important to mention that all monochromatic

equations for j = 1, Ng have the same source term but different

absorption coefficients. Equation (10) can be simply integrated

to derive 	0,j (�r), the isotropic part of the photon distribution

function 	j (�r, ��) as

	0,j (�r) =
∫ ∫ ∫

V ′

nu(�r ′)

cτu

exp(−λjpO2
R)

4πR2
dV ′. (11)

Then we assume that the isotropic part of the total distribution

function 	0(�r) can be written as

	0(�r) =
∑

j

αj	0,j (�r), (12)

where αj are constants. This approach is similar to the

Gaussian-type quadratures generally used in the correlated-

k method (Taine and Soufiani 1999). As already mentioned

in Ségur et al (2006), to calculate the photoionization source

term it is only necessary to know 	0(�r), the isotropic part of

the distribution function. Then, using equations (11) and (12),

the photoionization source term can be written as

Sph(�r) =
∑

j

AjξpO2

∫ ∫ ∫

V ′

nu(�r ′)

τu

exp(−λjpO2
R)

4πR2
dV ′

=
∑

j

Sph,j (�r) (13)

where AjξpO2
are coefficients, which are defined below, with

the photoionization efficiency ξ introduced in equation (2).

To use this approach in air, the photoionization source term

given by equation (13) has to be compared with the Zheleznyak

integral expression (1). Both equations are identical if

g(R)

pO2

=
∑

j

Aj e−λj pO2
R, (14)

where Aj and λj are the unknowns. To obtain their values,

we follow the idea in section 2.2 to fit the function g(R)/pO2

Table 3. Parameters of the three-exponential fit of g(R)/pO2
as a

function pO2
R

j Aj (cm−1 Torr−1) λj (cm−1 Torr−1)

1 0.0067 0.0447
2 0.0346 0.1121
3 0.3059 0.5994
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Figure 3. Solid line: The g(R)/pO2
function given by equation (3)

from the model of Zheleznyak et al (1982). Dashed line:
one-exponential fit given in Ségur et al (2006). Dot-dashed line:
three-exponential fit of the form specified by equation (14),
performed for the range 0.1 < pO2

R < 150 Torr cm, and with the
parameters of table 3.

by a three-exponential fit (i.e. Ng = 3). The corresponding

parameters Aj and λj are given in table 3. In the following,

this approach is called the three-group method.

To avoid any possible confusion we emphasize the

difference between the equation (14) and the equation (9) of

the Helmholtz model. The Helmholtz model employs series of

exponents multiplied by (pO2
R), while equation (14) provides

direct fit by exponents without multiplication by (pO2
R). We

also bring to the attention of the readers the related difference

in units between Aj coefficients shown in tables 1 and 2 for

the Helmholtz model (cm−2 Torr−2) and those corresponding

to equation (14) and shown in table 3 (cm−1 Torr−1).

Figure 3 shows the original function g(R)/pO2
, the

three-exponential fit (14) derived in this section and the

one-exponential fit proposed in Ségur et al (2006). The three-

exponential fit was performed for the range 0.1 < pO2
R <

150 Torr cm. It appears that the three-exponential fit allows

to have an excellent agreement with the function g(R)/pO2
,

which is much better than the one-exponential fit, in particular

for large pO2
R values. It is interesting to note that in the pO2

R

range 0.1 < pO2
R < 150 Torr cm the fit obtained using a

three-group method (figure 3) is generally more accurate than

the one obtained using a three-exponential Helmholtz model

(figure 2).

The above analysis indicates that in order to calculate

the photoionization source term Sph(�r), the set of radiative

transfer equations (10) has to be solved. Different methods

can be used. In this work we extend to the three-

group approach the Eddington and SP3 methods used in

Ségur et al (2006) for a one-group approach. For j = 1, Ng ,

the Eddington approximation of (10) to derive 	0,j is given by
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Ségur et al (2006):

[∇2 − 3(λjpO2
)2]	ED,0,j (�r) = −3λjpO2

nu(�r)
cτu

, (15)

where 	ED,0,j (�r) represents the first order Eddington

approximation of 	0,j (�r). As discussed in Ségur et al (2006),

equation (15) is an elliptic equation, which has a structure

very similar to Poisson’s equation. Therefore, both Poisson’s

equation and the Eddington approximation can be solved with

the same numerical routine.

Ségur et al (2006) also demonstrate that a third order

approximation of the radiative transfer equation is more

accurate than the Eddington approximation to calculate the

photoionization term when the absorption coefficient of the

gas is small and the gradient of the source term is large. For

j=1, Ng , the SP3 approximation of 	0,j is denoted as 	SP3,0,j

and is given by

	SP3,0,j (�r) = γ2φ1,j − γ1φ2,j

γ2 − γ1

, (16)

where

γn = 5
7
[1 + (−1)n3

√

6
5
]. (17)

The functions φ1,j and φ2,j are defined by

∇2φ1,j (�r) − (λjpO2
)2

κ2
1

φ1,j (�r) = −λjpO2

κ2
1

nu(�r)
cτu

, (18)

∇2φ2,j (�r) − (λjpO2
)2

κ2
2

φ2,j (�r) = −λjpO2

κ2
2

nu(�r)
cτu

, (19)

where κ2
1 = 3

7
− 2

7

√

6
5

and κ2
2 = 3

7
+ 2

7

√

6
5
. It is important to note

that unfortunately, there are some misprints in equations (46)

and (47) in Ségur et al (2006) and these equations should be

replaced by (18) and (19).

Equations (18) and (19) again have the same structure as

Poisson’s equation and can be solved by the same numerical

methods.

We note that since equation (15) of the Eddington model

and equations (18) and (19) of the SP3 model are Helmholtz

equations of the same structure as equation (8), it is possible to

derive related fits to the g(R)/pO2
function of the type specified

by equation (9) of the Helmholtz model (see appendix).

As demonstrated in the appendix establishment of these

mathematical relationships is useful for general evaluation of

the performance of the Eddington and SP3 models.

After obtaining the solution for 	ED,0,j or 	SP3,0,j , the

photoionization source term can be calculated using

Sph(�r) =
∑

j

AjξpO2
c	0,j (�r) (20)

by replacing 	0,j with 	ED,0,j or 	SP3,0,j .

The formulation of the above Eddington approximations

requires separate evaluations of ξ in equation (20), and

nu(�r)/τu in equation (15) for the first order approximation,

or in equations (18) and (19) for the third one. For the

Zheleznyak and Helmholtz models, the product ξnu(�r)/τu

is computed using equation (2) to give the photoionization

radiation source utilizing the known term ξ(νu/νi) given by

Zheleznyak et al (1982). To effectively use the same term

in the Eddington approximations, we can slightly change the

above formulation by multiplying both sides of equation (15)

or equations (18) and (19) by a constant ξ . For example, the

following equation is obtained for the first order Eddington

approximation:

[∇2 − 3(λjpO2
)2][ξ	ED,0,j (�r)] = −3λjpO2

ξ
nu(�r)
cτu

, (21)

where we could define 	∗
ED,0,j (�r) = ξ	ED,0,j (�r). This

equation is solved for 	∗
ED,0,j (�r) and, finally, we have

Sph(�r) =
∑

j

AjpO2
c	∗

ED,0,j (�r). (22)

By using this formulation, the factor ξ(nu(�r, t)/τu) in

the source term of equation (21) can be directly evaluated

by pq/(p + pq)(ξ(νu/νi))νine as used by the Zheleznyak and

Helmholtz models (see equation (2)).

The same idea can be applied to equations (18) and

(19) of the SP3 model. In this way, it is also demonstrated

that we could use different combinations of ξ and νu/νi

as long as their product is consistent with that given by

Zheleznyak et al (1982).

Similarly to the Helmholtz model discussed in section 2.2,

the boundary conditions also play an important role in

accurate evaluation of the Sph term using the three-group

method discussed in this section. For the three-group

models, boundary conditions can be introduced using the same

approach as used for the Helmholtz model. For the three-group

Eddington model, the boundary condition is set on the 	∗
ED,0,1

function according to equation (22):

	∗
ED,0,1(�r) = Sph(�r)

pO2
A1c

, (23)

where Sph(�r) is calculated using the Zheleznyak integral

model. We note that following the discussion in section 2.2

we define here boundary conditions for the 	∗
ED,0,j component

with j = 1, corresponding to the smallest λj value (the

longest photoionization range) as apparent from table 3. Zero

boundary conditions are assumed for the remaining 	∗
ED,0,j

components corresponding to j = 2 and 3. This approach

is subject to the same limitations as discussed at the end of

section 2.2.

For the three-group SP3 model, the same boundary

condition is set on the functions defined as φ∗
1,1(�r) = ξφ1,1(�r)

and φ∗
2,1(�r) = ξφ2,1(�r) according to equations (20) and (16):

φ∗
1,1(�r) = φ∗

2,1(�r) = Sph(�r)
pO2

A1c
. (24)

For the first order Eddington model, we have also

used the classical boundary conditions derived by Marshak

(Pomraning 1973, p 55) for various configurations. For

example, for the case of a boundary surface with no reflection

or emission (i.e. the boundary surface is transparent for the

radiative flux emitted in the medium), the value of 	∗
ED,0,j at

the boundary is given by

�∇	∗
ED,0,j (�r) · �nS = − 3

2
λjpO2

	∗
ED,0,j (�r), (25)

where �nS is the unit outward boundary surface normal.
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It is interesting to note that equations (21) and (25) form a

consistent set of closed equations where the unknowns are the

	∗
ED,0,j (�r) functions. Furthermore, boundary conditions given

by equation (25) are very simple to implement and very fast to

calculate. One of our objectives in this work is to demonstrate

the influence of the boundary conditions on the calculations of

the photoionization source term. In sections 3.1 and 3.2 we

use the same type of boundary conditions for the Helmholtz

and Eddington models based on the accurate definition of the

j = 1 term from the integral Zheleznyak model. Figure 8 in

section 3.1 is the only exception. In figure 8 results obtained

with equations (23) and (25) are compared. The optimization

of the calculation of boundary conditions will be the subject

of a forthcoming paper.

To conclude the discussion in this section we note that

to avoid the Eddington or SP3 approximations, the radiative

transfer equation can be solved directly using, for example,

the SN method (Modest 2003, pp 498–530). Although, the

cost of this method is in principle higher than that of the

Eddington approximation, it is important to note that, as

scattering during collisions is ignored in our physical model,

no iterations in the SN method are required, unlike in the

Eddington or the improved Eddington approximations. Thus,

the SN method can be competitive with respect to the improved

Eddington approximation if, for example, the number of

angular directions is limited. This also will be the subject

of a future work.

2.4. Streamer equations

In section 3.2 of this paper the three-exponential Helmholtz and

the three-group Eddington and SP3 differential photoionization

models formulated in the previous subsections are employed

for solution of a realistic double-headed streamer problem. In

this section we provide an overview of related equations.

The most common and effective model to study the

dynamics of streamers is based on the following convection–

diffusion equations for electrons and ions coupled with

Poisson’s equation (e.g. Kulikovsky 1997):

∂ne

∂t
+ �∇·ne �ve − �∇ · (De · �∇ne) = Sph + S+

e − S−
e , (26)

∂np

∂t
= Sph + S+

p − S−
p , (27)

∂nn

∂t
= S+

n − S−
n , (28)

∇2V = −qe

ǫ0

(np − nn − ne), (29)

where subscripts ‘e’, ‘p’ and ‘n’ refer to electrons, positive

and negative ions, respectively, ni is the number density of

species i, V is the potential, �ve = −µe
�E ( �E being the

electric field) is the drift velocity of electrons, De and µe

are the diffusion tensor and the absolute value of mobility

of electrons, respectively, qe is the absolute value of electron

charge and ǫ0 is permittivity of free space. On timescales of

interest for studies presented in this paper, ions are assumed

to be motionless. The S+ and S− terms stand for the rates

of production and loss of charged particles. The Sph term is

the previously defined rate of electron–ion pair production due

to photoionization in a gas volume. In this study the S+
e and

S+
p production rates have the meaning of the ionization rate

due to the electron impact ionization of air molecules, which

is denoted as Si and is discussed in the subsequent sections

of this paper in comparison with the photoionization rate Sph.

As already discussed in section 2.1 the Si rate is defined in a

standard fashion as Si = neνi where νi = α|ve| is the ionization

frequency and α is the ionization coefficient. This and other

coefficients of the model are assumed to be functions of the

local reduced electric field E/N , where E is the electric field

magnitude and N is the air neutral density. For test studies

presented in this paper all transport parameters and reaction

rates in air are taken from Morrow and Lowke (1997). In this

paper axisymmetric streamers are studied and thus cylindrical

coordinates introduced in section 2.1 are used.

We employ two sets of numerical techniques for solving

the streamer model equations:

(i) The charged species transport equations are solved using

a flux-corrected transport (FCT) method (Ségur et al

2006 and references therein). The 3rd order QUICKEST

scheme is used as the high order scheme and an upwind

scheme for the low order scheme. The flux limiter derived

by Zalesak (1979) is adopted for this FCT method. The

finite difference form of Poisson’s equation is solved

using the D03EBF module of the NAG Fortran library

(http://www.nag.co.uk).

(ii) The charged species transport equations are solved

using a modified Scharfetter–Gummel (SG) algorithm

(Kulikovsky 1995), and the finite difference form

of Poisson’s equation is solved by the successive

overrelaxation (SOR) method (see Liu and Pasko 2004

and references cited therein).

We follow the approach discussed in Vitello et al (1994)

to define the time step for model execution. The time

scales of relevance for selection of the time step, which

would provide model stability and accuracy, are the Courant

δtc, effective ionization δtI and dielectric relaxation δtD time

scales, the explicit expressions for which can be found in

Vitello et al (1994) and which are not repeated here for the

sake of brevity. The model time step is calculated as δt =
min(Acδtc, AIδtI, ADδtD) with Ac = 0.5, AI = 0.05 and

AD = 0.5. In practical streamer calculations the time step is

almost always defined by the minimum value of the ionization

time scale corresponding to the maximum field and maximum

ionization frequency νimax in the streamer head (δtI = 1/νimax).

We note that in our modelling we adopt a small AI value, which

is a factor of two less than that used in Vitello et al (1994).

The boundary conditions for the potential required for

the solution of Poisson’s equation by both techniques outlined

above are obtained using integral solutions of Poisson’s equa-

tion, which account for the known charge distribution inside of

the simulation domain (Liu and Pasko 2004). Specifically, we

employ the algorithm presented in Babaeva and Naidis (1996)

and Liu and Pasko (2004, 2006) to modify boundary condi-

tions for the potential to represent dynamics of double-headed

streamers without effects of the electrode image charges. The

applied technique allows to use a relatively small simulation

domain in transverse (i.e. radial) direction to obtain an accu-

rate solution for the electric potential corresponding to free

(i.e. not affected by boundaries) dynamics of streamers in ex-

ternally applied uniform electric field.
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The calculation of the boundary conditions in streamer

simulations can be significantly accelerated since only a small

number of grids inside of the simulation domain (usually

around streamer body and streamer head(s)) possess charge

density values significantly contributing to the potential values

at the boundary. In practical calculations the simulation

domain is scanned to find the maximum magnitude of the

charge density value |ρmax|, and it has been verified by

separate tests that accounting only for grids with charge

density magnitudes, which exceed 0.1% of this value (i.e.

|ρ| > 0.001|ρmax|) leads to fast, accurate and robust evaluation

of boundary conditions for potential, allowing effective use of

simulation domains with very small size in the radial direction.

Further improvements in terms of execution speed can be

achieved due to a relatively smooth spatial variation of the

potential at the boundaries. The potential can be evaluated

at a selected set of points and interpolation can be used to

obtain the values at all grid points constituting the boundary.

Due to a very small time step used in streamer modelling

(usually defined by the ionization time scale associated with the

large electric field in the streamer head as already mentioned

above) it is also possible, especially for preliminary test runs,

to evaluate boundary conditions only once during several steps

of the model execution. However, for all the streamer results

presented in section 3.2 the update of potential boundary

conditions has been performed at every time step for maximum

accuracy of results.

For photoionization calculations in the streamer model we

employ techniques discussed in sections 2.1–2.3 of this paper.

Specifically, for this study we have implemented the three-

group Eddington and SP3, the three-exponential Helmholtz

and the classical integral models. The quenching pressure is

assumed to be pq = 30 Torr, and the ratio ξνu/νi, appearing

in (2), is assumed to depend on the reduced electric field as

specified in Liu and Pasko (2004). The finite difference forms

of the Eddington, SP3 and Helmholtz photoionization model

equations are solved using the same module of the NAG Fortran

library used for the solution of Poisson’s equation. These three

models are implemented within the context of the first set of

numerical techniques described above (i.e. the FCT based).

Within the context of the second set of numerical techniques

(i.e. the SG based), we implemented the classical integral

and the Helmholtz models. The finite difference equations of

the Helmholtz photoionization model are solved by the SOR

method for this case. The modeling results obtained by using

different numerical techniques to solve the Helmholtz model

equations are very similar and we will not differentiate them

in the following sections of this paper.

It is verified by practical tests that very accurate results

for the photoionization production rate can be obtained even if

the photoionization is calculated once during every ten steps

of the execution of the streamer model. This approach is

justified due to the very small time step used in the streamer

modeling. Additionally, for photoionization calculations the

Sph term is usually negligible in the immediate vicinity of the

streamer head due to the domination of the ionization term Si,

and electrons created by the photoionization well ahead of the

streamer head go through a relatively long (in comparison with

the model time step) evolution and avalanche multiplication

before they affect the dynamics of the streamer head.

3. Results and discussion

3.1. Gaussian photoionization source

In this section, a simple model source of photoionizing

radiation is used to compare the two and three-exponential

Helmholtz, the three-group Eddington and SP3 models

introduced in previous sections 2.2 and 2.3 with the integral

model proposed by Zheleznyak et al (1982) reviewed in

section 2.1. We calculate the photoionization production rate

Sph in a two-dimensional axisymmetric computational domain

of length Ld and radius Rd for a Gaussian source centered on

the symmetry axis. The Gaussian ionization production rate

Si is defined by

Si(rs, zs) = νi(rs, zs)ne(rs, zs)

= Si0 exp(−(zs − z0)
2/σ 2 − r2

s /σ 2), (30)

where z0 is the axial position of the source term, σ is the

parameter controlling effective spatial width of the source, and

Si0 = 1.53 × 1025 cm−3 s−1. We note that the particular Si0

value is chosen to be consistent with similar study presented

in Ségur et al (2006) and has no implications for test results

and related conclusions presented in this section. Assuming

pq/(p +pq) = 0.038 (i.e. ground pressure) and ξνu/νi = 0.06

as in Ségur et al (2006) and using (2) we can write

I (rs, zs) = I0 exp(−(zs − z0)
2/σ 2 − r2

s /σ 2), (31)

where I0 = Si0ξ(νu/νi)pq/(p + pq) = 3.5 × 1022 cm−3 s−1

as in Ségur et al (2006).

The finite difference forms of the differential equations

involved in the Helmholtz, Eddington and SP3 models are

solved using the module D03EBF of the NAG Fortran library

(http://www.nag.co.uk). The numerical calculation of (4) was

carried out using the standard Gaussian quadratures. All

calculations were carried out with a uniform grid in both

directions and with nz = nr = 251, where nz and nr are the

number of cells along the longitudinal and radial directions,

respectively.

To demonstrate the importance of different ranges of

pO2
R in the solution of the photoionization problems we

have performed calculations for simulation domain sizes (i.e.

Ld × Rd) 0.02 × 0.02 cm2, 0.2 × 0.2 cm2 and 2 × 2 cm2, at

ground pressure (pO2
= 150 Torr). We have also used the

respective values of source sizes σ = 0.001, 0.01 and 0.1 cm.

It is assumed that the source is positioned in the centre of

the simulation domain at z0 = 0.01 cm, 0.1 cm and 1 cm,

respectively. It is noted that σ = 0.001 cm is generally smaller

than the dimension of streamer head at ground pressure after

it has just been born from an avalanche. The σ = 0.01 cm

is comparable to the size of the streamer head. The streamer

head can reach dimension comparable to and much greater than

σ = 0.1 cm in large applied electric field, when the streamer

expands quickly (e.g. Briels et al 2006, Liu and Pasko 2004).

Therefore, all source sizes σ studied in this subsection can be

attributed to practical stages of propagation of real streamers.

We note that the artificial source of photoionizing radiation

formulated for studies in this section is spherically symmetric

and is expected to produce identical distributions of the

photoionization production rate Sph in both the radial and the

axial directions with respect to the center of the simulation
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Figure 4. Axial ((a) and (c)) and radial ((b) and (d)) profiles of the photoionization source term Sph for the case of domain dimension
0.2 × 0.2 cm2 and σ = 0.01 cm. Dashed line: results obtained with integral model of Zheleznyak et al (1982). Solid line: the
photoionization source term Sph = S1

ph + S2
ph calculated using the two-exponential Helmholtz model with zero boundary conditions ((a) and

(b)), and with corrected boundary conditions ((c) and (d)). Dot–dashed line: the S1
ph component. Dotted line: the S2

ph component.

domain. Therefore for the chosen domain sizes with Ld = Rd,

the distance from the center to the radial boundary is two

times longer than to the axial boundary. This aspect is

very useful for demonstration of effects of boundaries and

boundary conditions on obtained solutions as well as for direct

comparison of performance of the models on different spatial

scales.

Figures 4(a) and (b) show the axial and radial profiles

of the photoionization source term Sph calculated by the

Zheleznyak integral model and the Helmholtz differential

model based on the two-exponential fit, for the domain

dimension 0.2 × 0.2 cm2. The two components S1
ph and

S2
ph of the two-exponential Helmholtz model are also shown.

The solutions of the Helmholtz equations are obtained

using zero boundary conditions. We note that the two-

exponential Helmholtz profiles deviate significantly from the

Zheleznyak solution, especially near the boundaries. The

importance of the boundaries in the context of the differential

equation based photoionization models has not been discussed

in Ségur et al (2006) and Luque et al (2007).

As already mentioned in section 2.2, the Zheleznyak

integral model can be used to improve the solution of the

Helmholtz model. Using (4), the boundary condition is defined

for theS1
ph component (i.e. for the one with the smallestλj ). For

the other component S2
ph, zero boundary conditions are used.

Figures 4(c) and (d) show axial and radial profiles for the two-

exponential model with thus corrected boundary conditions.

The solutions are obviously improved.

The effects of the boundary conditions are also very

similar to those presented in figure 4 for the Eddington and

SP3 models (related results are not shown here for the sake of

brevity). Therefore, in the remainder of this section and in the

following section 3.2 all Helmholtz, Eddington and SP3 model

results are obtained using the corrected boundary conditions.

Figures 8 and 13 represent two exceptions. Figure 8 shows

the influence of the choice of boundary conditions for the

Eddington approach, and figure 13 explicitly demonstrates

the effects of boundary conditions in the context of practical

streamer simulations.

Figures 5(a) and (b) compare the two and three-

exponential Helmholtz model solutions, for the domain

dimension 0.2 × 0.2 cm2. The ionization term Si (30) is

also included for reference, as for streamer simulations,

photoionization is important only in regions where Si < Sph.

The results obtained with the three-exponential fit appear

to match better with the Zheleznyak integral solution. In

particular, the solutions near the center of the simulation

domain are significantly improved. This directly relates to

a better three-exponential fit at small pO2
R values as can be

seen in figure 2.

Figures 5(c) and (d) compare the Zheleznyak model with

results obtained using the 3-group Eddington approximation
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Figure 5. Axial ((a), (c) and (e)) and radial ((b), (d) and (f )) profiles of the ionization source term Si and the photoionization source term
Sph, for the case of domain dimension 0.2 × 0.2 cm2 and σ = 0.01 cm. Dashed line: results obtained with integral model of
Zheleznyak et al (1982). (a) and (b) dot-dashed line: Sph using the two-exponential Helmholtz model, Solid line: Sph using
three-exponential Helmholtz model. (c) and (d) dot-dashed line: Sph using 3-group Eddington approximation, solid line: Sph using 3-group
SP3. (e) and (f ) solid line: Sph using 3-group SP3 approximation, dot-dashed line: Sph using 3-exponential Helmholtz model.

and the 3-group SP3 model, for the same domain dimension

0.2 × 0.2 cm2. The results shown in these two figures

demonstrate that the 3-group Eddington approximation and

the 3-group SP3 model give very similar results in the region

where Sph > Si, and these two solutions also appear to be

in good agreement with the Zheleznyak integral model. At

atmospheric pressure (pO2
= 150 Torr), the three absorption

coefficients of the three-group Eddington and SP3 models

given in table 3 are λ1pO2
= 6 cm−1, λ2pO2

= 16 cm−1

and λ3pO2
= 89 cm−1. It is interesting to note that even if

the Eddington and SP3 are in principle only very well suited

to situations in which photon absorption is sufficiently high

(Ségur et al 2006), figure 5 shows that these approximations

can be used to calculate accurately the photoionization source

term using a three-group approach for streamer propagation.

Finally, in figures 5(e) and (f ), we compare the 3-group

SP3 and the 3-exponential Helmholtz model with the

Zheleznyak model. The SP3 model appears to be slightly more

accurate in the region where Sph > Si.

We note that the direct application to the streamer

modelling of the Zheleznyak integral model given by

equation (1), without optimizations specified in section 2.1, is

666



Radiative transfer and Helmholtz photoionization models

Figure 6. Same caption as figure 5 only for domain dimension 2 × 2 cm2 and σ = 0.1 cm.

prohibitively computationally expensive. In particular, results

obtained in figure 5 using the non-optimized Zheleznyak

model generally required a factor of 1000 longer computational

times than those obtained with the Eddington and Helmholtz

models.

Figure 6 presents the same information as figure 5, only

for the domain dimension 2 × 2 cm2 with σ = 0.1 cm.

Figures 6(a) and (b) show the axial and radial profiles

of the photoionization source term Sph calculated by the

Zheleznyak model in comparison with the Helmholtz solutions

obtained using the two and three-exponential fits. As in

figure 5, the ionization term Si is also shown for reference.

The results obtained with the three-exponential fit appear to

match better with the Zheleznyak integral solution in the region

where Sph > Si and, in particular, close to the boundaries. The

two-exponential Helmholtz model fails to provide an accurate

solution in this case. This result directly relates to a poor

two-exponential fit at large pO2
R > 60 Torr cm values (i.e.

R > 0.5 cm at ground pressure considered here), as can be seen

in figure 2. The better performance of the three-exponential

Helmholtz model directly relates to a better three-exponential

fit at large pO2
R values (i.e. R > 0.5 cm at ground pressure),

as can also be seen in figure 2.

Figures 6(c) and (d) compare the 3-group Eddington

approximation and the 3-group SP3 with the Zheleznyak model

for the same domain dimension 2 × 2 cm2. We note that

the use of the SP3 allows to improve the agreement with the

Zheleznyak model, in particular, close to the boundaries.
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Figure 7. Same caption as figure 5 only for domain dimension 0.02 × 0.02 cm2 and σ = 0.001 cm.

Finally, figures 6(e) and (f ) compare the 3-group SP3

and the 3-exponential Helmholtz model with the Zheleznyak

model. In this case, both models give very similar results in

the axial direction and are very close to the Zheleznyak model.

In the radial direction, the results obtained with the SP3 model

appear to be slightly more accurate than the three-exponential

Helmholtz model in the region where Sph > Si.

As we emphasized at the beginning of this section, for the

domain with Ld = Rd the effective distance from the source

at the center of the simulation domain to the boundary is two

times longer in the radial direction than in the axial direction

(i.e. 2 cm versus 1 cm in figure 6). Therefore the radial

distances exceeding 1 cm allow one to observe the behavior

of different models in the region beyond applicability of the

model fits obtained for the range 1 < pO2
R < 150 Torr cm

for the three-exponential Helmholtz model (figure 2) and for

0.1 < pO2
R < 150 Torr cm for the three-group Eddington

and SP3 models (figure 3) (i.e. for R < 1 cm at atmospheric

pressure pO2
= 150 Torr). All models shown in figures 6(e)

and (f ) show outstanding performance in both axial and radial

directions at distances <1 cm from the source, as expected

from the range of validity of related fits in figures 2 and 3. In the

same vein we note that a special caution should be used when

models described in this work are applied in large simulation

domains for which pO2
R product exceeds 150 Torr cm.

Figure 7 is presented in the same format as figures 5

and 6, only for the domain dimension 0.02 × 0.02 cm2 with

σ = 0.001 cm.
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Figure 8. Axial ((a), (c) and (e)) and radial ((b), (d) and (f )) profiles of the ionization source term Si and the photoionization source term
Sph. Dashed line: Sph using the integral model of Zheleznyak et al (1982). Solid line: Sph using 3-group Eddington approximation and
boundary conditions given by equation (25), dot-dashed line: Sph using 3-group Eddington model with boundary conditions given by
equation (23), (a) and (b) for the case of domain dimension 0.02 × 0.02 cm2 and σ = 0.001 cm; (c) and (d) for the case of domain
dimension 0.2 × 0.2 cm2 and σ = 0.01 cm, (e) and (f ) for the case of domain dimension 2 × 2 cm2 and σ = 0.1 cm.

Figures 7(a) and (b) show the axial and radial profiles

of the photoionization source term Sph calculated by the

Zheleznyak model and the Helmholtz solution using two and

three-exponential fits. As expected from the fits shown in

figure 2 for small distances, the results obtained with both

solutions are poor, but we note that in the region of interest for

streamer simulations (where Sph > Si), the three-exponential

Helmhotz model appears to be in relatively good agreement

with the Zheleznyak model.

In figures 7(c) and (d), we compare the three-group

Eddington approximation and the three-group SP3 with the

Zheleznyak model. We note that the use of the SP3 allows

to improve the agreement with the Zheleznyak model, in

particular, in the region where Sph > Si.

In figures 7(e) and (f ), we compare the three-group

SP3 and the three-exponential Helmholtz model with the

Zheleznyak model. In this case, in the region where Sph > Si

both models give very similar results in the axial direction and

are very close to the Zheleznyak model. In the radial direction,

the results obtained with the SP3 model appear to be slightly

more accurate than the three-exponential Helmholtz model in

the region where Sph > Si.

Finally, figure 8 demonstrates comparative performance

of the boundary conditions specified by equations (23) or (25)
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for the three-group Eddington approximation. Figures 8(a)

and (b) are for the domain dimension 0.02 × 0.02 cm2 with

σ = 0.001 cm, and 8(c) and (d) are for the domain dimension

0.2 × 0.2 cm2 with σ = 0.01 cm. In both cases, the use of

equation (25) slightly overestimates the exact value of the

photoionization source term at the boundaries in the axial

direction, but the agreement is good in the radial direction.

Figures 8(e) and (f ) are for the domain dimension 2 × 2 cm2

with σ = 0.1 cm. In this case, the use of equation (25)

underestimates the exact value of the photoionization source

term at the boundaries in the axial and radial directions.

We reiterate again the point stated at the end of section 2.3

that equations (21) and (25) form a coherent set of closed

equations for the Eddington approach. Furthermore, boundary

conditions given by equation (25) are very simple to implement

and very fast to calculate.

In conclusion, all the results obtained in this section

show that the use of non-zero boundary conditions improves

significantly the agreement between the Zheleznyak integral

and the approximate differential models. In this work, we

have used mainly boundary conditions specified on the basis

of the classic integral model of Zheleznyak. In this section we

demonstrated that for approximate radiative transfer equations

a coherent set of approximate boundary conditions derived

from radiation transfer theory can be successfully used. The

optimization of the calculation of boundary conditions will

be the subject of a future work. We have also shown

that the use of a three-exponential fit either with the SP3

model or with the Helmholtz model allows to obtain a good

agreement with the Zheleznyak integral model, and that the

two-exponential fit is generally not sufficient to reproduce the

Zheleznyak model accurately for the full range of validity of

this model (i.e. up to pO2
R ≃ 100 Torr cm, or R ≃ 0.7 cm

at ground pressure (Naidis 2006)). It is interesting to note

also that although the Eddington and SP3 are in principle

only very well suited to situations in which photon absorption

is sufficiently high, these approximations can be used to

calculate accurately the photoionization source term using a

three-group approach for streamer propagation. The models

derived in this paper are only slightly more complicated

than the one-group model proposed in Ségur et al (2006), but

remain simple to implement in streamer codes. Results of the

practical application of these models to a streamer problem

are presented in the following section 3.2, in which we also

discuss computational expenses involved in different types of

photoionization models.

3.2. Double-headed streamers in air

In this section, we report and compare modelling results on a

double-headed streamer developing in air at ground pressure

(760 Torr) obtained with different photoionization models

discussed in previous sections of this paper. The simulation

domain is the same as in Liu and Pasko (2004, figure 4(a)). Two

remote electrodes with a certain potential difference establish

a uniform Laplacian field E0 = 4.8 × 106 V m−1. All results

presented in this paper are obtained assuming air neutral

density N0 = 2.688 × 1025 m−3, and therefore E0/N0 =
178.6 Td (1 Td = 10−17 V cm2). Under the influence of this

applied field, a double-headed streamer is launched by placing

a neutral plasma cloud in the simulation domain. The initial

plasma cloud has a Gaussian distribution in space:

ne(r, z)|t=0 = np(r, z)|t=0

= n0 exp

[

−
(

r

σr

)2

−
(

z − z0

σz

)2
]

. (32)

The center of the Gaussian distribution is located in the middle

of the simulation domain, at z0 = 0.7 cm, and it is assumed

that σr = σz = 0.02 cm and n0 = 1020 m−3. The size of the

computational domain is 1.4 × 0.125 cm2. The computational

grid is uniform in both radial and axial directions. The total

number of cells is nz × nr = 1681 × 151, where nz and nr

represent number of cells in the axial and radial directions,

respectively. As part of preparatory work for the model

studies presented in this paper we have conducted several

test runs with 2400 × 100 grid points with a refined mesh

in the radial direction and uniform mesh in the axial direction.

Results appeared to be identical to those obtained with the

1681 × 151 uniform mesh, which therefore was adopted for

all runs presented in this paper.

Before the incorporation of different photoionization

models, we tested the performance of the two sets of numerical

techniques described in section 2.4 (i.e. the FCT and SG

based) using a test-case for which photoionization effects

are not included and the pre-ionization level is only supplied

by a uniform neutral background plasma with initial density

of 1014 m−3. This approach is similar to the one applied

in a classic paper of Dhali and Williams (1987). Only very

small differences are observed in results obtained with the two

models for the modelled double-headed streamer. Specifically,

by the time moment 3.5 ns from the beginning of the model

execution the differences between the peak electron number

densities and peak electric fields between two model streamers

do not exceed 7.8% and 2.6%, respectively. It is noted

that these differences do not exceed those arising from

known limitations of the local field approximation in streamer

modelling (Naidis 1997, Li et al 2007). These test results

are not shown in this paper for the sake of brevity, but

essentially the same agreement between the two numerical

techniques can be observed by comparing results obtained with

the three-exponential Helmholtz photoionization model shown

in figures 9 and 10(a).

Figure 9 compares the electron number density

distribution on the symmetry axis of the computational domain

calculated using the three-group Eddington and SP3, and the

three-exponential Helmholtz models for the photoionization

term. The results are shown for the moments of time from t = 0

to t = 3.5 ns, with a timestep of 0.5 ns. We note that there is

an excellent agreement between the results obtained with these

three models for both streamer heads. Small differences are

observed in the region well ahead of the streamer head, and

the differences increase as the streamer advances.

Figure 10 compares the profiles of electron density and

the magnitude of the electric field on the symmetry axis

of the computational domain calculated using the three-

exponential Helmholtz model for the photoionization term

and the classical integral model of Zheleznyak et al (1982)

optimized as described in section 2.1. The results are also

shown for the moments of time from t = 0 to t = 3.5 ns,

670



Radiative transfer and Helmholtz photoionization models

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
10

14

10
15

10
16

10
17

10
18

10
19

10
20

10
21

z (m)

E
le

c
tr

o
n

 D
e

n
s
it
y
 (

m
–
3
)

3-Exp. 

Helmholtz

3-Group 

Eddington

3-Group SP
3

Figure 9. Electron density profiles on the symmetry axis of the
computational domain at various moments of time calculated using
different photoionization models. The results are obtained by the
FCT based numerical technique described in section 2.4. Dashed
line: three-exponential Helmholtz model; Solid line: three-group
Eddington; Dot-dashed line: three-group SP3. Results are shown for
the moments of time from t = 0 to t = 3.5 ns, with a
timestep of 0.5 ns.
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Figure 10. Profiles of streamer characteristics along the symmetry
axis of the computational domain at various moments of time
calculated using different photoionization models. The results are
obtained by the SG based numerical technique described in
section 2.4. (a) Electron density. (b) Electric field. Dashed line:
optimized integral Zheleznyak model; Solid line: three-exponential
Helmholtz model. Results are shown for the moments of time from
t = 0 to t = 3.5 ns, with a timestep of 0.5 ns.

with a timestep of 0.5 ns. An excellent agreement between the

results is observed for the double-headed streamer. For the

electron density, only small differences exist in the region well

ahead of the streamer head. For electric field, the difference is

almost impossible to notice before 3.0 ns and extremely small

deviations between results obtained with the two models are

present at 3.0 and 3.5 ns. The differences for both electron

density and electric field increase as the streamer advances.

Figure 11 shows a cross-sectional view of the distributions

of the electron density, electric field and photoionization

production rate at t = 3.5 ns obtained using the three-

exponential Helmholtz model. This cross-sectional view

represents an example of two-dimensional views of simulation

results obtained by using different differential equation based

photoionization models. As expected, the photoionization

source term is maximized in the head regions, but we also

note that this term is significant in the body of the streamer in

the region between the two heads. As expected on physical

grounds and as apparent from figure 11(c) the photoionization

production rate appears to exhibit a high degree of spherical

symmetry around both streamer heads. The direct inspection

of figure 11(c) also emphasizes the importance of accurate

definition of boundary conditions for Sph, as simple zero

boundary conditions on radial boundaries would clearly

produce an unphysical distortion of the photoionization

production rate.

Figure 12(a) shows the Sph term and the relative

distributions of the three components of the three-exponential

Helmholtz model on the symmetry axis of the simulation

domain at t = 3.0 ns. The regions dominated by each

component can clearly be identified in the figure. The S1
ph

term, associated with the smallest λ1 and therefore with

the longest photoionization range (which from the general

structure of equation (7) is expected to approximately follow

1/λ1 dependence) dominates in the region ahead of the

streamer head. The S2
ph term ranks after S1

ph demonstrating

intermediate λ2 value and the photoionization range (see

table 2), while S3
ph term is clearly confined and dominates

inside of the streamer head (this term has the largest λ3 as

can be seen from table 2 and therefore is associated with the

shortest photoionization range).

Figure 12(b) compares the photoionization source

term calculated by the three-exponential Helmholtz model

described in section 2.2 and the optimized integral Zheleznyak

model described in section 2.1. Results from both models

are in very good agreement in the regions of and ahead of

both positive (left) and negative (right) streamer heads. A

significant difference is observed in the region between the

streamer heads. We recall that the optimized integral solution

described in section 2.1 does not include contributions from

the emission sources outside of the square around each of

the streamer heads (see figure 1(b), and the discussion at

the end of section 2.1), but the Helmholtz solution does.

A relatively strong ionization appears in the streamer body

(figure 13(b)) implying strong photon emission source in this

region. The Helmholtz model automatically accounts for this

source by the right-hand side term in equation (8). However,

the photoionization source in the streamer body does not affect

the dynamics of the streamer, because the electron impact

ionization rate Si is much stronger than the photoionization

rate Sph in the streamer body, as illustrated in figure 13(b).

As a follow-up from the discussion presented in

the previous paragraph it is worthwhile to reiterate that

photoionization plays a role in the streamer dynamics

only when it dominates over ionization in certain regions.

Figures 13(a) and (b) compare the photoionization source

term Sph calculated with the three-group SP3 model and the

ionization source term Si at two different moments of time:

t = 0.2 ns and t = 3 ns. At t = 0.2 ns, we note that

in the streamer head regions the ionization term Si exceeds

the photoionization term Sph. In front of the streamer heads,

the photoionization source term dominates. Very rapidly as
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Figure 11. A cross-sectional view of distributions of (a) electron density, (b) electric field and (c) photoionization source term at t = 3.5 ns
calculated using the three-exponential Helmholtz model.
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Figure 12. Photoionization source term Sph at t = 3 ns along the
symmetry axis of the computational domain. (a) Sph and the three

components S1
ph, S2

ph and S3
ph of the three-exponential Helmholtz

model. (b) Sph calculated using the three-exponential Helmholtz and
the optimized integral Zheleznyak models.

the streamer starts to propagate, the ionization term becomes

stronger than the photoionization term everywhere in the

simulation domain as shown, for example, by figure 13(b)

at t = 3 ns. These results support the conclusion made in

Kulikovsky (2000) ‘In high field the streamer behaves as a

flash lamp; it produces very intensive radiation when it arises

and then the initial photoelectrons provide its propagation.’

This conclusion is only valid for streamers propagating in

a high applied electric field E exceeding the conventional

breakdown threshold field Ek defined by the equality of the

electron impact ionization and electron dissociative attachment

coefficients in air (Raizer 1991, p 135). It is expected that the

photoionization term would dominate over the ionization term

in most of the region ahead of a streamer propagating in a low

ambient field (E < Ek) in a point-to-plane discharge geometry

where the dissociative and three-body attachment of electrons

is dominant over the ionization. The related results in the

context of the photoionization models described in this paper

will be reported in a separate dedicated publication.

Figures 13(a) and (b) also show the photoionization source

term Sph and the ionization term calculated for a case when zero

boundary conditions for the photoionization term Sph in SP3

model are used. In this case, we note that in the regions of

the streamer heads the ionization term dominates over pho-

toionization term; however, the photoionization term is at all

moments of time stronger than the ionization term in the re-

gion ahead of both streamer heads. This observation reiterates

that the boundary conditions for the photoionization calcula-

tion have a significant impact on the ionization term as pho-

toionization provides the initial photoelectrons for ionization

in high fields. Figures 13(a) and (b) indicate that in the regions

ahead of streamer heads, both photoionization and ionization

terms significantly deviate from those calculated using correct

boundary conditions for Sph. We emphasize that even with

these noticeable differences in ionization and photoionization,

the characteristics (e.g. distributions of the electron density

and electric field, speed and radius) of the model streamer are

672



Radiative transfer and Helmholtz photoionization models

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
10

20

10
25

10
30

z (m)

t = 0.2 ns

S
i

S
ph

S
ph

 with 

zero B.C.

S
p
h
 a

n
d
 S

i
(m

-3
s

-1
)

S
i
 with 

zero B.C.

(a)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014
10

20

10
25

10
30

z (m)

t = 3 ns

S
i

S
ph

S
ph

 with zero B.C.

S
i
 with zero B.C.

S
p
h
 a

n
d
 S

i
(m

-3
s

-1
)

(b)

Figure 13. Photoionization source term Sph and ionization source
term Si along the symmetry axis of the computational domain at
(a) t = 0.2 ns and (b) t = 3 ns. Solid line: the three-group SP3 with
corrected boundary conditions. Dot-dashed line: ionization term
with corrected boundary conditions for photoionization. Dashed
line: the three-group SP3 with zero boundary conditions. Dotted
line: ionization term with zero boundary conditions for
photoionization.

still very close to the case with correct boundary conditions

for photoionization. Therefore, for this high field test-case to

speed up calculation, it is possible to use zero boundary con-

ditions for photoionization calculation if the goals of the study

do not include detailed studies of properties of the ionization

or photoionization in the region ahead of the streamer heads.

However, as we already mentioned above, for other situations

such as the propagation of streamers in low fields in point-

to-plane discharge geometry when two and three-body attach-

ment dominates over ionization in the most of the simulation

domain ahead of the streamer (i.e. Babaeva and Naidis 1997,

Liu and Pasko 2006 and references therein), it is essential to

correctly take into account boundary conditions for calcula-

tion of the photoionization term, and related studies will be

presented in a separate follow up paper.

It is instructive to compare the total execution times

of the models based on differential equation approach in

comparison with the optimized integral Zheleznyak model.

We have noticed that the simulation time of the three-

group Eddington approach with boundary conditions given by

equation (23) is similar to the one of the three-exponential

Helmholtz model with corrected boundary conditions given

in section 2.2, whereas the simulation time of the three-

group SP3 with boundary conditions given by equation (24)

is slightly longer. As an example of such comparisons

we conducted accurate measurements of computation times

involved in two model cases shown in figure 10. We reiterate

that both models are executed on the same hardware (2 GHz

Power Mac G5 running Mac OS X 10.4) with identical

grids and algorithms to define time steps and boundary

conditions. As already noted in section 2.4 the photoionization

production rate has been updated after every ten steps of

the model execution and the boundary conditions for the

electric potential have been updated every time step. The

measured total execution time of the code based on the

optimized implementation of the Zheleznyak et al (1982)

integral photoionization model as described in section 2.1

was 53 h and 20 min. The measured execution time of the

code based on the three-exponential Helmholtz model with

corrected boundary conditions described in section 2.2 was

63 h and 14 min. The time profiling indicates that about 80%

of the model execution time is spent in both cases on updates

of the boundary conditions for the potential and the solution

of the Poisson equation for the electric field. It is noted that

even if the photoionization production rate is updated at every

time step, the execution times of both models will be of the

same order.

The difference in the computation time presented above

may seem in favor to the integral photoionization model;

however, it is important to point out that the optimization

(introduction of moving meshes with variable cell sizes

and employment of effective windowing and interpolation

techniques) of the integral model is rather involved and

complex, and requires a separate adaptation effort to extend

it to every new configuration studied. At the same time,

the implementation of the photoionization models based

on differential equation approach is straightforward and

simple. Furthermore, in the optimized integral approach the

photoionization source term is calculated accurately only close

to the streamer heads. For example, in the double-headed test-

case, we have shown that due to the optimization, in the region

between the streamer heads, the photoionization source term is

not calculated accurately using the integral model. Conversely

with the differential approaches the photoionization term is

calculated accurately in the whole computation domain.

4. Conclusions

In this paper, we discuss and improve several models

currently proposed in the literature for the calculation of

the photoionization produced by plasma discharges in air.

The reported improvements are achieved by more accurate

accounting for the spectral dependence of the photoionization

process. In particular, the classical Zheleznyak integral model

and three photoionization models in a differential form are

presented. These approaches can be directly applied for

photoionization calculations in model studies of the dynamics

of streamers in air.

An efficient implementation of the classical Zheleznyak

integral model is presented for streamer modeling in air. The

three differential approaches developed are a three-exponential

Helmholtz model, a three-group Eddington and a three-group
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improved Eddington (SP3) models. The Helmholtz model

is based on an approximation of the absorption function

of the gas in order to transform the integral expression of

the photoionization term in a set of Helmholtz differential

equations. The Eddington and SP3 methods are based on the

direct numerical solution of an approximation of the radiative

transfer equation. It is demonstrated that the solutions involved

in all the three differential models require accurate definition

of the boundary conditions.

We have conducted two test studies of the performance

of the newly proposed photoionization models: Gaussian

emission source and a double-headed streamer developing in

a strong uniform electric field (greater than the conventional

breakdown field).

Our studies using the Gaussian source have demonstrated

that the use of a three-exponential fit to the absorption function

in air either with the Eddington, SP3 or the Helmholtz model

allows one to obtain good agreement with the Zheleznyak

integral model, and that single or two-exponential fits do

not allow the Zheleznyak model to be reproduced accurately.

We have also demonstrated that a proper setting of boundary

conditions significantly improves the agreement between the

Zheleznyak model and the three differential models.

Our model studies of the double-headed streamer have

demonstrated that with the three-group Eddington, the three-

group SP3, or the three-exponential Helmholtz models, the

calculated streamers are very similar to the one calculated

using the classical Zheleznyak integral model. It is particularly

interesting to note that the Eddington and SP3 models, which

are in principle only very well suited to situations in which

photon absorption is sufficiently high, can be used to calculate

very accurately the photoionization source term using a three-

group approach even if some effective absorption coefficients

in the model are small.

The comparison of the photoionization and ionization

source terms for the studied case of strong uniform applied field

indicates that photoionization only plays a role during the very

early stage of the development of the streamer. These results

indicate the need to conduct further studies for a streamer

propagating in a weak electric field (less than the conventional

breakdown field) in order to complete tests of the performance

of the newly proposed photoionization models under the full

range of applied field conditions. The related results will be

presented in a separate dedicated paper.

In this work, we have also compared streamer modelling

results obtained using different numerical techniques to solve

the transport equations for charged particles: the Zalesak

flux-corrected transport (FCT) method and the modified

Scharfetter–Gummel (SG) algorithm. We have also utilized

different techniques for solution of Poisson’s field equation:

the D03EBF module of the NAG Fortran library and the SOR

method, which are used in conjunction with the FCT and SG

transport algorithms, respectively. The results of solution

of the same double-headed streamer problem obtained by

the FCT method based on a 3rd order QUICKEST scheme

and an upwind scheme, and by the modified SG algorithm

demonstrate that both numerical techniques lead to accurate

and consistent solutions of the streamer problem.

The results of accurate measurement of computational

time involved in calculations using different photoionization

models for the considered model streamer are presented, which

indicate, in particular, that the computational times of the

differential and optimized integral models for the model case

considered in this study are of the same order. However, it

is important to mention that a significant acceleration of the

integral models in simple cases of single or double-headed

streamers studied with these models to date has been possible

due to introduction of moving meshes with variable cell sizes

and employment of effective windowing and interpolation

techniques. The details of related algorithms are presented

in this paper. It is important to stress that the optimization

of the integral model is rather complex and requires to

be separately adapted to every new configuration studied.

Conversely, the implementation of the photoionization models

based on the differential equation approach is straightforward

and simple. Furthermore, in the optimized integral approach

the photoionization source term is calculated accurately only

close to the streamer heads. For example, in the double-headed

test-case, we have shown that in the optimized integral model

the photoionization source term is not calculated accurately

in the region between the streamer heads (see discussion of

figure 12(b) in section 3.2). Conversely with the differential

approaches the photoionization term is calculated accurately

in the whole computation domain.

Although the different photoionization models are only

used to model streamer discharges in air in this study, we

expect that the models can be applied to evaluating the

photoionization effects in other forms of plasma discharges

in air. In addition, the extension of the photoionization models

to other gases is possible if the information on all emission,

absorption and photoionization coefficients of the studied gas

is available.

The presented results document the range of applicability

of the newly developed photoionization models and emphasize

that the accurate formulation of boundary conditions represents

an important task needed for a successful extension of

the proposed formulations to two- and three-dimensional

physical systems with obstacles of complex geometry (i.e.

electrodes, dust particles, aerosols, etc), which are opaque

for the photoionizing UV photons. We have demonstrated

that accurate definition of the boundary conditions can be

effectively introduced with the Zheleznyak integral model.

For the Eddington model we have also demonstrated the

performance of a set of boundary conditions consistent with

the first order approximation of the radiative transfer equation.

These boundary conditions are simple, fast to compute and

easy to adapt to any configuration. The possibility of

formulating such a consistent set of equations and boundary

conditions based on radiative transfer physics is a significant

advantage of the Eddington and SP3 models in comparison

with the Helmholtz model. In a future work similar boundary

conditions for the SP3 model will be derived and optimized.

We conclude by emphasizing that the actual advantage of

differential models advanced in this paper in comparison with

the integral model lies in the simplicity of implementation

of this type of models, and in the unquestionable simplicity

of extension of these models to complex two- and three-

dimensional simulation geometries, involving, for example,

propagation of multiple streamer heads in the same simulation

domain, and the presence of obstacles on the streamer path (i.e.

electrodes, dust particles, aerosols, etc).
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Appendix: mathematical relationships between the
Eddington, SP3 and Helmholtz models

The three-group Eddington and SP3 models presented in the

main body of this paper have been derived on physical grounds

from the general radiative transfer equation. These physics

based models have certain advantages in comparison with

the Helmholtz model, allowing in particular to formulate

a consistent and computationally efficient set of equations

and boundary conditions based on a radiative transfer theory

(see section 2.3). It is useful, however, to bring to the

attention of the readers that equation (15) of the Eddington

model and equations (18) and (19) of the SP3 model are

Helmholtz equations. Therefore, as demonstrated below in

this appendix, for these equations it is possible to derive

effective representations of the g(R)/pO2
function of the type

specified by equation (9) of the Helmholtz model described

in section 2.2. The establishment of these mathematical

relationships between Eddington, SP3 and Helmholtz models

is very useful for interpretation of the results presented in

section 3.1, and evaluation of performance of the Eddington

and SP3 models in the general context of the quality of

the fit of the g(R)/pO2
function given by equation (9)

in comparison with the original g(R)/pO2
function of the

Zheleznyak photoionization model specified by equation (3).

Each of the Helmholtz differential equations (8) is similar

to equations for wave potentials commonly encountered

in antenna theory in electromagnetics (Harrington 2001,

p 77). On a conceptual level the electromagnetic problem

corresponds to a case of purely imaginary λj values

for which equation (7) would represent outgoing waves

(Harrington 2001, p 80). In the photoionization problem the

λj values are real, reflecting exponential spatial damping of the

solutions due to the absorption of the photoionizing radiation.

The appearance of the similar Helmholtz equations (15),

(18) and (19) in the Eddington and improved Eddington

approximations to the radiative transfer equation is also

consistent with the above physical interpretation. In

this appendix we demonstrate that the solutions of the

Helmholtz, Eddington and SP3 models can be represented

in a mathematically equivalent form, however, all represent

approximate solutions of the same problem, rely on different

numerical values of the model coefficients and therefore

generally do not lead to identical results.

In this context it is useful to recall that the Eddington and

the Helmholtz models are simply based on different forms of

approximation of the integral specified by equation (1). The

original integral contains a difference of two exponents divided

by R3, the three-group Eddington model approximates the

function under integral by a sum of three exponents divided by

R2 (section 2.3) and the three-exponential Helmholtz model

approximates the same function by three exponents divided

by R (section 2.2). If the problem is solved correctly all the

approximations should lead to solutions consistent with Sph (1).

In this appendix in order to distinguish between

the coefficients involved in the Helmholtz (table 2) and

the Eddington (table 3) models, we will use notations

A∗
j (cm−2 Torr−2), λ∗

j (cm−1 Torr −1) and Aj (cm−1 Torr−1),

λj (cm−1 Torr−1), for the Helmholtz and the Eddington models,

respectively.

We observe that the Helmholtz equation (15) appearing as

part of the development of the Eddington approximation are

similar in structure to (8) and therefore have formal solutions

of the type specified by (7). On these grounds, after simple

algebraic manipulations, we can write the solution for the

photoionization production rate satisfying equation (15) in

the form

Sph(�r) =
∫ ∫ ∫

V ′

I (�r ′)pO2

4πR2
(pO2

R)
∑

j

3Ajλj e−
√

3λj pO2
R dV ′.

(A.1)

Alternatively, equation (13), representing the same Sph(�r)
before the approximation based in the isotropic part of the

photon distribution function is applied (see section 2.3), can

be written as

Sph(�r) =
∫ ∫ ∫

V ′

I (�r ′)pO2

4πR2

∑

j

Aj e−λj pO2
R dV ′. (A.2)

Having introduced A∗
j = 3Ajλj and λ∗

j =
√

3λj , and

remembering that in accordance with (9) and (14)

g(R)

pO2

= (pO2
R)

∑

j

A∗
j e−λ∗

j pO2
R =

∑

j

Aj e−λj pO2
R (A.3)

it can be easily seen that equation (A.1) employs exactly

the same form of approximation to the g(R)/pO2
function

as used in the Helmholtz model. These relationships

demonstrate mathematical equivalence between the three-

exponential Helmholtz model based on equation (8) and the

three-group Eddington approximation based on equation (15).

We note that taking the three-group Eddington parameters

from table 3 and calculating the three-exponential Helmholtz

model parameters using the above derived relationships

A∗
j = 3Ajλj and λ∗

j =
√

3λj leads to the g(R)/pO2
=

(pO2
R)

∑

j A∗
j e−λ∗

j pO2
R function shown in figure A1 by the

dot-dashed line, which does not agree with similar function

shown in figure 2. Thus obtained A∗
j and λ∗

j are different from

those given in table 2.

Alternatively, taking A∗
j and λ∗

j from table 2 and

calculating λj = λ∗
j/

√
3 and Aj = A∗

j/(3λj ) leads to

g(R)/pO2
= ∑

j Aj e−λj pO2
R shown in figure A1 by the dashed

line, which significantly deviates from similar function shown

in figure 3. Similarly to the previous case we note that thus

obtained Aj and λj are different from those given in table 3.

These results demonstrate that although the two model

formulations can be represented in a mathematically equivalent
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Figure A1. Solid line: the g(R)/pO2
function given by equation (3)

from the model of Zheleznyak et al (1982). Dot-dashed line:
equivalent three-exponential fit for the Helmholtz model obtained
from the three-group Eddington approximation. Dashed line:
equivalent three-group fit for the Eddington approximation based on
three-exponential Helmholtz model.

form, additional approximations involved in previous steps

of the derivation of the Eddington model (i.e. related to

the spherical harmonic expansion of the photon distribution

function) lead to different numerical values of model

coefficients and explain why results obtained from these two

models are not identical.

It is interesting to note that since the three-group

Eddington model is based on solutions of the Helmholtz

equation (15) of the form (A.1) with g(R)/pO2
effectively

given by dot-dashed line in figure A1, the discrepancies

observed between the three-group Eddington approximation

and the Zheleznyak model in figures 6(c) and (d) of section 3.1

can be directly linked to the discrepancies between the

g(R)/pO2
and the Zheleznyak model at large pO2

R values in

figure A1. The establishment of these relationships is therefore

useful for evaluation of the performance of the Eddington

model.

In view of the above mentioned mathematical relation-

ships between the two models it might be tempting to replace

the parameters of the Eddington model with the ones from the

Helmholtz model providing a better fit. However, this step is

not justified in the context of the rigorous development of the

Eddington and the improved Eddington (SP3) models, and as

discussed in section 3.1 and further reiterated below in this

appendix the SP3 model takes full advantage of the original

accurate fit specified by the parameters given in table 3 and

leads to significantly improved solutions in comparison with

the Eddington model.

We note that the Helmholtz equations (18) and (19)

appearing as a part of the SP3 model are similar in structure to

(8) and have formal solutions of the type (7). By summing

these solutions using equation (16), the corresponding

photoionization rate (20) can be expressed in the form

Sph(�r) =
∫ ∫ ∫

V ′

I (�r ′)pO2

4πR2
(pO2

R)
∑

j

A∗
j e−λ∗

j pO2
R dV ′

(A.4)

with the corresponding six pairs of (A∗
j , λ∗

j ) of the equivalent

six-exponential Helmholtz model defined by λ∗
1 = λ1/κ1,
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Figure A2. Solid line: The g(R)/pO2
function given by equation (3)

from the model of Zheleznyak et al (1982). Dot-dashed line:
Equivalent six-exponential fit for the Helmholtz model obtained
from the three-group SP3 model.

λ∗
2 = λ2/κ1, λ∗

3 = λ3/κ1, λ∗
4 = λ1/κ2, λ∗

5 = λ2/κ2,

λ∗
6 = λ3/κ2;

A∗
1 = λ1A1γ2/(κ

2
1 (γ2 − γ1)),

A∗
2 = λ2A2γ2/(κ

2
1 (γ2 − γ1)),

A∗
3 = λ3A3γ2/(κ

2
1 (γ2 − γ1)),

A∗
4 = −λ1A1γ1/(κ

2
2 (γ2 − γ1)),

A∗
5 = −λ2A2γ1/(κ

2
2 (γ2 − γ1)),

A∗
6 = −λ3A3γ1/(κ

2
2 (γ2 − γ1)).

Having taken the three-group Eddington parameters (Aj ,

λj ) from table 3 and calculated the six-exponential Helmholtz

model parameters using the above derived relationships leads

to the g(R)/pO2
= (pO2

R)
∑

j A∗
j e−λ∗

j pO2
R function shown

in figure A2 by the dot-dashed line, which is in substantially

better agreement with the original Zheleznyak function in

comparison with the similar equivalent three-exponential fit,

obtained for the three-group Eddington model, shown by the

dot-dashed line in figure A1. The good performance of the

three-group SP3 model in figures 6(c) and (d) of section 3.1

can be directly linked to the better agreement between the six-

exponential g(R)/pO2
fit with the original Zheleznyak function

in figure A2.

In summary, in this appendix we have demonstrated

the mathematical equivalence of the Eddington, SP3 and

Helmholtz models. All solutions of these models can be

written in essentially the same mathematical form, with

differences between these models only arising from different

numerical values of the model coefficients. The presented

analysis demonstrates that the three-exponential Helmholtz

model presented in section 2.2 is more accurate than the three-

group Eddington model presented in section 2.3, in agreement

with results presented in section 3.1. The presented analysis

also demonstrates that the SP3 model can be effectively

represented in a mathematical form equivalent to the six-

exponential Helmholtz model. This approach allows a simple

interpretation of better performance of the three-group SP3

model in comparison with the three-group Eddington model

introduced in section 2.3, and in comparison with the three-

exponential Helmholtz model presented in section 2.3, in

agreement with the results presented in section 3.1.
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