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ABSTRACT 

This contribution introduces a computationally-efficient 
scheme for phase-based motion estimation. The local 
phase for consecutive dyadic scales and six different di-
rections is retrieved through a complex-valued subband 
decomposition. It is obtained by a successive use of a re-
cursive Hilbert transformer and recursive power-
complementary half-band filter pairs. The so-called ap-
proximately linear-phase recursive half-band filter pro-
posed by Renfors and Saramäki is used as a start-up fil-
ter for generating both the Hilbert transformer and the 
half-band filter pairs. Experiments with synthetic image 
sequences demonstrate that by properly designing the 
start-up filter, the proposed technique provides, with a 
considerably reduced number of computations, a per-
formance similar to that in a recently introduced method. 

1. INTRODUCTION 
Motion estimation (ME) is the problem of determin-

ing correspondences or motion vectors in a sequence of 
images. It is a key image processing topic having many 
applications including, among others, video compres-
sion, stereo-optics, and surveillance. ME is often used in 
the analysis of moving three-dimensional (3D) objects. 
For example, it is applied in depth-from-motion methods 
by extracting dissimilarity information between multi-
camera views [1]. In addition, ME is used in 3D object 
representations realized by depth ordering [2] and/or dis-
parity compensation [3]. Another wide field of the 3D 
object analysis by ME is the so-called structure from 
motion [4]. It extracts 3D morphological information by 
analyzing the corresponding motion vectors. 

In general, the image sequence (e.g. video) is formed 
by projecting 3D scenes onto the 2D plane of an imaging 
sensor at a certain time interval. The resulting 2D “opti-
cal flow” is often the only input available to the algo-
rithm for estimating the “real” 3D motion [5].  

Reconstructing the motion of a 3D object based on 
its 2D projection is an ill-posed inverse problem and for 
solving it some constraints should be applied [6]. The 
type of the constraints underlines the classes of ME al-
gorithms. These classes include, for instance, gradient-
based, energy-based, block-matching, and phase-based 
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algorithms [7]. A number of studies have favoured the 
use of phase-based ME as it copes better with illumi-
nance changes and affine deformations in image se-
quences [7], [8]. The phase-based approach relies on 
equiphase surfaces and their evolution along time for 
getting the true motion field. The local phases are deter-
mined as the outputs of a set of complex-valued non-
overlapping spatiotemporal Gabor filters with various 
scales and orientations [8]. The reported results are quite 
accurate at the price of a high computational burden 
caused by the convolutions with the Gabor filters. A 
substantial step for increasing the efficiency of algo-
rithms of this kind was done by Magarey and Kingsbury 
in [9]. This improvement is based on the use of a com-
plex-valued discrete wavelet transform (CDWT) that 
exploits short-length Gabor-like filters. In this approach, 
not only the local phase is obtained in a more efficient 
manner but also a hierarchical structure allowing mul-
tiresolution refinements is incorporated within the ME 
algorithm.  

This contribution adopts the methodology from [9] 
and aims at further improving the filter structures for re-
alizing the complex-valued subband transform. Our pre-
liminary research, focused on a fixed-point DSP realiza-
tion of ME, indicated that the most promising structures 
are based on the use of a combination of a Hilbert trans-
former and real-valued half-band filter pairs [10]. This 
earlier work is extended by properly designing such fil-
ters and filter pairs using various filter orders and by 
comparing the resulting performances in terms of the 
ME accuracy and computational cost. This paper is or-
ganized as follows: Section 2 briefly reviews the phase-
based ME approach, as developed in [9]. In Section 3, a 
general complex-valued subband decomposition scheme 
is presented. It adheres to the adopted motion model as 
good as the CDWT does while offering better imple-
mentation flexibility. This section also deals with the de-
sign of half-band filters involved in the structure. Ex-
periment with synthetic image sequences with known 
motion fields are included in Section 4, followed by 
conclusions made in Section 5.  

2. MOTION ESTIMATION BASED ON CDWT 

2.1. Motion model 

Given a sequence of images (frames) ui for i = 0, 1, 2,… 
at position x, the local translation model [9] 



 )()]([1 xxdx ii uu =+−  (1) 

assumes that the changes in ui are caused by the 2D pro-
jected motion only and not by changes in illumination. 
In Equation (1), d(x) is the translation to be estimated.  

2.2. CDWT Algorithm 

The core of the algorithm, as shown in Figure 1, is a 
multiscale subband transform using complex-valued Ga-
bor-like wavelet filters. Every scale gives six complex-
valued subbands discriminating the image into a set of 
the following six angular orientations: 15± , 45±  and 

75±  degrees. The efficiency is achieved by using short 
FIR filters (4 or 8 taps) and by decomposing the image 
into dyadic scales.  

  
CDWT
Level 1

Motion
Estimator

Interpo-
lator

CDWT
Level 2

CDWT
Level 1

CDWT
Level 2

CDWT
Level 3

CDWT
Level 3

Motion
Estimator

Motion
Estimator

Interpo-
lator

Bandpass

Bandpass

Lowpass

Lowpass

Lowpass

Lowpass

Bandpass

Bandpass

Bandpass

Bandpass

Input 
Frame 1

Input
Frame 2

Output
Motion
Vectors

Level 2
Motion Field

Level 3
Motion Field

CDWT
Level 1

Motion
Estimator

Interpo-
lator

CDWT
Level 2

CDWT
Level 1

CDWT
Level 2

CDWT
Level 3

CDWT
Level 3

Motion
Estimator

Motion
Estimator

Interpo-
lator

Bandpass

Bandpass

Lowpass

Lowpass

Lowpass

Lowpass

Bandpass

Bandpass

Bandpass

Bandpass

Input 
Frame 1

Input
Frame 2

Output
Motion
Vectors

Level 2
Motion Field

Level 3
Motion Field

 
 

Figure 1. CDWT for ME [9]. 
 

The multiscale nature of the algorithm makes it suit-
able for a hierarchical, coarse-to-fine motion analysis.  

A planar phase model expressed by an approximate 
relation between the subband component and its shifted 
version is used in this method as follows: 

 ( ) ( ) )(),(),( flfl θjmlml eDD ≈+ , (2) 

where )(),( lmlD  denotes the complex subband pixel val-
ues in the l-th subband at scale m. The phase term is rep-
resented by ( ) fΩf Tmlm ),(2)( =θ , where Ω  is a matrix of 
the center frequencies of the wavelet filter pairs. The fol-
lowing equiphase equation has to be met in the case of 
two time consecutive frames: 
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where 1φ  and 2φ  are the phases of the corresponding 
subband coefficients from Frame1 and Frame2, respec-
tively, as shown in Figure 1. In order to solve the equa-
tion for f, the phase term has to be expressed as follows:  

 ( ) )(2 ),(),( lfΩ mlTmlm θ= ,  (4) 

where 

 ⎥
⎦

⎤
⎢
⎣

⎡
∠=

)(
)()( ),(

1

),(
2),(

l
ll ml

ml
ml

D
Dθ . (5) 

Here, )(),(
1 lmlD  and )(),(

2 lmlD  are the subband coefficients 
from Frame1 and Frame2, respectively. This estimation 
is performed by the Motion Estimator blocks in Figure 
1.  

In order to generate a standard 8x8 block motion 
field, the subband transform is applied up to the level 
mmax = 3. The estimated displacements have a range of 4 
pixels in both the vertical and horizontal coordinates for 
each 8x8 pixels block. Closed form expressions for com-
puting the subband motion vectors are available in [11].  

The Interpolator blocks interpolate the offset vector 
size by a factor of 2 in both directions in order to prepare 
the motion field for usage in the finer scale, if required 
[9].  

3. COMPLEX-VALUED SUBBAND TRANS-
FORMS 

The filters in the CDWT are of Hardy type, i.e., they re-
move the negative frequencies. Thus they produce an 
analytic signal at their outputs. 
Another scheme, offering more flexibility and simplicity 
in the filter design is implied by the so-called mapping 
(projection)-based complex wavelet transform [12]. In 
this approach, the signal mapping onto the Hardy space 
is first implemented, followed by a real-valued discrete 
wavelet transform (DWT). In practice, the mapping is 
realized by an approximation based on the use of a Hil-
bert transformer [12]. As in the CDWT, the output sub-
bands produced are complex-valued and discriminate 
image features in the same angular directions. However, 
the scheme is more general as it enables one to use arbi-
trary half-band filters provided that wavelet properties 
are not required specifically. This adds some freedom in 
the filter design, especially if a fixed-point implementa-
tion is envisaged. The projection stage realized by the 
Hilbert transformer is also flexible. It can be realized by 
modulating an arbitrary half-band filter realized as a par-
allel connection of two allpass filter components [12]. 

3.1. Recursive half-band filters with approximately 
linear phase 
The key interest in this paper is to generate both Hilbert 
transformers and half-band filter pairs in the proposed 
scheme for phase-phased motion estimation based on the 
use of the so-called approximately linear-phase recursive 
half-band filters proposed in [13]. The main motivation 
for using these filters is that they compare favorably 
with conventional linear-phase finite-impulse response 
(FIR) filters. Using these filters, a power-complementary 
filter pair consisting of a lowpass filter transfer function 
HLp(z) = (1/2) [ z−(n−1) + A(z2)] and a highpass transfer 
function HLp(z) = (1/2) [ z−(n−1) − A(z2)] can be realized as 
shown in Figure 2(a). Here, n is an even integer and 
A(z2) is an allpass filter of order n. It is worth pointing 
out that this A(z2) can be generated by replacing z−1 in an 
allpass filter transfer function A(z) of order n/2 by z−2. 
Furthermore, when implementing A(z) as a cascade of 
first-order and second-order all-pass sections using the 
same structures as for wave digital filter (WDF) struc-
tures [14], A(z2) requires only n/2 multipliers. For this 
reason, the filters in Figure 2(a) are referred to as WDF 
filters. The corresponding WDF structure for the Hilbert 
transformer, as shown in Figure 2(b), is simply obtained 
by replacing z−1 in A(z2) by −jz−1 resulting in A(−z2). 
This only changes the signs of certain coefficients of the 
allpass function. The Hilbert transformer and the half-



band filter pairs used in the proposed scheme for phase-
phased motion estimation are generated based on the 
same lowpass filter of Figure 2(a). They have the fol-
lowing two basic advantages over their linear-phase FIR 
filter counterparts. First, they have much lower imple-
mentation complexities for providing the same or higher 
frequency selectivity. Second, these building blocks for 
the overall proposed scheme are very suitable for real-
world realizations because of their high stability, high 
dynamic range, and low sensitivity to the coefficient 
quantization. Moreover, many power-efficient realiza-
tion strategies for VLSI designs have been developed 
[1]. They are mainly targeted at applications demanding 
low-power designs used, e.g., in mobile devices. 

A single stage of the subband transform is shown in 
Figure 2(c). For clarity, it has been named Complex 
wave digital filtering (CWDF). In the two-dimensional 
case, the filtering by rows and columns gives the follow-
ing outputs: LL, LH, HL, and HH, where L and H stand 
for the low and high frequencies, respectively. The two-
dimensional Hilbert transformer gives an analytic signal 
which is then decomposed into 8 imaginary and 8 real 
subbands. The 6 complex subbands, namely LH+, HL+, 
HH+, LH-, HL-, and HH- in Figure 2(c) are obtained by 
properly combining the real and imaginary outputs. 
These subbands contain the desired details extracted 
from the image. 
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Figure 2. Complex wave digital filtering: (a) 
Half-band filter pair. (b) Hilbert transformer.  

(c) The complete CWDF transform.  

3.2. Filter design 

The design of the start-up filter for both the Hilbert 
transformer and the half-band filter pair can be accom-
plished very fast by using the design technique described 
in [13]. It enables one to solve very fast the following 
problem: Given n in the structure of Figure 2(b) for the 
lowpass filter and its stopband edge angle ωs > π/2, 
minimize the attenuation in the resulting stopband re-
gion. Based on the use of this algorithm, start-up low-
pass filters with n varying from 4 to 12 have been de-
signed in order to compete with the 8-tap Gabor-like fil-
ter and the 4-tap rotation invariant (RI) filter as de-
scribed in [11]. The stopband edge that appeared to be 
the most appropriate for our application was ωs = 0.55π. 
Finally, for each direction we obtain the 6 filter kernels 

shown in Figure 3. The magnitude responses of the fil-
ters down to level 4 are shown in Figure 4. 

  

 
(a) 

 

 
(b) 

Figure 3. Two-dimensional WDF kernels.  
(a) Real part. (b) Imaginary part. 
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Figure 4. Magnitudes of the one-dimensional WDF fre-
quency responses. The subband level is denoted by m. 

 

4. EXPERIMENTAL RESULTS 

When comparing the performances of various filter 
structures, the experiments were performed only for the 
coarsest level motion estimation case, even though a 
structure producing better results in non-refining algo-
rithm will also lead to a better accuracy in the refining 
case. 

Experiments were performed with three synthetic 
image sequences from the University of Western Ontario 
database - “Translating tree”, “Diverging tree”, and “Yo-
semite”. Each sequence has the frame size of 128×128 
pixels, the length is 20 frames, and for each sequence 19 
true motion fields were provided for reference.  

Two ME algorithms were compared in terms of the 
computational complexity and estimation accuracy. For 
the CDWT-based ME, two filter pairs were involved, 
namely, the 4-tap Rotation Invariant (RI) pair and the 8-
tap Gabor-like pair. 

The computational complexity was estimated both in 
terms of the number of basic arithmetic operations and 
the number of instruction cycles. The basic arithmetic 
operations under consideration were additions and mul-
tiplications. Table 1 shows the results for the number of 
basic arithmetic operations as well as their relative value 
compared to the 8-tap filter Gabor-like pair taken as a 
reference. 

The estimation accuracy was evaluated by applying 
the angular measure of error [11]. This measure uses the 
angular difference between the two 3D vectors which 



connect the current frame block to its true position and 
its estimated position in the next frame. Therefore, the 
error was measured in degrees. 
 

Table 1. Computational complexity for different sub-
band decompositions 

Calculations 

Transform  

Algorithm 

A
dditions 

M
ultipli- 

cations 

Total % 

8-tap 
Gabor-like 335872 761856 1097728 100

CDWT 
4-tap RI 167936 380928 548864 50

n = 12 622080 207360 829440 75
n = 10 518400 172800 691200 62
n = 8 414720 138240 552960 50
n = 6 311040 103680 414720 37

CWDF: 

 WDF fil-
ters with 
ωs = 0.55π 

n = 4 207360 69120 276480 25

The errors obtained for all motion blocks were averaged. 
A strip of 17 pixels was excluded from the border to 
avoid errors caused by boundary effects. The mean error 
estimate was averaged again in the temporal domain for 
the 19 motion fields. Table 2 shows a comparison of the 
errors measured for the algorithms tested. 

 
Table 2. Motion estimation accuracy in terms of the 

mean angular error [in degrees] 

Transform  

Algorithm 

“Translating 
tree” 

“D
iverging 
tree” 

“Y
osem

ite” 

8-tap       
Gabor-like 

3.66 6.74 10.7 
CDWT 

4-tap RI 6.42 8.91 13.3 

n = 12 3.82 6.38 11.2
n = 10 5.95 8.13 12.7
n = 8 7.10 10.6 13.6
n = 6 8.35 13.2 15.0

CWDF: 

 WDF fil-
ters with 
ωs = 0.55π  

n = 4 9.02 13.3 17.7
 
As seen from the tables, the WDF filters compete 

successfully with those in the CDWT, especially when 
the filter order increases. Thus, a lower cost scheme pro-
viding a good performance is achievable. 

 

5. CONCLUSIONS  

A phase-based scheme for ME has been proposed. It 
combines the following two ideas: a) obtaining the in-
formation about the local phase through a multiscale and 
multidirectional complex-valued transform resembling 
the highly acclaimed Gabor transform and b) involving 

half-band quadrature filters with good frequency charac-
teristics in this transform. When seeking for the best fil-
ter structure, both the subband filters and Hilbert trans-
former were implemented using WDF structures with 
the same order and they were designed to have a very 
good stopband attenuation while also having a very good 
passband behavior. The resulting structure ensures fast 
processing and a stable performance. A further im-
provement can be expected if the Hilbert transformer is 
improved at the price of slightly more computations.  
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