
Efficient Multiparty Computations

Secure Against an Adaptive Adversary

Ronald Cramer1, Ivan Damg̊ard2, Stefan Dziembowski2, Martin Hirt1, and
Tal Rabin3

1 ETH Zurich†

{cramer,hirt}@inf.ethz.ch
2 Aarhus University, BRICS‡

{ivan,stefand}@daimi.aau.dk
3 IBM T.J.Watson Research Center

talr@watson.ibm.com

Abstract. We consider verifiable secret sharing (VSS) and multiparty
computation (MPC) in the secure-channels model, where a broadcast
channel is given and a non-zero error probability is allowed. In this model
Rabin and Ben-Or proposed VSS and MPC protocols secure against an
adversary that can corrupt any minority of the players. In this paper, we
first observe that a subprotocol of theirs, known as weak secret sharing
(WSS), is not secure against an adaptive adversary, contrary to what was
believed earlier. We then propose new and adaptively secure protocols
for WSS, VSS and MPC that are substantially more efficient than the
original ones. Our protocols generalize easily to provide security against
general Q2-adversaries.

1 Introduction

Since the introduction of multiparty computation [Yao82, GMW87], its design
and analysis has attracted many researchers, and has generated a large body
of results. The problem stated very roughly is the following: Consider a set of
players each holding a private input, who wish to compute some agreed upon
function of their inputs in a manner which would preserve the secrecy of their
inputs. They need to carry out the computation even if some of the players
may become corrupted and actively try to interfere with the computation. So-
lutions to this problem have been given in various models and under different
computational assumptions.

One of the major components of the model is the type of adversary which
is assumed. The adversary is the entity which corrupts a set (of size up to t)
of players during the execution of the protocol and takes control of their ac-
tions. Two types of adversaries have been considered in the literature (barring

† Supported by the Swiss National Science Foundation (SNF), SPP 5003-045293.
‡ Basic Research in Computer Science, center of the Danish National Research Foun-

dation.

J. Stern (Ed.): EUROCRYPT’99, LNCS 1592, pp. 311–326, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

312 Ronald Cramer et al.

slight variations): static adversaries and adaptive adversaries. The static ad-
versary needs to choose the set of corrupted players before the execution of
the protocol. The adaptive adversary on the other hand can choose the players
during the execution of the protocol. It has been stated that the protocols of
[BGW88, CCD88, RB89, Bea91] are secure against an adaptive adversary under
the assumption that the players communicate via secure private channels.1 In
all these results the protocols are information theoretically secure. This has led
many to believe that if a protocol is designed which is information theoretically
secure and is executed in a model with private channels then the resulting pro-
tocol is immediately secure against an adaptive adversary. In the attempt to
further our understanding of the power of these different adversaries we present
an example of a natural protocol (which appears in [RB89]) which is informa-
tion theoretically secure against a static adversary but fails against an adaptive
adversary.

Another important goal in the design of these protocols is to provide protocols
which are simple, so that they could actually be implemented in practice. For the
case where the adversary can corrupt at most a third of the players reasonable
protocols have been proposed [BGW88], but for the case where the adversary
can corrupt a half of the players the existing solutions were quite cumbersome
[RB89, Bea91]. In this paper we present solutions for multiparty computation
(and for verifiable secret sharing) which are much more efficient than any existing
protocol for the case where the adversary can corrupt up to a minority of the
players.

More specifically we obtain a protocol for VSS which for probability of er-
ror 2−k+O(log n) with n players, requires O((k + log n)n3) bits of communication
as opposed to Ω((k + log n)k2n4) bits required by existing protocols. This im-
provement is based in part on a more efficient implementation of information
checking protocol, a concept introduced in [RB89] which can be described very
loosely speaking as a kind of unconditionally secure signature scheme. Our im-
plementation is linear meaning that for two values that can be verified by the
scheme, any linear combination of them can also be verified with no additional
information. This means that linear computations can be done non-interactively
when using our VSS in MPC, contrary to the implementation of [RB89] (this
property was also obtained in [Bea91], but with a less efficient information check-
ing implementation).

An essential tool in MPC (provided in both [RB89] and [Bea91]) is a protocol
that allows a player who has committed, in some manner, to values a, b, and c
to show that ab = c without revealing extra information. We provide a protocol
for this purpose giving error probability 2−k which is extremely simple. It allows
a multiplication step in the MPC protocol to be carried out at cost equivalent
to O(n) VSS’s, where all earlier protocols required O(kn) VSS’s.

Using methods recently developed in [CDM99], our protocols generalize easily
to provide security against general Q2-adversaries [HM97].

1 The transformation of such protocols to the public channel model is outside the
scope of this paper, but the interested reader can refer to [BH92, CFGN96].

Efficient Multiparty Computations Secure Against an Adaptive Adversary 313

Outline
We first show that the weak secret sharing (WSS) scheme of [RB89, Rab94] is
not adaptively secure (Section 3). In Section 4, we propose an efficient implemen-
tation of information checking, and in Section 5, a scheme for verifiable secret
sharing (VSS) is developed. Based on these protocols, in Section 6 an efficient
protocol for multiparty computation (MPC) is presented. Finally, in Section 7 an
efficient protocol secure against general (non-threshold) adversaries is sketched.

2 Model and Definitions

In this paper, we consider the secure-channels model with broadcast, i.e. there
are n players P1, . . . , Pn who are pairwise connected with perfectly private and
authenticated channels, and there is a broadcast channel. There is a central ad-
versary with unbounded computing power who actively corrupts up to t players
where t < n/2. To actively corrupt a player means to take full control over that
player, i.e. to make the player (mis)behave in an arbitrary manner. The adver-
sary is assumed to be adaptive (or dynamic), this means that he is allowed to
corrupt players during the protocol execution (and his choice may depend on
data seen so far), in contrast to a static adversary who only corrupts players
before the protocol starts. The security of the presented protocols is uncondi-
tional with some negligible error probability, which is expressed in terms of a
security parameter k. The protocols operate in a finite field K = GF (q), where
q > max(n, 2k).

2.1 Definition of Information Checking

Information checking (IC) is an information theoretically secure method for
authenticating data. An IC scheme consists of three protocols:

Distr(D , INT ,R, s) is initiated by the dealer D . In this phase D hands the secret
s to the intermediary INT and some auxiliary data to both INT and the
recipient R.

AuthVal(INT ,R, s) is initiated by INT and carried out by INT and R. In this
phase INT ensures that in the protocol RevealVal R (if honest) will accept
s, the secret held by INT .

RevealVal(INT ,R, s′) is initiated by INT and carried out by INT and R. In this
phase R receives a value s′ from INT , along with some auxiliary data, and
either accepts s′ or rejects it.

The IC scheme has the following properties:

Correctness:
A. If D , INT , and R are uncorrupted, and D has a secret s then R will accept

s in phase RevealVal.
B. If INT and R are honest then after the phases Distr and AuthVal INT knows

a value s such that R will accept s in the phase RevealVal (except with
probability 2−k).

314 Ronald Cramer et al.

C. If D and R are uncorrupted, then in phase RevealVal with probability at
least 1 − 2−k, player R will reject every value s′ different from s.

Secrecy:

D. The information that D hands R in phase Distr is distributed independently
of the secret s. (Consequently, if D and INT are uncorrupted, and INT has
not executed the protocol RevealVal, R has no information about the secret
s.)

Definition 1. An IC scheme is a triple (Distr, AuthVal, RevealVal) of protocols
that satisfy the above properties A. to D.

2.2 Definition of WSS

An intuitive explanation for a weak secret-sharing (WSS) scheme is that it is a
distributed analog of a computational commitment. A WSS scheme for sharing
a secret s ∈ K consists of the two protocols Sh and Rec. WSS exhibits the same
properties, i.e. it binds the committer to a single value after the sharing phase Sh
(this is equivalent to the commitment stage in the computational setting), yet
the committer can choose not to expose this value in the reconstruction phase
Rec (which is equivalent to the exposure of the commitments). WSS satisfies the
following properties, with an allowed error probability 2−k:

– Termination: If the dealer D is honest then all honest players will complete
Sh, and if the honest players invoke Rec, then each honest player will com-
plete Rec.

– Secrecy: If the dealer is honest and no honest player has yet started Rec,
then the adversary has no information about the shared secret s.

– Correctness: Once all currently uncorrupted players complete protocol Sh,
there exists a fixed value, r ∈ K ∪ {NULL}, such that the following require-
ments hold:
1. If the dealer is uncorrupted throughout protocols Sh and Rec then r is

the shared secret, i.e. r = s, and each uncorrupted player will outputs r
at the end of protocol Rec.

2. If the dealer is corrupted then each uncorrupted player outputs either r
or NULL upon completing protocol Rec.

Definition 2. A t-secure WSS scheme for sharing a secret s ∈ K is a pair
(Sh, Rec) of two protocols that satisfy the above properties even in the presence
of an active adversary who corrupts up to t players.

Efficient Multiparty Computations Secure Against an Adaptive Adversary 315

2.3 Definition of VSS

An important protocol, which is widely used for multiparty computation, is
verifiable secret sharing (VSS) [CGMA85]. In essence a VSS scheme allows a
dealer to share a secret among n players in such a way that the adversary
that corrupts at most t of the players, obtains no information about the secret.
Furthermore, the secret can be efficiently reconstructed, even if the corrupted
players try to disrupt the protocol. A more formal definition is the following:

A pair (Sh, Rec) of protocols is a verifiable secret-sharing (VSS) scheme if it
satisfies a stronger correctness property, with an allowed error probability 2−k:

– Correctness: Once all currently uncorrupted players complete protocol Sh,
there exists a fixed value, r ∈ K, such that the following requirements hold:
1. If the dealer is uncorrupted throughout protocol Sh then r is the shared

secret, i.e. r = s, and each uncorrupted player outputs r at the end
protocol Rec.

2. If the dealer is corrupted then each uncorrupted player outputs r upon
completing protocol Rec.

Definition 3. A t-secure VSS scheme for sharing a secret s ∈ K is a pair
(Sh, Rec) of two protocols that satisfy the termination and the secrecy property
of WSS, and the above, stronger, correctness property, even in the presence of
an active adversary who corrupts up to t players.

2.4 Definition of MPC

The goal of multiparty computation (MPC) is to evaluate an agreed function
g : Kn → K, where each player provides one input and receives the output.
The privacy of the inputs and the correctness of the output is guaranteed even
if the adversary corrupts any t players. For a formal definition for security see
[GL90, MR91, Bea91, Can98, MR98].

3 Adaptive Security of WSS in [RB89]

In this section we describe a protocol which is secure against a static adversary
yet fail against an adaptive one. The example captures nicely the power of the
adaptive adversary to delay decisions and due to that cause different values to
be computed during the protocol. The protocol which we examine is the weak
secret-sharing scheme (WSS) of Rabin and Ben-Or [RB89, Rab94]. The attack
will only work when t > n/3. It is important to note that this attack applies only
to the WSS protocol of [RB89] as a stand-alone protocol, and does not apply to
their VSS scheme, although it uses the WSS as a subprotocol.

In order to explain the attack we present a simplified protocol of the [RB89]
protocol which assumes digital signatures. It is in essence the same protocol but
with many complicating (non relevant) details omitted.

316 Ronald Cramer et al.

WSS Share (Sh)

The dealer chooses a random polynomial f(x) of degree t, such that f(0) = s
the secret to be shared, and sends the share si = f(i) with his signature for si

to each player Pi.

WSS Reconstruct (Rec)

1. Every player reveals his share si and the signature on si.
2. If all properly signed shares si1, . . . , sik for k ≥ t interpolate a single polyno-

mial f ′(x) of degree at most t, then the secret is taken to be f ′(0), otherwise
no secret is reconstructed.

The definition of WSS requires that at the end of Sh a single value r ∈
K ∪ {NULL} is set so that only that value (or NULL) will be reconstructed in
Rec.

Clearly, if the adversary is static then the value r is set to the value inter-
polated through the shares held by the uncorrupted players. This value is well
defined. If there exists a polynomial f ′(x) of degree t then r = f ′(0) otherwise
r is NULL. During reconstruction if r was NULL then the players will set the
output to NULL as all the shares of the good players will be considered in the
interpolation and possibly some additional shares from the corrupted players. If
r was not NULL then either the additional shares provided by the faulty play-
ers satisfy the polynomial f ′(x) in which case r will be reconstructed. But the
adversary can decide to foil the reconstruction by having the corrupted players
supply shares which do not match f ′(x), but this will only cause the players to
output NULL but not another value r′ 6= r.

Yet, we will show that under an adaptive adversary this requirement does
not hold in the above described protocol. The attack for n = 2t + 1 proceeds as
follows: In the protocol Sh the adaptive adversary corrupts the dealer causing
him to deviate from the protocol. The dealer chooses two polynomials f1(x)
and f2(x) both of degree at most t, where f1(0) 6= f2(0), and f1(i) = f2(i) for
i = 1, 2, 3. For i = 1, . . . , 3, player Pi receives the value f1(i) (=f2(i)) as his
share, for i = 4, . . . , t + 2, player Pi receives f1(i), and for i = t + 3, . . . , 2t + 1,
player Pi receives f2(i) as his share. All shares are given out with valid signatures.

In Rec the adversary can decide whether to corrupt P4, . . . , Pt+2 thus forcing
the secret to be f2(0), or to corrupt Pt+3, . . . , P2t+1 and thus force the secret to
be f1(0). Hence it is clear that at the end of Sh there is not a single value which
can be reconstructed in Rec. The decision on which value to reconstruct can be
deferred by the adversary until the reconstruction protocol Rec is started.

Therefore the basic problem with stand-alone WSS is that it is not ensured
that all honest players are on the same polynomial immediately after distri-
bution. But when using it inside the VSS of [RB89], this property is ensured
as a side effect of the VSS distribute protocol, hence the VSS protocol works
correctly.

Efficient Multiparty Computations Secure Against an Adaptive Adversary 317

4 The Information Checking Protocol

In this section we present protocols that satisfy Definition 1 for information
checking (cf. Section 2.1). They provide the same functionality as the check vec-
tor protocol from [RB89, Rab94] and the time capsule protocol from [Bea91].
However, our implementation of information checking also possesses an addi-
tional linearity property which will be utilized later in the paper.

The basic idea for the construction will be that the secret and the verification
information will all lie on a polynomial of degree 1 (a line), where the secret will
be the value at the origin. The dealer D hands to the intermediary INT two
points on this line, and hands to the recipient R one point at a constant, but
secret evaluation point α. This α is known to both D and R, but is unknown to
INT . We will say that R will accept the secret which INT gives him only if the
point which R holds lies on the line defined by the two points he receives from
INT .

A general remark before we begin describing our protocols: In the following
we adopt (for ease of exposition) the convention that whenever a player expects
to receive a message from another player in the next step, and no message arrives,
he assumes that some fixed default value was received. Thus we do not have to
treat separately the case where no message arrives.

Definition 4. A vector (x, y, z) ∈ K3 is 1α-consistent if there exists a degree 1
polynomial w over K such that w(0) = x, w(1) = y, w(α) = z.

Protocol Distr(D , INT ,R, s):

The dealer D chooses a random value α ∈ K \ {0, 1} and additional random
values y, z ∈ K such that (s, y, z) is 1α-consistent, and in addition he chooses
a random 1α-consistent vector (s′, y′, z′). D sends s, s′, y, y′ to the intermediary
INT and z, z′ to the recipient R.

Protocol Distr (together with RevealVal below) ensures ensures all proper-
ties except Property B. Adding the next protocol ensures this as well, without
affecting A, C and D.

Protocol AuthVal(INT ,R, s):

1. INT chooses a random element d ∈ K and broadcasts d, s′ + ds, y′ + dy. If
D observes that these values are incorrect, he broadcasts s, y. This counts
as claiming that INT is corrupt. In this case the protocol ends here, and the
broadcasted values will be used in the following. R will adjust his value for
z, such that (s, y, z) is 1α-consistent.

2. R checks if (s′ +ds, y′+dy, z′+dz) is 1α-consistent. He broadcasts accept or
reject accordingly. If D observes that R has acted incorrectly, he broadcasts
z, α. This counts as claiming that R is corrupt. In this case the protocol
ends here, and the broadcasted values will be used in the following. INT will
adjust his value for y, such that (s, y, z) is 1α-consistent.

318 Ronald Cramer et al.

3. If R rejected (and D did not claim him faulty) in the previous step, D must
broadcast s, y, and the broadcasted values will be used in the following. R
will adjust his value for z, such that (s, y, z) is 1α-consistent.

Protocol RevealVal(INT ,R, s):
1. INT broadcasts (s, y).
2. R verifies that (s, y, z) is 1α-consistent and broadcasts accept or reject ac-

cordingly.

Lemma 1. The protocols (Distr, AuthVal, RevealVal) described above satisfy Def-
inition 1 for information checking (Section 2.1).

Proof. We show that each property is satisfied:

A. It is clear that if all parties are honest, R will accept, and D will never
broadcast any values.

B. The property is trivial in the cases where D broadcasts s, y or z, α. So it is
enough to show that if D sends an inconsistent (s, y, z) initially, then R re-
jects with high probability. However, if for e 6= d, both (s′+ds, y′+dy, z′+dz)
and (s′+es, y′+ey, z′+ez) are 1α-consistent, then their difference and hence
also (s, y, z) is 1α-consistent. By the random choice of d it follows that R
will accept with probability at most 1/|K| whenever (s, y, z) is inconsistent.

C. This property will follow from the fact that INT does not know α. Actually,
we will show it holds, even if D uses the same α in all invocations of the
protocol. We will exploit this property later. First note that INT learns no
information on α from the Distr, AuthVal protocols: what he gets in Distr
has distribution independent of α. In AuthVal, if he sends correct values, he
knows in advance they will be accepted; if he doesn’t, he knows that D will
complain. Note also that this holds even if we consider many invocations of
the authentication protocol together. Thus, all INT knows about α a priori
is that it can be any value different from 0, 1, and all candidates are equally
likely.
Consider now the position of INT just before the opening of the first s-
value. If he sends the correct s, y, or changes one of the values, he knows
in advance R’s reaction and so learns nothing new. If he sends s′, y′ where
s′ 6= s, y′ 6= y, then R will accept if (s′, y′, z) is 1α-consistent. We know
that (s, y, z) is 1α-consistent by its definition, thus so is (s − s′, y − y′, 0).
This gives a non-trivial degree 1 equation from which α can be computed.
In other words, INT must guess α to have R accept a false value. He can do
this with probability at most 1/(|K| − 2). On the other hand, if R rejects,
all INT knows is that the solution to the equation is not the right value, so
it can be excluded.
It follows by induction that if at most ` values are opened, at least |K|−`−2
candidates for α remain from the point of view of INT , and no false values
have been accepted, except with probability at most `/(|K| − ` − 2). In the
application to VSS, ` will be linear in n, so the error probability is at most
2−k+O(log n).

Efficient Multiparty Computations Secure Against an Adaptive Adversary 319

D. If D and INT remain honest and R is corrupt, we must show that R does not
learn s ahead of time. Observe that in the authentication protocol, R learns
z, z′, d, s′ + ds, y′ + dy. Note that since D and INT are honest, R knows in
advance that (s′ +ds, y′ +dy, z′ +dz) will be 1α-consistent. He can therefore
compute y′ + dy from z, z′, d, s′ + ds, and this value can be deleted from his
view without loss of generality. However, it is clear that z, z′, d, s′ + ds has
distribution independent of s.

Linearity of the IC Protocol
In our multiparty computation protocol we would like to be able to authenticate
a linear combination of two values. The setting is as follows: D , R and INT
have executed both protocols Distr and AuthVal for two different values s1 and
s2. Now they wish to reveal a linear combination of these two secrets without
exposing s1 and s2 and without carrying out any additional verification. This
can be achieved if for both invocations of the IC protocol the dealer chooses
the same value α as the random evaluation point which he gives to R. Then all
the properties of the protocol still hold with the addition that the appropriate
linear combination of the verification data yields a verification for the linear
combination of s1 and s2.

IC-Signatures
In the sequel we will want to use the information checking protocol as semi
“digital signatures”. When a person receives a digital signature from a signer,
he can later show it to anyone and have that person verify that it is in fact a
valid signature. This property can be easily achieved with information checking,
by carrying out the protocol with all players as explained bellow. We do not
achieve all properties of digital signatures, but enough in order to achieve our
goals.

The IC-Signatures will be given in the following way. Protocol Distr will be
carried out by the dealer D with intermediary INT and the receiver being each
player P1, . . . , Pn, each with respect to the same value s. Next, the AuthVal pro-
tocol will be performed by INT and each player Pi. Then, in protocol RevealVal,
INT will broadcast s and the authentication information, and if t + 1 players
accept the value s then we shall say that the “signature” has been confirmed. We
shall call these signatures IC-signatures. These signature enable D to give INT
a “signature” which only INT can use to convince the other players about the
authenticity of a value received from the dealer. Thus, we use these IC-signatures
as signatures given specifically from D to INT , and we denote such a signature
as σs(D , INT).

5 Verifiable Secret Sharing

We now present our simplified VSS protocol. The protocol is based on the bivari-
ate solution of Feldman [FM88, BGW88] (omitting the need for error correcting

320 Ronald Cramer et al.

codes). The protocol will use our new variant of information checking which will
provide us with high efficiency.

Definition 5. A vector (e0, . . . , en−1) ∈ Kn is t-consistent if there exists a
polynomial w(x) of degree at most t such that w(i) = ei for 0 ≤ i < n.

The intuition behind the construction is that the secret will be shared using
an n×n matrix of values, where each row and column is t-consistent, and where
row and column i is given to player Pi. Thus, for i 6= j, Pi and Pj share two
values in the matrix. The dealer will commit himself to all the values by signing
each entry in the matrix. The row determines by simple interpolation a share of a
single variate polynomial. Thus, de facto the dealer has given player Pi a signed
share, si. The players can now check consistency of the matrix by comparing
values between them and expose inconsistent behavior by the dealer using the
signatures. Hence we are guaranteed that all the values held by (yet) uncorrupted
players are consistent and define a single secret.2 In order to also have the share
of player Pi signed (implicitly) by the other players, player Pi gets the share bij

in his row signed by player Pj . Now this in return will prevent the adversary
from corrupting the secret at reconstruction time.

VSS Share (Sh)

1. The dealer D chooses a random bivariate polynomial f(x, y) of degree at
most t in each variable, such that f(0, 0) = s. Let sij = f(i, j). The dealer
sends to player Pi the values a1i=s1i, . . . , ani=sni and bi1=si1, . . . , bin=sin.
For each value aji, bij D attaches a digital signature σaji (D, Pi), σbij (D, Pi).

2. Player Pi checks that the two sets a1i, . . . , ani and bi1, . . . , bin are t-consistent.
If the values are not t-consistent, Pi broadcasts these values with D ’s signa-
ture on them. If a player hears a broadcast of inconsistent values with the
dealer’s signature then D is disqualified and execution is halted.

3. Pi sends aji and a signature which he generates on aij , σaji(Pi, Pj) privately
to Pj .

4. Player Pi compares the value aij which he received from Pj in the previ-
ous step to the values bij received from D . If there is an inconsistency, Pi

broadcasts bij , σbij (D, Pi).
5. Player Pi checks if Pj broadcasted a value bji, σbji (D, Pj) which is differ-

ent than the value aji which he holds. If such a broadcast exists then Pi

broadcasts aji, σaji (D, Pi).
6. If for an index pair (i, j) a player hears two broadcasts with signatures from

the dealer on different values, then D is disqualified and execution is halted.

VSS Reconstruct (Rec)

1. Player Pi broadcasts the values bi1, . . . , bin with the signature for value bij

which he received from player Pj . (If he did not receive a signature from
Pj in the protocol Sh then he had already broadcasted that value with a
signature from D .)

2 So far, this results in a WSS which is secure against an adaptive adversary.

Efficient Multiparty Computations Secure Against an Adaptive Adversary 321

2. Player Pi checks whether player Pj ’s shares broadcasted in the previous step
are t-consistent and all the signatures are valid. If not then Pj is disqualified.

3. The values of all non-disqualified player are taken and interpolated to com-
pute the secret.

Theorem 1. The above protocols (Sh, Rec) satisfy Definition 3 for VSS proto-
cols.

Proof. We prove that each required property is satisfied:

Secrecy. Observe that in Steps 2–6, the adversary learns nothing that he was
not already told in Step 1. Thus the claim follows immediately from the
properties of a bi-variate polynomial of degree t and the properties of the
information checking.

Termination. From examining the protocol it is clear that the dealer D can be
disqualified only if the data which he shared is inconsistent, assuming that
the players cannot forge any of the dealers signatures, of which there are
O(n). Thus, an honest dealer will be disqualified at most with probability
O(2−k+log n).

Correctness. First we will show that a fixed value r is defined by the distribu-
tion. Define r to be the secret which interpolates through the shares held by
the set of the first t+1 players who have not been corrupted during Sh. Their
shares are trivially t-consistent, and with probability at least 1−O(2−k+log n),
there are correct signatures for these shares, and thus they define uniquely
an underlying polynomial f ′(x, y) as well as a secret r = f ′(0, 0). Let us
look at another uncorrupted player outside this set. He has corroborated
his shares with all these t + 1 players and has not found an inconsistency
with them. Moreover, this player has also verified that his row and column
are t-consistent. Hence, when this player’s shares are added to the initial
set of players’ shares the set remains t-consistent, thus defining the same
polynomial f ′ and secret r. Now we examine the two correctness conditions:
1. It is easy to see that if D is uncorrupted then this value r = s.
2. A value different than r will be interpolated (or the reconstruction will

fail) only if a corrupted player would be able to introduce values which
are inconsistent with the values held by the honest players. A corrupted
player succeeded doing it only when he was not disqualified in Step 2. of
the reconstruction procedure. This means that he was able to produce
a set of n values which are t-consistent, and for each value to have a
signature from the appropriate player to which it relates. Clearly, t+1 of
these signatures must be from still uncorrupted players. We have already
shown that these players’ shares lie on f ′(x, y), thus if the corrupted
player’s shares are t-consistent they must lie on f ′(x, y) as well. Therefore
the adversary cannot influence the value of the revealed secret.

ut
Efficiency. By inspection of the VSS distribution protocol Sh, one finds that
n2 field elements are distributed from D , and each of these are authenticated

322 Ronald Cramer et al.

using Distr and AuthVal a constant number of times. Executing Distr and AuthVal
requires communicating a constant number of field elements for each player, and
so we find that the total communication is O((k + log n)n3) bits, for an error
probability of 2−k+O(log n).

6 Multiparty Computation

Based on the VSS scheme of the previous section, we now build a multiparty
computation protocol. Based on the [BGW88] paradigm it is known that it is
sufficient to devise methods for adding and multiplying two shared numbers.

Note that in our case (contrary to e.g. [BGW88]) a VSS of a value a consists
not only of the shares a1, . . . , an where ai is held (in fact implicitly) by Pi,
it is explicitly held by Pi via the subshares ai1, . . . , ain where aij is held also
by player Pj , and Pi has a IC-signature from Pj on that value. This structure
and the IC-signatures are required for the reconstruction. Thus, if we wish to
compute the sum/multiplication of two secrets we need to have the resultant in
this same form.

We will prove the following theorem in the next two subsections.

Theorem 2. Assume the model with a complete network of private channels
between n players and a broadcast channel. Let C be any arithmetic circuit over
the field K, where |K| > max(n, log k) and k is a security parameter. Then
there is a multiparty computation protocol for computing C, secure against any
adaptive adversary corrupting less than n/2 of the players. The complexity of this
protocol is O(n2|C|) VSS protocols with error probability 2−k+O(log n), where |C|
is the number of gates in C. This amounts to O(|C|kn5) bits of communication.

6.1 Addition

Addition is straightforward: For two secrets a and b shared with (implicit) shares
a1, . . . , an and b1, . . . , bn, all the subshares, and their appropriate IC-signatures,
each player Pi needs to add his two (implicit) shares ai and bi which means that
he needs to hold a IC-signature from Pj for aij + bij . But this is immediately
achieved as the sum of two IC-signatures results in an IC-signature for the sum
of the values signed. Thus, we have computed the addition of two shared secrets.

6.2 Multiplication

Multiplication is slightly more involved. Assume that we have two secrets a and
b with (implicit) shares a1, . . . , an and b1, . . . , bn and all the subshares and their
appropriate IC-signatures. We apply the method from [GRR98]. This method
calls for every player to multiply his shares of a, resp. b and to share the result of
this using VSS. This results in n VSS’s and a proper sharing of the result c can
be computed as a fixed linear combination of these (i.e. each player computes
a linear combination of his shares from the n VSS’s). Since our VSS is linear,

Efficient Multiparty Computations Secure Against an Adaptive Adversary 323

like the one used in [GRR98], the same method will work for us, provided we
can show that player Pi can share a secret ci using VSS, such that it will hold
that ci = aibi and to prove that he has done so properly. If Pi fails to complete
this process the simplest solution for recovery is to go back to the start of the
computation, reconstruct the inputs of Pi, and redo the computation, this time
simulating Pi openly. This will allow the adversary to slow down the computation
by at most a factor linear in n.

In order to eliminate subindices let us recap our goal stated from the point
of view of a player D . He needs to share a secret c using VSS which satisfies that
c = ab. The value a is shared via subshares a1, . . . , an (lying on a polynomial
fa, say) where ai is held by player Pi and D holds an IC-signature of this value
from Pi. The same holds for the value b (with a polynomial fb).

1. D shares the value c = ab using the VSS Share protocol. Let fc be the
polynomial defined by this sharing.3

2. D chooses a random β ∈ K and he shares β and βb. The sharing of these
values is very primitive. D chooses a polynomial fβ(x) = βtx

t + . . .+β1x+β
and gives player Pi the value fβ(i) and an IC-signature on this value. A
player complains if he did not receive a share and a signature, and the dealer
exposes these values. The same is done for βb (with a polynomial fβb).

3. The players jointly generate, using standard techniques, a random value r,
and expose it.

4. D broadcast the polynomial f1(x) = rfa(x) + fβ(x).
5. Player Pi checks that the appropriate linear combination of his shares lies on

this polynomial, if it does not he exposes his signed share fβ(i) and requires
the dealer to expose the IC-signature which the dealer holds generated by
Pi for the value ai. If the dealer fails then D is disqualified.

6. If the dealer has not been disqualified each player locally computes r1 =
f1(0).

7. D broadcasts the polynomial f2(x) = r1fb(x) − fβb(x) − rfc(x).
8. Each player checks that the appropriate linear combination of his shares lies

on this polynomial, if it does not he exposes his signed share fβb(i) and fc(i)
and requires the dealer to expose the IC-signature which the dealer holds
generated by Pi for the value bi. If the dealer fails then D is disqualified.

9. If D has not been disqualified Pi verifies that f2(0) = 0, and accepts the
sharing of c, otherwise D is disqualified.

The security of the protocol is guaranteed by the following lemma.

Lemma 2. Executing the above protocol for sharing c = ab does not give the
adversary any information that he did not know before.

Proof. Wlog we can assume that the dealer is honest. Thus all the values revealed
during the protocol look random to the adversary (except for the polynomial f2

which is a random polynomial such that f2(0) = 0). Therefore the adversary
learns nothing. ut
3 Note that fc is not the bivariate polynomial directly constructed by D rather it is

the univariate polynomial defined by the implicit shares of c.

324 Ronald Cramer et al.

Lemma 3. If c 6= ab in the above protocol, then the probability that the dealer
succeeds to perform the above is at most 1

|K| .

Proof. Suppose there exist two distinct challenges r1 and r′1 such that if any
of them is chosen in Step 3. then D is not disqualified in the next rounds.
Step 4. guarantees that honest players have consistent shares of fβ, since we
open f1 and we know fa is consistent. So there is a well-defined value β shared
by fβ . In the same way Step 7 guarantees that fβb is consistent, so it defines
some value z (which may or may not be βb). Now from Step 4., r1 = ra + β and
r′1 = r′a+β, so from Step 7., we get (ra+β)b+ z + rc = 0 = (r′a+β)b+ z + r′c
and we conclude that ab = c. ut

7 General Adversaries

It is possible to go beyond adaptive security against any dishonest minority,
by considering general, i.e. not necessarily threshold adversaries [HM97]. The
corruption capability of such an adversary is specified by a family of subsets of
the players, where the adversary is restricted to corrupting one of these sets -
dishonest minority is clearly a special case. Our results in this paper extend to
the general scenario, following ideas developed in [CDM99].

First, by replacing Shamir secret sharing by monotone span program (MSP)
secret sharing [KW93] in our VSS, we immediately obtain WSS protocols secure
against any Q2-adversary [HM97], with communication and computation poly-
nomial in the monotone span program complexity of the adversary [CDM99]. A
Q2-adversary is an adversary who is capable of corrupting only subsets of players
in a given family of subsets, where no two subsets in the family together cover
the full player set.

The reason why the generalized protocol is only a WSS and not a VSS is that
for a general linear secret sharing scheme, a qualified subset of shares define
uniquely the secret, but NOT necessarily the entire set of shares (in contrast
with what is the case for Shamir’s threshold scheme).

However, building on the linearity of this WSS and monotone span program
secret sharing, we can still construct efficient VSS (with negligible, but non-zero
error) secure against any Q2-adversary.

Roughly speaking, the idea (taken from [CDM99]) is that the dealer will use
WSS to commit to his secret and the set of shares. He can then convince the
players that this was done correctly. This amounts to showing a number of linear
relations on committed values, which is easy by linearity of the WSS. Finally,
each commitment to a share is privately opened to the player that is to receive
it.

The resulting VSS enables multi-party computation secure against any Q2-
adversary if we base the construction of VSS on a so called MSP with multipli-
cation [CDM99]. Such an MSP always exists, and can be chosen to have size at
most twice that of a minimal MSP secure against the adversary. As far as gen-
eral adversaries are concerned, security against Q2-adversaries is the maximum
attainable level of security.

Efficient Multiparty Computations Secure Against an Adaptive Adversary 325

This construction gives a VSS with complexity O((k+log n)nm3) bits, where
m is the size of the monotone span program. In some independent work Smith
and Stiglic[SS98] present a somewhat similar idea, which however results in a
less efficient protocol (O(k2(k+log n)nm3) bits) because they directly apply the
ideas from [CDM99] to [Rab94], i.e. replace in [Rab94] Shamir’s secret sharing
by the monotone span programs with multiplication from [CDM99].

Acknowledgment. We are very grateful to Adam Smith and Anton Stiglic for
pointing out an error in the information checking protocols of the almost final
version of this paper.

References

[Bea91] D. Beaver. Secure multiparty protocols and zero-knowledge proof systems
tolerating a faulty minority. Journal of Cryptology, 4:75–122, 1991.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for
noncryptographic fault-tolerant distributed computations. In 20th STOC,
pp. 1–10. ACM, 1988.

[BH92] D. Beaver and S. Haber. Cryptographic protocols provably secure against
dynamic adversaries. Eurocrypt ’92, pp. 307–323. Springer LNCS 658,
1992.

[Can98] R. Canetti. Security and composition of multiparty cryptographic proto-
cols. Manuscript, to appear, 1998.

[CCD88] D. Chaum, C. Crepeau, and I. Damg̊ard. Multiparty unconditionally se-
cure protocols. In 20th STOC, pp. 11–19. ACM, 1988.

[CGMA85] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Verifiable secret
sharing and achieving simultaneity in the presence of faults. In 26th FOCS,
pp. 383–395. IEEE, 1985.

[CDM99] R. Cramer, I. Damg̊ard, and U. Maurer. General secure multi-party com-
putation from any linear secret-sharing scheme. Manuscript, 1999.

[CFGN96] Ran Canetti, Uri Feige, Oded Goldreich, and Moni Naor. Adaptively secure
multi-party computation. In 28th STOC, pp. 639–648. ACM, 1996.

[FM88] P. Feldman and S. Micali. An optimal algorithm for synchronous Byzantine
agreement. In 20th STOC, pp. 148–161. ACM, 1988.

[GL90] S. Goldwasser and L. Levin. Fair computation of general functions in
presence of immoral majority. Crypto ’90, pp. 77–93. Springer LNCS 537,
1990.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game.
In 19th STOC, pp. 218–229. ACM, 1987.

[GRR98] R. Gennaro, M. Rabin, and T Rabin. Simplified VSS and fast-track mul-
tiparty computations with applications to threshold cryptography. In 17th
PODC, pp. 101–111. ACM, 1998.

[HM97] M. Hirt and U. Maurer. Complete characterization of adversaries tolerable
in general multiparty computations. In 16th PODC, pp. 25–34. ACM, 1998.

[KW93] M. Karchmer and A. Wigderson. On span programs. In Proc. of Structure
in Complexity, pp. 383–395, 1993.

[MR91] S. Micali and P. Rogaway. Secure computation. Crypto ’91, pp. 392–404.
Springer LNCS 576, 1991.

326 Ronald Cramer et al.

[MR98] S. Micali and P. Rogaway. Secure computation: The information theoretic
case. Manuscript, to appear, 1998.

[Rab94] T. Rabin. Robust sharing of secrets when the dealer is honest or faulty.
Journal of the ACM, 41(6):1089–1109, 1994.

[RB89] T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty proto-
cols with honest majority. In 21st STOC, pp. 73–85. ACM, 1989.

[SS98] A. Smith and A. Stiglic. Multiparty computations unconditionally secure
against Q2 adversary structures. Manuscript, 1998.

[Yao82] A.C. Yao. Protocols for secure computations. In 23rd FOCS, pp. 160–164.
IEEE, 1982.

	Introduction
	Model and Definitions
	Definition of Information Checking
	Definition of WSS
	Definition of VSS
	Definition of MPC

	Adaptive Security of WSS in {cite {rb89}}
	The Information Checking Protocol
	Verifiable Secret Sharing
	Multiparty Computation
	Addition
	Multiplication

	General Adversaries

