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Abstract

This paper discusses the application of L1-regularized maximum entropy modeling orSL1-Max[9]
to multiclass categorization problems. A new modification to the SL1-Max fast sequential learning
algorithm is proposed to handleconditionaldistributions. Furthermore, unlike most previous studies,
the present research goes beyond a single type of conditional distribution. It describes and compares a
variety of modeling assumptions about the class distribution (independent or exclusive) and various types
of joint or conditional distributions. It results in a new methodology for combining binary regularized
classifiers to achieve multiclass categorization. In this context, Maximum Entropy can be considered
as a generic and efficient regularized classification tool that matches or outperforms the state-of-the art
represented by AdaBoost and SVMs.

1 Introduction

A new form of maximum entropy (maxent) with asequentialupdating procedure andL1 regularization
(SL1-Max) was recently introduced [9] as a probability distribution estimation technique. This study adapts
SL1-Max to classification problems. It demonstrates a regularized linear classification algorithm that bears
striking similarities with large margin classifiers such asAdaBoost [19, 7].

Conditional maxent models [4] (also known as conditional exponential or logistic regression models)
were previously applied to classification problems in text classification [16]. These models were shown [10]
to be a generalization of Support Vector Machines (SVMs) [20] or a modification of AdaBoost normalized
to form a conditional distribution [13]. The three aforementioned references employed the L2 type of
regularization. L1 regularization was proposed for logistic regression [15], which is a particular case of
maximum entropy. The application of conditional maxent to part-of-speech tagging or machine translation
problems [17] can also be seen as a classification problem, where the number of classes is very large.
Solutions dealing with the computational and memory usage issues arising from this large number of classes
were proposed for translation applications. Most of these studies focus onspecificapplications. We could
not find studies of maxent as a generic classification algorithm that can be applied to a wide range of
problems.

This situation can be contrasted to the literature on large margin classifiers, where extant studies [2]
cover their adaptation to multiclass problems. Large margin classifiers were initially demonstrated on binary
classification problems and extended to multiclass classification through various schemes combining these
binary classifiers. The simplest scheme is to train binary classifiers to distinguish the examples belonging to
one class from the examples not belonging to this class. Thisapproach is usually referred to in the literature
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as1-vs-otheror 1-vs-all. Many other combination schemes are possible, in particular 1-vs-1where each
classifier is trained to separate one class from another. More general combination schemes include error
correcting output codes (ECOC) [8] and hierarchies of classifiers.

Our goal is to include maxent among the regularized classification algorithms one would routinely con-
sider, and implement it in a software package that would be aseasy to use as SVMs and Adaboost packages.
The expected advantage of maxent over other classification algorithms is its flexibility, both in terms of
choice of distribution and modeling assumptions. SL1-Max provides the ideal starting point for this work:
this algorithm estimates maxent model parameters in a fast sequential manner, and supports an effective and
well understood L1 regularization scheme (which leads to sparser solutions than L2 regularization). The new
contributions in this paper are the following. We adapt SL1-Max to conditional distributions, which requires
the derivation on a new bound on the decrease in the loss. We compare the joint and the class-conditional
distributions to the conditional distribution traditionally considered in the literature. We introduce “non-
class” maxent models to reduce multiclass problems to a set of binary problems (to our knowledge, such
techniques have only been used in question answering systems [18]). We show, through experiments, that
maxent statistical interpretation leads to a new methodology for selecting the optimal multiclass approach
for a given application.

Section 2 introduces the notation to handle classification problems. In Section 3, we adapt the SL1-Max
algorithm to estimate parameters of the joint, class-conditional and conditional distributions. In Section 4,
we generalize these techniques to the multi-label case. After a discussion about the implementation in
Section 5, comparative experiments are provided in Section6.

2 Definitions and notation

Our sample space covers input-label associative pairs(x, c) ∈ X × {1, . . . , l}. Our goal is to determine,
for a given inputx, the most likely class labelc∗ which maximizes the unknown conditional distribution
c∗ = argmaxc p(c|x). For simplicity, this paper initially focuses on classification where each input is
associated with a single label. From a statistical viewpoint, this means that classes areexclusive(i.e. they
cannot occur simultaneously). Models where multiple labels are allowed will be considered later.

The application of Bayes Rules writes

p(c|x) =
p(x, c)

p(x)
= p(c)

p(x|c)

p(x)
. (1)

As p(x) does not impact the choice of the class, we can choose which distribution we want to estimate:joint
with p(x, c), conditionalwith p(c|x), or class-conditionalwith p(x|c). The rest of this section introduces
notation to manipulate these distributions in a consistentfashion.

In maxent, training data is used to impose constraints on thedistribution. Each constraint expresses a
characteristic of the training data that must be learned in the estimated distributionp. Typical constraints
require features to have the same expected value as in the training data. Features are real valued functions
of the input and of the classf(x, c). To represent the average of a featuref over a distributionp, we use the
following notation:

Joint: The expected value off underp is

p[f ] =
∑

x,c

p(x, c)f(x, c).
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Conditional: For a given training examplexi, pi(c) = p(c|xi) and

pi[f ] =
∑

c

p(c|xi)f(xi, c) =
∑

c

pi(c)f(xi, c).

Class-conditional: For a given classc, pc(x) = p(x|c) and

pc[f ] =
∑

x

p(x|c)f(x, c) =
∑

x

pc(x)f(x, c).

The training data is a set of input-label pairs(x1, c1), . . . , (xm, cm), and is a subset of the sample space
{x1, . . . ,xm} × {1, . . . , l}. The empirical distributions over this training set are defined as follows:

p̃(x, c) =
1

m
|{1 ≤ i ≤ m : xi = x and ci = c}|

p̃c(x) =
|{1 ≤ i ≤ m : xi = x and ci = c}|

|{1 ≤ i ≤ m : ci = c}|

p̃(c) =
1

m
|{1 ≤ i ≤ m : ci = c}|

All maxent models are based on the computation of a linear score over the features, represented by the
inner product between the feature vector and the weight vectorλ. In the classification case, the feature vector
f(x, c) is defined over all input-label pairs(x, c). This pair is scored with the inner productλ · f(x, c) and
compared to other pairs(x, d) with d 6= c. A subtlety that arises in the application of maxent to classification
problems is the need to multiply each feature as many times asthere are classes. Suppose the inputx is a
list of n valuesv1(x), . . . , vn(x), the class dependent features are defined as follows:

fd,j(x, c) =

{
vj(x) if c = d

0 otherwise
(2)

With this representation,the inner product between the feature vectorf(x, c) and the parameter vectorλ
simplifies as

λ · f(x, c) =
∑

d,j

λd,jfd,j(x, c) =
∑

j

λc,jvj(x) = λc · v(x),

whereλc is the subset of parameters specific to classc.

3 Trying Different Distributions

This section provides SL1-Max solutions for the estimationof the joint, class-conditionalandconditional
distributions. It also shows some limitations of these solutions that will be overcome in the next section.
The first subsection focuses on joint distributionp(x, c).

3.1 Estimating joint distributions

Maximum Entropy restricts the trained model distributionp so that each feature has the same expected and
empirical means. Our notation summarizes this constraint asp[fd,j] = p̃[fd,j]. In the regularized case, this
constraint is softened to have the form|p[fd,j] − p̃[fd,j]| ≤ βd,j , whereβd,j is a regularization parameter.
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Within these constraints, we are looking for the distribution which is the closest to the uniform dis-
tribution, by maximizing the entropyH(p) = −

∑

i,c

p(xi, c) ln p(xi, c). This corresponds to the convex

program:
P1 : max

p
H(p) subject to

{ ∑

i,c

p(xi, ci) = 1

∀d, j : |p[fd,j] − p̃[fd,j]| ≤ βd,j

The dual program maximizes the likelihood over the exponential distributions.

Q1(λ) : min
λ

L
β
p̃ (λ) with







L
β
p̃ (λ) = − p̃[ln qλ]

︸ ︷︷ ︸

Likelihood

+
∑

d,j

βd,j |λd,j |

︸ ︷︷ ︸

Regularization

qλ(x, c) = 1
Zλ

eλ·f(x,c)

Zλ =
∑

c

∑

i

eλ·f(xi,c)

Note that for the joint distribution, theZλ normalization is performed over all classes and all training
samples. [9] prove the convergence of a sequential-update algorithm that modifies one weight at a time.
This coordinate-wise descent is particularly efficient when dealing with a large number of sparse features.
A bound on the decrease in the loss is

L
β
p̃ (λ′) − L

β
p̃ (λ) ≤ −δp̃[fd,j] + ln

(

1 + (eδ − 1)qλ[fd,j]
)

+ βd,j (|λd,j + δ| − |λd,j|) , (3)

with equality if we have binary features. The values ofδ that minimize this expression can be obtained in a
closed form. Note that this analysis must be repeated for allfeaturesj and all classesd.

Efficient implementations of the sequential-update algorithm require storing numerous variables and
intermediate computations. For instance, we need to store all the qλ(x, c) andλ · f(xi, ci). The storage
requirement inO(m × n) can be problematic for large-scale problems.

As a matter of fact, we found memory requirements to be the main limitation of this implementation of
multiclass SL1-Max. Speedup techniques based on partial pricing strategies [5] have reduced the learning
time of SL1-Max and made it manageable.

3.2 Estimating class-conditional distributions

The motivation for using the class-conditional distribution p(x|c) is that it allows to build one model per
class. From Eq.(2), it is easy to see that ford 6= c, featuresfd,j have no impact on the class-conditional
distributionpc we are trying to estimate. As a result, separate optimization problems can be defined for the
l classifiers with no interaction between them. For each class, the convex problemP2 and its convex dual
Q2(λc) are:

P2 : max
pc

H(pc) subject to
{ ∑

i

pc(xi) = 1

∀j : |pc[fc,j] − p̃c[fc,j]| ≤ βc,j
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Q2(λc) : min
λc

L
β
p̃ (λc) with







L
β
p̃ (λc) = −p̃c[ln qλ] +

∑

j

βc,j |λc,j|

qλ(x, c) = 1
Zλ(c)e

λ·f(x,c)

Zλ(c) =
∑

i

eλ·f(xi,c)

For each classc, we have an independent optimization problem to solve. For each of these optimization
problems, we have a general solution which is just SL1-Max.

A clear advantage of theclass-conditionalover thejoint distribution approach is that, when optimizing
pc, we do not have to store the variables used to optimize the class-conditional distributions of the other
classes. This provides huge savings in memory (i.e the memory requirement is divided by the number of
classes).

A drawback of the class-conditional approach is that it doesnot minimize explicitly the classification er-
ror rate. To obtain the recognized class, it relies on the application of the Bayes rules, and thus on the fact that
the probability distributions have been properly estimated. Taking the logarithm ofargmaxc p̃(c)qλ(x, c) ,
this class is1 argmaxc (λ · f(x, c) − ln Zλ(c) + ln p̃(c)).

3.3 Estimating conditional distributions

In this section, we propose a novel extension to the SL1-Max algorithm to estimate the parameters of the
maxent model for the conditional distributionp(c|x). In the literature [16, 17], conditional maxent is typi-
cally the only distribution considered for classification,as it is expected to be the most discriminant. How-
ever, its optimization turns out to be more complex, so we present it last.

In the case conditional distributions, the main challenge is that, for each training samplei, we want to
estimate one separate distribution over the classesp̃i. At the same time, the constraints apply to the en-
tire training set and tie up these distributions. If we trained each distribution separately for each samplei,
constraints would be∀d, j : |pi[fd,j] − p̃i[fd,j]| ≤ βd,i,j. This would result inm × n × l learnable param-
eters, with obvious overfitting. On the other hand, summing these constraints over the examples produces∣
∣
∣
∣

1
m

∑

i

pi[fd,j] − p̃[fd,j]

∣
∣
∣
∣
≤ βd,j . This formulation was used before [16], but we added regularization and a

different sequential-update algorithm.
The two optimization problems are:

P3 : max
p1,...,pm

∑

i

H(pi) subject to






∀i :
∑

c

pi(c) = 1

∀d, j :

∣
∣
∣
∣

1
m

∑

i

pi[fd,j] − p̃[fd,j]

∣
∣
∣
∣
≤ βd,j

1Note that this relies on a good estimation of theZλ(c) normalization factors, With a joint distribution, there isno need to
compute theZλ normalization factor andargmaxc qλ(x, c) = argmaxc λ · f(x, c).
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Q3(λ) : min
λ

L
β
p̃ (λ) with







L
β
p̃ (λ) = − 1

m

∑

i

p̃i[ln qλ] +
∑

d,j

βd,j |λd,j|

qλ(x, c) = 1
Zλ(x)e

λ·f(x,c)

Zλ(x) =
∑

c eλ·f(x,c)

The likelihood can be expanded as

L
β
p̃ (λ) = −

∑

d,j

λd,j p̃[fd,j] +
1

m

∑

i

ln Zλ(xi)

+
∑

d,j

βd,j |λd,j| . (4)

The novelty in problemQ3(λ) involves having one normalization constant per example. Inthe development
of the likelihood, a single logarithmlnZλ is replaced by the sum1

m

∑

i

ln Zλ(xi). To boundL
β
p̃ (λ′) −

L
β
p̃ (λ), the most difficult step is to bound:

∆ =
1

m

∑

i

ln
Zλ′(xi)

Zλ(xi)
(5)

=
1

m

∑

i

ln




∑

c 6=d

qλ(xi, c) + qλ(xi, d)eδfd,j (xi,d)



 (6)

≤
1

m

∑

i

ln
(

1 + (eδ − 1)qλ(xi, d)fd,j(xi, d)
)

(7)

≤ ln
(

1 + (eδ − 1)q′λ[fd,j]
)

(8)

whereq′λ[fd,j] = 1
m

∑

i

qλ(xi, d)fd,j(xi, d).

Eq.(7) uses
eδfd,j (xi,d) ≤ 1 + (eδ − 1)fd,j(xi, d)

for fd,j(xi, d) ∈ [0, 1] with equality iffd,j(xi, d) ∈ {0, 1}. Eq.(8) relies on the convexity of the log function
to apply Jensen’s inequality.

We have established here a new bound on the decrease in the loss for L1-regularizedconditionalmaxent
models:

L
β
p̃ (λ′) − L

β
p̃ (λ) ≤ −δp̃[fd,j] + ln

(

1 + (eδ − 1)q′λ[fd,j]
)

+ βd,j (|λd,j + δ| − |λd,j|) . (9)

Because of its similarity to the standard SL1-Max bound (Eq.(9)), it allows a simple generalization of the
SL1-Max algorithm to conditional distributions by replacing theqλ[fd,j ] with q′λ[fd,j]. Our experiments in
the case of binary features show that the bound given in Eq.(3) is very tight. It can be used to obtain, in a
closed form manner, a value forδ that is close to the optimum.
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In the case of conditional maxent, it is instructive to compare this algorithm to Improved Iterative Scal-
ing(IIS) [4], which also updates the parameters to maximizea bound on the decrease in the loss. First, the
bounds are significantly different. The SL1-Max bound is tighter because it requires only a singleλj to be
modified at a time. Second, while both approaches support closed form solutions under specific conditions,
these conditions are very different: the features must be binary in the case of SL1-Max, and they must add
up to a constant value in the case of IIS. Finally, to our knowledge, there is no simple modification of IIS to
handle L1-regularization.

4 Multi-label categorization

The fundamental modeling assumption we have made so far implies that each examplei only carries a
single labelci. However, in many classification problems, a given input cancorrespond to multiple labels
(multi-label).

For simplicity, we assume that there is no form of ranking or preference [1] among the labels. Our
sample space covers input-code pairs(x,y) ∈ X × {0, 1}l, wherey is a binary output code.

Class-conditional distributions represent the easiest way to deal with multiple labels. We only focus
on the estimation of̃pc and the fact that there are multiple labels that can be ignored. However, the final
classification decision will require a multiplication bỹp(c) that is not defined as a probability distribution
because

∑

c p̃(c) > 1.
This section reviews two other techniques to handle multiple labels that only require minimum modifi-

cations of the algorithms proposed so far and show their limitations.

4.1 Duplicating training examples

Assume the training data is a set of input-code pairs(x1,y1), . . . , (xm,ym). Our goal is to project this
training set in the smaller input-label sample space{x1, . . . ,xm} × {1, . . . , l}. For each training sample
(xi,yi) in the input-code space , we buildKi samples in the input-label space withKi = |{1 ≤ k ≤ l :
yi[k] = 1}| The conditional probability function is:

p̃(y[k] = 1|xi) =

{ 1
Ki

if yi[k] = 1

0 otherwise
(10)

The problem with this approach is that the empirical distribution p̃ is reweighted to favor examples with
multiple labels withp̃(xi) = Ki∑

i Ki
(we assume here that∀i, j : xi 6= xj).

4.2 Using a non-class model

With an output code that representsl binary decisions, a trivial solution is to buildl binary classifiers. This
is typically what l 1-vs-otherclassifiers do, and, in the case of maxent, one may think that the l class-
conditional classifiers described in Section 3.2 representsuch a solution.

However, the statistical reality is more complex; an independence assumption between each binary
output is necessary:

p(y|x) = p(y1, . . . , yl|x) =
∏

c

p(yc|x) (11)

Under this assumption, one can estimate eachp(yc|x) independently. For each classc, we introduce the
distributionspc

i(y) = pc(y|xi) = p(yc = y|xi) wherey ∈ {0, 1} is the the index for a secondary classifica-
tion problem between examples belonging to classc and the other examples (which are said to be part ofc
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non-class). The independence assumption can be rewritten aspi(y) =
∏

c pc
i (y

c) so that the overall entropy
can be decomposed into one entropy per class:

H(pi) = −
∑

y∈{0,1}l

pi(y) ln pi(y) =
∑

c

H(pc
i ) (12)

As the entropy of each of thepc distribution entropies can be maximized separately, we have l binary
maxent models to estimate. Conditional maxent has previously been applied to binary “question answering”
problems [18].

The framework defined by problemsP3 andQ3(λ) to produce the set of parametersλ can be applied
here to the distributionpc. The transformation of notation is described in the following table:
Distribution p pc

Problem Q3(λ) Q3(λ
c)

Parameters λ λ
c

Features f(x, c) f c(x, y)
with c ∈ {1, . . . , l} y ∈ {0, 1}

The exponential distribution that solves the dual problemQ3(λ
c) takes the form:

qλc(x, y) =
1

Zλc(x)
eλc·fc(x,y)

The simplifying assumption of Eq.(2) becomes here:

f c
y′,j(x, y) =

{
vj(x) if y = y′

0 otherwise
(13)

Thusλ
c · f c(x, y) = λ

c
y · v(x) and the probability of observing classc becomes

qλc(x, y) = σ ((λc
1 − λ

c
0) · v(x)) (14)

whereσ(x) = 1
1+e−x is the sigmoid function. Note that for each featurevj(x), classifierc has two parame-

ters:λc
1,j used in the positive model andλc

0,j used in the negative model. Given a test inputx, this approach
can be used either to produce the code vectory such thatqc

λ(x, yc) > 0.5 or the top classargmaxc qc
λ(x, 1).

Eq.(14) suggests that, in the binary case, conditional maxent amounts to logistic regression. The use
of L1-regularization in logistic regression was recently analyzed [15]. Another technique to optimize the
logistic loss that relies on an implicit L1 regularization is AdaBoost with logistic loss [7], which also uses a
sequential update procedure similar to SL1-Max.

While the independence assumption is not as straightforward, we can also transpose problemP1 to the
distributionspc(x, y) = p(xi, y

c = y) and obtain the convex dualQ1(λ
c).

5 Implementation: it’s all about normalization

This section shows that from an implementation viewpoint, normalization is the main differentiator in the
algorithms described in this paper.

We have already noted than SL1-Max is strikingly similar to AdaBoost, especially when AdaBoost is
described within the Bregman distance framework [7]. As a matter of fact, unregularized conditional maxent
was shown [13] to be equivalent to AdaBoost with the additional constraint of

∑

c

pi(c) = 1.
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Assume Implement Maxent Optim. Z?
Classes Classifiers Distrib. problem

Joint Q1(λ) No
Exclu- Tied Conditional Q3(λ) No

sive ClassCond Q2(λc) Yes
Joint Q1(λ

c) No
Inde- Sepa- Conditional Q3(λ

c) No
pendent rate Adaboost No

Table 1: Impact of the model on the implementation. The last column indicates that the computation of the
normalization Z is required to perform classification.

Our implementation of SL1-Max capitalized on an earlier implementation of AdaBoost to include a
normalization constant. The joint model requires normalization over all the classes and examples. The
class-conditional model requires, for a given class, normalization over all the examples. The conditional
model requires, for a given example, normalization over allthe classes.

Our implementation of multiclass SL1-Max, which derives directly from Sections 3 and 4.2, can be
interpreted as a combination of1-vs-otherclassifiers. We have not explored output codes or hierarchical
structures, though multiclass SL1-Max offers a promising framework to explore these approaches, where
the class-independent hypotheses would be much closer to reality. The most important difference between
the various modeling hypotheses is whether the classifiers can be trained separately, or are tied by shared
normalization constants. Training classifiers separatelycan be done on parallel computers or sequentially;
in either case, the implementation is more memory efficient in a way which is critical when the number of
classes is very large.

There is some merit in training the classifiers together: onecan minimize a unique target function
and monitor the training process in a variety of ways. The most common stopping criterion is when the
classification error minimum is reached on validation data.When training classifiers separately, the absence
of a single stopping criterion makes the process much harderto monitor. Table 1 summarizes the merit of
each modeling assumption from an implementation viewpoint.

An implementation of SL1-Max that is optimized usingpartial pricing strategies [5] is provided in the
(blanked out) software package. When classifiers can be trained separately, an SL1-Max binary classifier is
just another1-vs-otherclassifier that can be used instead of an AdaBoost or a SVM classifier. On a given
classification learning task, choosing between SL1-Max, AdaBoost and SVM can be done with a single
switch, or by automatically using cross-validation data. Systematic experimental comparisons between the
three approaches for large scale natural language understanding tasks [6] indicate that SL1-Max is the fastest
approach on datasets larger than 100,000 examples, with state-of-the-art accuracy2.

It would be informative to compare SL1-Max to algorithms considered as the state-of-the art for the
estimation of parameters in conditional entropy models. They include Iterative Scaling algorithms, such as
IIS [4] and Fast Iterative Scaling(FIS) [11], and gradient algorithms [14]. This study, which would be of
considerable interest, is beyond the scope of this paper.

The two key factors that contribute to the remarkable learning speed of SL1-Max have not been, to
our knowledge, applied to most algorithms in the iterative scaling family. First, SL1-Max is based on a

2They are only outperformed by SVMs with polynomial kernels,which are not a computationally practical because of the large
number of support vectors
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Reuters WebKB SuperTags
Multi-label? Yes No No
Train size 9603 3150 950028
Test size 3299 4199 46451

Num. of labels 90 4 4726
Num. of features 22758 25229 95516
Features/sample 126.7 129.1 18.8

Table 2: Key characteristics of the three datasets used in the experiments. The last line gives the average
number of non-zero features per training vector.

pricing strategy: modify the single parameter which causesthe greatest decrease in the objective function.
The addition ofpartial pricing can make the search for the parameter considerably faster. Second, the L1
regularization adds some slack in the constraints and makesthem easier to satisfy early in the optimization
process.

Results on the WebKB text classification task show that SL1-Max takes less than 10 seconds to learn
3150 examples with 25,000 features, which compares favorably to more than 100 seconds when using FIS
or IIS on a reduced set of 300 features [11]. (we assume comparable Pentium CPUs with a 2GHz clock).

6 Experiments and Discussions

The first two datasets are small enough to allow us to run the methodsQ1(λ) andQ3(λ), which are com-
pared toQ2(λc), Q1(λ

c), andQ3(λ
c). The Reuters-217583 dataset contains stories collected from Reuters

newswire in 1987. We used the ModApte split between 9603 train stories and 3299 test stories. This is a
multi-label problem, where the number of labels per story ranges from 0 to 15. The WebKB4 dataset con-
tains web pages gathered from university computer science departments. We selected the same categories
as [16]:student, faculty, coursesandprojects. The 4199 samples are split between training and testing using
a 4-fold cross-validation.

The third dataset, which demonstrates the scaling ability of SL1-Max, is much larger; and only the
methodsQ2(λc), Q1(λ

c), andQ3(λ
c) can be applied. It consists of a set of SuperTags. SuperTags are

extensions of part-of-speech tags that encode morpho-syntactic constraints [3]) and are derived from the
phrase-structure annotated Penn TreeBank. The characteristics of the three datasets are summarized in
Table 2.

Table 3 compares the five different multiclass SL1-Max models considered in Sections 3 and 4.2. The
SL1-Max regularization parameter is set toβ = 0.5. AdaBoost with logistic loss and linear SVMs are
provided as a baseline (note that our implementation of AdaBoost can be considered as a class-independent
model with separate classifiers). The best error rate we obtain on WebKB (7.1%) and the best F-Measure
we obtain on Reuters (86.7%) compare favorably to the literature [16, 12]. The training speed of Adaboost
and SL1-Max are very similar and can be optimized using the same techniques. They are not reported here
as a detailed comparison is reported elsewhere [5].

How good are class-conditional models?The most computationally efficient model is theclass-
conditionalmodelQ2(λc). Table 4, which compares the computational efficiency of theQ2(λc), Q1(λ

c),
3
http://www.daviddlewis.com/resources/testcollections/reuters21578

4http://www-2.cs.cmu.edu∼webkb
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Reuters WebKB SuperTags
AdaBoost 14.9/86.7 7.10 12.0

Linear SVM 15.3/86.6 7.57
Q1(λ) 16.9/84.0 7.95
Q2(λc) 17.4/83.9 8.19 11.2
Q3(λ) 16.6/79.6 7.76
Q1(λ

c) 15.0/86.5 7.50 11.9
Q3(λ

c) 14.1/86.4 7.45 11.1

Table 3: Error rates on the 3 datasets. For Reuters, which is multi-label, the first number is the top-class
error rate (an example is considered an error if the highest scoring class given by the classifier is not part of
the target labels) and the second number is the micro-averaged optimal F-measure.

# parameters Train time
(thousands) (hours)

β 0.5 0.9 0.5 0.9
Q1(λ

c) 53 35 15.65 16.09
Q2(λc) 53 34 14.92 7.58
Q3(λ

c) 41 24 46.65 46.40

Table 4: Number of non-zero model parameters and training time for the SuperTags set as a function of the
regularizerβ and the optimization method. On this large set,β has little impact on accuracy, and mostly
affects speed and sparsity.

andQ3(λ
c) models, shows that it has the smallest training time and the smallest number of parameters.

However, its error rate on smaller dataset is higher due to the estimation of theZ normalization constant.
Class-exclusive vs. independent assumptions:The “Reuters” column of Table 3 indicates that making

a class-exclusive assumption when it is not justified (e.g. the Reuters data is multi-label) leads to a signif-
icant loss in performance. By contrast, the class-independent assumption is never true, but a combination
of binary maxent classifiers, which relies on this assumption, consistently improves performance. It also
greatly improves training speed by allowing parallelization and a small memory footprint. A combination
of binary classifier yields excellentclassification accuracyregardless of the size of the problem. However,
comparisons on a “Question Answering” problem [18] suggestthat they may not perform well forrank-
ing tasks. Future work on multi-label tasks will also assess theranking performance with specific error
measures [1].

Pros and cons of conditional models:For pure classification, the fully discriminantconditionalmodels
(Q3(λ) andQ3(λ

c)) yield the best results. This may justify the exclusive use of conditional models in all
previous studies of multiclass maxent. Table 4 shows another reason to prefer conditional models: they
aresparserand require fewer model parameters (since they only focus onperforming class discrimination).
Conditional models have two major drawbacks. First, as their outputs are normalized separately for each
example, they tend to be poor confidence estimators. Metricsbased on the comparison of the output to a
varying threshold tend to fare poorly, For instance, in Table 3, the conditional modelQ3(λ) yield the lowest
F-measure for Reuters (79.6). Second, as shown in Table 4, they can require more training time.
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7 Conclusions

We have shown that a sequential maxent algorithm (SL1-Max) can be applied to many classification prob-
lems with performances which are comparable to Adaboost andSVMs. An important (and apparently
under-appreciated) advantage of maxent for classificationproblems appears to be its remarkable flexibility
in terms of modeling assumptions. In future work, this flexibility will be used to optimize maxent for prob-
lems where ranking or rejection performances are critical,and to which traditional classification methods
are problematic to adapt.
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