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Abstract

In this paper, we construct an efficient “multi-receiver identity-based encryption scheme”.
Our scheme only needs one (or none if precomputed and provided as a public parameter)
pairing computation to encrypt a single message for n receivers, in contrast to the simple
construction that re-encrypts a message n times using Boneh and Franklin’s identity-based
encryption scheme, considered previously in the literature. We extend our scheme to give
adaptive chosen ciphertext security. We support both schemes with security proofs under
precisely defined formal security model. Finally, we discuss how our scheme can lead to a
highly efficient public key broadcast encryption scheme based on the “subset-cover” frame-
work.

1 Introduction

Motivation. Assume that there are n receivers, numbered 1, . . . , n, and that each of them keeps a
private and public key pair denoted by (ski, pki). A sender then encrypts a message Mi directed
to receiver i using pki for i = 1, . . . , n and sends (C1, . . . , Cn) as a ciphertext. Upon receiving the
ciphertext, receiver i extracts Ci and decrypts it using its private key ski. This setting of public
key encryption is generally referred to as “multi-receiver (recipient) public key encryption” in
the literature [2, 3, 16].

Now consider a situation where “Identity-Based Encryption (IBE)” [7, 10] is incorporated
to the above setting. In this setting, the public key pki is replaced by receiver i’s identifier
information (identity) IDi, which will be used as encryption key. Receiver i has a private key
associated with IDi, obtained from the trusted Private Key Generator (PKG), so that it can
correctly decrypt Ci. This setting, which we call “multi-receiver identity-based encryption”, is
a main theme of this paper.

As one can easily see, any multi-receiver public key encryption scheme can be transformed
into a natural broadcast encryption scheme: Receivers are given private/public key pairs which
may be generated by the sender. A single message M is then encrypted by running the multi-
receiver encryption algorithm with all messages Mi for i = 1, . . . , n set to M to produce a
ciphertext which is sent to all receivers.

In the non-identity-based setting, the above broadcast encryption has received a great atten-
tion from the research community, while relatively little research has been done on the identity-
based setting. One may, however, argue that the natural construction of a broadcast encryption
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scheme derived from the multi-receiver public key encryption scheme can trivially be trans-
formed into the one in the identity-based setting. That is, a single message M is encrypted n
times using IDi for i = 1, . . . , n and the resulting ciphertext (C1, . . . , Cn) is sent to the receivers.
However, what one should not overlook here is that when the most widely used IBE scheme
proposed by Boneh and Franklin [7] is employed to realize such scheme, we need at least n
bilinear pairing computations, which is very expensive. (In fact, this was suggested in [18] and
[11]).
Our Contributions. Following the above discussion, a natural question one can ask is how to
design a multi-receiver identity-based encryption scheme that broadcasts a message with a high-
level of computational efficiency while retaining security. In this paper, we answer this question
affirmatively, providing an efficient multi-receiver IBE scheme that only requires “one” ( or
“none” if precomputed) pairing computation to encrypt a single message for multiple receivers.
We provide formal security notions for multi-receiver IBE schemes based on the “selective iden-
tity attack” model in which an attacker outputs ahead of time the identities of multiple receivers
that it wishes to challenge [8, 4]. We then prove that our schemes are secure against chosen
plaintext attack (CPA) and adaptive ciphertext attack (“CCA2 [5]” ) in the random oracle
model [6] assuming the standard assumptions related to the Bilinear Diffie-Hellman problems
[7] are computationally hard. Finally, we show how our schemes lead to very efficient public key
broadcast encryption schemes based on the “subset-cover” framework [18]. As an independent
interest, we discuss in Section 5 how the selective identity attack model plays an important role
in obtaining an efficient reduction in the security analysis of our efficient multi-receiver IBE
schemes.
Related Work. The concept of multi-receiver public key encryption was independently formalized
by Bellare, Boldyreva, and Micali [2], and Baudron, Pointcheval, and Stern [1]. Their main re-
sult is that the security of public key encryption in the single-receiver setting implies the security
in the multi-receiver setting. Hence, for example, one can construct a semantically secure multi-
receiver public key encryption scheme by simply encrypting a message under n different public
keys of a semantically secure single-receiver public key encryption scheme. Later, Kurosawa
proposed a technique called “randomness re-use” to improve the computational efficiency and
bandwidths of an ElGamal [13] version of multi-receiver public key encryption scheme. Kuro-
sawa’s work was refined in [3] in a sense that a general test to determine whether a given public
key encryption scheme permits the randomness re-use to build up an efficient multi-receiver
encryption scheme.

To our knowledge, identity-based encryption in the multi-receiver setting has not been much
treated in the literature. Chen, Harrison, Soldera, and Smart [9], and Smart [21] considered the
problem of “conjunction” and “disjunction” of private keys associated with multiple identities in
Boneh and Franklin’s IBE scheme. In terms of conjunction, a user who has all the private keys
associated with the identities that were used to encrypt a message can decrypt the ciphertext.
Regarding disjunction, a user who possesses one of the private keys associated with identities that
were used to create the ciphertext can decrypt. The authors of [9] and [21] showed how Boneh
and Franklin’s IBE scheme can be modified to solve the conjunction and disjunction problems
efficiently. Especially, Smart presented a scheme that realizes the general logic formula called
“conjunctive-disjunctive normal form (CDNF)” and showed how it can be used in access control
to broadcast encrypted data. However, one criticism about the work of [9] and [21] is that
their schemes are not supported by appropriate formal security model and proofs. Although
our motivation is somewhat similar to those of [9] and [21] in terms of realizing “disjunction”
in identity-based encryption, our constructions are different from theirs and importantly, we
provide formal model and security proofs for our schemes.
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Our work is also related to broadcast encryption [14] based on the “subset-cover” framework
proposed by Naor, Naor, and Lotspiech [18]. In Section 6, we discuss it in detail.

2 Definitions for Multi-Receiver Identity-Based Encryption

Model. We present a generic model for multi-receiver IBE schemes. Note that in the multi-
receiver IBE setting, either a single message or multiple messages can be encrypted. However,
throughout the rest of the paper including the following definition, we assume that a single mes-
sage is broadcast to the multiple receivers, which leads to interesting schemes and applications.

Definition 1 (Multi-Receiver IBE) A generic multi-receiver IBE scheme for broadcasting a
single message, denoted by Π, consists of the following algorithms.

• PKG’s key generation algorithm KeyGen: The PKG runs this algorithm to generate a
PKG’s master key and a common parameter, denoted by mkPKG and cpPKG respectively.
Note that cpPKG is given to all interested parties while mkPKG is kept secret.
• PKG’s private key extraction algorithm Extract: Providing an identity ID received from
a user and its master key mkPKG as input, the PKG runs this algorithm to generate a
private key associated with ID, denoted by skID. We write SID = Extract(mkPKG, ID).
• Encryption algorithm Encrypt: Providing multiple identities (ID1, . . . , IDn) of the re-
ceivers, the PKG’s common parameter cpPKG, and a plaintext message M as input, the
sender runs this algorithm to generates a ciphertext C which is an encryption of M under
(ID1, . . . , IDn). We write C = Encrypt(cpPKG, (ID1, . . . , IDn),M).
• Encryption algorithm Encrypt: Providing multiple identities (ID1, . . . , IDn) of the re-
ceivers, the PKG’s common parameter cpPKG, and a plaintext message M as input, the
sender runs this algorithm to generates a ciphertext C which is an encryption of M under
(ID1, . . . , IDn). We write C = Encrypt(cpPKG, (ID1, . . . , IDn),M).
• Decryption Algorithm Decrypt: Providing its private key skIDi , the PKG’s common
parameter cpPKG, and a ciphertext C as input, the receiver numbered i runs this algorithm
to get a decryption D, which is either a certain plaintext message or a “Reject” message.
We write D = Decrypt(cpPKG, skIDi , C)

Security Notions. We present security notions for multi-receiver IBE schemes. In these notions,
we consider the “selective identity attack” [8] in which an attacker commits ahead of time the
identity that it intends to attack, which is slightly weaker than the model proposed in [7], where
the attacker adaptively chooses the identity that will be challenged on rather than outputting
it at the beginning.

We assume that this type of attacker outputs ahead of time a number of identities (of the
receivers) that it wishes to attack, which we call a “selective multi-ID attack ”. We then define
“indistinguishability of encryptions under selective multi-ID, chosen plaintext attack”, which we
refer to as “IND-sMID-CPA” as follows.

Definition 2 (IND-sMID-CPA) Let A denote an attacker. Let Π be a generic multi-receiver
IBE scheme. Consider the following game in which A interacts with the “Challenger”:
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Phase 1: A outputs target multiple identities, denoted by (ID∗1, . . . , ID
∗
n).

Phase 2: The Challenger runs the PKG’s key generation algorithm KeyGenPKG(k) to
generate a master key and a common parameter (mkPKG, cpPKG). The Challenger gives
cpPKG to A while keeps mkPKG secret from A.
Phase 3: A issues a number of private key extraction queries, each of which is denoted
by ID. Upon receiving ID, the Challenger runs the private key extraction algorithm to get
SID = Extract(mkPKG, ID). A restriction here is that ID 6= ID∗i for i = 1, . . . , n.
Phase 4: A outputs a target plaintext pair (M0,M1). Upon receiving (M0,M1),
the Challenger picks β ∈ {0, 1} at random and creates a target ciphertext C∗ =
Encrypt(cpPKG, (ID∗1, . . . , ID

∗
n), Mβ). The Challenger returns C∗ to A.

Phase 5: A issues a number of private key extraction queries as in Phase 3.
Phase 6: A outputs its guess β′ ∈ {0, 1}.

We define A’s guessing advantage AdvIND−sMID−CPA
Π (A) = |Pr[β′ = β] − 1

2 |. A breaks IND-
sMID-CPA of Π with (t, qex, ε) if and only if the guessing advantage of A that makes qex private
key extraction queries is greater than ε within running time t. The scheme Π is said to be
(t, qex, ε)-IND-sMID-CPA secure if there is no attacker A that breaks IND-sMID-CPA of Π with
(t, qex, ε).

We now define “indistinguishability of encryptions under selective multi-ID, adaptive chosen
ciphertext attack”, which we refer to as “IND-sMID-CCA”.

Definition 3 (IND-sMID-CCA) Let A denote an attacker. Let Π be a generic multi-receiver
IBE scheme. Phases 1, 2, 4, and 6 of the attack game for IND-sMID-CCA are identical to those
of IND-sMID-CPA. We only describe Phase 3 and 5 in the following:

Phase 3: A issues private key extraction queries as in Phase 3 of IND-sMID-CPA. Ad-
ditionally, it issues decryption queries for target identities, each of which is denoted by
(C, ID∗i ) for some i ∈ [1, n]. Upon receiving this, the Challenger generates a private key
associated with ID∗i , which is denoted by skID∗i , and returns D = Decrypt(cpPKG, SIDi , C)
to A.
Phase 5: As in Phase 3, A issues a number of private key extraction and decryption queries
for target identities. However, this time, A is not allowed to issue a target ciphertext C∗

as a decryption query.
We define A’s guessing advantage AdvIND−sMID−CCA

Π (A) = |Pr[β′ = β] − 1
2 |. A breaks IND-

sMID-CCA of Π with (t, qex, qd, ε) if and only if the guessing advantage of A that makes qex

private key extraction queries and qd decryption queries is greater than ε within running time
t. The scheme Π is said to be (t, qex, qd, ε)-IND-sMID-CCA secure if there is no attacker A that
breaks IND-sMID-CCA of Π with (t, qex, qd, ε).

3 Bilinear Pairing and Related Computational Problems

As preliminaries, we review the bilinear pairing and related computational problems on which
our efficient multi-receiver IBE schemes are based.

Definition 4 (Bilinear Pairing) An admissible bilinear pairing [7], which we denote by “ê”,
is defined over two groups of the same prime-order q denoted by G and F in which the Compu-
tational Diffie-Hellman problem is intractable. We will use an additive notation to describe the
operation in G while we will use a multiplicative notation for the operation in F . In practice,
the group G is implemented using a group of points on certain elliptic curves, each of which
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has a small MOV exponent [17], and the group F will be implemented using a subgroup of the
multiplicative group of a finite field. The admissible bilinear map has the following properties.
1) Bilinear: ê(aP1, bP2) = ê(P1, P2)ab, where P1, P2 ∈ G and a, b ∈ ZZ∗q ; 2) Non-degenerate: ê
does not send all pairs of points in G × G to the identity in F . (Hence, if P is a generator of
G then ê(P, P ) is a generator of F).; 3)Computable: For all P1, P2 ∈ G, the map ê(P1, P2) is
efficiently computable.

We now review the “Bilinear Decision Diffie-Hellman (BDDH)” problem, which is a “de-
cisional” version of the Bilinear Diffie-Hellman problem on which Boneh and Franklin’s IBE
scheme [7] is based.

Definition 5 (BDDH) Let G and F be two groups of the same prime order q. Let P be a
generator of G. Suppose that there exists a bilinear map ê : G × G → F . Let A be an attacker.
A tries to solve the following problem: Given (P, aP, bP, cP, κ) for uniformly chosen a, b, c ∈ ZZ∗q
and κ ∈ F , decide whether κ = ê(P, P )abc.

We define A’s guessing advantage AdvBDDH
G (A) by

Pr[A(P, aP, bP, cP, ê(P, P )abc) = 1]− Pr[A(P, aP, bP, cP, γ) = 1],

where γ ∈ F is chosen uniformly at random. A solves the BDDH problem with (t, ε) if and only
if the guessing advantage of A is greater than ε within running time t. The BDDH problem is
said to be (t, ε)-intractable if if there is no attacker A that solves the BDDH problem with (t, ε).

It is widely believed that the BDDH problem is computationally hard [4, 8]. Hence, we
can define a Gap-Bilinear Diffie-Hellman (Gap-BDH) problem which belongs to the new class
of computational problems, called “Gap Problems” proposed by Okamoto and Pointcheval [19].
Informally, the intractability of the Gap-BDH means that it is hard to compute a Bilinear Diffie-
Hellman key ê(P, P )abc of (P, aP, bP, cP ) although one has access to a BDDH oracle that, given
a tuple (P, aP, bP, cP, κ), decides whether κ = ê(P, P )abc. A formal definition follows.

Definition 6 (Gap-BDH) Let G and F be two groups of order the same prime order q. Let
P be a generator of G. Suppose that there exists a bilinear map ê : G × G → F . Let A be
an attacker. A tries to solve the following problem: Given (P, aP, bP, cP ), compute a Bilinear
Diffie-Hellman key ê(P, P )abc with the help of the Bilinear Decisional Diffie-Hellman (BDDH)
oracle, which, given (P, aP, bP, cP, κ), outputs 1 if κ = ê(P, P )abc and 0 otherwise.

We define A’s advantage AdvGap−BDH
G (A) = Pr[A(P, aP, bP, cP ) = ê(P, P )abc]. A solves

the Gap-BDH problem with (t, qo, ε) if and only if the guessing advantage of A that makes qo

BDDH-oracle queries is greater than ε within running time t. The Gap-BDH problem is said
to be (t, qo, ε)-intractable if if there is no attacker A that solves the Gap-BDH problem with
(t, qo, ε).

4 Proposed Schemes

CPA Secure Scheme. We present our efficient multi-receiver IBE scheme based on the bilinear
pairing. Our scheme is motivated by the binary-tree scheme of Canetti, Halevi, and Katz
[8], which bears some similarities to Gentry and Silverberg’s [15], and Boneh and Boyen’s [4]
hierarchical IBE schemes. However, the purpose and structure of our scheme are different from
those of all the previous ones.
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• KeyGenPKG: Choose two groups G = 〈P 〉 and F of the same prime order q. Construct
a bilinear pairing ê : G × G → F . Choose Q ∈ G∗ uniformly at random. Choose s ∈ ZZ∗q
uniformly at random and compute T = sP . Also, select a hash function H1 : {0, 1}∗ → G∗.
Return cpPKG = (q, G, F , ê, P , Q, T , H1) and mkPKG=(q, G, F , ê, P , s) as a PKG’s
common parameter and a master key respectively.
• Extract(mkPKG, ID): Compute SID = sH1(ID). Return SID as a private key associated
with identity ID.
• Encrypt(cpPKG, (ID1, . . . , IDn),M): Choose r ∈ ZZ∗q uniformly at random and compute
C = (U, V1, . . . , Vn,W,L) such that

(U, V1, . . . , Vn,W,L) = (rP, rH1(ID1) + rQ . . . , rH1(IDn) + rQ, ê(Q,T )rM,L),

where L is a label that contains information about how “Vi” is associated with each
receiver. Return C as a ciphertext. (Notice that ê(Q,T ) can be precomuted and provided
as a PKG’s common parameter. In this case, there is no need for the sender to perform a
pairing computation).
• Decrypt(cpPKG, SIDi , C) for some i ∈ [1, n]: Parse C as (U, V1, . . . , Vn,W,L). Using L,
find appropriate Vi. Then, compute

M =
ê(U, SIDi)
ê(T, Vi)

W

and return M as a plaintext.
It is easy to see that the above decryption algorithm is consistent. Indeed, if C is a valid

ciphertext,

ê(U, SIDi)
ê(T, Vi)

W =
ê(rP, sH1(ID))

ê(sP, rH1(IDi) + rQ)
W =

ê(rP, sH1(ID))
ê(rP, sH1(IDi) + sQ)

W

=
ê(rP, sH1(ID))

ê(rP, sH1(IDi))ê(rP, sQ)
ê(Q,T )rM = M.

Security Analysis. We now prove that the hardness of the BDDH problem (Definition 5) is
sufficient for the above scheme to be IND-sMID-CPA secure in the random oracle model [6].

Theorem 1 The above scheme is (t, qH1 , qex, ε)-IND-sMID-CPA secure in the random oracle
model assuming that the BDDH problem is (t′, ε′)-intractable, where t′ > t + qH1O(τ1). (τ1

denotes the computing time for an exponentiation in G).

Proof. Assume that an attacker A breaks IND-sMID-CPA of the above scheme with probability
greater than ε within time t making qex private key extraction queries. We show that using A,
one can construct an attacker B for solving the BDDH problem (Definition 5).

Suppose that B is given (q, G, F , P , aP , bP , cP , κ) as an instance of the BDDH problem.
By ε′ and t′, we denote B ’s winning probability and running time respectively. B can simulate
the Challenger’s execution of each phase of IND-sMID-CPA game for A as follows.
[Simulation of Phase 1] Suppose that A outputs target multiple identities (ID∗1, . . ., ID∗n).
[Simulation of Phase 2] B sets Q = bP and T = cP , and gives A (q, G, F , ê, P , T , Q, H1) as
the PKG’s common parameter, where H1 is a random oracle controlled by B as follows.

Upon receiving a random oracle query IDj to H1:
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– If there exists (IDj , lj , Lj) in H1List, return Lj . Otherwise, do the following:
∗ If IDj = ID∗i for some i ∈ [1, n], compute Lj = ljP −Q.
∗ Else choose lj ∈ ZZ∗q uniformly at random and compute Lj = ljP .
∗ Put (IDj , lj , Lj) in H1List and return Lj as answer.

[Simulation of Phase 3] B answers A’s private key extraction queries as follows.

Upon receiving a private key extraction query IDj (Note that by the assumption of the
IND-sMID-CPA game, IDj 6= ID∗i for i = 1, . . . , n).:

– If (IDj , lj , Lj) exists in H1List, compute SIDj = ljT . Otherwise do the following:
∗ Choose lj ∈ ZZ∗q uniformly at random and compute SIDj = ljT .
∗ Put (IDj , lj , Lj) in H1List and return SIDj as answer. (Note that SIDj = ljT =

ljcP = cljP = cH1(IDj) for all j 6= i).

[Simulation of Phase 4] B creates a target ciphertext C∗ as follows.

Upon receiving (M0,M1):

– Choose β ∈ {0, 1} at random.
– Search H1List to get li that corresponds to ID∗i for i = 1, . . . , n.
– Compute liaP for i = 1, . . . , n and κMβ.
– Return C∗ = (aP, l1aP, . . . , lnaP, κMβ) as a target ciphertext. Note here that.

[Simulation of Phase 5] B answers A’s random oracle/private key extraction queries as in Phase
3.
[Simulation of Phase 6] A outputs its guess β′. If β′ = β, B outputs 1. Otherwise, it outputs 0.
[Analysis] We note that if κ = ê(P, P )abc, κMβ = ê(bP, cP )aMβ = ê(Q,T )aMβ. Note also that
liaP = liaP −aQ+aQ = a(liP −Q)+aQ = aH1(ID∗i )+aQ for i = 1, . . . , n. Hence C∗ is a valid
ciphertext. On the other hand, if κ is uniform and independent in F , so is κMβ. It is clear that
from the construction above, B perfectly simulates the random oracle H1 and the key private
key extraction in Phase 3 and 5. Hence, we get Pr[B(P, aP, bP, cP, ê(P, P )abc) = 1] = Pr[β′ = β],
where |Pr[β′ = β]− 1

2 | > ε, and Pr[B(P, aP, bP, cP, γ) = 1] = Pr[β′ = β] = 1
2 , where γ is uniform

in F . Consequently, we get

|Pr[B(P, aP, bP, cP, ê(P, P )abc) = 1]− Pr[B(P, aP, bP, cP, γ) = 1]|
>

∣∣∣
(1
2
± ε

)− 1
2

∣∣∣ = ε.

Note that t′ > t + qH1O(τ1), where τ1 denotes the computing time for an exponentiation in
G. ut
CCA Secure Scheme. In order to enhance security, we modify our scheme to provide (adaptive)
chosen ciphertext security. Considering efficiency and simplicity, we employ the technique used
in the REACT scheme proposed by Okamoto and Pointcheval’ [20].

• KeyGenPKG: Choose two groups G = 〈P 〉 and F of the same prime order q. Construct
a bilinear pairing ê : G × G → F . Choose Q ∈ G∗ uniformly at random. Choose s ∈ ZZ∗q
uniformly at random and compute T = sP . Also, select hash functions H1 : {0, 1}∗ → G,
H2 : F → {0, 1}k1 , and H3 : G × · · · × G × F × {0, 1}k1 → {0, 1}k2 . Return cpPKG =
(q, G, F , ê, q, P , Q, T , H1, H2, H3) and mkPKG=(q, G, F , ê, P , s) as PKG’s common
parameter and master key respectively.
• Extract(mkPKG, ID): Compute SID = sH1(ID). Return SID as a private key associated
with identity ID.
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• Encrypt(cpPKG, (ID1, . . . , IDn),M) where M ∈ {0, 1}k1 : Choose R ∈ F and r ∈ ZZ∗q at
random and compute compute C = (U, V1, . . . , Vn,W1,W2,L, σ) such that

(U, V1, . . . , Vn,W1,W2,L, σ)
= (rP, rH1(ID1) + rQ . . . , rH1(IDn) + rQ, ê(Q,T )rR, M ⊕H2(R),

H3(R,M, U, V1, . . . , Vn, W1,W2,L))

Return C as a ciphertext. (Notice that the “tag” σ guarantees the integrity of entire
sequence of a ciphertext.)
• Decrypt(cpPKG, SIDi , C, IDi) for some i ∈ [1, n]: Parse C as (U, V1, . . . , Vn, W1,W2,L, σ).
Using L, find appropriate Vi. Then, subsequently compute R = ê(U,SIDi )

ê(T,Vi)
W1, M = W2 ⊕

H2(R), and σ′ = H3(R, M, V1, . . . , Vn,W1, W2,L). If σ′ = σ, return M as a plaintext and
“Reject” otherwise.

Security Analysis. We prove that the hardness of the Gap-BDH problem (Definition 6) is
sufficient for the above scheme to be IND-sMID-CCA secure in the random oracle model. (The
proof is given in Appendix A).

Theorem 2 The above scheme is (t, qH1 , qH2 , qH3 , qex, qd, ε)-IND-sMID-CCA secure in the ran-
dom oracle model assuming that the Gap-BDH problem is (t′, qo, ε

′)-intractable, where ε′ > ε− qd

2k2

and t′ > t+(qH1 + qex)O(τ1)+ qdO(τ2)+(qH2 + qH3)O(1), qo = qH2 + qH3 (τ1 and τ2 respectively
denote the computing time for an exponentiation in G and a pairing ê).

5 Discussions on Efficiency and Security of Our Scheme

Efficiency Gains. We compare the major computational overhead and transmission rate (the
length of the ciphertext) of our scheme with those of the obvious construction of multi-receiver
IBE that simply re-encrypt a message M n times using Boneh and Franklin’s IBE scheme, which
we call “n-sequential composition of BF-IBE”. In this scheme, M is encrypted to (r1P, M ⊕
H2(ê(H1(ID1), T )r1)),..., (rnP, M ⊕H2(ê(H1(IDn), T )rn)), where r1, . . . , rn ∈ ZZ∗q are uniformly
chosen at random and (s, T = (sP )) is the PKG’s master key and common parameter respec-
tively. As one can see, it is clear that our scheme provides much better performance: To encrypt
a message M , our scheme only needs one pairing computation (none if ê(Q,T ) is precomputed),
n additions in group G (to compute H1(IDi)+Q), n+1 scalar multiplications with elements from
G (to compute rP and r(H1(IDi) + Q) = rH1(IDi) + rQ), and 1 exponentiation in group F (to
compute ê(Q,T )r). The transmission rate is (n + 1)l1 + l2 where l1 and l2 denote the bit-length
of the element in G and F respectively. On the other hand, the n-sequential composition of
BF-IBE needs n pairing computations (to compute ê(H1(IDi), T ), n scalar multiplications with
elements in G (to compute riP ), n exponentiations in group F (to compute ê(H1(IDi), T )ri).
The transmission rate of this scheme is nl1 +nl3 where l3 denotes the bit-length of the message.

In the following table, we summarize the above comparison.

Pairings Add. in G Mult. in G Exp. in F Trans. Rate
Our scheme 1 ( or 0) n n + 2 1 (n + 1)l1 + l2
n-seq. comp. of BF-IBE n 0 n n nl1 + nl3

One might argue, however, that the randomness re-use technique [16, 3] can be employed to
reduce the number of multiplications in group G. This indeed helps, but the n pairings and n
exponentiations in group F still cannot be removed.
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Fully Adaptive Multi-ID Attack. We notice that our scheme can also be proven secure in the
“fully adaptive multi-ID attack” model where the attacker adaptively chooses which identity
to attack and outputs target multiple identities in the challenger phase after it sees public
parameters (rather than ahead of time). Unfortunately, the reduction is not very tight in that
it introduces qn

ex factor, where n denotes the number of receivers. The difficulty in getting an
efficient reduction for our scheme stems from the difficulty in simulating a target ciphertext
while handling the random oracle and key extraction queries.

To get a feeling for this, we sketch a security proof for our scheme in the fully adaptive
multi-ID attack model. Let B be a BDDH attacker which is given (P, aP, bP, cP, κ), where κ is
either ê(P, P )abc or a random element in F , as an instance. Let A be a CPA attacker for our
scheme in the fully adaptive multi-ID attack model. B first sets Q = bP and T = cP , which
will serve as the PKG’s public key. Upon receiving a query ID to the random oracle H1, B
generates a random coin δ such that Pr[δ = 0] = ρ and responds to the query with lP , where
l ∈ ZZ∗q is chosen at random, if δ = 0, and lP − Q otherwise. B puts (ID, l, δ) in H1List, and
if the same query is asked, B searches this list to respond to it. Upon receiving a private key
extraction query ID, B runs the above algorithm for simulating H1 to get (ID, l, δ) and answers
with lT if δ = 0, and aborts the simulation otherwise. Upon receiving target multiple identities
(ID∗1, . . . , ID

∗
n) and target plaintexts (M0,M1), B runs the above algorithm for simulating H1 to

get (ID∗1, l1, δ1), . . . , (ID∗n, ln, δn). Unless δ1 = · · · = δn = 1, B aborts the simulation, otherwise,
creates a target ciphertext as follows: C∗ = (aP, l1aP, . . . , lnaP, κMβ) for a random β ∈ {0, 1}.
The rest of the simulation are the same as the proof of Theorem 1.

As long as B does not abort the game, A’s view in the simulation is identical to the view in
the real attack from the same argument given in the proof of Theorem 1. The probability that
B does not abort the simulation is ρqex(1−ρ)n, which is maximized at 1− n

qex+n . Consequently,
this introduces qn

ex factor in the reduction cost. In the selective multi-ID attack model, we do
not have this problem as H1(ID∗i ) values can be “programmed” at the beginning.

On the other hand, we notice that one can get an efficient reduction for the security of
the n-sequential composition of BF-IBE in the fully adaptive multi-ID attack model, due to its
structural property which results in more pairing computations.

Trading off between security and efficiency is subjective. However, as seen from the beginning
of this section, the efficiency gain in our scheme is huge, especially when there are a large number
of receivers. In the following section, we show this is indeed a merit when our scheme is applied
to broadcast encryption.

6 Application to Public Key Broadcast Encryption Based on
Subset-Cover Framework

Broadcast Encryption Based on the Subset-Cover Framework. “Broadcast encryption” [14] deals
with the problem of one party transmitting data to a large group of receivers so that only qualified
subsets can decrypt the data. There are a number of applications of such scheme, e.g. pay-
TV applications, distribution of copyright material, streaming audio/video, and etc. Since its
introduction [14], broadcast encryption has been extensively studied in the literature. However,
in this paper, we only focus on the “stateless receiver” case for broadcast encryption in the
public key setting [18]. (Note that “stateless receiver” means that each user is given a fixed set
of keys that cannot be changed through the lifetime of the system).

In the symmetric setting of broadcast encryption, only the trusted designer of the system,
which we refer to as “Center”, can broadcast a message. On the other hand, in the public key
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setting, the Center publishes a short public key which enables any party to broadcast data.
Formally, a generic broadcast encryption scheme in the public key setting can be defined as
follows [11].

Definition 7 (Public Key Broadcast Encryption) A public key broadcast encryption scheme
consists of the following algorithms.

• Center’s key generation algorithm KeyGenCTR: Providing possibly a revocation threshold
z (the maximum number of users that can be revoked) as input, the Center runs this
algorithm to generate the Center’s private key and public key, denoted by skCTR and
pkCTR respectively.
• Registration algorithm Reg: Providing the Center’s private key and an index i associated
with a user as input, the Center runs this algorithm to generate the secret initialization
data, denoted by ski, to be delivered to a new user when he subscribes to the system. We
write ski = Reg(skCTR, i).
• Encryption algorithm Encrypt: Providing the Center’s public key, a session key K, and
a set R of revoked users (with |R| ≤ z if a threshold was specified to the Center’s key
generation algorithm) as input, the sender runs this algorithm to generate a ciphertext C
to be broadcast. We write C = Encrypt(pkCTR,K,R).
• Decryption Algorithm Decrypt: Providing the secret data ski of a user and c ciphertext
C, the user runs this algorithm to generate a decryption D, which is either a certain
plaintext or a “Reject” message. We write D = Decrypt(ski, C).

Subset-Cover Framework. In brief, the basic idea behind the “subset-cover” framework for
broadcast encryption (in the symmetric setting) proposed by Naor, Naor, and Lotspiech [18] is
to define a family S of subsets of the set N of users, and to assign a key to each subset. Note that
all the users in the subset have access to the assigned key. If the Center wants to broadcast a
message to all the “non-revoked” users, it first determines a partition of N/R, where R denotes
the set of “revoked” users, and then encrypts the session key used to masquerade the message
with all the keys associated to the subsets in the partition, which are elements of S.

In [18], two specific methods that realize the above subset-cover framework: The “Complete
Subtree (CS)” method and “Subset Difference (SD)” method. Since our scheme is well applicable
to the CS method, we review it in detail as follows. In the CS scheme, users are organized in
a full binary tree, denoted by T : For simplicity, assume that there are N = 2h users in the
system. Then, associate each user to a leaf of the full binary tree T of height h. The Subset-
Cover family S is now the collection of all the full subtrees of T . That is, if vi is a node in T ,
Si ∈ S is the set of all the leaves of the full subtree of T rooted at vi. To associate a key with
each element of S, the Center simply assigns a random number ki to each node vi. ki is then
be used as encryption/decryption key for the subset Si. Since each user needs to know the keys
corresponding to all the subsets he/she belongs to, during the registration step, the Center gives
the user all the keys ki assigned to each node vi in the path from the root to the leaf representing
the user. Hence, each user is required to store O(log N) keys. Note that the Center needs to
keep track of all these keys given to each user. However, it was suggested in [18] that the Center
derive all the 2N − 1 keys from some short seed using a pseudo-random function.
A New Public Key Broadcast Encryption from Our Efficient Multi-Receiver IBE scheme. The
CS method described above can also be realized in the public key setting as envisioned in [18].
Namely, one can assign a public key pki to each node vi. However, as already mentioned in
[18], this is very inefficient in that total 2N − 1 public keys should explicitly be stored in some
directory. To overcome this deficiency, the authors of [18] suggest that the IBE scheme be
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employed, which requires only O(1) space. According to Dodis and Fazio [11], this can be
explained as follows: First, assign an identifier ID(Si) to each subset Si of the family S. As
an example, assign each edge of the full binary tree T with 0 or 1 depending on whether the
edge connects the node with its left or right child, and assign to the subset Si rooted at vi

the bit-string obtained reading off all the labels in the path from the root down to vi. Then,
the Center runs the key generation algorithm of IBE scheme to generate public parameters and
the description of the mapping used to assign an identifier to each subset. Namely, the Center
plays the role of the PKG in the IBE scheme. For each subset Si ∈ S, the Center generates a
private key associated with it by running the private key extraction algorithm of the IBE scheme
with the identifier ID(Si). The Center then distributes the private data needed to decrypt the
broadcast ciphertext, as in the symmetric key setting. Now, when a party wants to broadcast a
message, it encrypts the session key used to protect the message under the public keys ID(Sji)
relative to all the subsets that cover all the non-revoked users. Note that this party only needs
to know the public key of the Center and the description of the mapping ID(·).

As a concrete instantiation, Dodis and Fazio apply the simple sequential composition of
Boneh and Franklin’s [7] IBE scheme to realize the above. More precisely, one can encrypt a
session key K as follows: (r1P, K ⊕H2(ê(H(ID(S1)),
T )r1)), . . . , (rtP, K⊕H2(ê(H(ID(St)), T )rt)) where S1, . . . , St denote the subsets that cover N/R
and (s, T = (sP )) is the Center’s private and public key pair. Note that t = µ log N

µ where
µ = |R| and N = |N |. Hence, at least t pairing computations are needed.
Our Proposal. In contrast, using our multi-receiver IBE scheme presented in Section 4, one can
design a very efficient public key broadcast encryption scheme that realizes the CS mechanism.
In this new scheme, a session key K is encrypted as follows:

(rP, rH1(ID(S1)) + rQ . . . , rH1(ID(St)) + rQ, ê(Q,T )rK),

where (P, Q, T (= sP )) and s are the Center’s public and private keys respectively, and r ∈ ZZ∗q
is uniformly chosen at random.

Note that in the above scheme, the length of the broadcast message remains the same as
that of the original scheme of [18]. That is, t = µ log N

µ . The main advantage of our scheme
over those considered in [18, 11], however, is that it is computationally much more efficient as
we just need to compute t additions in group G instead of t pairings. Note also that compared
with the scheme based on the SD method, which is proposed in [11], our scheme turns out to
be more efficient in that the hierarchical IBE scheme [15] adopted in [11] results in expansion
of the length of the encryption proportional to the depth in the hierarchy and more pairing
computations proportional to the number of subset covers.

The above scheme can also be extended to provide chosen ciphertext security using our CCA
scheme proposed in Section 4. More precisely, the security of the this scheme is relative to the
following notion, which is weaker than the (public key version of) security notion for broadcast
encryption presented in [18] in a sense that the the attacker outputs a set of revoked user before
it sees a public key but stronger in a sense that it provides adaptive chosen ciphertext security.
Note that the security notion given in [18] only considers non-adaptive chosen ciphertext attack,
sometimes referred to as “CCA1 [5]”.

Definition 8 (IND-sREV-CCA) Let A denote an attacker. Consider the following game in
which A interacts with the “Challenger”:

Phase 1: A outputs a set of revoked users denoted by R.
Phase 2: The Challenger runs the Center’s key generation algorithm KeyGenCTR to
generate a private and public key pair (skCTR, pkCTR) of the Center. The Challenger
gives cpCTR to A while keeps skCTR secret from A.
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Phase 3: A requests the private data relative to the revoked users. Upon receiving each
request, the Challenger runs the registration algorithm Reg(skCTR, i) to give A the private
data relative to the revoked users. A also queries arbitrary ciphertexts to see any non-
revoked users decrypt them. Upon receiving each decryption query, the Challenger runs
Decrypt(ski, C) and give the resulting decryption to A.
Phase 4: A outputs a target session key pair (K0,K1). Upon receiving (K0,K1), the
Challenger picks a coin β ∈ {0, 1} at random and returns a target ciphertext C∗ =
Encrypt(pkCTR,Kβ,R).
Phase 5: A issues a number of decryption queries C as in Phase 3 with a restriction that
C 6= C∗.
Phase 6: A outputs its guess β′ ∈ {0, 1}.

The reduction from IND-sMID-CCA (Definition 3) of our CCA-version of multi-receiver IBE
scheme presented in Section 4 to IND-sREV-CCA of the public key broadcast scheme described
above is almost obvious: When the attacker A for the above broadcast encryption scheme
outputs the set R of revoked users, the attacker B for the multi-receiver IBE scheme computes
subsets S1, . . . , S1 that cover N/R and then outputs ID1(S1), . . . , IDt(S1) as a target multiple
identities. B then gives A the obtained PKG’s common parameter as the Center’s public key. B
proceeds to answer A’s queries in Phase 3 by querying its private key extraction and decryption
oracles. When A outputs a target key pair (K0,K1) in Phase 4, B forwards it to its Challenger
to get an encryption of K0 or K1 under the target multiple identities ID1(S1), . . . , IDt(S1). B
gives this as a target ciphertext to A and proceeds to answer A’s decryption queries, which are
different from the target ciphertext. When A outputs β′ ∈ {0, 1} in Phase 6, B returns it as its
final guess.

7 Concluding Remarks

In this paper, we proposed provably secure multi-receiver IBE schemes that broadcast encrypted
data with a high-level of efficiency. We also discussed how the proposed schemes can be used to
enhance the efficiency of public key broadcast encryption schemes for stateless receivers, based
on the subset-cover framework.
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A Proof of Theorem 2

Proof. We first define a normal public key encryption (non-IBE) scheme, which we call “Bilinear
ElGamal” as follows.

• KeyGen: Choose two groups G = 〈P 〉 and F of the same prime order q. Construct a
bilinear pairing ê : G × G → F . Choose Q ∈ G∗ uniformly at random. Choose s ∈ ZZ∗q
uniformly at random and compute T = sP . Return pk = (q, G, F , ê, P , Q, T ) and sk=(q,
G, F , ê, P , T , s) as a public key and a private key key respectively.
• Encrypt(pk, M): Choose r ∈ ZZ∗q at random and compute C = (U,W ) such that (U,W ) =
(rP, ê(Q,T )rM) for M ∈ F . Return C as a ciphertext.
• Decrypt(sk, C): Parse C as (U,W ), compute M = W/ê(U,Q)s, and return M as a
plaintext.
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In [20], a security notion for public key encryption called “One-Way-ness under Plaintext
Checking Attack (OW-PCA)” is defined. Informally, a public key encryption scheme is (t′, qo, ε

′)-
OW-PCA secure if for any t′-time attacker B making qo queries to the Plaintext Checking (PC)
oracle, which, given a ciphertext-plaintext message pair (C,M), outputs 1 if C encrypts M and
0 otherwise, B ’s advantage that finds a pre-image of a given ciphertext is less than ε′.

It is easy to see that the above Bilinear ElGamal scheme is OW-PCA secure assuming that
the Gap-BDH problem (Definition 6) is intractable: Taking a public key (P,Q, T ), a ciphertext
(U,W ), and a certain plaintext M ′ as input, the PC oracle checks whether (P, U,Q, T, W/M ′)
is a Bilinear Diffie-Hellman tuple. Hence, the running time and advantage of the OW-PCA
attacker is exactly the same as those of Gap-BDH attacker.

Now, assume that an attacker A breaks IND-sMID-CCA of the proposed scheme in Section
4 with probability greater than ε within time t making qH1 , qH2 and qH3 random oracle queries
and qex private key extraction queries and qd decryption queries. We show that using this A,
one can construct an OW-PCA attacker B for the Bilinear ElGamal Scheme.

Suppose that B is given (q, G, F , ê, P , Q, T ) as a public key, and (U∗,W ∗) = (r∗P, ê(Q,T )r∗R∗)
as a target ciphertext of the Bilinear ElGamal Scheme. Suppose also that B ’s makes qo queries
to the PCA oracle of the Bilinear ElGamal scheme within time t′. We denote B ’s winning
probability by ε′, which will be determined later. B can simulate the Challenger’s execution of
each phase of IND-sMID-CCA game for A as follows.
[Simulation of Phase 1] Suppose that A outputs target multiple identities (ID∗1, . . ., ID∗n).
[Simulation of Phase 2] B gives A (q, G, F , ê, P , Q, T , H1, H2, H3) as the PKG’s common
parameter, where H1, H2, and H3 are random oracles controlled by B as follows.

Upon receiving a query IDj to the random oracle H1 for some j ∈ [1, qH1 ]:

– If (IDj , lj , Lj) exists in H1List, return Lj . Otherwise do the following:

∗ If IDj = ID∗i for some i ∈ [1, n], compute Lj = ljP −Q.
∗ Else choose lj ∈ ZZ∗q uniformly at random and compute Lj = ljP .
∗ Put (IDj , lj , Lj) in H1List and return Lj as answer.

Upon receiving a query Rj to the random oracle H2 for some j ∈ [1, qH2 ]:

– If (Rj ,Kj) exists in H2List, return Lj . Otherwise do the following:

∗ Check whether (U∗,W ∗) encrypts Rj using the PC oracle. If it is, return Rj and
terminate the game. (In this case, B has achieved its goal as the pre-image of
(U∗,W ∗) has been found). Otherwise, do the following:
· Pick Kj ∈ {0, 1}k1 uniformly at random.
· Put (Rj , Kj) in H2List and return Kj as answer.

Upon receiving a query (Rj ,Mj , Uj , Vj1 , . . . , Vjn ,Wj1 ,Wj2 ,Lj) to the random oracle H3 for
some j ∈ [1, qH3 ]:

– If ((Rj , Mj , Uj , Vj1 , . . . , Vjn , Wj1 ,Wj2 ,Lj), σj) exists in H3List, return σj . Otherwise
do the following:

∗ Check whether (U∗,W ∗) encrypts Rj using the PC oracle. If it is, return Rj and
terminate the game. (In this case, B has achieved its goal as the pre-image of
(U∗,W ∗) has been found). Otherwise, do the following:
· Pick σj ∈ {0, 1}k2 uniformly at random.
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· Put ((Rj ,Mj , Uj , Vj1 , . . . , Vjn ,Wj1 ,Wj2 ,Lj), σj) in H3List and return σj as
answer.

[Simulation of Phase 3] B then answers A’s queries in Phase 3 as follows.

Upon receiving a private key extraction query IDj for some j ∈ [1, qex] (By assumption,
IDj 6= ID∗i for i = 1, . . . , n).:

– If (IDj , lj , Lj) exists in H1List, compute SIDj = ljT . Otherwise do the following:

∗ Choose lj ∈ ZZ∗q uniformly at random and compute SIDj = ljT .
∗ Put (IDj , lj , Lj) in H1List and return SIDj as answer.

Upon receiving a decryption query (Cj , ID∗i ) for some i ∈ [1, n] and j ∈ [1, qd], where
Cj = (Uj , Vj1 , . . . , Vjn ,Wj1 ,Wj2 ,Lj , σj):

– If ((Rj ,Mj , Uj , Vj1 , . . . , Vjn ,Wj1 ,Wj2 ,Lj), σj) exists in H3List do the following:

∗ Compute H2(Rj) using the simulation of H2 above and check whether H2(Rj)⊕
Mj = Wj2 . If not, return “Reject”, otherwise do the following:
· Check whether (Uj ,Wj1) encrypts Rj using the PC oracle,
· Check ê(Uj ,H1(ID∗i ) + Q) = ê(P, Vji).
· If both of the above equations hold, return Mj and “Reject” otherwise.

– Else return “Reject”.

[Simulation of Phase 4] Using the target ciphertext (U∗,W ∗) = (r∗P, ê(Q,T )r∗R∗) of the Bilinear
ElGamal scheme, B creates a target ciphertext C∗ as follows.

Upon receiving (M0,M1):

– Choose β ∈ {0, 1} at random and search H1List to get li that corresponds to ID∗i for
i = 1, . . . , n. Then, compute liU

∗ for i = 1, . . . , n.

– Choose K∗ ∈ {0, 1}k1 uniformly at random and set K∗ = H2(R∗). Also, create a
label L∗.

– Choose σ∗ ∈ {0, 1}k2 uniformly at random and set

σ∗ = H3(R∗,Mβ, U∗, l1U∗, . . . , lnU∗,W ∗,K∗ ⊕Mβ,L∗).

– Return C∗ = (U∗, l1U∗, . . . , lnU∗, W ∗,K∗ ⊕Mβ,L∗, σ∗) as a target ciphertext.

[Simulation of Phase 5] B answers A’s random oracle, decryption and private key extraction
queries as before. Note that, this time, if (R∗, Mβ, U∗, l1U

∗, . . ., lnU∗, W ∗, K∗ ⊕Mβ, L∗) is
asked to the the random oracle H3, the value σ∗ created in Simulation of Phase 4 is returned.
(The value R∗ can be detected with the help of the PC oracle).
[Simulation of Phase 6] A outputs its guess β′. If β′ = β, B outputs 1. Otherwise, it outputs 0.
[Analysis] Note first that the private keys associated with each IDj(6= ID∗i ) created in Simulation
of Phase 3 are identically distributed as those in the real attack since SIDj = ljT = ljsP =
sljP = sH1(IDj). The simulations of the random oracle H2 and H3 are also perfect unless R∗

has been asked to one of the random oracles H2 and H3. However, if these event happen, B
breaks the OW-PCA of the Bilinear ElGamal scheme.
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Note also that the distribution of the simulated target ciphertext is identical to that of the
target ciphertext in the real attack since liU

∗ = lir
∗P = lir

∗P−r∗Q+r∗Q = r∗(liP−Q)+r∗Q =
r∗H1(ID∗i ) + r∗Q for all i = 1, . . . , n.

The simulation of the decryption oracle is nearly perfect but there are cases when a valid ci-
phertext is rejected since, in the simulation of decryption oracle, if (R,M,U, V1, . . . , Vn,W1,W2,L)
has not been queried to H3, the ciphertext is rejected straight way. Note that this leads to two
cases: 1) A uses the value σ∗ which is a part of a target ciphertext as a part its decryption query;
2) A has guessed a right value for the output of H3 without querying it. However, in the first
case, since (U∗, l1U∗, . . . , lnU∗,W ∗,K∗⊕Mβ,L∗) as well as (R∗,Mβ) is provided as input to H3,
the decryption query A would ask is the same as the target ciphertext which is not allowed to
query. The second case may happen but with a negligible probability 1/2k2 .

Following the above discussion, if B does not correctly guess the output of H3, the view of A in
the simulation is identical to the view in the real attack. Hence, we have Pr[B(P, aP, bP, cP ) =
ê(P, P )abc] = Pr[β′ = β|¬GuessH3] − 1

2

∣∣, where GuessH3 denotes an event that A correctly
guesses the output of H3. In the mean time, by definition of A, we have |Pr[β′ = β] − 1

2 | > ε.
Consequently, we have

∣∣ Pr[β′ = β|¬GuessH3] − 1
2

∣∣ >
∣∣Pr[β′ = β| − Pr[GuessH3] − 1

2

∣∣ > ε −
Pr[GuessH3].

Since A makes total qd decryption queries during the attack Pr[GuessH3] ≤ qd/2k2 . Thus, we
have ε′ > ε− qd

2k2
. The running time t′ and the number qo of PC oracle queries of B are readily

checked.
ut

16


	Efficient Multi-receiver identity-based encryption and its application to broadcast encryption
	Recommended Citation

	Efficient Multi-receiver identity-based encryption and its application to broadcast encryption
	Abstract
	Disciplines
	Publication Details

	tmp.1374646925.pdf.Z4Cw7

