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Abstract 

 
This paper presents an integrated solution for the 

problem of detecting, tracking and identifying vehicles in 
a tunnel surveillance application, taking into account 
practical constraints including realtime operation, poor 
imaging conditions, and a decentralized architecture. 
Vehicles are followed through the tunnel by a network of 
non-overlapping cameras. They are detected and tracked 
in each camera and then identified, i.e. matched to any of 
the vehicles detected in the previous camera(s). To limit 
the computational load, we propose to reuse the same set 
of Haar-features for each of these steps. For the detection, 
we use an Adaboost cascade. Here we introduce a 
composite confidence score, integrating information from 
all stage of the cascades. A subset of the features used for 
detection is then selected, optimizing for the identification 
problem. This results in a compact binary ‘vehicle 
fingerprint’, requiring very limited bandwidth. Finally, we 
show that the same set of features can also be used for 
tracking. This haar features based ‘tracking-by-
identification’ yields surprisingly good results on standard 
datasets, without the need to update the model online. 
 

1. Introduction 
This paper addresses the problem of detecting, tracking, 

and identifying vehicles in a tunnel using multiple cameras 
with non-overlapping views, as illustrated in Figure 1. 
This is a challenging task given the harsh illumination 
conditions usually found in tubular passages with artificial 
illumination [1], [2]. Also the image quality is often 
relatively poor, with limited resolution, interlacing effects, 
motion blur, as well as compression artifacts being 
common phenomena. This makes it difficult to find 
informative features in the scene. Color, the most widely 
used feature in traffic applications, is not reliable in 
tunnels since the artificial lighting often affects the natural 
colors of objects. Texture information is also very limited, 
again due to poor illumination, but also because of the low 
resolution of surveillance cameras (see e.g. the lack of 
detail on the detected vehicles shown in Figure 2). Motion 

information can be reliably used for detection and 
tracking, but only if the traffic has not come to a stand-
still, if vehicles are not too close to each other, and if the 
road surface is not too reflective (reflecting the headlights 
over a long range). Moreover, it cannot be used for 
matching the vehicles between different cameras (also 
referred to as multi-camera tracking), which is the main 
goal of this paper. 

Vehicle detection, tracking and matching are often 
addressed separately, as consecutive steps. In this paper, 
we show how these tasks can work together in an optimal 
way, sharing the same set of features so as to limit the 
computational overhead and get acceptable results. 

 Ideally, detection and tracking should be done on or 
near the camera using embedded hardware. This means we 
are on a tight budget as far as computing power is 
concerned. Another issue is the communication between 
the cameras and the central server. To limit the bandwidth 
consumption, we only send a compact, binary ‘fingerprint’ 
of each vehicle over the network. Finally, the camera 
system should work with existing surveillance cameras 
and not require heavy calibration or parameter tuning for 
each setup separately (‘plug and play’ being the ideal).  

The main contributions of this paper can be summarized 
as follows: 1) We show it is possible to build a system for 
integrated vehicle detection, tracking, and identification 
for tunnel surveillance; 2) We show this can be done 
efficiently by reusing the same set of features for all three 
steps; 3) For the detection, we introduce a novel composite 
confidence score, integrating information from all stages 
of the detection cascade; 4) For the identification, we 
propose a compact, binary vehicle ‘fingerprint’ that can be 
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Figure 1: Multi-camera system in tunnel surveillance. Most 
tunnels are equipped with multiple surveillance cameras. Our 
goal is to use these to keep track of the vehicle through the 
tunnel. 
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used for vehicle matching across cameras; 5) Finally we 
introduce Haar features based ‘tracking-by-identification’, 
in analogy to ‘tracking-by-detection’. This scheme allows 
taking the specific appearance of the object being tracked 
into account, without the need to update a model online as 
in [6], [7]. 

The remainder of this paper is organized as follows. 
First, we briefly describe related work. Then, section 2 
explains our object detection scheme, with special 
emphasis to the composite confidence score computation. 
Section 3 describes the computation of a vehicle 
fingerprint and how it can be used for vehicle matching. 
Next, in section 4, the same features are used for tracking. 
Section 5 describes the integrated system and the 
experimental results, and section 6 concludes the paper. 

1.1. Related work 
Sharing of features has received quite some attention in 

the context of multi-class object recognition [11]. The 
reuse of features across different tasks, on the other hand, 
is less studied.  

Probably most related to our work is the work of Yuan 
and Sclaroff [4]. They show that features boosted during 
cascade training for object detection are not only good for 
detection, but can also be used as a filter for the 
subsequent task of within foreground object classification. 
The selected weak classifiers can be shown to be random 
bipartitioning hyperplanes following the definition of 
hashing functions in Locality Sensitive Hashing. As such, 
they can be used to construct a Hamming distance, 
approximating nearest neighbor search in the Euclidean 
feature space. Yuan and Sclaroff use this Hamming 
distance to quickly select a few candidate classes, which 
are then further evaluated with a more complex classifier. 
Here, we use the same Hamming distance for object 
matching, as well as for object tracking, albeit not in a 
filter-and-refine framework. 

Our vehicle fingerprint, on the other hand, is similar to 
the small codes proposed by [13] in the context of very 
large scale image retrieval and classification.  

In the context of tracking, tracking-by-detection [12] 
has become popular recently, since it can recover from 
errors and temporal occlusions and it is not affected by 
drift. On the downside, it does not adapt to the object 
being tracked, as opposed to mentioned appearance-based 
trackers that can exploit the specific appearance of both 
the object and the background. Recently, several online 
classifier-based tracking methods have been proposed, that 
refine their model during tracking. However, these require 
extra computation time and cannot be used in our 
application. The tracking-by-identification we propose is a 
way to incorporate instance-specific information in the 
tracking process, without the need to update a model 
online.  

2. Detection – composite confidence score 
The poor illumination conditions in tunnels and low 

quality images make detection very hard. To detect the 
vehicles we use an implementation of the Viola- Jones 
detector [3]. This consists of a cascade of strong 
classifiers, each of which is a combination of several weak 
classifiers selected using the AdaBoost framework. Using 
a cascade ensures that most background samples are 
rejected at early stages with minimal computational effort. 
At each stage, we aim at rejecting 50% of the background 
samples while keeping 99.9% of the positive samples. We 
also use the integral images scheme proposed by Viola-
Jones, which allows fast computation of the features 
independent of the scale or location of the window being 
evaluated. 

To create the cascade, for each stage a strong classifier 
is constructed based on many Haar features  

 

 

(1) 

where: H(x) represents a strong classifier, ht(x) is a 
weak feature, n is the number of features and α is the 
weight assigned by the Adaboost algorithm. Normally 
with threshold a θ=0, if H(x) < θ, the sample is classified 
as background, while H(x) >= θ indicates a vehicle. 
However, for the cascade scheme, θ is tuned so that it lets 
subwindows classified as background pass to the next 
stages of the cascade (negative H(x) are considered also 
vehicles), so as to ensure that almost all positives make it 
to the next stage. 

In our experiments, we found that keeping track of the 
local output accuracies of each stage, and adding them 
together in a composite confidence score ‘G’ (as for 
Global) gives better detections than the standard strategy 
of only looking at the score of the last stage [3], We define 
G as:  1

 (2) 

where T is the number of stages of the cascade, and S is 
defined as: | | (3) 

The variable S functions as a normalization factor of all 
the weights of the cascade, which can be considered as the 
global maximum possible response, therefore -1 ≤ G ≤ 1. 

The score G can be seen as a way of relaxing the hard 
decisions made at each stage, distinguishing between those 
samples that were ‘just good enough’ versus those in 
which the classifier was ‘very confident’. The computation 
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of this score is straight forward and it does not need 
further normalization for each stage, since its value 
dependents already on the number of classifiers of the 
stage itself. 

Starting from all subwindows that successfully get to 
the end of the cascade, we then select the final detections 
by thresholding the score G and applying Non-Maximal 
Suppression. Additionally, we use the variance of a 
subwindow as a prefilter before detection. We observed 
that subwindows containing vehicles typically have a 
variance between 15 and 60 whereas the variance of most 
background tunnel subwindows is below 15.  We use this 
information to speed up the detection by dropping 
subwindows with very low/high variance before the 
cascade detection. The same variance is also used to 
variance-normalize the window prior to detection.  

3. Matching – the vehicle fingerprint 
Matching of vehicles in traffic scenarios is typically 

done by comparing their appearances and using their 
kinematics together with inter-camera distances and 
spatial constraints (e.g. occupied lane), to reduce the 
number of possible matches. However, matching of 
vehicle appearances in tunnels is challenging, as illustrated 
by the examples of vehicles extracted from our database in 
Figure 2. 

         
Figure 2. The poor quality of the cameras and hard imaging 
conditions make vehicle identification in tunnels a difficult task, 
as illustrated by these four example cars recorded by three 
different cameras in the same tunnel. 

 
As a result, features typically used for object 

recognition, like color, local features, edges or PCA-
projections have limited success in tunnel applications. 
Color is not reliable; calculation of invariant local features 
(such as SIFT or SURF) is computationally demanding 
and their amount in low resolution images is insufficient; 
edges are difficult to extract; and PCA-projections may be 
camera-specific. 

Here, we investigate the use of Haar features selected 
from the pool of weak classifiers computed by the 
detection cascade. Reusing the features of the detection 
step avoids wasting time on the computation of new 
features. Moreover, [4] has shown that these features lend 
themselves well as Hamming embedding for 

approximating Euclidean distance, this gives a binary 
descriptor, which can be sent to the central server where 
we have strong bandwidth constraints. We experiment 
with both the standard Hamming distance as well as the 
weighted Hamming distance (where each bit is weighted 
by a real value). Note that this optimization scheme is also 
similar to some approaches used for metric learning [14]. 

Following the procedure proposed in [4] we start from a 
training set S = {(q1, a1, b1),...,(qt, at, bt)} of t triples of 
positive examples. qi, ai and bi are all positive examples. 
In each triple, ai is a more preferable neighbor of qi than 
bi. In our case, ai and qi represent the same vehicle, while 
bi represents a different vehicle. Additionally, we have a 
set of binary functions B = {h1,...,hn}, where hk(x)  {-
1,+1}. Each hk induces a distance measure: 

 , | |/2      (4) 

and a weak classifier fk (fk is defined on triples, different 
from hk): 

 , , , ,  (5) 

where dk(x, y)  {0,1} and fk(qi, ai, bi)  {-1, 0, +1}. Our 
goal in training is to find a strong classifier  

 , , , ,  (6) 

such that F(q, a, b) > 0 for all triples (q, a, b). If we 
define a new distance measure 

 , ,  (7) 

and plug Eqn.(5) into Eqn.(6), we have 
 , , , , 0 (8) 

As proposed by [4], we again use AdaBoost to train the 
strong classifier F(q,a,b), selecting a subset of the features 
hk, with corresponding weights β, and a subset of features 
all with the same weight. Since the weights are fixed, they 
do not need be sent to the server, only the selected binary 
values {hk, resulting in a compact yet performant 
descriptor. 

4. Haar features based Tracking-by-
identification 

Finally, we propose to use the same set of selected 
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features used for identification also for the tracking. This 
may seem a weird choice at first. However, those features 
have proven to focus on what remains constant over 
different detection windows, in spite of small variations 
between the different cameras (viewpoint, pose, lighting, 
etc.). As such, they can be expected to be robust for 
tracking as well. Moreover, tracking-by-identification 
allows taking the appearance of the specific object being 
tracked into account, without the need for an online 
boosting scheme, which would be computationally too 
expensive in our setting. 

Tracking-by-identification works just like tracking-by-
detection, except that we do not use the confidence of an 
object detector, but the Hamming distance to the object as 
seen in the first frame. Moreover, we do not compute all 
features, but only the optimized subset. In our 
implementation, we simply compute the Hamming 
distance for all subwindows close to the detection position 
in the previous frame. 

5. Experimental results 
Before we report results on detection (section 5.2), 

matching (5.3), tracking (5.4), and our integrated system 
(5.5), we first describe our dataset (5.1). 

5.1. Our dataset 
For our experiments, we use a set of three annotated 

video sequences, corresponding to three spatially 
consecutive but non-overlapping cameras from a tunnel 
surveillance system in operation. The image resolution is 
576x768. All sequences have been manually annotated, 
assigning to each vehicle a unique identifier and 
delimiting its bounding box in at least 15 frames. The first 
part of each video is used for testing, while the second part 
is used for training. Traffic flow used for testing is 
composed of around 160 vehicles (mostly cars and trucks) 
passing by during 3 minutes, the number used for training 
was about 300.  

5.2. Detection 
To train the detection cascade, we use the 3 annotated 

videos as well as 100 additional tunnel images without 
vehicles downloaded from the internet. Moreover, all 
positive samples are mirrored horizontally to enlarge the 
training set. All training data is variance normalized. 
During testing, the variance normalization is performed 
online using the squared integral image. The training size 
is 50x50 pixels for all vehicles. 

Figure 3 shows the performance (precision vs. recall) of 
our detector, once using the score of the last stage of the 
cascade, as is usually done, and once considering our 
composite confidence score G. 

 
Figure 3: Precision/recall of our detector tested for a bulk 
cascade (cars and trucks together) and separate cascades (one for 
cars and other for trucks applying Non-Maximal Suppression). 
 
To define a correct detection, we use 50% overlap 
(intersection divided by the union) as criterion, as in the 
Pascal VOC Challenge [8]. To generate the 
precision/recall plot, a sliding window was run on several 
annotated frames using the same parameters for both 
methods. Both the precision as well as the recall benefit 
significantly from the new confidence measure, with the 
average precision increasing from 40% to almost 52% and 
from 66 to 75%. As operating point for further processing, 
we can select a high threshold, since misdetections can be 
covered in another frame. 

5.3. Matching 
Next, we select an optimal subset of features from the 

pool of features used in the bulk detection cascade which 
contains a total of 890 features. These are used as ‘vehicle 
fingerprints’ and sent to the central server, where they are 
compared with the fingerprints sent by other camera(s) 
using Hamming distance. 

For this experiment, we have manually annotated 400 
vehicles in all three cameras, always assigning the same 
identifier to corresponding vehicles. 200 of these (each 
with 15 samples with the same ID) are used to optimize 
the features, while the remaining 200 are used for testing. 
From the training samples we construct 20,000 triples. 
Optimization took about 10 seconds in our matlab script. 

When matching over different cameras, there are 
usually side constraints that can be exploited limiting the 
number of matching candidates. For instance, given an 
estimated time lag between two cameras, we can reduce 
the search to a small time window. Moreover, the different 
matchings are not independent. If e.g. the first vehicle of 
camera 1 matches to the second vehicle of camera 2, no 
other vehicle of camera 1 can match to that same vehicle. 
This kind of disambiguation has a big impact on the 
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matching accuracy. In our experiments, we use the 
Munkres algorithm for this purpose which is a 
combinatorial optimization algorithm that solves the 
assignment problem in polynomial time. 

 Given all the vehicles detected in one camera in a 
chronologically ordered list, we use a sliding window 
running over this list to select matching candidates. The 
optimal size of this window needs to be determined by 
experiment.  

In figure 4a, we report the accuracy of the matching as a 
function of the number of distractors, i.e. with the sliding 
window always centered on the correct detection.  

 
Figure 4. a) Average matching accuracy of Cam1-Cam2, Cam1-
Cam3, Cam2-Cam3, with windows centered on correct detection. 
b) Adding features to improve identification. Using the features 
in the order that they were boosted (blue) increases accuracy 
faster than adding them randomly (black). The accuracy saturates 
very early, at about 100 features. 

 
Since the correct match for all elements of a specific 

window, is always in the test set, we start with a matching 
accuracy of 100% (for the case of 0 distractors, window 
size=1). Clearly, in our setting the weighted version did 
not improve over the standard Hamming distance, on the 
contrary. The non-weighted version is almost as good as 
the result obtained with all the features, while using less 
than half the number of features. Normally, due to 
physical tunnel constraints, we consider a maximum of 20 
vehicles groups, for which accuracy is 95%. 
 

Figure 5. Matching accuracy under more realistic circumstances. 
The worst performance is the one using only Nearest Neighbor. 
Munkres, is adding a set of vehicles (+=window/2) and 
immediately selecting the winner without any voting. Munkres V 
additionally includes the voting mechanism, and comes very 
close to the theoretical optimal OPT, which is the same curve as 
shown in Figure 4a. 
 

 Next, we evaluate the effect of the number of selected 
features on the matching accuracy, see Figure 4b. This 
plot shows the average for window sizes 10, 15, 20, and 
25. Already for 100 features, we obtain an accuracy of 
95%. Hence we use only the first 100 features as our 
vehicle fingerprint. For comparison, we repeated the same 
experiment also for randomly selected weak classifiers 
(from the same pool selected by the detection cascade).  
This also goes up to 95%, but not that fast. 

In practice, we obviously do not know the 
corresponding vehicle beforehand and, as a result, we 
cannot center the sliding window on the correct detection.  

As a result, the size of the sliding window is a tradeoff 
between two factors: making sure the correct vehicle falls 
within its range, while limiting the amount of distractors 
falling in its range. On the other hand, a particular vehicle 
also falls within multiple sliding windows and, as a result, 
gets matched several times. To exploit this redundancy, 
we propose to use a voting algorithm. We add vehicles 
until an N-size buffer is full (with N the size of the 
window). So each vehicle is assigned several times with 
the Munkres algorithm. If it is assigned to the same 
vehicle as in the previous iteration, voting for that 
particular pair of vehicles increases. At each step the pair 
of vehicles with highest voting value is counted as a valid 
match and removed from the buffer. In Figure 5, we 
compare different algorithms for matching the vehicles, 
namely nearest neighbor based matching, the Munkres 
algorithm, and the improved Munkres algorithm 
(including voting). As a reference, we also added the 
curve of Figure 4a, which can be considered as a 
theoretical maximum. For all these experiments, we used 
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ground truth bounding boxes as well as the ground truth 
order of appearance of vehicles in the tunnel. 

5.4. Tracking 
For evaluating the tracking, we use the Overlap-

Criterion of the Pascal VOC Challenge, which computes 
the overlap score as 

 
(roiT   roiGT) / (roiT   roiGT)                       (9) 

 
with roiT the tracker detection and roiGT the ground 

truth.    
In Figure 6, we show the tracking accuracy as a 

function of the number of features. We can see that we 
obtain a tracking accuracy of 80%. Moreover, the tracking 
results do not improve much after 100 features, while the 
processing time increases linearly with the number of 
classifiers used. The figure shows adding features until 
250, in three different ways: OPT: selected in the order 
they were optimized. Random: selected randomly from 
optimized set. OPT filter: selected in the order they were 
optimized but filtering features with size of width OR 
height < 3 pixels (in the 50x50 training size) and features 
with width & height < 6 pixels. We can see that small 
features have a negative impact for the tracking of 
vehicles. 

 
Figure 6. Tracking accuracy versus the number of features used. 
Average of tracking 20 vehicles, during 30 frames, computing at 
every 5 frames. 

 
Additionally, in order to further evaluate the proposed 

method for tracking, we use the benchmark videos from 
[6], [7] to compare our results. [6], [7] have proposed an 
online tracker based on multiple instance learning and 
multiple instance boosting. We found that using a simple 
set of identification-optimized features without online 
model updating, can already achieve reasonably good 
results. For these experiments, we use the 144 first 
features from the same set of 384 features optimized for 
vehicle identification. 

Our tracker is clearly competitive with state of the art 
obtaining the best and second best score for 2 of the 
sequences. It showed considerable lower results in videos 
where the starting position was not very representative for 
the whole sequence, see Table 1, Figure 7. In the tiger1, 
coke1 videos, tracking is carried out properly the first 
frames, but then the object is lost and hardly found again. 
Since we are using only the first fingerprint, it cannot 
perform well on these two videos. However for our aimed 
application (the tunnel surveillance) success rate is very 
good and we can successfully track any vehicle. 

 

 
Table 1: Comparison of different tracking methods on the 
videos: our method, MILSERboost, MILboost, Online Semi-
boost and online Adaboost, table from [6]. Bold=1st, 
Underline= 2nd place 
 

   

   

   

   
Figure 7. Snapshots of some tracking results: our tracking-by 
identification method (blue) is often competitive with the more 
complex MILBoost algorithm of [7] (red). 

5.5. Our integrated system 
We have integrated a system for detecting, identifying 

and tracking vehicles along a tunnel pipe corresponding to 
the range of view of the 3 cameras used for the 
experiments. Figure 8 shows an image of the system in 
operation. To increase performance, other information was 
integrated into the system, such as motion estimation as 
well as the lane where the vehicle is in.  
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Figure 8. Snapshots of our system in operation. Tunnel camera 1, 2, 3. 
 

When computing the Hamming distance of vehicle x 
and vehicle y, we adapt the distance if vehicles are from 
different lanes. , , | | ,          (10) 

where D is the distance and l is the lane number, and α 
is a parameter determined empirically. With this we 
integrate the low probability of a car changing lane from 
camera I to I+1, into our identification matrix. 

6. Conclusions and discussion 
We presented a general framework for tunnel 

surveillance using non-overlapping cameras. Reusing the 
same set of features for the detection, the tracking as well 
as the matching over different cameras allows keeping the 
computation time under control, and yields promising 
results. In particular, we manage to improve the detection 
accuracy over a standard Adaboost cascade framework by 
using a novel confidence score. We show inter-camera 
matching accuracies of 95 % and up using a compact 
(100bit) vehicle fingerprint and we obtain tracking results 
competitive with the state of the art, in spite of the 
simplicity of our algorithm. Different components 
(composite confidence score, tracking framework) have 
been used successfully in other contexts as well. This 
suggests that our proposal could be applied to other multi-
camera tracking scenarios. 

An issue not addressed in this paper is the recovery of 
errors from one camera to another. With many cameras it 
is possible to recover such errors using other detections 
and matchings in a similar way as the voting scheme, 
which can reduce missed/misclassified vehicles. 

We evaluated our multi-camera tracking experiments on 
one tunnel only. Further validation is required to proof 
transferability to other tunnels. Also a hybrid combination 
between tracking-by-detection and tracking-by-
identification would lead to better tracking results. This is 
left as future work. 
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