

65

Abstract

This paper presents an integrated solution for the

problem of detecting, tracking and identifying vehicles in
a tunnel surveillance application, taking into account
practical constraints including realtime operation, poor
imaging conditions, and a decentralized architecture.
Vehicles are followed through the tunnel by a network of
non-overlapping cameras. They are detected and tracked
in each camera and then identified, i.e. matched to any of
the vehicles detected in the previous camera(s). To limit
the computational load, we propose to reuse the same set
of Haar-features for each of these steps. For the detection,
we use an Adaboost cascade. Here we introduce a
composite confidence score, integrating information from
all stage of the cascades. A subset of the features used for
detection is then selected, optimizing for the identification
problem. This results in a compact binary ‘vehicle
fingerprint’, requiring very limited bandwidth. Finally, we
show that the same set of features can also be used for
tracking. This haar features based ‘tracking-by-
identification’ yields surprisingly good results on standard
datasets, without the need to update the model online.

1. Introduction
This paper addresses the problem of detecting, tracking,

and identifying vehicles in a tunnel using multiple cameras
with non-overlapping views, as illustrated in Figure 1.
This is a challenging task given the harsh illumination
conditions usually found in tubular passages with artificial
illumination [1], [2]. Also the image quality is often
relatively poor, with limited resolution, interlacing effects,
motion blur, as well as compression artifacts being
common phenomena. This makes it difficult to find
informative features in the scene. Color, the most widely
used feature in traffic applications, is not reliable in
tunnels since the artificial lighting often affects the natural
colors of objects. Texture information is also very limited,
again due to poor illumination, but also because of the low
resolution of surveillance cameras (see e.g. the lack of
detail on the detected vehicles shown in Figure 2). Motion

information can be reliably used for detection and
tracking, but only if the traffic has not come to a stand-
still, if vehicles are not too close to each other, and if the
road surface is not too reflective (reflecting the headlights
over a long range). Moreover, it cannot be used for
matching the vehicles between different cameras (also
referred to as multi-camera tracking), which is the main
goal of this paper.

Vehicle detection, tracking and matching are often
addressed separately, as consecutive steps. In this paper,
we show how these tasks can work together in an optimal
way, sharing the same set of features so as to limit the
computational overhead and get acceptable results.

 Ideally, detection and tracking should be done on or
near the camera using embedded hardware. This means we
are on a tight budget as far as computing power is
concerned. Another issue is the communication between
the cameras and the central server. To limit the bandwidth
consumption, we only send a compact, binary ‘fingerprint’
of each vehicle over the network. Finally, the camera
system should work with existing surveillance cameras
and not require heavy calibration or parameter tuning for
each setup separately (‘plug and play’ being the ideal).

The main contributions of this paper can be summarized
as follows: 1) We show it is possible to build a system for
integrated vehicle detection, tracking, and identification
for tunnel surveillance; 2) We show this can be done
efficiently by reusing the same set of features for all three
steps; 3) For the detection, we introduce a novel composite
confidence score, integrating information from all stages
of the detection cascade; 4) For the identification, we
propose a compact, binary vehicle ‘fingerprint’ that can be

Efficient Multi-Camera Detection, Tracking, and Identification

using a Shared Set of Haar-Features

Reyes Rios Cabrera1, Tinne Tuytelaars1 and Luc Van Gool1,2
1K.U.Leuven, ESAT – PSI, Belgium. IBBT, Belgium

2ETH-Zurich BIWI Switzerland
{reyes.rioscabrera,tinne.tuytelaars,luc.vangool}@esat.kuleuven.be

Figure 1: Multi-camera system in tunnel surveillance. Most
tunnels are equipped with multiple surveillance cameras. Our
goal is to use these to keep track of the vehicle through the
tunnel.

66

used for vehicle matching across cameras; 5) Finally we
introduce Haar features based ‘tracking-by-identification’,
in analogy to ‘tracking-by-detection’. This scheme allows
taking the specific appearance of the object being tracked
into account, without the need to update a model online as
in [6], [7].

The remainder of this paper is organized as follows.
First, we briefly describe related work. Then, section 2
explains our object detection scheme, with special
emphasis to the composite confidence score computation.
Section 3 describes the computation of a vehicle
fingerprint and how it can be used for vehicle matching.
Next, in section 4, the same features are used for tracking.
Section 5 describes the integrated system and the
experimental results, and section 6 concludes the paper.

1.1. Related work
Sharing of features has received quite some attention in

the context of multi-class object recognition [11]. The
reuse of features across different tasks, on the other hand,
is less studied.

Probably most related to our work is the work of Yuan
and Sclaroff [4]. They show that features boosted during
cascade training for object detection are not only good for
detection, but can also be used as a filter for the
subsequent task of within foreground object classification.
The selected weak classifiers can be shown to be random
bipartitioning hyperplanes following the definition of
hashing functions in Locality Sensitive Hashing. As such,
they can be used to construct a Hamming distance,
approximating nearest neighbor search in the Euclidean
feature space. Yuan and Sclaroff use this Hamming
distance to quickly select a few candidate classes, which
are then further evaluated with a more complex classifier.
Here, we use the same Hamming distance for object
matching, as well as for object tracking, albeit not in a
filter-and-refine framework.

Our vehicle fingerprint, on the other hand, is similar to
the small codes proposed by [13] in the context of very
large scale image retrieval and classification.

In the context of tracking, tracking-by-detection [12]
has become popular recently, since it can recover from
errors and temporal occlusions and it is not affected by
drift. On the downside, it does not adapt to the object
being tracked, as opposed to mentioned appearance-based
trackers that can exploit the specific appearance of both
the object and the background. Recently, several online
classifier-based tracking methods have been proposed, that
refine their model during tracking. However, these require
extra computation time and cannot be used in our
application. The tracking-by-identification we propose is a
way to incorporate instance-specific information in the
tracking process, without the need to update a model
online.

2. Detection – composite confidence score
The poor illumination conditions in tunnels and low

quality images make detection very hard. To detect the
vehicles we use an implementation of the Viola- Jones
detector [3]. This consists of a cascade of strong
classifiers, each of which is a combination of several weak
classifiers selected using the AdaBoost framework. Using
a cascade ensures that most background samples are
rejected at early stages with minimal computational effort.
At each stage, we aim at rejecting 50% of the background
samples while keeping 99.9% of the positive samples. We
also use the integral images scheme proposed by Viola-
Jones, which allows fast computation of the features
independent of the scale or location of the window being
evaluated.

To create the cascade, for each stage a strong classifier
is constructed based on many Haar features ܪሺݔሻ ൌ ෍ ሻ௡ݔ௧݄௧ሺߙ

௧ୀଵ

(1)

where: H(x) represents a strong classifier, ht(x) is a
weak feature, n is the number of features and α is the
weight assigned by the Adaboost algorithm. Normally
with threshold a θ=0, if H(x) < θ, the sample is classified
as background, while H(x) >= θ indicates a vehicle.
However, for the cascade scheme, θ is tuned so that it lets
subwindows classified as background pass to the next
stages of the cascade (negative H(x) are considered also
vehicles), so as to ensure that almost all positives make it
to the next stage.

In our experiments, we found that keeping track of the
local output accuracies of each stage, and adding them
together in a composite confidence score ‘G’ (as for
Global) gives better detections than the standard strategy
of only looking at the score of the last stage [3], We define
G as: ܩ ൌ 1ܵ ෍ ሻ்ݔ௜ሺܪ

௜ୀଵ (2)

where T is the number of stages of the cascade, and S is
defined as: ܵ ൌ ෍ ෍ ௜௧|௡೔ߙ|

௧ୀଵ
்

௜ୀଵ (3)

The variable S functions as a normalization factor of all
the weights of the cascade, which can be considered as the
global maximum possible response, therefore -1 ≤ G ≤ 1.

The score G can be seen as a way of relaxing the hard
decisions made at each stage, distinguishing between those
samples that were ‘just good enough’ versus those in
which the classifier was ‘very confident’. The computation

67

of this score is straight forward and it does not need
further normalization for each stage, since its value
dependents already on the number of classifiers of the
stage itself.

Starting from all subwindows that successfully get to
the end of the cascade, we then select the final detections
by thresholding the score G and applying Non-Maximal
Suppression. Additionally, we use the variance of a
subwindow as a prefilter before detection. We observed
that subwindows containing vehicles typically have a
variance between 15 and 60 whereas the variance of most
background tunnel subwindows is below 15. We use this
information to speed up the detection by dropping
subwindows with very low/high variance before the
cascade detection. The same variance is also used to
variance-normalize the window prior to detection.

3. Matching – the vehicle fingerprint
Matching of vehicles in traffic scenarios is typically

done by comparing their appearances and using their
kinematics together with inter-camera distances and
spatial constraints (e.g. occupied lane), to reduce the
number of possible matches. However, matching of
vehicle appearances in tunnels is challenging, as illustrated
by the examples of vehicles extracted from our database in
Figure 2.

Figure 2. The poor quality of the cameras and hard imaging
conditions make vehicle identification in tunnels a difficult task,
as illustrated by these four example cars recorded by three
different cameras in the same tunnel.

As a result, features typically used for object

recognition, like color, local features, edges or PCA-
projections have limited success in tunnel applications.
Color is not reliable; calculation of invariant local features
(such as SIFT or SURF) is computationally demanding
and their amount in low resolution images is insufficient;
edges are difficult to extract; and PCA-projections may be
camera-specific.

Here, we investigate the use of Haar features selected
from the pool of weak classifiers computed by the
detection cascade. Reusing the features of the detection
step avoids wasting time on the computation of new
features. Moreover, [4] has shown that these features lend
themselves well as Hamming embedding for

approximating Euclidean distance, this gives a binary
descriptor, which can be sent to the central server where
we have strong bandwidth constraints. We experiment
with both the standard Hamming distance as well as the
weighted Hamming distance (where each bit is weighted
by a real value). Note that this optimization scheme is also
similar to some approaches used for metric learning [14].

Following the procedure proposed in [4] we start from a
training set S = {(q1, a1, b1),...,(qt, at, bt)} of t triples of
positive examples. qi, ai and bi are all positive examples.
In each triple, ai is a more preferable neighbor of qi than
bi. In our case, ai and qi represent the same vehicle, while
bi represents a different vehicle. Additionally, we have a
set of binary functions B = {h1,...,hn}, where hk(x) ߳ {-
1,+1}. Each hk induces a distance measure:

 ݀௞ሺݔ, ሻݕ ൌ |݄௞ሺݔሻ െ ݄௞ሺݕሻ|/2 (4)

and a weak classifier fk (fk is defined on triples, different
from hk):

 ௞݂ሺݍ௜, ܽ௜, ܾ௜ሻ ൌ ݀௞ሺݍ௜, ܾ௜ሻ െ ݀௞ሺݍ௜, ܽ௜ሻ (5)

where dk(x, y) ߳ {0,1} and fk(qi, ai, bi) ߳ {-1, 0, +1}. Our
goal in training is to find a strong classifier

,ݍሺܨ ܽ, ܾሻ ൌ ෍ ௝ߚ ௝݂ሺݍ, ܽ, ܾሻ (6)

such that F(q, a, b) > 0 for all triples (q, a, b). If we
define a new distance measure

,ݔ௪ሺܦ ሻݕ ൌ ෍ ௝ߚ ௝݀ሺݔ, ሻ (7)ݕ

and plug Eqn.(5) into Eqn.(6), we have
,ݍሺܨ ܽ, ܾሻ ൌ ,ݍ௪ሺܦ ܾሻ െ ,ݍ௪ሺܦ ܽሻ ൐ 0 (8)

As proposed by [4], we again use AdaBoost to train the
strong classifier F(q,a,b), selecting a subset of the features
hk, with corresponding weights β, and a subset of features
all with the same weight. Since the weights are fixed, they
do not need be sent to the server, only the selected binary
values {hk, resulting in a compact yet performant
descriptor.

4. Haar features based Tracking-by-
identification

Finally, we propose to use the same set of selected

C1

C2

C3

68

features used for identification also for the tracking. This
may seem a weird choice at first. However, those features
have proven to focus on what remains constant over
different detection windows, in spite of small variations
between the different cameras (viewpoint, pose, lighting,
etc.). As such, they can be expected to be robust for
tracking as well. Moreover, tracking-by-identification
allows taking the appearance of the specific object being
tracked into account, without the need for an online
boosting scheme, which would be computationally too
expensive in our setting.

Tracking-by-identification works just like tracking-by-
detection, except that we do not use the confidence of an
object detector, but the Hamming distance to the object as
seen in the first frame. Moreover, we do not compute all
features, but only the optimized subset. In our
implementation, we simply compute the Hamming
distance for all subwindows close to the detection position
in the previous frame.

5. Experimental results
Before we report results on detection (section 5.2),

matching (5.3), tracking (5.4), and our integrated system
(5.5), we first describe our dataset (5.1).

5.1. Our dataset
For our experiments, we use a set of three annotated

video sequences, corresponding to three spatially
consecutive but non-overlapping cameras from a tunnel
surveillance system in operation. The image resolution is
576x768. All sequences have been manually annotated,
assigning to each vehicle a unique identifier and
delimiting its bounding box in at least 15 frames. The first
part of each video is used for testing, while the second part
is used for training. Traffic flow used for testing is
composed of around 160 vehicles (mostly cars and trucks)
passing by during 3 minutes, the number used for training
was about 300.

5.2. Detection
To train the detection cascade, we use the 3 annotated

videos as well as 100 additional tunnel images without
vehicles downloaded from the internet. Moreover, all
positive samples are mirrored horizontally to enlarge the
training set. All training data is variance normalized.
During testing, the variance normalization is performed
online using the squared integral image. The training size
is 50x50 pixels for all vehicles.

Figure 3 shows the performance (precision vs. recall) of
our detector, once using the score of the last stage of the
cascade, as is usually done, and once considering our
composite confidence score G.

Figure 3: Precision/recall of our detector tested for a bulk
cascade (cars and trucks together) and separate cascades (one for
cars and other for trucks applying Non-Maximal Suppression).

To define a correct detection, we use 50% overlap
(intersection divided by the union) as criterion, as in the
Pascal VOC Challenge [8]. To generate the
precision/recall plot, a sliding window was run on several
annotated frames using the same parameters for both
methods. Both the precision as well as the recall benefit
significantly from the new confidence measure, with the
average precision increasing from 40% to almost 52% and
from 66 to 75%. As operating point for further processing,
we can select a high threshold, since misdetections can be
covered in another frame.

5.3. Matching
Next, we select an optimal subset of features from the

pool of features used in the bulk detection cascade which
contains a total of 890 features. These are used as ‘vehicle
fingerprints’ and sent to the central server, where they are
compared with the fingerprints sent by other camera(s)
using Hamming distance.

For this experiment, we have manually annotated 400
vehicles in all three cameras, always assigning the same
identifier to corresponding vehicles. 200 of these (each
with 15 samples with the same ID) are used to optimize
the features, while the remaining 200 are used for testing.
From the training samples we construct 20,000 triples.
Optimization took about 10 seconds in our matlab script.

When matching over different cameras, there are
usually side constraints that can be exploited limiting the
number of matching candidates. For instance, given an
estimated time lag between two cameras, we can reduce
the search to a small time window. Moreover, the different
matchings are not independent. If e.g. the first vehicle of
camera 1 matches to the second vehicle of camera 2, no
other vehicle of camera 1 can match to that same vehicle.
This kind of disambiguation has a big impact on the

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

recall

pr
ec

is
io

n

Detector: Precision/Recall at 50% overlap

Bulk: LastStageAccuracy AP= 0.4036

Bulk: G Accuracy AP= 0.5172
Separate: LastStageAccuracy AP= 0.6624

Separate: G Accuracy AP= 0.7565

69

matching accuracy. In our experiments, we use the
Munkres algorithm for this purpose which is a
combinatorial optimization algorithm that solves the
assignment problem in polynomial time.

 Given all the vehicles detected in one camera in a
chronologically ordered list, we use a sliding window
running over this list to select matching candidates. The
optimal size of this window needs to be determined by
experiment.

In figure 4a, we report the accuracy of the matching as a
function of the number of distractors, i.e. with the sliding
window always centered on the correct detection.

Figure 4. a) Average matching accuracy of Cam1-Cam2, Cam1-
Cam3, Cam2-Cam3, with windows centered on correct detection.
b) Adding features to improve identification. Using the features
in the order that they were boosted (blue) increases accuracy
faster than adding them randomly (black). The accuracy saturates
very early, at about 100 features.

Since the correct match for all elements of a specific

window, is always in the test set, we start with a matching
accuracy of 100% (for the case of 0 distractors, window
size=1). Clearly, in our setting the weighted version did
not improve over the standard Hamming distance, on the
contrary. The non-weighted version is almost as good as
the result obtained with all the features, while using less
than half the number of features. Normally, due to
physical tunnel constraints, we consider a maximum of 20
vehicles groups, for which accuracy is 95%.

Figure 5. Matching accuracy under more realistic circumstances.
The worst performance is the one using only Nearest Neighbor.
Munkres, is adding a set of vehicles (+=window/2) and
immediately selecting the winner without any voting. Munkres V
additionally includes the voting mechanism, and comes very
close to the theoretical optimal OPT, which is the same curve as
shown in Figure 4a.

 Next, we evaluate the effect of the number of selected
features on the matching accuracy, see Figure 4b. This
plot shows the average for window sizes 10, 15, 20, and
25. Already for 100 features, we obtain an accuracy of
95%. Hence we use only the first 100 features as our
vehicle fingerprint. For comparison, we repeated the same
experiment also for randomly selected weak classifiers
(from the same pool selected by the detection cascade).
This also goes up to 95%, but not that fast.

In practice, we obviously do not know the
corresponding vehicle beforehand and, as a result, we
cannot center the sliding window on the correct detection.

As a result, the size of the sliding window is a tradeoff
between two factors: making sure the correct vehicle falls
within its range, while limiting the amount of distractors
falling in its range. On the other hand, a particular vehicle
also falls within multiple sliding windows and, as a result,
gets matched several times. To exploit this redundancy,
we propose to use a voting algorithm. We add vehicles
until an N-size buffer is full (with N the size of the
window). So each vehicle is assigned several times with
the Munkres algorithm. If it is assigned to the same
vehicle as in the previous iteration, voting for that
particular pair of vehicles increases. At each step the pair
of vehicles with highest voting value is counted as a valid
match and removed from the buffer. In Figure 5, we
compare different algorithms for matching the vehicles,
namely nearest neighbor based matching, the Munkres
algorithm, and the improved Munkres algorithm
(including voting). As a reference, we also added the
curve of Figure 4a, which can be considered as a
theoretical maximum. For all these experiments, we used

0 10 20 30 40 50 60 70 80 90 100
50

55

60

65

70

75

80

85

90

95

100

Size of Window

%
 A

cc
ur

ac
y

ALL (890 features)

OPT (384 features)

Weights (204 features)

0 50 100 150 200 250 300 350 400
0

10

20

30

40

50

60

70

80

90

100

Features

%
 A

cc
ur

ac
y

Random

Ordered

0 10 20 30 40 50 60 70 80 90 100
30

40

50

60

70

80

90

100

Size of Window

%
 A

cc
ur

ac
y

Nearest Neighbor

Munkres V

Munkres

OPT

a)

b)

70

ground truth bounding boxes as well as the ground truth
order of appearance of vehicles in the tunnel.

5.4. Tracking
For evaluating the tracking, we use the Overlap-

Criterion of the Pascal VOC Challenge, which computes
the overlap score as

(roiT ת roiGT) / (roiT ׫ roiGT) (9)

with roiT the tracker detection and roiGT the ground

truth.
In Figure 6, we show the tracking accuracy as a

function of the number of features. We can see that we
obtain a tracking accuracy of 80%. Moreover, the tracking
results do not improve much after 100 features, while the
processing time increases linearly with the number of
classifiers used. The figure shows adding features until
250, in three different ways: OPT: selected in the order
they were optimized. Random: selected randomly from
optimized set. OPT filter: selected in the order they were
optimized but filtering features with size of width OR
height < 3 pixels (in the 50x50 training size) and features
with width & height < 6 pixels. We can see that small
features have a negative impact for the tracking of
vehicles.

Figure 6. Tracking accuracy versus the number of features used.
Average of tracking 20 vehicles, during 30 frames, computing at
every 5 frames.

Additionally, in order to further evaluate the proposed

method for tracking, we use the benchmark videos from
[6], [7] to compare our results. [6], [7] have proposed an
online tracker based on multiple instance learning and
multiple instance boosting. We found that using a simple
set of identification-optimized features without online
model updating, can already achieve reasonably good
results. For these experiments, we use the 144 first
features from the same set of 384 features optimized for
vehicle identification.

Our tracker is clearly competitive with state of the art
obtaining the best and second best score for 2 of the
sequences. It showed considerable lower results in videos
where the starting position was not very representative for
the whole sequence, see Table 1, Figure 7. In the tiger1,
coke1 videos, tracking is carried out properly the first
frames, but then the object is lost and hardly found again.
Since we are using only the first fingerprint, it cannot
perform well on these two videos. However for our aimed
application (the tunnel surveillance) success rate is very
good and we can successfully track any vehicle.

Table 1: Comparison of different tracking methods on the
videos: our method, MILSERboost, MILboost, Online Semi-
boost and online Adaboost, table from [6]. Bold=1st,
Underline= 2nd place

Figure 7. Snapshots of some tracking results: our tracking-by
identification method (blue) is often competitive with the more
complex MILBoost algorithm of [7] (red).

5.5. Our integrated system
We have integrated a system for detecting, identifying

and tracking vehicles along a tunnel pipe corresponding to
the range of view of the 3 cameras used for the
experiments. Figure 8 shows an image of the system in
operation. To increase performance, other information was
integrated into the system, such as motion estimation as
well as the lane where the vehicle is in.

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Features

A
vg

 O
ve

rla
p

OPT

Random

OPT filter(w|h < 3, w&h<6)

Sequence OUR MILSER MIL OSB OAB
sylv 0.53 0.63 0.61 0.46 0.50
david 0.48 0.71 0.54 0.31 0.32
faceocc1 0.73 0.68 0.63 0.71 0.38
faceocc2 0.65 0.78 0.65 0.63 0.64
coke1 0.10 0.18 0.29 0.12 0.20
tiger1 0.32 0.60 0.51 0.17 0.27

71

Figure 8. Snapshots of our system in operation. Tunnel camera 1, 2, 3.

When computing the Hamming distance of vehicle x
and vehicle y, we adapt the distance if vehicles are from
different lanes. ܦ௡௘௪ሺݔ, ሻݕ ൌ ,ݔሺܦ ሻݕ ൅ ௫݈|ߙ െ ݈௬|ܦሺݔ, ሻ (10)ݕ

where D is the distance and l is the lane number, and α
is a parameter determined empirically. With this we
integrate the low probability of a car changing lane from
camera I to I+1, into our identification matrix.

6. Conclusions and discussion
We presented a general framework for tunnel

surveillance using non-overlapping cameras. Reusing the
same set of features for the detection, the tracking as well
as the matching over different cameras allows keeping the
computation time under control, and yields promising
results. In particular, we manage to improve the detection
accuracy over a standard Adaboost cascade framework by
using a novel confidence score. We show inter-camera
matching accuracies of 95 % and up using a compact
(100bit) vehicle fingerprint and we obtain tracking results
competitive with the state of the art, in spite of the
simplicity of our algorithm. Different components
(composite confidence score, tracking framework) have
been used successfully in other contexts as well. This
suggests that our proposal could be applied to other multi-
camera tracking scenarios.

An issue not addressed in this paper is the recovery of
errors from one camera to another. With many cameras it
is possible to recover such errors using other detections
and matchings in a similar way as the voting scheme,
which can reduce missed/misclassified vehicles.

We evaluated our multi-camera tracking experiments on
one tunnel only. Further validation is required to proof
transferability to other tunnels. Also a hybrid combination
between tracking-by-detection and tracking-by-
identification would lead to better tracking results. This is
left as future work.

Acknowledgement:
Part of this work was funded through the IBBT-

VICATS project and ERC grant COGNIMUND.

References
[1] Kastrinaki, V., Zervakis, M., Kalaitzakis, K.: A survey of

video processing techniques for traffic applications. Image
and Vision Computing 21(4):359 – 381, 2003.

[2] Alper Yilmaz, Omar Javed , Mubarak Shah, Object
tracking: A survey, ACM Computing Surveys (CSUR), v.38
n.4, p.13-es, 2006.

[3] P. Viola, M. Jones, Rapid Object Detection Using a Boosted
Cascade of Simple Features, IEEE CVPR 2001.

[4] Quan Yuan; Sclaroff, S., Is a detector only good for
detection?, IEEE ICCV 2009.

[5] Jianyu Wang, Xilin Chen, Wen Gao, Online Selecting
Discriminative Tracking Features Using Particle Filter,
IEEE CVPR 2005, vol. 2, pp.1037-1042,

[6] Zeisl Bernhard, Leistner Christian, Saffari Amir, Bischof
Horst, Online Semi-Supervised Multiple-Instance Boosting,
IEEE CVPR 2010.

[7] Boris Babenko, Ming-Hsuan Yang, Serge Belongie, Visual
Tracking with Online Multiple Instance Learning, IEEE
CVPR 2009, Miami, Florida.

[8] Everingham, M. and Van Gool, L. and Williams, C. K. I.
and Winn, J. and Zisserman, A.,The PASCAL Visual
Object Classes Challenge 2010 (VOC2010)

[9] H. Grabner, C. Leistner, and H Bischof. Semi-supervised
on-line boosting for robust tracking. In ECCV, 2008

[10] S. Stalder, H. Grabner, L. van Gool, Beyond Semi-
Supervised Tracking: Tracking Should Be as Simple as
Detection, but not Simpler than Recognition. In IEEE
ICCV, WS on On-line Learning for Computer Vision, 2009.

[11] A. Torralba, K. P. Murphy and W. T. Freeman, Sharing
visual features for multiclass and multiview object
detection. IEEE Transactions on Pattern Analysis and
Machine Intelligence , vol. 29, no. 5, pp. 854-869, May, 20

[12] Kenji Okuma, Ali Taleghani, Nando De Freitas, James J.
Little, and David G. Lowe, A Boosted Particle Filter:
Multitarget Detection and Tracking, ECCV 2004

[13] Torralba, A.; Fergus, R.; Weiss, Y.; Small codes and large
image databases for recognition, IEEE CVPR2008

[14] Distance Metric Learning: A Comprehensive Survey. Liu
Yang. Michigan State University, May 19, 2006.

