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Efficient Multielement Ray Tracing With
Site-Specific Comparisons Using
Measured MIMO Channel Data

Kah Heng Ng, Eustace K. Tameh, Angela Doufexi, Mythri Hunukumbure, and Andrew R. Nix

Abstract—In this paper, an advanced site-specific image-based
ray-tracing model is developed that enables multielement outdoor
propagation analysis to be performed in dense urban environ-
ments. Sophisticated optimization techniques, such as preprocess-
ing the environment database using object partitioning, visibility
determination, diffraction image tree precalculation, and parallel
processing are used to improve run-time efficiency. Wideband and
multiple-input–multiple-output (MIMO) site-specific predictions
(including derived parameters such as theoretic capacity and
eigenstructure) are compared with outdoor site-specific measure-
ments at 1.92 GHz. Results show strong levels of agreement, with
a mean path-loss error of 2 dB and a mean normalized-capacity
error of 1.5 b/s/Hz. Physical-layer packet-error rate (PER) results
are generated and compared for a range of MIMO-orthogonal
frequency-division-multiplexing (OFDM) schemes using mea-
sured and predicted multielement channel data. A mean Eb/N0

error (compared to PER results from measured channel data)
of 4 and 1 dB is observed for spatial-multiplexing and space-
time block-code schemes, respectively. Results indicate that the
ray-tracing model successfully predicts key channel parameters
(including MIMO channel structure) and thus enable the ac-
curate prediction of PER and service coverage for emerging
MIMO-OFDM networks such as 802.11n and 802.16e.

Index Terms—Multiple-input–multiple-output (MIMO), propa-
gation, ray tracing, scattering.

I. INTRODUCTION

MULTIPLE-ANTENNA systems that employ one or more

elements at both the transmitter and receiver have the

potential to greatly enhance the data capacity of a wireless-

communication network. The exploitation of spatial and/or

temporal diversity in a multiple-input–multiple-output (MIMO)

communication system offers considerable benefit [1]–[4].

Such systems fuse the antenna, modulation, coding, and de-

tection stages to directly exploit the features present in multi-

channel propagation links. Such systems generally make use

of space-time coding and/or spatial-multiplexing (SM) algo-
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rithms in their implementations [5]–[14]. The high-frequency

approximation of electromagnetic-wave propagation based on

geometric optics (GOs) allows ray tracing to be used to predict

the radio channel between any two points. This is the basis

of all deterministic propagation models [15]–[21]. The major

drawback of ray-tracing models is their computational cost,

which depends on factors such as the size and complexity of

the geographic database and the interaction order in the ray

search. Ray models must tradeoff prediction accuracy for run-

time efficiency. Nevertheless, many ray-tracing models have

been developed over the years and many have shown good

agreement with measured channel characteristics for single-

antenna systems [16]–[21].

The conventional ray-tracing model for a single-antenna sys-

tem performs a point-to-point analysis between the transmitter

and receiver. For multiple-antenna systems, the ray-tracing

operation can be performed for each and every transmitter and

receiver link. This brute-force approach can be tedious, and

the required processing time is linearly proportional to the

product of the number of transmitter and receiver elements.

Hence, optimization techniques that reduce computational time

are vital for MIMO ray-tracing tools.

In this paper, an advanced multielement ray-tracing model is

presented. Site-specific comparison is then performed between

the model’s output and a range of measured outdoor MIMO

channels. To the best of our knowledge, no similar comparison

study using measured and predicted multielement channel data

is reported in the literature. Furthermore, this paper continues

to analyze site-specific packet-error rate (PER) predictions

for several MIMO-orthogonal frequency-division-multiplexing

(OFDM) schemes using measured and predicted channel data.

The ability to accurately predict the performance of MIMO-

OFDM schemes in urban environments is of particular rele-

vance to the rollout and deployment of 802.11n and 802.16e

networks.

This paper is organized as follows. In Section II, the mul-

tielement ray-tracing model is described. Next, the database

and the various optimization techniques are introduced. In

Section III, the MIMO measurement configuration is described.

In Section IV, the measured data sets are compared with our

predicted MIMO output for a variety of site-specific locations.

Various channel parameters and MIMO characteristics are stud-

ied, including the derived eigenstructure and theoretic capacity.

A unique PER comparison study (using measured and predicted

channel data) is reported based on an example SM and

0018-9545/$25.00 © 2007 IEEE
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space-time block-code (STBC) extensions to IEEE 802.11a

[22]. This paper ends with a set of conclusions.

II. MULTIELEMENT RAY-TRACING MODEL

A. Ray Model

The ray-tracing model uses a rigorous image-based approach

to generate ray paths and is capable of performing an exten-

sive ray-path search [23]–[26]. Supported propagation mecha-

nisms include building reflection, building rooftop diffraction,

building corner diffraction, building scattering, terrain scatter-

ing, and combinations of the above. Ray paths are calculated

in full 3-D geometry. A new heuristic geometrical approach

for finding noncoplanar multiple-edge diffraction ray paths is

supported to overcome limitations in the conventional image-

based technique [26]. This method has been shown [26] to

reduce errors in the predicted path loss by up to 1 dB. A

novel hybrid GOs and radiance-based scattering model is also

implemented to model the scattering effects from rough sur-

faces (which can be significant in MIMO systems). In [25],

this scatter model was shown to improve the mean path-loss

prediction by up to 2.7 dB when compared to conventional

models. A vertical-plane diffraction model is supplemented

to approximate higher order building rooftop diffractions for

faster processing [18]. The capability of the ray model to

combine these key propagation mechanisms allows compre-

hensive analysis to be performed in dense urban environments.

Fig. 1 shows a flowchart for the operation of the ray-tracing

model. The model can be divided into four sections [23]: 1)

preprocessing of the database; 2) creation of the image tree;

3) creation of the ray tree; and 4) electromagnetic calculation.

Preprocessing of the database is required to perform a one-time

optimization of the environment database, in order to accelerate

the ray-path-finding process at run-time. The ray-path-finding

process is used to identify all possible ray paths from the

transmitter to the receiver. This process includes the forward

creation of image trees and the creation of ray trees through

backward tracing, which are typical in an image-based ray-

tracing model. The electromagnetic-calculation stage applies

various electromagnetic models, such as the use of GO Fresnel

reflection coefficients, uniform theory of diffraction (UTD)

with slope diffraction, the International Telecommunication

Union-Radiocommunication Sector foliage-loss model, and a

hybrid scattering model, to each ray [15], [25], [27]–[29].

B. Database

The 3-D object geometry used in the ray-tracing model

consists of polygons, polygon tiles, polygon horizontal edges,

polygon vertical edges, and terrain height grids. This is similar

to the definitions found in [19]. The difference here is that,

in [19], edges are divided into segments and all interactions

(reflection and diffraction) occur at the center of every visible

tile and segment. In the ray-tracing model described here, the

visible center of polygon tiles are used for scattering, polygons

are used for reflection, polygon horizontal and vertical edges

are used for diffraction, and terrain height grids are used for

scattering. This avoids the need to break down the polygons into

Fig. 1. Flow chart of ray-tracing model.

segments and tiles for reflection and diffraction purposes due to

the nature of image-based ray tracing. This reduces the number

of interaction objects. For example, when considering reflection

from one potential visible polygon surface, Wolfle et al. [19]

has to perform calculations at every visible center of a tile,

whereas, in our approach, only one reflection calculation is

needed, and this saves significant computation time.

C. Optimization Techniques

A number of advanced acceleration techniques are im-

plemented, including object space partitioning, visibility de-

termination, precreation of edge diffraction trees, and grid

computing. Some of these techniques have greatly enhanced

the efficiency of the ray-tracing process [30]–[32]. These tech-

niques are performed during the database preprocessing stage

to accelerate the ray-path-finding process without any loss of

accuracy (a more detailed description and a discussion of the

advantages of these techniques can be found in [23]).

1) Object Space Partitioning: Object space partitioning is

an effective spatial-partitioning method for creating powerful

data structures that enable fast object spatial handling [33].
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For databases with many objects, object space partitioning can

greatly accelerate spatial operations such as proximity queries,

ray casting, and ray intersections. A hybrid intraobject binary-

space-partition (BSP) tree and interobject quadtree data struc-

ture is implemented here. Each object (building and foliage)

is partitioned into individual BSP trees. All the BSP trees

in turn are partitioned into a single quadtree. The reason for

using a hybrid spatial-partitioning method arises from the fact

that the use of a BSP in a complicated outdoor environment

creates many implementation problems (particularly, floating

point errors), and a volume-bounding quadtree does not include

information about the polygons in each object. Since the BSP

tree is already constructed for each object for constructive solid

geometry purposes (i.e., for building a 3-D world from the raw

database) [33], the hybrid method is feasible to combine the

powerful features of both a BSP and quadtree. This is different

from the techniques used in the study in [30]–[32], where only

one type of object space partitioning has been implemented.

A comparison test performed in the study in [23] showed

that object space partitions using the hybrid method improves

processing time by 192% and 44% compared to the simple

intersection and quadtree methods, respectively.

2) Visibility Determination: One way to improve the effi-

ciency of a ray-tracing algorithm is to reject objects early when

ray intersection is impossible. The result of visibility determi-

nation can be stored in a data structure known as the potential

visibility set (PVS). A PVS is a set of potential visible informa-

tion [34]. It is basically a table of simple “Yes” or “No” entries

on object visibility. For ray-tracing purposes, it is important to

have a set of PVSs for interobject and point-object visibility.

Interobject PVSs allows fast visibility determination for rays

between objects. Point-object PVSs determine the visibility

of objects from emitter points. These PVSs are compressed

using simple zero-run-length coding [34] for optimal storage

and fast access during run-time. Visibility determination using

effective object occlusion culling is implemented in this ray

model (details of the method used can be found in [23]).

Basically, the technique uses a set of clipping planes created

by an observation point to an occluder to eliminate objects that

fall within the shadowed region. The concept of visibility de-

termination is slightly different to the general angular Z-buffer

(AZB) technique [35]. In the AZB technique, the viewpoint can

be a transmitter (Tx) or an image. When a ray is launched from

the viewpoint, only those objects located in the angular region

containing the ray need to be tested for ray intersection. This

method accelerates the ray-tracing algorithm, but when higher

order ray interactions are needed, the required preprocessing

is complex [36]. This occurs because there are many source

points (including the Tx and a large number of its images),

and an AZB is required for each of them. On the contrary,

the main purpose of the occlusion-culling technique used here

is to calculate the interobject PVS during the preprocessing

stage, regardless of the order of interaction. Hence, our method

can accelerate the ray-intersection test and, more importantly,

perform early elimination of unnecessary images.1 A reduction

1Note that the visibility tree information (i.e., the PVS) can also be calculated
using the AZB technique by considering the object as viewpoints.

Fig. 2. Point to polygon visibility.

in visibility results in an improvement in the speed of the

ray-tracing process as less object interactions are performed.

Fig. 2 shows the potential visible front-facing polygons (shaded

white) from a given viewpoint S. Only objects shaded white are

used for ray-interaction purposes.

3) Precreation of Diffraction Trees: For image-based ray

tracing, generating images and storing the image trees is com-

putationally costly. An image tree is formed based on the

knowledge of the source position and an object database. The

source is either a transmitter or a vertical diffraction edge.

The overall image tree for each ray-tracing run consists of

one transmitter image tree with branches of diffraction image

trees at each visible diffraction edge. As all diffraction-edge

source positions are static for each environment database, their

2-D diffraction image trees (which contain 2-D images without

height) are the same for each ray-tracing run (regardless of the

transmitter position). Therefore, it is possible to precreate all

the diffraction image trees for each database. These precreated

diffraction image trees are dynamically linked at run-time.

One constraint of this technique is that the maximum order of

reflection after diffraction for each ray is limited by the order

of the static diffraction image tree (as with all image trees).

Nevertheless, if a high order of reflection after diffraction is

required, then it is possible to expand the precreated diffraction

tree at run-time at the expense of speed.

Fig. 3(a) shows an image tree with solid-shaded circles

representing reflection and dashed shaded circles representing

diffraction. Three of the diffraction nodes have the same diffrac-

tion edge, and hence, they have the same child tree. Fig. 3(b)

shows that this redundancy is removed by dynamic linking to

a precreated diffraction tree. Note that a typical single-element

image tree (including diffraction trees) is around 100 MB for

the studies reported here. This compares to around 25 MB when

precreated diffraction image trees are used.

4) Grid Computing: One advantage of image-based ray

tracing is that the same image tree can be used in the creation

of all ray trees with the same trace configuration. A typical ray-

tracing application has many receiver points (ray trees), and this

provides a way to exploit parallel processing. The ray-tracing

model, which is discussed here, can split the creation of the ray
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Fig. 3. Precreation of diffraction trees.

trees into multiple subtasks, each handling a number of receiver

points. Each subtask is capable of performing stand-alone ray

tracing with the same image tree. Hence, the whole ray-tracing

process can be distributed into multiple subtasks for the grid-

computing process (see Fig. 1). This greatly enhances the speed

of the ray-tracing process and makes it feasible to perform rapid

route and grid analysis. The only insignificant overhead is the

need to combine subtask results into a single structure. The

speed of ray tracing can be improved linearly with the number

of grid-computing processors. In [23], a comparison test using

ten processors was performed and the use of grid-computing

reduced run-time by around 850%.

D. Implementation of MIMO Ray Tracing

When multiple-antenna systems are used in a deterministic

ray model, the computational cost of the resulting MIMO

prediction is a major drawback. In [24], two MIMO modeling

approaches were investigated. Both methods made use of an

enhanced deterministic ray-tracing propagation model. The

first method relied on point-to-point prediction for each of

the multiple element-to-element links. The second approach

estimated the MIMO link matrix from a single point-to-point

ray-tracing study. A comparison of normalized capacity and

path loss was performed for the two methods in an outdoor city-

center environment. A comparison with the measured array data

was also reported, and the results showed that the single point-

to-point approximation worked well and could significantly

reduce run-time when compared to the full element-to-element

prediction approach. The ray-tracing model used here supports

both techniques.

III. VALIDATION TRIAL SETUP

A. Measurement Scenario

The measurements used for comparison were conducted in

and around the University of Bristol precinct (see Fig. 4)

[37]. The receiving antennas were located at a number of

sites in Berkeley Square, which is surrounded by commercial

and residential buildings, to provide a mixture of line-of-sight

Fig. 4. Trial location in the city of Bristol.

Fig. 5. Measurement locations showing static points P1–P5 and moving
routes M1–M7.

(LoS) and nonline-of-sight (NLoS) measurement points. The

transmitting antennas were mounted on the roof of Queen’s

Building, facing toward the square, well above the mean level

of the local clutter (at a bore sight of about −140◦). The mean

distance from the transmit site to Berkeley Square is around

300 m. The five point (P) and seven moving (M) measure-

ments were taken during the trial campaign. The moving mea-

surements covered a distance of 2–3 m at a mobile speed of

10–15 km/h (a full summary of the measurement types and their

locations is given in Fig. 5). The point measurements consist of

800 MIMO snapshots, while the moving measurements consist

of 128 MIMO snapshots.

The measurements were performed using a Medav Chan-

nel Sounder [37], [45]. A bandwidth of 20 MHz at a center

frequency of 1.92 GHz was used. The frequency resolution

was 156.25 kHz. The transmit output power was 36 dBm. The

transmitting antennas used two commercially available dual

polarized (±45◦) UMTS panel antennas [see Fig. 6(a)]. These

antennas offered a 17-dBi gain, with 20 dB of cross-polar dis-

crimination. The antennas were mounted on the rooftop, spaced

3.12 m (or 20λ) apart and with 8◦ of mechanical down tilt.
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Fig. 6. (a) Transmitter mounted on building top. (b) UCA receiver mounted
on car top.

The half power azimuth beamwidth was 65◦, and the vertical

beamwidth was 7◦. The receiving antennas used a uniform

circular array, made up of eight omnidirectional monopoles

mounted on the top of a vehicle at approximately 1.7 m from the

ground [see Fig. 6(b)]. The interelement spacing was 0.5λ. This

circular array was designed and constructed at the University of

Bristol. Given four transmit ports (±45◦ × 2) and eight receive

ports, each measurement snapshot results in a 4 × 8 MIMO

channel matrix.

B. Ray-Tracing Model Setup

A 1-km by 1-km area of central Bristol is represented in the

model using the geographic database shown in Fig. 4. Building

and foliage are represented as flat-topped vectorized polygonal

objects. Terrain is sampled at 10-m resolution. The database

consists of 995 buildings, 174 foliage objects, 12 495 building

polygons, 61 733 building polygon tiles, 7921 building corner

edges, and 14 046 terrain pixels.

Fig. 7. (a) Synthesized pattern for transmitter. (b) Measured monopole.

The transmitting antenna-element patterns used for the pre-

diction analysis were produced synthetically (since the size

of the antenna made it very difficult to measure), as shown

in Fig. 7(a). The pattern-synthesis technique in [38] was used

to generate antenna patterns that closely match the antenna

specifications used in practice. For the receiving monopole

element, isolated monopole patterns measured in the University

of Bristol’s anechoic chamber were used, as shown in Fig. 7(b).

Ray-tracing operations are performed up to four orders of

reflection and two orders of diffraction. Foliage loss, building

scatter, and terrain scatter were all included. The electrical

properties of the buildings and terrain are given in Table I, with

typical parameters used from the literature [39]–[42].

Ray-tracing produces ray results with infinite resolu-

tion in all domains, i.e., delay/frequency, time/Doppler, and

angular/spatial [43]–[45]. Thus, before performing any prac-

tical analysis in any of these domains, the ray results are

processed to have the same resolution as the target physical-

layer system. This process is referred to as band limiting or

binning. The band-limiting process of a 1-D channel in the

time-delay/frequency-domain model is shown as follows:

Hk =

N−1
∑

i=0

γie
−2πj(k−1)(∆f)(τi) (1)

where Hk is the kth channel-frequency-response sample, k is

the channel-frequency-response sample number, N is the total

number of rays, ∆f is the frequency resolution, which is deter-

mined by the maximum excess delay (or the Doppler domain

resolution), τi is the time delay of the (i+ 1)th ray, and γi is the

complex E field of the (i+ 1)th ray. Equation (1) assumes an

ideal rectangular filter in the frequency domain [46]. In order to
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TABLE I
ELECTRICAL PROPERTIES OF DATABASE OBJECTS

transform the channel into the time domain, a Fourier transform

can be used. The time-delay resolution can be determined by the

system bandwidth. For higher dimensional channels, such as

directional channels (which include spatial/angular domains), a

similar process is performed to resolve the ray results in each

domain.

For predicting static points, one method of generating

multiple-channel realizations is to randomize the location of the

antennas in a small local area (in the dimension of wavelengths)

to simulate the spatial sensitivity of the scattering environment

[46]. This brute-force method can be time consuming due to

the need to repeat the ray-tracing process. Hence, to generate

further channel realizations, we synthetically change the phase

of the predicted ray paths according to a uniform randomly

distributed displacement of the antennas. GivenM transmitters,

N receivers, and R realizations, the transfer function from the

mth transmitter to the nth receiver in the rth realization for the

f th channel frequency-response sample is

Hm,n(f, r) =
K−1
∑

i=0

ai exp [j (αi − 2π(f − 1)∆fτi + β(r, i))]

(2)

β(r, i) =
2π

λ

(

D(i) · LT(r)+A(i) · LR(r)
)

(3)

D(i) = sin (ϑd(i)) cos (ϕd(i)) x̂

+ sin (ϑd(i)) sin (ϕd(i)) ŷ+cos (ϑd(i)) ẑ (4)

A(i) = sin (ϑa(i)) cos (ϕa(i)) x̂

+ sin (ϑa(i)) sin (ϕa(i)) ŷ+cos (ϑa(i)) ẑ (5)

where ai, αi, and τi represent the magnitude, phase, and time

delay of the ith ray, K is the total number of rays, ∆f is the

frequency resolution, β is the phase displacement, LT and LR
are the random uniformly distributed displacement vectors for

the transmitter and receiver, respectively, and D and A are the

departure and arrival directional vectors of the ith ray. ϑ and

ϕ refer to the angles shown in Fig. 8. The subscripts d and

a denote the departure and arrival angles, respectively. Note

that the random displacement vectors LT and LR must remain

unchanged for different antennasm and n.

The synthesis technique, which is described in (2), is derived

from the principle of phase changes due to small-scale spatial

displacement [46]. It is different from the technique given in

[47]. In [47], multipath components (MPCs) are derived from

the measurements, and a set of random uniformly distributed

phases are applied to all MPCs, thereby generating different

realizations. Each antenna element has the same number of

MPCs, and the same random phase is applied to each antenna

element. Although this approximate technique of applying ran-

Fig. 8. Coordinate system used for the equations in generating random
realizations of H .

Fig. 9. CDF of normalized capacity for realizations with synthesis techniques
and actual antenna displacement.

dom phase is fast, in the ray-tracing application, it is difficult

to apply the same random phases to the same rays for each

multielement antenna, as each antenna element may experience

a different set of rays. Hence, generating random phases and

realizations using random antenna displacements is a more

appropriate (and better) approach in the ray model.

The synthesis technique in (2) is now compared with the

accurate method of antenna displacement. A comparison of

MIMO predictions is made at static location P1 in Fig. 5. There

are 800 realizations studied. Fig. 9 shows a comparison of

the cumulative distribution function (CDF) of the normalized

capacity for the measured, synthesized, and actual displacement

data. A fixed 20-dB signal-to-noise ratio (SNR) is assumed.

A maximum displacement (using a sphere of diameter 1λ and

3λ) is used in the synthesis and actual techniques. It is shown

that a maximum 1λ displacement produces a better agreement

with the measurements. The normalized capacities for the case

of a maximum 3λ displacement suffer from a larger variance,

as the rays seen by the receiver experience larger magnitude
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and phase changes. The actual and synthetic techniques have

produced similar results in this case. As the maximum displace-

ment distance is increased to 3λ, the difference between the

results of the synthesis and the actual displacement techniques

becomes larger. This is expected due to the greater difference

in the directions of the rays when the displacement is large.

Furthermore, differences in the LoS and NLoS scenarios for the

rays between the synthesis and actual displacement case may

contribute significantly to changes in the received field strength.

Hence, the synthetic technique (with a maximum displacement

diameter of 1λ) is used to generate multiple MIMO realizations

for static receiver points in the MIMO validations given in

Section IV.

IV. RAY-TRACING COMPARISON WITH

MIMO MEASUREMENTS

Initially, a range of standard comparisons are performed

using predicted values of the average channel impulse response,

the mean path loss, the mean root mean-square (rms) delay

spread, and the mean Rician K-Factor. Comparisons are then

extended to the MIMO channel, where the derived parame-

ters such as the normalized theoretic MIMO capacity, the

eigenstructure of the H-matrix, and the reciprocal condition

number (RCN) are studied. Comparisons are made between

the site-specific ray model prediction (using the tool described

in Section II) and MIMO measurements at identical locations

using the equipment and procedures described in Section III.

An SNR of 20 dB was assumed together with equal power

distribution to all transmit antennas.

The second part of the comparison process involves the

prediction of PER using MIMO-OFDM extensions to the

IEEE 802.11a physical layer [48]–[50]. SM and STBC versions

of MIMO-OFDM are examined, with average PER calcula-

tions performed for a range of selected points and routes. The

computation of the physical-layer PER using the measured and

ray-traced MIMO channel data is unique to this paper. The

aim of this paper is to demonstrate that the MIMO link-level

performance can be accurately determined using channel data

derived from a site-specific ray model.

Given NT transmitters, NR receivers, and Kf frequency

samples, the channel matrix G is defined as the complex

channel frequency response, where each element gi,j,f is the

complex transmission coefficient between the jth transmit-

ter element and the ith receiver element for the frequency

sample f . H represents the normalized channel matrix [3]:

H =
G

NF
where NF =

√

√

√

√

√

√

NR
∑

i=1

NT
∑

j=1

Kf−1
∑

f=0

|gi,j,f |2

NTNRKf

(6)

where NF represents the normalization factor, such that

E{‖H‖2} = KfNTNR. The same normalization factor is used

for all time realizations for the static points by averaging

across the realization snapshots in a similar manner, providing

that channels in the time snapshots are wide-sense-stationary

(WSS). For moving studies, the normalization factors are cal-

culated for each point separately. The normalized capacity C
can de derived from this channel data, as shown as follows

[1]–[4]:

C =
1

Kf

Kf−1
∑

f=0

log2

(

det

(

INR
+

ρ

NT

H(f)H(f)∗
))

=
1

K

Kf−1
∑

f=0

N
∑

n=1

log2

(

1 +
ρ

NT

εn(f)2
)

(7)

where ∗ represents the Hermitian transposition, INR
is the

identity matrix, ρ is the average SNR, and ε(f) is the square

root of the eigenvalues of matrix H(f)H(f)∗ [or the singular

values of matrixH(f)]. The RCN is as defined in [51] and [52].

Correlation in the H(f)-matrix plays a significant role in

the calculation of channel capacity. This can be seen in the

determinant of the channel correlation matrix H(f)H(f)∗

in (7). The link correlation matrix RH is given in [3], as

RH = E(vec(H(f)) × vec(H(f)∗)), where vec(·) represents

the matrix vector operation. Using the normalization in (6), on

average, each individual link has unity power [53]. In order to

obtain a good estimate of RH from the measured or predicted

channel matrices, many realizations are needed, provided the

channel set is WSS (to ensure that the channel characteristics

and, particularly, their correlations remain stationary) [3], [53].

A bandwidth of 20 MHz centered at 1.92 GHz is used in this

comparison study. The considered bandwidth must be small

enough for all of the 129 frequency snapshots to satisfy our

WSS requirement. For each static point, averaging is performed

over 800 time realizations and 129 frequency snapshots for each

calculation of RH . For moving points along a route, RH is

calculated for each point from an average of the 129 frequency

snapshots. An absolute mean over all RH is calculated for each

route to obtain |RH |.
For a better visual illustration of the channel correlations, a

transformed covariance matrix Rtran is defined by rearranging

the elements of RH in the manner described in the study

in [3]. First, given two arbitrary matrices, A of dimensions

NT ×NT and B of dimensions NR ×NR, a permutation

matrix T is defined which rearranges the elements of A⊗B,

where ⊗ is the Kronecker product, such that Tvec(A⊗B) =
vec(a · bT), where a = vec(A); b = vec(B). The permutation

matrix T is then used to rearrange RH to form Rtran, where

vec(Rtran) = Tvec(RH). BothRH andRtran have dimensions

(NT ×NR, NT ×NR). Fig. 10 shows a plot of |Rtran| for a

4 × 8 ideal uncorrelated Rayleigh fading channel Hray, where

the transmission coefficients are independent and identically

distributed (i.i.d.) complex Gaussian random variables, Hray ∈
CN(0, 1).

It is shown in Fig. 10 that |Rtran| is divided into

4 × 8 block regions. Each block region is further subdivided

into a set of 8 × 4 correlation coefficients. Each correla-

tion coefficient is the complex correlation coefficient between

transmission coefficients of index ([1, . . . , NR], [1, . . . , NT ])
within each block region and transmission coefficients of index

([1, . . . , NT ], [1, . . . , NR]) given by the block-region index.

The rows of the block regions represent the transmitter index,
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Fig. 10. Magnitude plot of |Rtran| for an ideal uncorrelated Rayleigh fading
channel. Peaks show the autocorrelation points for each block region.

and the columns represent the receiver index. However, the

rows of the coefficients within each block region represent

the receiver index, and the columns represent the transmitter

index. Hence, the autocorrelation points are shown as peaks in

each block region. The trend of the decay in the correlation

magnitude from the autocorrelation points provides a strong

visualization of the correlations between the subchannels [3].

A. MIMO and Wideband Characteristics Comparison

Table II provides a summary of the mean path loss, Rician

K-factor, and rms delay spread for each of the test locations

considered in this paper. The table also includes a number of

derived 4 × 8 MIMO parameters, such as the mean normalized

capacity, a set of four eigenvalues, and the RCN parameter. In

the case of the normalized capacity, a statistical CDF com-

parison is performed later in the section. Due to the limited

measurement data set, this statistical analysis is not extended

to the other parameters.

As shown in Table II, an absolute mean path-loss error

of 2 dB is seen, which agrees well with the observed er-

rors from a range of previous ray-tracing models [16]–[21],

[23]–[26]. An absolute mean error in normalized theoretic

MIMO capacity of 1.51 b/s/Hz was obtained (based on an av-

erage MIMO capacity of around 22 b/s/Hz). This result shows

that the ray model is capable of providing accurate estimates

of the theoretic MIMO capacity in this particular geographic

region (i.e., values that agree well with those measured). The

absolute mean error for the two most significant eigenvalues

was seen to be less than 1 dB, which implies an accurate predic-

tion of the MIMO eigenstructure. The absolute mean error for

the RCN parameter was approximately 2.5 dB, with predictions

accurately following the trends seen in our measured data.

Overall, the values quoted in Table II demonstrate that our

MIMO ray-tracing predictions enjoy a good agreement with the

measured results in the region. Most importantly, the prediction

errors for the eigenvalues are small, and hence, the correlation

structures in the MIMO subchannels are well predicted [4].

This strong level of agreement also supports our polarization-

modeling approach, since the transmitter used in our measure-

ment program was dual polar.

On average, the ray-tracing model was seen to under predict

the MIMO capacity by around 10%. This was mainly due

to a lack of decorrelated fading in the predicted channels, as

evident in the larger mean error of the two least significant

eigenvalues and the lower RCN values. This error is likely to

arise from a lack of scatter in the model (partly due to the use

of a simplified database). The theoretic MIMO capacity is a

random variable in this case, with its practical limit given by

assuming an i.i.d. complex Gaussian channel matrix. Perfectly

decorrelated fading channels generate a set of equal magnitude

eigenvalues (for a normalized channel matrix). Fig. 11 shows a

comparison of the measured and predicted CDF of the normal-

ized capacity at point P2 (4 × 8 MIMO channel) against that of

an ideal uncorrelated Rayleigh (i.i.d. Rayleigh) fading channel.

As expected, the predicted capacity is lower than the measured

value, and both are less than the ideal i.i.d. Rayleigh case.

As described previously, the channel covariance matrixRtran

shows the spatial correlation characteristic of each subchannel,

and this can provide a visual understanding of the subchan-

nel correlations. Fig. 12 shows a comparison of |Rtran| as

generated from the Medav measurements and the ray-tracing

predictions for channel M1. As shown in Table II, the average

difference in the normalized capacity between the measurement

and prediction along route M1 is just 0.1 b/s/Hz (based on

a measured value of 23.95 b/s/Hz). The eigenvalues are also

shown to closely agree, demonstrating that the ray model is

able to recreate the detailed MIMO channel structure along

this route. Fig. 12 shows that the measured and predicted

|Rtran| agree well, with a difference in the absolute average

correlation coefficients of just 0.093. The predicted channels

can be seen to suffer from higher correlation values at the

receiving elements, since the vertical correlation coefficients

in each block region are higher than those for the measured

channels [3]. In both channels, the correlation between the

first and second transmitter elements, or the third and fourth

transmitter elements, are high; this is shown by the horizontally

decaying magnitude of the correlation coefficients from the

autocorrelation peak in each block region (a higher magnitude

spread is seen in the left or right horizontal region at the

autocorrelation peak in each block region). This shows that,

even though those two sets of transmitter elements are dual

polarized, they still experience high correlation levels since

they are in the same location and suffer correlated spatial

fading in a similar scattering environment. On the other hand,

low correlation is experienced between element set (1, 2) and

element set (3, 4), due to the uncorrelated spatial fading at an

antenna separation distance of 20λ.

Fig. 13 shows a comparison of |Rtran| for route M6, where

the predicted and measured normalized capacities have pro-

duced a larger average error of −2.39 b/s/Hz; with an RCN

difference of −3.73 dB. Here, the predicted channels suffer

higher levels of correlation across both the transmit and receive

elements, with the high-magnitude correlation coefficients de-

caying away in both the horizontal and vertical direction

from the autocorrelation peak. An absolute average correlation



NG et al.: EFFICIENT MULTIELEMENT RAY TRACING WITH SITE-SPECIFIC COMPARISONS 1027

TABLE II
SUMMARY OF MEAN VALUE OF MIMO AND WIDEBAND CHARACTERISTICS ON ALL LOCATIONS

Fig. 11. CDF of normalized MIMO capacity (4 × 8) at P2 (measured,
predicted, and theoretic i.i.d. Rayleigh).

coefficient difference of 0.18 is seen in this case. Overall, the

predicted channels produce higher correlation levels between

the subchannels, with an absolute average correlation coeffi-

cient error of 0.15 and an average correlation coefficient error

of −0.045. It is these higher correlation values that result in the

lower capacity predictions (see Fig. 14). The lower predicted

decorrelation values are thought to result from a number of

factors. These include the environment database, the electro-

magnetic models, and the antenna model. It should be noted

that these factors are also the main contributor for the prediction

error in conventional ray-tracing models [39], [54], [55].

The complexity of the environment database determines

the level of detail used to represent the real world. Database

complexity is also directly proportional to the computational

cost of ray tracing. The richness of the scatter in a modeled

environment will always be poorer than the real world. Fades

in a rich scattering environment tend to be more spatially

decorrelated (due to higher angular spreads), and hence, real-

world channels result in higher MIMO channel capacities [4].

Geometrical errors in the database objects and the positioning

of the transmitter and/or receiver can also have a significant im-

pact on the accuracy of the received power prediction. Finally,

errors in the electromagnetic models (such as UTD, Fresnel

reflection coefficients, and scattering model) used for each

propagation mechanism have a direct impact on the received

power, and hence, the prediction of the channel matrix.

Antenna modeling includes the modeling of the antenna

pattern as well as any mutual coupling effects that result

from near-field propagation. The antenna patterns that are used

in this validation study were obtained via anechoic chamber

measurements for the receiving monopoles [see Fig. 7(b)] and

via synthetic-pattern generation for the transmitting antennas

[see Fig. 7(a)]. In general, the use of measured antenna pat-

terns (instead of synthetic patterns) produced higher levels of

fading decorrelation [56]. This is mainly due to the pattern

diversity that results from the complexity of the measured

side-lobes. Measured patterns result in lower spatial-radiation-

pattern correlation compared to simplified synthetic patterns.

Fig. 15 shows a comparison of normalized capacity for the
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Fig. 12. Magnitude plot of |Rtran| for (left) measured and (right) predicted
channels at M1.

cases where measured and synthetic antenna patterns were

used at location P5 in Fig. 5. The antenna pattern, which is

shown in Fig. 7(b), and a synthesized monopole that exhibits

an ideal half-dipole pattern, with an infinite ground plane, are

now used to represent the receiver monopoles. The transmit

antenna patterns remained unchanged in this paper (i.e., based

on synthetic patterns). It can be seen that, in this particular

case, the measured antenna pattern improves the normalized

capacity (the mean error improves by around 0.6 b/s/Hz).

Fig. 16 provides a comparison of Rtran for the cases of mea-

sured and synthesized receiver-antenna patterns. It can be seen

that the measured antenna patterns produce lower correlation

coefficients around the autocorrelation peaks, compared to the

case with ideal synthesized patterns. An average difference in

the correlation coefficient of −0.036 is seen with this data.

Thus, the use of synthesized transmit-antenna patterns in our

comparison study may well account for a large part of the

prediction error. Furthermore, it should be noted that our studies

ignore mutual coupling effects, which, in some cases, are

reported to have a significant impact on MIMO capacity [57].

Fig. 13. Magnitude plot of |Rtran| for (left) measured and (right) predicted
channels at M6.

While the work reported in [56] and [57] also considers the use

of ray tracing to study the performance of MIMO systems, this

prior work focuses on the modeling of the antenna elements.

In this paper, we focus on comparing the predicted MIMO

channel response (and a number of derived parameters) to

those from practical measurements in an urban environment.

Such comparisons have not been previously reported in the

literature.

B. MIMO-OFDM Physical-Layer Performance Comparison

In this section, we compare the average PER as a function of

Eb/N0 using the measured and predicted MIMO channels. The

physical layer assumes MIMO-OFDM with parameters closely

based on the IEEE 802.11a. Both STBC and SM schemes are

considered [5]–[14]. The aim is to demonstrate that ray-traced

MIMO channels are a viable substitute for measured chan-

nel data when determining physical-layer performance. The

16-QAM with 1/2 rate coding and ideal channel knowledge

is assumed. A total of 4896 channel snapshots are used from

seven measurement routes (each with 128 snapshots) and five
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Fig. 14. Magnitude plot of overall absolute averaged |Rtran| for all (left)
measured and (right) predicted channels.

Fig. 15. Comparison of CDF of normalized capacity at P5 with measured and
synthetic antenna pattern.

Fig. 16. Magnitude plot of |Rtran| at P5 for the case of using measured and
synthetic antenna pattern.

static measurement points (each with 800 snapshots). In the

extraction of the power-delay profile, a dynamic threshold

window of 30 dB is used (measured from the power peak).

This threshold is used to remove weak paths and any noise

floor present in the measured channels. A 4 × 4 MIMO channel

configuration is used, with antennas selected from the four cross

elements of the eight-element Uniform Circular Array (UCA)

receiver. A detailed description of the physical-layer parameters

and the detection algorithms can be found in [48]–[50].

Simulations were performed for all locations; however, due

to space restrictions, only subsets of the results are presented in

this paper. Fig. 17 shows the comparison of PER for locations

P2, P5, and M3 using the SM and STBC schemes. The PER

performance was seen to vary significantly from location to

location when the SM scheme was applied. This occurred for

both measured and predicted channels and implies that the SM

schemes are very sensitive to the MIMO channel structure. This

occurs partly because SM systems do not explicitly exploit

diversity gain [7]–[14]. In comparison, the STBC scheme gave
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Fig. 17. PER for locations P2, P5, and M3 (SM and STBC). (solid lines)
Measured. (dashed lines) Predicted.

TABLE III
CORRELATION COEFFICIENT BETWEEN Eb/N0 AND

VARIOUS CHARACTERISTICS

very stable results. The average PER using the predicted and

measured channel data was seen to be in close agreement. A

meanEb/N0 error (compared to PER results from the measured

channel data) of 4 and 1 dB was calculated for the SM and

STBC schemes, respectively. As shown in Table II, the RCNs as

calculated from the measurements, and ray-tracing predictions

for locations P2 and M3 are in close agreement, and this is

reflected in the PER results for SM. The small difference in

the RCNs for location P5 results in a larger variation in the

PER performances for the predicted and measurement MIMO

channels.

Table III shows the correlation between the Eb/N0 (at a

PER of 1%) and the rms delay spread, K-factor, normalized

capacity, and RCN. It can be seen that the high rms delay

spread, high normalized capacity, low RCN, and low K-factor

generally correlate to a better PER performance for SM systems

[9]. Since near-identical correlations are shown in Table III

using the measured and predicted channel data, for our dataset,

we conclude that the complex relationship between PER and

MIMO channel structure is faithfully replicated in our ray-

traced data. Clearly, more detailed-measurement campaigns are

required to confirm this result in the wider sense.

V. CONCLUSION

An efficient ray-tracing propagation model has been devel-

oped and its predictions compared against a set of measured

data in a dense urban environment. The model used a detailed

geographic database comprising 3-D building data, foliage,

and terrain heights. Detailed corner and rooftop diffraction

was modeled, together with specular reflection and scattering

from buildings and terrain. These features were particularly

important in the MIMO case, where the modeling of rich scatter

was found to be important. The model combined a range of

sophisticated optimization techniques to accelerate the ray-

path-finding process. These features enabled the model to per-

form fast propagation analysis in complex environments. These

acceleration methods are particularly welcome for MIMO sys-

tems, where exhaustive ray tracing is performed for all antenna-

element pairs.

Comparison with MIMO measurement data showed good

agreement in the prediction of wideband and MIMO charac-

teristics. An average path-loss error of 2 dB and a normalized

capacity error of 1.5 b/s/Hz (less than 10% of the measured

capacity) were seen. Comparisons also extended to the eigen

and correlation structure of the MIMO channel in both LoS

and NLoS locations. The measurement data included the use

of dual polar antenna elements, and the model was shown to

successfully predict all major trends.

The antenna pattern was shown to have a strong impact on

performance. While reasonable agreement was achieved using

synthetic patterns, in our analysis, the best predictions were

achieved using measured antenna patterns from an anechoic

chamber. Measured patterns were found to have more detailed

side- and back-lobe information, which in this particular case,

helped to improve the quality of our predictions.

Unique to this paper, our comparisons were extended to an-

alyze the PER performance of two popular MIMO-OFDM sys-

tems (SM and STBC). Channel data was measured at 1.92 GHz

and also generated using the ray model for identical locations

and antenna structures. Comparison of PER results showed

good agreement, with errors in Eb/N0 at a PER of 1% varying

from 1 to 4 dB between the measured and modeled channels.

The SM schemes were seen to be far more sensitive to small

variations in correlation,K-factor, and/or rms delay spread.

Our studies indicate that ray models of this type can be

used to generate statistically relevant MIMO channel data

for any antenna structure and deployment strategy. Given the

close agreement seen here with measured MIMO channel data,

we conclude that ray models could be used to optimize the

configuration of future MIMO systems (i.e., the number of

antennas, the antenna geometry, the use of polarization, the

form of modulation and coding, etc.). Alternatively, models of

this type could be used to aid the site-specific deployment of

emerging networks, such as those based on 802.11n or 802.16e.

Further validation studies (ideally in other environments and

with a broader set of measurements) are required to confirm

these findings.
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