2012 IEEE 18th International Conference on Parallel and Distributed Systems

Efficient Multi-Keyword Ranked Query on
Encrypted Data in the Cloud

Zhiyong Xu'?, Wansheng Kang!?, Ruixuan Li?, KinChoong Yow!, and Cheng-Zhong Xu'#

!Shenzhen Institute of Advanced Technology, Chinese Academy of Science, China
2School of Computer Science and Technology, Huazhong University of Science and Technology, China
3Math and Computer Science Department, Suffolk University, USA
“Electrical and Computer Engineering, Wayne State University, USA
Email: zxu@mcs.suffolk.edu, kwshinsdu@smail.hust.edu.cn, rxli@hust.edu.cn, {kc.yow, cz.xu} @siat.ac.cn

Abstract—Cloud computing is becoming increasingly prevalent
in recent years. It introduces an efficient way to achieve manage-
ment flexibility and economic savings for distributed applications.
To take advantage of computing and storage resources offered
by cloud service providers, data owners must outsource their
data onto public cloud servers which are not within their trusted
domains. Therefore, the data security and privacy become a big
concern. To prevent information disclosure, sensitive data has to
be encrypted before uploading onto the cloud servers. This makes
plain text keyword queries impossible. As the total amount of
data stored in public clouds accumulates exponentially, it is very
challenging to support efficient keyword based queries and rank
the matching results on encrypted data. Most current works only
consider single keyword queries without appropriate ranking
schemes.

The multi-keyword query problem was being considered
only recently. MRSE [1] is one of the first research works to
define and address the problem of effective yet secure ranked
multi-keyword search over encrypted cloud data. However, the
keyword dictionary used in MRSE is static and must be rebuilt
when the number of keywords in the dictionary increases. It
also has severe out-of-order problems in the matching results
and does not take the keyword access frequencies into account,
which greatly affects its usability. In this paper, we propose a
novel approach, called MKQE, to address these issues. Only
minor changes in the dictionary structure have to be done
when extra keywords are introduced. We also introduce new
trapdoor generation and scoring algorithms to make in-order
query results. Furthermore, the keyword access frequency is
considered so as to select an adequate matching file set. We
conduct extensive simulations and the results prove that our
approach performs much better than previous solutions.

Keywords: multi-keyword query, ranked query, encrypted data,
cloud computing, heavy tail

I. INTRODUCTION

Cloud computing is getting more and more attention from both
academic and industry communities as it becomes a major deploy-
ment platform of distributed applications, especially for large-scale
data management systems. End users can outsource their personal
data onto public clouds, and then access those data at anytime and
anywhere. In the cloud environment, resources allocated for each
application can be scaled up and down according to the fluctuating
demand. It adopts a pay-per-use resource sharing model which allows
a user to pay only for the number of service units it consumes. Cloud

1521-9097/12 $26.00 © 2012 IEEE
DOI 10.1109/ICPADS.2012.42

244

computing provides a flexible and economic strategy for resource
sharing. It can reduce hardware, software and data maintenance
overheads. It can also offer a convenient communication channel
to share resources among data owners and data consumers. With
the popularity of cloud services such as Amazon Web Services [2],
Microsoft Azure [3], Apple iCloud [4], Google AppEngine [5], more
and more companies are planning to move their data onto the cloud.

Despite of its advantages, the cloud computing infrastructure faces
very challenging tasks, especially on data privacy, security, and relia-
bility issues. As data is placed on public clouds which are out of their
trusted domains, data owners do not have direct control over their
sensitive data and worry about possible data loss and/or illegal use
of their private data. Usually, cloud servers are considered as curious
and untrusted. Data owners will hesitate to adopt cloud technologies
if there are risks of data exposure to the cloud service provider
or a third party. Thus, providing sufficient security and privacy
protections is very important, especially for applications processing
health information, financial system and government data, etc. To
prevent information disclosure, the mainstream solution is to encrypt
private data before uploading onto the cloud. On one hand, it ensures
that data is not visible to external users and cloud administrators. On
the other hand, there are severe processing limitations on encrypted
data. For example, standard plain text based searching algorithms
are not applicable any more. To perform a keyword based query, the
entire data set has to be decrypted even if the matching result set is
very small. It poses unbearable query latency and incurs unacceptable
computational overhead.

Current solutions use the following strategy to provide keyword
based searching capabilities on encrypted data. First, a set of key-
words are defined. An index vector is calculated for each individual
file maintaining the information of which keywords this file contains.
Then, an index file which combines all index vectors is generated.
The index file is also encrypted. Second, both the encrypted data and
the encrypted index file are uploaded onto data center servers in the
cloud. The cloud servers can then support cipher text based queries
as follows, a data consumer submits a keyword based query, and the
encrypted keywords are sent to the cloud server. The cloud server
conducts a search on the encrypted index and returns a list of most
relevant files. The user makes the decision which files are needed
and retrieve them from the server. After receiving encrypted files,
the user decrypts the files with the associated key. This approach
can guarantee the data security and preserve data privacy. During the
whole process, no plain text data or keyword is visible to the cloud
Servers.

Although substantial research works [12-30] have been done to
study keyword based queries on encrypted data, many of them only
address single keyword queries. Others use disjunctive or conjunctive
searches for multi-keyword queries which have great limitations in
flexibility and performance. Furthermore, few include result ranking

IEEE
computer
® psouety

algorithm. MRSE [1] is one of the first works to define such a
multi-keyword ranked query problem, and proposed a viable solution
to address it. In MRSE, all keywords are defined in a dictionary
and a keyword is identified by its location in the dictionary. Two
randomly generated invertible matrices are used for data and file
index encryptions. It uses the inner product of two vectors to
build the trapdoor for secure keyword queries. It applies an internal
ranking algorithm to determine the top k files to be returned to
the data consumer. However,this approach suffers from three major
drawbacks. First, it uses a static dictionary. If new keywords are
added, the dictionary has to be rebuilt completely. Second, using its
trapdoor generation algorithm, an out-of-order problem occurs. Such
a problem results in that files with more matching keywords are likely
excluded from the top k positions in the matching set. This means the
data consumer may not be able to find the most relevant files. Lastly,
MRSE does not consider the effects of keyword access frequencies,
thus the files which contain frequent keywords might not be included
in the top k return result.

In this paper, we design a new strategy called MKQE to address
the aforementioned issues. In MKQE, we assume that the amount
of data continues to increase from time to time. Accordingly, the
keyword dictionary has to be expanded periodically. We propose
a new dictionary construction paradigm, introduce a new trapdoor
generation algorithm and take the keyword access frequencies into
consideration to reduce the query latencies and generate better
matching result sets.

In summary, we make the following contributions:

« We introduce partitioned matrices in the system design. The
keyword dictionary can be expanded dynamically without
touching the contents in the original dictionary. With this
strategy, we can greatly reduce the overhead of the dictionary
reconstruction as new keywords are added.

o We design a novel trapdoor generation algorithm. It can effec-
tively reduce the impacts of dummy keywords on the ranking
scores. With this new strategy, the out-of-order problem in the
matching result set is solved.

« We take into account the keyword access frequencies are taken
into account when we build the ranked list of the return results.
The files which contain more frequently accessed keywords
have higher chances to appear at the first k locations of
the returned results than the files with less frequent accessed
keywords. Thus, the data consumers have higher probabilities
to retrieve the desired files.

The rest of the paper is organized as follows: Section II defines the
problem. Section III introduces MRSE and its drawbacks. Section IV
presents the system overview and the technical details of the proposed
MKQE solution. Section VI discusses the experimental configurations
and performance evaluations. Section VII describes the related works.
Finally, Section VIII concludes the paper and gives the future work.

II. PROBLEM DEFINITION

We aim to design a new approach to improve the performance
for multi-keyword ranked queries on encrypted data in publc cloud
servers. In this section, we define the problem.

A. Notations

« F: the set of original files, assume there are m files. F is denoted
as F' = (F1,F27F3...Fm)

o C: the set of encrypted files, corresponding to the files in F.
Denoted as C' = (C1,C2,C5s...Ch,)

o W: keyword dictionary, assume we have n keywords. W
denoted as W = (W1, Wa, Ws...W,)

o Fi4,: the keyword set of each file, it is denoted as Fjq,
(Fidwh F’deZa derdFldzn)

e p: the index vectors for Fj4,, p is denoted as p
(p1,p2,D3..-Pn)

is

245

o I: the encrypted index vectors for p. I is denoted as I
(I1,I2,15...1y,)

o Wyt a plain text query, assume it contains k keywords, and can
be represented as W1, kw2,...kwk

« q: for a query Wy, the corresponding query vector.

e T, the trapdoor for a query Wy, which is based on q.

o R the list of files in the returned matching result set. It is a
sorted list, the order of the files is determined by the scores.

B. Problem Description

Figure 1 depicts the problem we are trying to solve. There are
three kinds of users, Data Owner (DO), Data Consumer (DC) and
Cloud Service Provider (CSP). The DO identifies the files containing
sensitive data. Those files are then encrypted using a standard
symmetric algorithm such as DES [6] or AES [7]. It also specifies the
set of keywords to form a keyword dictionary to be used for queries.
In our discussions, we assume the keyword dictionary is dynamic,
the DO may add keywords later depending on the changes in the set
of sensitive files. For each file, an index vector is generated based
on which keywords are contained in it. Those index vectors are also
encrypted and combined together to generate an encrypted index file.
Both the encrypted files and the encrypted index file must be uploaded
onto the cloud servers. To facilitate secure queries, the DO needs to
define a secret key. The secret key contains two invertible matrices
and a bit vector. All the elements in the secret key are randomly
generated (Details in the following section). The secret key is kept
on the DO. After the above processes finish, the CSP has all the
sensitive files stored in the encrypted formats, no information leakage
occurs. Now, the DCs are able to conduct secure multi-keyword
ranked queries on those encrypted files.

A query is executed as follows. First, a DC sends the set of
keywords it is searching for to the DO. Next, the DO builds the
trapdoor T based on this set of keywords using the secret key. T is
returned to the DC who submits the request. Finally, the DC sends
T to the CSP who stores the encrypted files. A matching process
based on T is conducted and a set of encrypted files is identified.
All these operations on the CSP are executed on the encrypted data
only, there’s no plain text information exposure to the CSP. Because
the number of files which contains one or more keywords specified
in the T could be very large, it results in considerable overhead to
return all the results to the DC. In order to select an adequate set
of files, a ranking algorithm is applied on these files based on the
relevance scoring. Typically, the DC only has to retrieve the top k
most relevant files. It sends the requests to the DO for the decryption
keys and then decrypts these files.

C. Threat Model

Normally, the CSP is considered as “honest but curious” [8].
In other words, the CSP is expected to execute the procedure or
algorithm faithfully (without any changes), but it is eager to know
the contents in the data files stored on its servers. We adopt two
threat models defined in [3]. The first model is "Known Ciphertext
Model”. This model assumes that the CSP can only see the encrypted
files and indexes. The second one is "Known Background Model”.
Here, the CSP may intentionally collect the statistical information of
queries (trapdoors). Based on that, the CSP may be able to calculate
which file contains a certain keyword.

The privacy preserving requirement is defined as follows: the
CSP cannot obtain the information of which file contains which
keywords directly from the indexes. The CSP does not know how
many keywords are searched as well. For a certain query, the CSP
can only calculate the scores of the files in the result set using a given
ranking algorithm, but knows nothing about the matching keywords.

Furthermore, for two different queries which have the same set of
keywords, the generated trapdoors must be different, and the scores
must not be the same as well. In our paper, we consider the keyword
dictionary can expand dynamically. Thus, we assume the CSP might

Encrypted 5 Encrypted Search
docum ent h file request
i - and
1 & index request and
&access and resule onked
control back result
I form ation back
/ \ \
Keyw ords query request \
/ and search control 2\ .
! (trapdoor) \
~— @« o«
Decrypted file keys .
DO requestand result retum DC

Fig. 1. System Model

know how many new keywords are added. However, it does not pose
a security threat since the CSP has no ideas of how many original
keywords we have and what are the keywords newly added.

D. Our Goals

In this paper, we aim to design a new algorithm to achieve the
following goals.

Multi-keyword Query It can support efficient multi-keyword
based query with low keyword, trapdoor and encryption overheads.
It should be able to rank the query result as well.

Dynamic Keyword Dictionary Size It supports dynamic keyword
dictionary

size. An efficient algorithm should be designed. Only minor
changes are necessary when the keyword dictionary expands.

In-order Ranking The ranking algorithm should be effective. The
system makes the in-order result set which contains the most relevant
files in the top k locations with a high probability.

Keyword Access Frequency Consideration It must take the
keyword access frequency into consideration. The ranking algorithm
should rank the files with more popular keywords with higher scores.

III. EXISTING SOLUTION AND DRAWBACK

MRSE [1] is one of the first works to address multi-keyword
ranked queries on encrypted data in the cloud. In this section, we
briefly introduce their solution.

A. MRSE Solution

In MRSE, the DO first defines a set of keywords and builds
a dictionary containing them. Assume n keywords are identified,
MRSE sort these keywords. Thus, the positions of the keywords in
the dictionary are fixed. In order to provide the privacy preserving
property, u dummy keywords are added. An extra random bit is
placed at the end. After that, the DO generates two invertible matrices
M and M with the sizes (n+u+1) x (n+u+1) and a vector S of the
size (n+u+1).The DO uses then as secret key.

For each file, an index vector p with the same size as S is created.
This vector is built as follows. If the file has the keyword W; (1 <
i < n), the ith element p[i] is set to 1. Otherwise, pl[i] is set to 0.
Dummy keywords are represented by the elements located between
positions n+1 and n+u. The values in these locations are set as p[i] = €
(n+1 < i < n+u). € follows the uniform distribution M(v’ — ¢, u’ +c)
(u’ and c are the two parameters, and are described below). The
(n+u+1)th dimension is always set to the constant 1.

246

For a multi-keyword query ¢, a query vector with the size (n+u+1)
is constructed. The values of the first n locations are determined
using the same method for the file index generation. For the locations
between n+1 and n+u, MRSE uses the following strategy to set the
values. First, v locations are chosen randomly, and the values of these
locations are set to 1. Then, the values of all the remaining locations
are set to 0. Finally, the system picks two numbers ¢ and r. The value
of the last dimension (n+u+1) is set to t, the values of all the other
locations are multiplied by r. After that, a query vector is created.
Normally, v is set to «/2, The sum of all the dummy keywords follow

the normal distribution N(u, o'2), u = p/v and ¢ = %0’.

The DO applies the same strategy to encrypt the file index p and
the query vector q. Two vectors p{ and p3 are constructed for p, and
two vectors q_l) and g3 are constructed for q. Each vector has (n+u+1)
locations. They follow the rule that,

for any number j, if S[j] =1,

plj] = pilil + P31l ald] = @ lj) = Bj] o)
Otherwise, if S[j]=0,
plj] = pilj] = B3lj], ali] = @] + By] @

The system then uses the invertible matrices M; and M to
compute the encrypted index for the file and the trapdoor for the
query. The formulas are,

encrypt(p) = {M{ pi, M3 p3} 3)
encrypt(q) = {M; g, M; '3} @

During the query q execution, the DC sends the trapdoor to the
CSP. The CSP uses ”inner product similarity” [9] to compute the
scores. The scores measure the coordinate matching between the
indexes and the query. Finally, the first k results with the highest
scores are returned to the DC. The formula to calculate the score is,

score = encrypt(p) X encrypt(q)
= {M{'pl, M3 ps} x {My'ql, My '35}
= My Pl x My '@ + Mz ps x My '@
=pi" My x M{'ql + 95" Mo x My ' g3
=pl @+ @
T

=P q

&)

Clearly, the more common keywords in the query vector and the
file index, the higher the score a file will get.

B. Drawbacks

MRSE is an effective mechanism which can partially solve the
multi-keyword ranked query problem. However, it has the following
drawbacks which affect its efficiency.

First, the keyword dictionary is static and is created at the
beginning. MRSE does not provide a viable solution for dynamically
expanding the set of keywords. In case new keywords are added,
the keyword dictionary has to be reconstructed. The original set
of index vectors cannot be used for the queries using the newly
constructed trapdoors. Thus, the index vectors of all the files have to
be recalculated from scratch. Such an approach incurs unacceptable
overhead.

Second, in MRSE, the values of dummy keywords follow the
normal distribution N(u, 02). In our experiments, we found that such
an approach has great impact on the file score. For any query, the
scores that the matching files receive would vary widely. A file with
more matching keywords may have a much lower score than another

file which has fewer matching keywords. It results in severe out-of-
order placement issue, which means that in MRSE, it has a high
probability that highly relevant files may be excluded from the top k
locations in the result set, especially when the number of matching
keywords is small and the variance o is relatively big.

Third, MRSE does not take the access frequencies of the keywords
into account. The ranking algorithm assumes that all the keywords
are the same when calculating the scores. In other words, the system
considers a file f1 to have a higher score than another file {2 if it has
more matching keywords even if the set of keywords matching in
f2 are more popular than the keywords matching in fl. However,
in reality, keywords have vastly different popularity and popular
keywords are always more preferable than less-popular keywords
from the data consumer’s point of view. Thus, the keyword access
frequencies should be considered to better serve the DCs.

IV. SYSTEM DESIGN

‘We propose a set of novel strategie for multi-keyword ranked query
on encrypged data(shorted for MKQF) to address the above issues.
In this section, we present the details of our solution.

A. Overview

In MKQE, we adopt “inner product similarity” to quantitatively
evaluate the coordinate matching like MRSE. MKQE also defines an
index vector for each file based on the keywords it contains. Two
invertible matrices and a bit vector are also used for the index vector
encryption and the trapdoor generation. In MKQE, when a multi-
keyword query comes, a query vector based on the set of requesting
keywords is constructed. However, our approach differs from MRSE
in the way new keywords are added into the dictionary. In MKQE,
only minimal overhead is introduced in this scenario. We also modify
the trapdoor generation mechanism to improve the in-oder ranking
in the matching file set. Furthermore, we take the keyword access
frequency distribution into consideration when creating the ranked
list. Such a strategy can better reflect the real world situations.

B. MKQE Framework
The MKQE system consists of the following components:

o Setup: based on the sensitive data, the DO determines the
keyword dictionary size m, the number of dummy keywords
u, and then sets the parameter d = 14+u+n.

« Keygen(d): the DO generates a secret key SK k1, two invertible
matrices M; and Ms with the dimension d X d, and a d-bit
vector S.

« Extended-Keygen(kl, z): if z new keywords are added in
the dlctlonary, the DO generates a new SK k2, two invertible
matrices M, 1 and M2 with the dimension d+z X d+z, and a new
(d+z)-bit vector s’

o Build-Index(F, SK): for each file, the DO determines the set of
keywords Fjq;, and builds p for it. Then it encrypts the index
vector with an SK (either k1 or k2). After that, all the encrypted
indexes are added to I. All the files are encrypted with DES or
AES, and added to C. Finally, upload I and C onto the CSP.

o Trapdoor(Wg, SK): The DC sends a multi-keyword ranked
query W, to the DO. The DO generates an index vector q and
calculates the trapdoor T using an SK and sends it back to the
DC.

o Query(T, k, I): The query is sent to the CSP. The CSP runs
the query on I and returns the most relevant top k scored files
back to the DC.

C. Detailed Design

1) Vector Structure: As we described in Section III, in MRSE,
a file index vector contains three parts, and the order of these parts is
fixed. The first n locations are used for the real keywords, followed
by u locations for the dummy keywords, and the last dimension

Security
[locations |

Dictionary keyword
locations

1 u n

Fig. 2. The index and trapdoor structure in MKQE

is the constant 1. This structure is not suitable in MKQE because
the number of keywords changes from time to time. When there
are new keywords introduced, we have to increase the number of
locations for index vectors as well. If we add them in the end, the
locations representing new keywords are not adjacent to the locations
representing the original keywords. When executing a query, such a
structure causes difficulty in checking the results of matrix operations.

To solve this issue, in MKQE, we reorganize the structure of the
file index vectors. As shown in Figure 2, the secure locations are now
placed at the beginning of the vector, followed by the n locations used
for the real keywords. With this approach, for any position j in the
vector, we have the following relation: if a file has the real keyword
W, then in the corresponding index vector, p[1+u+j] = 1. Otherwise,
it is 0. For query vectors, the same structure is applied.

2) Extended-Keygen: As we discussed in previous sections, a
secret key can be used to encrypt file index vectors and query vectors.
However, in MRSE, the size of the matrices and the vector in the
secret key is determined by the keyword dictionary size n. If the
dictionary is expanded, the value of n has to change. Thus, the
current secret key cannot be used for file and index encryptions any
more. In other words, the DO has to generate a new secret key, and
the system has to encrypt all the file index vectors with the newly
generated key again. As more and more data are accumulated in
the cloud, we suspect that adding more query keywords is not a rare
operation. Clearly, MRSE is not suitable for such a scenario, it incurs
severe computational overhead. To resolve this issue, in MKQE,
we introduce a new approach using partitioned matrix operations to
reduce the computational overhead.

In MKQE, when there are new keywords added in the dictionary,
we do not change the original secret key. Instead, we only add a new
secret key to support queries for the newly added keywords. With this
approach, we can keep the original secret key untouched, and avoid
the expensive reconstruction process. The new algorithm is described
as follows: Assume there are z new keywords added,

. . . ! . .
o Generates two invertible matrices M, and M, with the dimen-
sion z X z. The system also generates a z-bit vector S..

o The new matrices M { M; and the secret key S " are generated
with the formula:

o M1 0 o M2 0
M, = (0 Mz) M, = < 0 M; (6)
s =(8,8.) ©)
In MKQE, we use the matrix transpose and inverse operations to

encryte file index vectors and query vectors. According to the block
matrix theorem, we have the following formulas:

' ML 0 ' M$ 0

MlT = (01 MZT) M2T = (02 M;T) 8)
1 (MTY 0 1 (M7Y 0

My =("g My"=("§ -)

Figure 3 shows the encryption procedure as new keywords are
added. As we can observe, the first 1+u+n locations are untouched.

Dictionary Dictionary

n+z ;]

New
| vector

Expansion
dictionary

Origina
vector

u

Encrypted k2=Extended-keygen(k1,z)

with k1

Encrypted
with k2

1 ‘ u‘ n
encrypted
part2

ERENENICICNE

new encryptednew encrypte

" partl Rae part2 !

o]

encrypted|
T opartl T

Encrypted
vector

New encrypted
vector

Fig. 3. Keyword Dictionary Expansion Operations

3) Build-Index: Compared to the MRSE algorithm, MKQE
can greatly reduce the amount of computations when the keyword
dictionary is expanded. For original files, the file index vectors only
need minor changes by expanding the size by s. If a file has a newly
added keyword j (1 < j < z), then in its corresponding index vector,
pl1+u+n+j] is set to 1, otherwise it is 0. The first 1+u+n locations
are untouched. For a new coming sensitive file, an index vector with
the dimension 14+u+n+z has to be built. The values of the first 1+u
security dimension are determined using the same strategy described
in section 3. For each of the last n+z locations of the real keywords, its
value is also decided based on the fact if the file has the corresponding
keyword or not.

4) Trapdoor Generation: When a multi-keyword query q
comes, a query vector is created using the strategy discussed in the
previous section. Again, v number of these dummy locations are set
to 1 and all the remaining locations are set to 0.

We use a score to determine the location of a file in the matching
result set. For a file with an index p;, its score is calculated as follows:

pioq:r(.ri—l—z:g(-v))—i-t

x; represents the number of keywords appearing in both p;
and gq. EEU) represents the v dummy keywords. Typically, v is set
to u/2. t; is the constant dimension. According to the previous
description, the sum of the selected dummy keywords follows the
normal dlstrlbutlon N(u, o 2, Thus the value of the sum is in
the range [v * (u — ¢),v * (u + ¢)], where u'= p /v and ¢

10)

;a. The difference between the maximal and minimal values is

2 X v X % X o. In our experiments, we found that such a large
variance can significantly affect the ranking of the results,and files
which contain popular keywords could have very low scores and are
not placed in the top k locations in the result set. We define such a
problem as an out-of-order problem.

To improve the in-order ranking result and maintain the privacy
preserving property, we change the structure of query vectors. For all
the real keywords in the dictionary, the values in the corresponding
locations are multiplied by a random number r. For all the locations
representing dummy keywords, they are multiplied by another num-
ber r2. 12 is calculated as follows:

Random(0,)
(v« MAX (abs(u — ¢),abs(u + c)))

r2 =

an

After ¢ is created, we use the formulas 1, 2 and 4 to split and
encrypt q. Finally, the trapdoor T is generated. Now, for an index p;
and the query q, the matching score is computed as follows:

248

pieq=TLeT =rxz+12x Y € +1 (12)

The values of 72 x > € is within [-r, r]. Here, x; is a common
keyword in p; and q. Since the sum of the chosen dummy keywords is
within [-r, r], it has much smaller impact on the score calculation. The
out-of-order problem is resolved. We analysis the in order ranking in
following. We define a variable b to denote the sum of the dummy
keyword values in p, it is within [-r, r]. Now, let’s assume there
are two files i and j. p; matches nl keywords with scorel, p;
matches nl+1 keywords with score2. If scorel > score2, we define
it as an out-of-order error. It is caused by the 1nequat10n bi+nl*r >
b;+(n1+1)*r. This could happen 1f u -¢ < 0and u +c > 0. However,
we can avoid this situation if u'-c > 0 (by changing the mean and
variance values in the normal distribution). Because b; and b; are
both within (0, r], it is impossible that b; > b;+r. When the variable
is set less than r/2, then the the value of b is within (-r/2,1/2). In
our experiments, we found that even if the variable is set to r, the
probability of out-of-order errors is extremely low in most situations.
For example, if we set b; is within [0.5r, r] and b; is within [-r, -0.5r],
according to the formula 11 and the normal distribution function, the
probability of out-of-order errors is (1-F(v¥*c/2))*F(-v¥*c/2). If we set
v to 7 and use the normal distribution N(0,1), the probability is only
0.0121%.

5) Keyword Weights: Our framework also takes the keyword
access frequencies (weights) into consideration which is not ad-
dressed in other works linke MRSE. Substantial works [10], [11]
have been conducted to analyze keyword based queries and found
out that keywords have different access frequencies and this feature
needs to be considered when generating the result rankings. In multi-
keyword based query operations, if no keyword weight is used for
result ranking, a file containing a smaller number of popular keywords
may get a much lower score compare to another file which has more
unpopular keywords, and it might be excluded from the top k result.

To resolve this problem, we make the following changes in MKQE.
Each keyword is assigned with a weight. The weight is determined
by the historical statistical information depending on a certain period
of the past history. This can introduce greater flexibility and reflects
the real world situations. Thus, for a multi-keyword query q, which
contains the keyword set (Wiw1,Wiw2,...Wikwr), MKQE sets the
corresponding weight (w1,wsa,...wy)for each keyword. Now, when we
calculate the score, the weight of each keyword is multiplied.

The new formula to calculate the score is,

piOqZTXijJerXZeerti

where w; is the weight of any keyword Wy,,; which appears in
both p; and q.

6) Query: With the trapdoor T, the CSP computes the score of
each file in the encrypted index set I. After that,it sorts the results
based on the scores, and the CSP only returns the top k files in
the resulting set back to the DC. In our trapdoor algorithm, the
score is calculated using the formula 12. When the keyword weight
is considered, the values of the locations in the query vector are
set according to their corresponding weights. Then, the scores is
calculated using the formula 13.

13)

V. SECURITY AND PRIVACY ANALYSIS

For two separate queries, we choose different set of dummy
keyword locations. The probability of two €’ having the same
value is less than 1/2("). Since r2 is randomly chosen for each
individual query, the CSP cannot reproduce the same queries and
extract useful information. We might have a problem when the value
of random(0,r) is set too small in two queries, the CSP can construct
a pseudo-query if it has some background information about the two
trapdoors. This is because, in this scenario, the variance effects of
r2 become too small. Thus, in order to avoid this, each time when

TABLE 1
KEY GENERATION OVERHEAD (S), STARTING FROM 1000 KEYWORDS

| [1000 | 2000 | 4000 | 6000 | 8000]

MRSE 38 | 33.9 320 | 1013 | 2540
MKQE 3.8 41 | 36.1 | 38.1 | 40.7
800

[e2]

o

o
T

Index Encrypted Time(s)
N N
o o
S S

2 . 4. 6
Dictionary Size (*1K)

Fig. 4. Index Encryption Time Comparison with 2000 file indexes encrypted

we choose the variable random(0,r), a large value should be used.
Although how many keywords are increased in the newly generated
dictionary may be known by the CSP, it does not result in a real
data privacy problem since the CSP does not know what are these
keywords.

VI. PERFORMANCE EVALUATION

We conduct extensive simulation experiments to evaluate MKQE.
Our testbed consists of a server with a Xeon Processor 2.40GHz
*16 core. The OS is Ubuntu 12.04, with Java JRE 7.0 and J2EE 7.0
SDK are installed. The total number of simulation code is 5000 lines
written in java language. The data type of the elements in invertible
matrics is double, and these elements are randomly generated using
jema.jar package. In our experiments, we chose a real-world dataset,
Enron Email Dataset [12] as the underlying dataset, and randomly
select various numbers of emails from it.

A. The Overhead of Keyword Dictionary Expansion

A superior feature of MKQE over previous solutions is that it can
naturally extend the keyword dictionary set at the minimal cost. In
this set of experiments, we first compare the time consumption of
the proposed Extended-Keygen algorithm with the MRSE algorithm
when new keywords are added to the dictionary. Then, we compare
the performance of the index construction and the query execution
delay using MKQE with the original MRSE.

The time consumption includes two parts: the time of generating a
bit vector and two inverse random matrices, the time of the transport
and inverse of two matrices computations. As we can observe from
Table I, MKQE is much more efficient than MRSE. As the number
of keywords in the dictionary increases from 1000 to 2000, the
overhead to generate the new secret keys in MRSE is increased
almost 9 times, while in MKQE, the difference is minimal. The
time consumption in MRSE is about 825% higher than MKQE.
Furthermore, the performance gap becomes even wider as more and
more keywords are added. When the number of keywords increases
from 6000 to 8000, the overhead in MRSE is 2540s, which is about 62
times higher than MKQE. Apparently, MKQE achieves much better
performance than MRSE because it reuses the original set of indexes
during the keyword expansion. The number of elements it needs to
produce in the matrices is much smaller than in MRSE. In MRSE,
all the elements have to be regenerated.

Figure 4 compares the time to generate the file indexes with
different sizes of the keyword dictionary. In this experiment, we

249

TABLE II
COMPARISON OF TIME CONSUMPTION ON TRAPDOOR GENERATION (MS)
\ | 1000 | 2000 [4000 [6000] 8000 ||

MRSE 27 45 97 192 313
MKQE 27 42 90 153 238

o
3

o
>

o
=

In—order Ranking Probability

o
o

—*—MKQE(0=1) —6—MKQE(0=2) —*—MKQE(0=5) —%—MRSE(0=1) —A— MRSE(0=2)
I I I I I I

MRSE(O=5)
I

I
1 2 3 4 5 6 7 8 9 10

Number of Querying Keywords

Fig. 5. The in-order ranking probability with different o

assume there are 2000 file indexes need to be encrypted. MKQE
takes less time than MRSE in all scenarios. When the number of
keywords in the dictionary is 2000, MKQE spends 35.3 seconds to
generate the encrypted indexes, while MRSE takes 46.9 seconds to do
so. MKQE only spends 75.3% of time MRSE takes. As the dictionary
becomes larger, MKQE still outperforms MSRE. When the dictionary
has 8000 keywords, MRSE takes 648.8 seconds to encrypt indexes,
and MKQE only spends 447.4 seconds which is 68.9% of time MRSE
spends. This performance gain comes from the fact that in MKQE, the
invertible matrices contain more elements with O than matrices used
in MRSE. This property makes the matrix inner product operations
more time efficient than in MRSE. The larger the size of the keyword
dictionary, the more performance gain we can achieve.

Each time a multi-keyword query is executed, a trapdoor has to
be constructed on the DO. Thus, the trapdoor generation is a critical
operation, and its performance has great influence on the system
overall performance. Table II compares the trapdoor generation time
consumption of MRSE and MKQE. From the result, we can see
that it shows similar behaviors as the index encryption operation.
In all situations, MKQE outperforms MRSE, and the performance
gap becomes larger as the size of keyword dictionary increases. We
believe this is because of the same reason as we mentioned above.

Finally, we also conduct the experiments to compare the query
execution time between MRSE and MKQE, and we found that these
two algorithms achieve comparable performance. Thus, we do not
present the results here. However, from all the discussions above, we
can draw the conclusions that MKQE has less time consumption than
MRSE in all major encryption operations.

One advantage of our seamless expanding strategy is that we can
use the newly generated secret key to search the original set of files.
There is no need to restart the encrypt index generation operations
for the original set of files. This feature provides great flexibility,
especially for the distributed applications which cannot have service
interruptions at any time.

B. In-order Result Evaluation

We also compare the in-order ranking in the returned result set of
MRSE with MKQE. In this experiment, we set the number of file
indexes is 1000, the number of keywords in the dictionary is 1000,
and the number of keywords in a query varies from 1 to 10. The
sum of the dummy keywords follows the normal distribution with
the mean u=0. We choose three different variance o: 1, 2 and 5. For
each query, the top 50 ranked files are returned. As we mentioned

20

—95— Weight considered

—*— No weight considered ||

Percentage (%)

10

Highest-weighted

Fig. 6. Percentage of files which contaning highest-weighted keywords in
the top 10 locations

above, for two files i and j, if I; matches less keywords and gets a
lower score than I, we call it is an in-order ranking result. Otherwise,
an out-of-order error occurs. Figure 5 shows the result.

As we can see from the results, for MRSE, the larger the variance
o, the lower the probability of in-order ranking. Furthermore, when
the number of keywords in the query becomes smaller, the probability
turns to be even lower. For example, when there is only 1 keyword
and the variance is 5, the probability is less than 5% in MRSE
algorithm. Even for the queries with 10 keywords, the in-order
probability are only 40%, 60% and 82% for the variance 1, 2 and
5, respectively. Such a result is not very satisfactory, the DC has
a pretty high chance to miss the files they really needs. While in
MKQE algorithm, no matter how many keywords are included in a
query, and no matter what is the variance o, the in-order probability
is way above 95%. Especially, when the number of keywords is large
(> 6), MRSE can correctly identify the matching files with the in-
order probability at almost 100%. In another word, the DC has very
high probability to retrieve the files it really needs.

As we discussed in Section IV, The reason MKQE achieves such a
high in-order characteristic is because in MRSE, o has great impacts
on the range the sum of the dummy keyword values locates. A large
variance always results in a lot of out-of order errors. In MKQE, we
carefully choose two parameters r and r2 to narrow the range, thus
achieve better in-order performance.

C. Keyword Access Frequency Analysis

Many research works [10], [11] have studied the multi-keyword
query problem and found out that information retrieval applications
often have convenient power-law constraints (also known as Zipf*s
Law and long tails), thus the access frequency (weight) always
follows the heavy tail distributions. Typically, a DC prefers to see
the files which have high weight keywords. However, the current
solutions on the multi-keyword queries over encrypted data do not
take this into account and the returned file set might contain biased
result. In another word, the keywords are considered with the equal
weights. Such an assumption violates the rules in the real world
applications. To solve this issue, in MKQE, we add this factor to
determine the top k locations in the query result.

In this set of experiments, we compare the query results in MRSE
and MKQE when taking keyword weights into accounts. We submit
1000 queries, and each query has 4 keywords. The total number of
keywords in the system is 1000. The weights of keywords follows
the heavy tail distributions, and we count the percentage of the 20
highest-weighted keywords appeared in the matching result set. Here,
we set k = 10, which means the first 10 files with the highest
scores will be returned for each query. Figure 6 shows the result. X
axis represents the highest-weighted keywords, the first one has the
highest weight overall. Y axis shows the percentage of the returned
files in which those keywords appears. As we can see from the
figure, in MRSE, no matter how popular a keyword is, only 5%

250

of the returned files have one of these keywords. While in MKQE, a
keyword with a larger weight has much higher probability to appear
in the result set. Clearly, due to the lack of the weight consideration,
the data consumers using MRSE has less chances to get the files they
really need. MKQE solve this problem by giving more preference on
the highest-weighted keywords. We found that the probability of a
file contains certain keywords also follows the heavy-tail distribution.
Although we use the heavy tail distribution for keyword weights,
as we can see from the formulas 12 and 13, MKQE works for any
distributions where the weights of the keywords are uneven.

VII. RELATED WORKS

Cloud computing provides an efficient way for end users to access
data anywhere and anytime. However, security and privacy concerns
force data owners to encrypt sensitive data before uploading onto
the cloud. Thus, supporting keyword-based searching capability on
encrypted data is critical. The standard mechanism is to encrypt
keyword indexes of stored files and upload them onto the cloud
servers as well. The search is conducted with a secure key generated
trapdoor on the data owner. S. Kamara et al [13] propose a possible
architecture for a cryptographic storage service for cloud storage.
When preparing data to be stored in the cloud, the data owner
creates indexes and encrypts the data with a symmetric encryption
scheme (e.g., AES) under a unique key. It then encrypts the indexes
using a searchable encryption scheme and encrypts the unique key
with an attribute-based encryption scheme under an appropriate
policy. Finally, it encodes the encrypted data and indexes in such
a way that the data verifier can later verify their integrity using a
proof of storage. The similar strategy used in many other research
projects as well. In [14], Song et al apply a deterministic encryption
algorithm to encrypt the keywords, and use stream ciphers to post-
encrypt keywords for security. Goh et al [15] adopt the bloom-filter
technology to test if a keyword is included in an index, which can
tolerate low probability of mistaken identification to speed up the
queries. Other researches [16], [17] have made improvements on this
issue by using xor operations between encrypted index vectors and
query vectors. In [18], Wang defines a novel infrastructure on secure
ranked query, which is based on the file length and term frequency.
Liu et al [19] employ an asymmetric setting to construct searchable
encryptions, in which users encrypt their indexes with a public key,
and authorized users have a private key to conduct searches. Similar
ideas are proposed in [20], [21], [22] as well. However, all these
solutions focus on the single keyword query problem only.

Many research works have been conducted on multi-keyword
queries to enrich search functionalities. Park et al[23] proposes a
multi-keyword search scheme on encrypted data. It is based on the
bilinear map, which was used in the single keyword query [19].
This paper defines two schemes for multi-keyword queries. Every
index contains the same number of keyword fields, and each field
is filled with a keyword. The keyword is encrypted with the public
key. The trapdoor constructed with the privacy key must have the
same number of keyword fields under a specified order. Research
works in [24], [25], [26], [27], [28] adopt conjunctive searches over
encrypted keywords. They also require that the indexes of the returned
files must match all the query keywords. Recent works [29], [30],
[31] propose a more general approach. They employ bilinear maps
to encrypt the keywords and uses Lagrangian Coefficients to find the
matching keywords. If one or more keywords are matched in an index,
the corresponding file is returned. It can support both conjunctive and
disjunctive searches. However, a disjunctive keyword search could
result in undifferentiated results, and it is hard to design an effective
ranked algorithm on the result. Thus, for a multi-keyword query,
all the files which contain a subset of the searching keywords are
returned. The large number of files makes it hard to find the ones the
DC really needs.

None of the above algorithms can support multi-keyword ranked
search. This question was first raised in [1]. As more enterprises and

private data owners are migrating their data onto the cloud environ-
ment, it is increasingly important to provide an efficient solution.
MKQE addresses this issue with a novel algorithm, it can support
effective multi-keyword ranked queries without the drawbacks in [1].

VIII. CONCLUSIONS AND THE FUTURE WORK

In this paper, we aim to provide a viable solution for multi-
keyword ranked query problems over encrypted data in the cloud
environment. We first define the problem, analyze the existing
solutions and design a novel algorithm called MKQE to address
the issues. MKQE uses a partitioned matrices approach. When the
amount of encrypted data increases and more keywords need to be
introduced, the searching infrastructure can be naturally expanded
with the minimal overhead. We also design a new trapdoor generation
algorithm, which can solve the out-of-order problem in the returned
result set without losing the data security and privacy property.
Furthermore, the weights of the keywords are taken into consideration
in the ranking algorithm when generating the query result. The
DC has high probability to retrieve the files they really need. The
simulation experiments confirm that our approach can achieve better
performance with a satisfactory security level.

In the future, we will explore new approaches to further enhance
multi-keyword query capabilities. We are designing new algorithms
to provide extra functionalities such as semantic query and fuzzy
keyword query. We are also working on applying new storage
techniques such as SSD to boost the query performance.

ACKNOWLEDGMENTS

This research is partially supported by National Natural Science
Foundation of China under grants 61173170 and 60873225, Innova-
tion Fund of Huazhong University of Science and Technology under
grants 2012TS052 and 2011TS135.

REFERENCES

N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacy-preserving
multi-keyword ranked search over encrypted cloud data,” in INFOCOM,
pp. 829-837, IEEE, 2011.

“Amazon web services.” http://aws.amazon.com.

“Microsoft azure.” http://www.windowsazure.com.

“Apple icloud.” https://www.icloud.com/.

“Google appengine.” https://appengine.google.com/.

National Bureau of Standards, Data Encryption Standard.
Department of Commerce, Washington, DC, USA, Jan. 1977.
H. Dobbertin, V. Rijmen, and A. Sowa, Advanced Encryption Standard
— AES: 4th International Conference, AES 2004, Bonn, Germany, May
10-12, 2004 : Revised Selected and Invited Papers. Lecture Notes in
Computer Science, Springer, 2005.

L. Kissner, Privacy-Preserving Distributed Information Sharing. PhD
thesis, University of Carnegie Mellon, 2006.

1. H. Witten, A. Moffat, and T. C. Bell, Managing Gigabytes : Compress-
ing and Indexing Documents and Images. San Francisco, CA: Morgan
Kaufmann, 2. ed., 1999.

X. Z. Jie, J. Yu, and J. Doyle, “Heavy tails, generalized coding, and
optimal web layout,” in In Proceedings of IEEE INFOCOM, pp. 1617—
1626, IEEE Press, 2001.

S. Chaudhuri, K. Church, A. C. Konig, and L. Sui, “Heavy-tailed distri-
butions and multi-keyword queries,” in Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in
information retrieval, SIGIR 07, (New York, NY, USA), pp. 663-670,
ACM, 2007.

W. W. Cohen, “Enron email dataset.” http://www.cs.cmu.edu/enron/.

S. Kamara and K. Lauter, “Cryptographic cloud storage,” in Financial
Cryptography and Data Security (R. Sion, R. Curtmola, S. Dietrich,
A. Kiayias, J. Miret, K. Sako, and F. Seb, eds.), vol. 6054 of Lecture
Notes in Computer Science, pp. 136-149, Springer Berlin, Heidelberg,
2010.

D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for
searches on encrypted data,” in Security and Privacy, 2000. S P 2000.
Proceedings. 2000 IEEE Symposium on, pp. 44 -55, 2000.

u. S.

[8

—

9

—

[10]

[11]

[12]
[13]

[14]

251

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

E.-J. Goh, “Secure indexes.” Cryptology ePrint Archive, Report
2003/216, 2003.

Y.-C. Chang and M. Mitzenmacher, “Privacy preserving keyword
searches on remote encrypted data,” in Applied Cryptography and
Network Security (J. Toannidis, A. Keromytis, and M. Yung, eds.),
vol. 3531 of Lecture Notes in Computer Science, pp. 391-421, Springer
Berlin / Heidelberg, 2005.

R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
symmetric encryption: improved definitions and efficient constructions,”
in Proceedings of the 13th ACM conference on Computer and commu-
nications security, CCS 06, (New York, NY, USA), pp. 79-88, ACM,
2006.

C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, “Secure ranked keyword
search over encrypted cloud data,” in Distributed Computing Systems
(ICDCS), 2010 IEEE 30th International Conference on, pp. 253 =262,
june 2010.

Q. Liu, G. Wang, and J. Wu, “An efficient privacy preserving keyword
search scheme in cloud computing,” in Computational Science and
Engineering, 2009. CSE ’09. International Conference on, vol. 2, pp. 715
—720, aug. 2009.

D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano, “Public
key encryption with keyword search,” in Advances in Cryptology -
EUROCRYPT 2004 (C. Cachin and J. Camenisch, eds.), vol. 3027 of
Lecture Notes in Computer Science, pp. 506-522, Springer Berlin /
Heidelberg, 2004.

M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno, T. Lange,
J. Malone-Lee, G. Neven, P. Paillier, and H. Shi, “Searchable encryp-
tion revisited: Consistency properties, relation to anonymous ibe, and
extensions,” in Advances in Cryptology CRYPTO 2005 (V. Shoup, ed.),
vol. 3621 of Lecture Notes in Computer Science, pp. 205-222, Springer
Berlin / Heidelberg, 2005.

J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy keyword
search over encrypted data in cloud computing,” in INFOCOM, 2010
Proceedings IEEE, pp. 1 -5, march 2010.

D. Park, K. Kim, and P. Lee, “Public key encryption with conjunctive
field keyword search,” in Information Security Applications (C. Lim
and M. Yung, eds.), vol. 3325 of Lecture Notes in Computer Science,
pp. 73-86, Springer Berlin / Heidelberg, 2005.

P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search
over encrypted data,” in Applied Cryptography and Network Security
(M. Jakobsson, M. Yung, and J. Zhou, eds.), vol. 3089 of Lecture Notes
in Computer Science, pp. 31-45, Springer Berlin / Heidelberg, 2004.
L. Ballard, S. Kamara, and F. Monrose, “Achieving efficient conjunctive
keyword searches over encrypted data,” in Information and Communica-
tions Security (S. Qing, W. Mao, J. Lpez, and G. Wang, eds.), vol. 3783
of Lecture Notes in Computer Science, pp. 414-426, Springer Berlin /
Heidelberg, 2005.

D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Theory of Cryptography (S. Vadhan, ed.), vol. 4392
of Lecture Notes in Computer Science, pp. 535-554, Springer Berlin /
Heidelberg, 2007.

R. Brinkman, Searching in encrypted data. PhD thesis, University of
Twente, 2007.

Y. Hwang and P. Lee, “Public key encryption with conjunctive keyword
search and its extension to a multi-user system,” in Pairing-Based
Cryptography Pairing 2007 (T. Takagi, T. Okamoto, E. Okamoto, and
T. Okamoto, eds.), vol. 4575 of Lecture Notes in Computer Science,
pp. 2-22, Springer Berlin / Heidelberg, 2007.

J. Katz, A. Sahai, and B. Waters, “Predicate encryption supporting
disjunctions, polynomial equations, and inner products,” in Proceedings
of the theory and applications of cryptographic techniques 27th annual
international conference on Advances in cryptology, EUROCRYPT 08,
(Berlin, Heidelberg), pp. 146-162, Springer-Verlag, 2008.

A. Lewko, T. Okamoto, A. Sahai, K. Takashima, and B. Waters, “Fully
secure functional encryption: Attribute-based encryption and (hierarchi-
cal) inner product encryption,” in Advances in Cryptology EUROCRYPT
2010 (H. Gilbert, ed.), vol. 6110 of Lecture Notes in Computer Science,
pp. 62-91, Springer Berlin / Heidelberg, 2010.

E. Shen, E. Shi, and B. Waters, “Predicate privacy in encryption
systems,” in Theory of Cryptography (O. Reingold, ed.), vol. 5444 of
Lecture Notes in Computer Science, pp. 457-473, Springer Berlin /
Heidelberg, 2009.

