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Abstract. 

The difference between theory and practice often rests on one major factor: effi- 
ciency. In distributed systems, communication is usually expensive, and protocols 
designed €or practical use must require as few rounds of communication and as small 
messages as possible. 

A secure multiparty protocol to compute function F is a protocol that, when each 
player i of n players staxts with private input tir provides each participant i with 
F(z1, .  . . , t,) without revealing more information than what can be derived from 
learning the function value. Some number 1 of players may be corrupted by an adver- 
sary who may then change the messages they send. Recent solutions to  this problem 
have suffered in practical terms: while theoretically using only polynomially-many 
rounds, in practice the constants and exponents of such polynomials are too great. 
Normally, such protocols express F as a circuit CF,  call on each player to  secretly 
share z i ,  and proceed to perform “secret addition and multiplication” on secretly 
shared values. The cost is proportional to  the depth of CF times the cost of secret 
multiplication; and multiplication requires several rounds of interaction. 

We present a protocol that simplifies the body of such a protocol and significantly 
reduces the number of rounds of interaction. The steps of our protocol take ad- 
vantage of a new and counterintuitive lecllnique for evaluating a circuit; set every 
input to every gate in the circuit completely at random, and then make corrections. 
Our protocol replaces each secret multiplication - multiplication that requires fur- 
ther sharing, addition, zero-knowledge proofs, and secret reconstruction - that is 
used during the body of a standard protocol by a simple reconstruction of secretly 
shared values, thereby reducing rounds by an order of magnitude. Furthermore, 
these reconstructions require only broadcast messages (but do not require Byzan- 
tine Agreement). The simplicity of broadcast and reconstruction provides efficiency 
and e a e  of iinplemenlation. Our transConnation is simple and compatible with 
other techniques for reducing rounds. 
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1 Introduction 
A quoi bon I'enfant qui vient de naitre? 

Benjamin Franklin' (1783) 

The biggest drawback to current theoretical research in cryptography is its general 
impracticality: while polynomially- bounded resources are mathematically satisfying, they 
are often effectively out of reach. In distributed computing, where communication speeds 
lag behind processor speeds, the number of rounds of communication and the message 
sizes are significant issues to consider. A factor of ten can mean the difference between 
utility and impracticality. 

Many solutions to secure multiparty function evaluation have been proposed [lo, 11, 
9, 7,  8,4, 14, 2, 12, 6, 51 but none seem easily implementable, despite a reasonable clarity 
in  their description and a theoretically small requirement for resources. These methods 
normally rely on the share-compute-reveal paradigm, in which processors secretly share 
their inputs, run subprotocols to evaluate gates of a bounded fanin' arithmetic circuit 
CF that expresses the function F to compute, and reveal the final secret representing the 
output. Each subprotocol is an additiou or multiplication of secrets, and uses a constant 
number of rounds and a small polynomial number of messages. But an n2 factor or even 
a constant factor of twenty in a network of a hundred processors is debilitating. 

In Shamir's method for secret sharing, each processor i shares secret s by selecting a 
polynomial f(u) = a i d  + ... + a lu  + s with coefficients a h  chosen uniformly at random 
over a finite field E ,  setting PIECE~(S)  = f ( a j )  (where aj # 0 is an identifier for player j ) ,  
and sending PIECE~(S) to player j for each j .  Ben-Or, Goldwasser, and Wigderson point 
out that when the aj are selected carefully, the pieces of s turn out to be elements in a 
BCH code, and a unique secret is reconstructible despite up to  1 changes, when t 5 Ln/3]. 

A natural advaiilage of using polynomials is that combining two secrets r and s to 
form a new secret q whose value is their sum is easy, and requires no interaction: each j 
sets PIECE;(q) +- PIEGE~(T)  + PIECE~(S) .  If f ( u )  represents f(0) = r and g(u) represents 
g(0) = s, then h(u)  = J ( u )  + g ( u )  represents h ( 0 )  = T + s. Multiplication by a publicly 
known constant is also easy: PIECE;(CS) = c PIECE~(S) .  Thus a new secret may be 
computed without having to reveal r and s. 

When secrets are multiplied, however, problems arise: the degree of the polynomial 
h ( u )  = f (u )g (u )  determined by the products of the individual pieces is  2 t ,  which soon 
grows out of hand. To deal with this problem, an interactive subprotocol for "degree 
reduction" is employed 17, Y]. We shall not present the solution here, but we shall give a 
brief outline in order to consider its resource requirements. Essentially, each processor is 
required to reshare PIECE;(T) and PIECE.(.S\ d o n s  with a third secret c;, and must then 
prove interactively that c, = PIECE;(~)PIECE;(S) .  The players also jointly create several 
uniformly random secrets. Each player's piece of the new secret q = rs then becomes 

"'What good is a newborn child?" -Upon being asked at the launching of one of the first hotair 

2Multiplicative gates have fanin 2; additive gates have unbounded fanin. 
balloons, what good it would serve. 
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a particular linear combiriahion of the confirmed ci values along with uniformly random 
secret values to preserve the uniformity of higher-order coefficients; there is a different 
linear cornbination to compute for each player. Thus, a multiplication involves sharing, 
creating random secrets, proving products are valid, and reconstruction. 

A standard protocol to compute F evaluates CF level by level, creating new secrets at 
each stage using linear combinations and multiplications. Let S be the number of rounds 
used to share a secret and let M be that to multiply. If the depth of C, is DF, then 
the standard solution requires some S + D F M  + 1 rounds. Some improvements can be 
made for functions F E NC; Bar-Ilan and Beaver [I] slice a log n fattor from the depth of 
the circuit. But multiplications involving sharing and proofs and reconstructions are still 
involved at  each stcp. 

O u r  solution. We present a protocol that does evaluate the circuit CF level by level, but 
each level is sinipiy n reconstruction of secrets, rather than a full-blown multiplication. 
In other words, each level uses 071f?~ one round of interaction requiring neither private 
channels nor broadcast ( in  the sense of Byzantine Agreement). 

Whereas previous protocols employ a great deal of processing to protect against Byzan- 
tine (malicious, message-changing) adversaries throughout the execution of the protocols, 
our protocol requires no elaborate on-line protection during the body of the protocol. Ma- 
licious or random errors are easily detected by checking whether n points interpolate to 
a tth-degree polynomial. Byzantine failures are corrected directly using BCH decoding as 
in normal secret-reconstruction - interaction, proofs, private communication, Byzantine 
Agreement, and other special procedures are not necessary. In fact, it suffices that all 
nonfaulty players broadcast a message (broadcasts from faulty players can be incomplete 
or inconsistent; the players need not agree on the set of messages apparently broadcast). 

In addition to reducing network requirements - Byzantine Agreement and private 
channels can be costly to implement - the body of our protocol (send public messages, 
do BCH error correction) is easy to implement using established software. The reduction 
in programming complexity lends a greater degree of confidence in the security of an 
implementation. 

The cost and the savings. We achieve these improvements by preprocessing: but the 
preprocessing stage costs only one phase of muliiplication. The total number of rounds 
drops from S + D F M  + 1 rounds to S + A 1  + D F ,  a significant improvement of a factor of 
M over standard techniques. The total number of multiplications in our protocol remains 
exactly the same as in [7, 81, namely exactly the number of multiplicative gates in CF, but 
our multiplications are performed all in parallel. The number of additions is increased 
slightly in order to generate (just) N uniformly random secrets, where N is the size of 
CF. The increase in additions is a tiny fraction compared to the number of additions and 
multiplications required by a standard ( (7 ,  81) protocol. 

The idea. Our solution arises from an idea that has no obvious value a t  first glance: 
completely randomize every input and output to  each gate in CF. That  is, select random 
inputs to each gate and compute the results of each gate all at  once. Surprisingly, such 
a mangled circuit turns out to be useful. Through a very simple error-correction proce- 
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dure, the accurate (and secret) values at each level can be computed without recourse to  
multiplication. 

This error-correcting procedure is based on a technique introduced in [2] for proving 
that the product of two secrets is a third. NameIy: if a dealer wishes to show that c = ab, 
where he has shared a, b, and c, then he chooses random numbers A, and Ab and shares 
d = ( a  + & ) ( b  + Ab). A “verifier” (the system) checks the dealer randomly by flipping 
a coin: the dealer must either (1) reveal A, and Ab, in which case the system checks 
that the linear combination d - (aA, + 6A, + AoAb) - c = 0, or (2) reveal d and linear 
combinations (a fA , )  and (6+Ab), in which case the systemchecksd = (a- th , ) (bS&).  
Appropriate repetitions prevent cheating; the dealer must cheat a t  many random points 
in order that his secrets be consistent. In the current work, A, and become corrections 
to a gate whose inputs (a + A,) and ( b  + A,,) have been chosen uniformly a t  random, and 
whose output d = (u + A,,)(b f As) has been pre~omputed.~ Multiplication of two real 
inputs a and 6 reduces to computing a correction to d that, in turn, reduces to a linear 
combination of a, 6, d, and the publicly revealed (but uniformly random) corrections A, 
and Ab. 

One-time tables. We coin the term “one-time table” to describe a set of precomputed 
values that support direct secure computation without broadcast or private channels. 
This is analogous to a one-t ime p a d ,  which is a random sequence of bits permitting two 
parties to send arbitrary messages with perfect privacy over public channels. Our “circuit 
randomization” constructs a list of independent, secret products of independent, secret 
random numbers. This list depends on F only insofar as it must contain as many entries 
as there are multiplicative gates in a circuit for F - in the same way a one-time pad must 
contain enough bits to mask a given message. The cost of using an entry is one round 
of open communication and requires neither broadcast nor private channels. Thus, we 
propose the precomputation of a one-t ime table, using a few short and initial rounds of 
costly (broadcast or private) channels, as a general paradigm for secure protocol design. 

Contents .  We describe the protocol in 52, giving our main theorem in $2.2 and a proof 
sketch in 52.3. We discuss efficiency and practical issues in $3. 

2 An Efficient Protocol for Circuit Evaluation 
Fix n, the number of players; t ( n )  < n / 2 ,  a bound on the number of players who can 
be corrupted in a dynamic and malicious (Byzantine) way; E ,  a finite field such that 
IEI > R + 1; F ,  a function from En to E described by a polynomial-size circuit CF 
(without loss of generality, this covers finite functions from poiynomial bits to polynomial 
bits [with poly-size circuits] as well as the case where each player learns a private output); 
and & I , .  . . ,a,, primitive nth roots of unity over E. For the sake of exposition, we assume 
private and broadcast channels are available and that t (n )  < n / 3 ,  but we note that our 

31n [2], the symbols As and As appear as r and s, not to be confused with the use of r and 6 in this 
work. 
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techniques apply to any protocol based on the share-compute-reveal paradigm. 
We employ the secret sharing (SHARE ), reconstruction (REC ), linear combination 

(LINEAR-COMBINE ), and multiplication (MULTIPLY ) protocols of [7] for t < n / 3 ;  for 
n / 3  5 t < n/Z, methods of [14. Z] can be used. We refer the reader to [7, 8, 14, 21 
for detailed descriptions. Before describing thc protocol, we note that Figure 1 gives a 
simple and well-known subprotocol UNIFSECRET to generate uniformly random secrets 
by adding uniformly random secrets shared by each party. 

UNIFSECRET ( r )  
1 ( 1 < i < n )  
2 (1 5 i 5 n )  

l 3  
Player i sets r; t unifDrrn(E) 
Player i shares ri. 
R u n  LINEAK-COMBINE : T t C:=1 Ti. 

I Figure 1: Protocol to produce a uniformly random secret field ele- 
I ment r. 

Now, assume that circuit C F  has N wires I,, . . . ,IN, where x lr  . . . ,2, carry the inputs. 
Assume also that there are gates gk E {+, x }  of fan-in 2, and write XI: = gk(xik,Xjk) to 
mean that gate gk has inputs x i k  and xj, and output i k k  with ik,jk < 1. With each gate 
a depth level(gk) is associated in a standard way. To evaluate CF, one assigns the input 
wires the values of 2 1 , .  . . ,I,, then for each level L from 1 to D F ,  one evaluates all the 
gates gk at depth L ,  finally evaluating g~ to produce the circuit output XN. 

The share-compute-reveal paradigm follows exactly this pattern, using subprotocols 
to evaluate gates at each level and thereby produce new secrets Xk, until the final secret 
XN is calculated. The result X N  can then be reconstructed using REC . We shall take an 
analogous but somewhat different route. 

Let us ignore secret sharing for the moment and focus on the values used in the 
calculation of I N  = F(.rl , .  . . , xn). 

In particular, let us create N uniformly r.andom values r l ,  . . . , T N ,  one for every z;. For 
every gate yk, compute s k  = g k ( ~ , ~ ,  r,,). These values have no apparent connection to the 
correct 51; values, nor to the final output. 

But consider now the correclions A, = ri - xi to each wire. We begin the evaluation 
of Cp by computing the corrections to the inputs: A1 = r1 - 11,. . . ,A, = Tn - In. 
Given an additive gate gk = (+) with random inputs r i k , r j k ,  random output rk, and 
input wire corrections Alk ,AjL,  we can compute the correction Ak for the output wire 
A1; = r k  - sk - A;, - A,,, because: 

Ak = ‘I; - (“it + X j k )  

= r k  - ( r i k  + Alk) - (r jk + Ajk) 
= r h  - (rik + r j k )  - A,, - A,, 
= T k  - sk - A , ~  - njk. 
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We may thus regard A, as a f ineur combiiialion of previously calculated, “knownn ,-on- 
stants A,, and A,, with the values rk and s k .  

But more interesting, and crucial to our solution, is the observation that for multi- 
plicative gates gk = (x) ,  Ak = r k  - - rikAJk - &,rj, - hikAj,, because: 

& = r k  - ( z , + , L ] ~ )  
= 
- - 
= 

rk - (rik + ai+,)(rjk + A,,) 
r k  - rikrjk - rjkAjk - Aikrjk - A,,Aj, 
rk - sk - rjkAJk - A;kr jk  - AikAjk. 

In other words, if A;, and A,, are already calculated and uknown,n then Ak is a h e a r  
combination of these “known” constants and the values rkr s k ,  rik, r,&. 

Now, let’s return to our worries about security. Say that all values r k  are uniformly 
random and secretly shared, that all values q k  = gk(riL, r,,) have been secretly computed 
and are secrets, and that. the lowest level of corrections A, = rl - 5 1 , .  . . , A, = r,  - z,, 
have been computed and reconstructed. Then the computation of a new correction at 
each level is a linear combination of publicly known values (A,,,Aj,) and secret values 
( r k ,  sk, Tik, r,,), requiring no interaction. In  fact, each player computes his piece of new 
Ak as a linear combination of pieces; w i t h  I l k  = x ,  for example, player i computes: 

P I E C E i ( A k )  + P I E C E ; ( Q )  - P I E C E ~ ( S ~ )  - PIECE;(rj,)A,, - AikPIEcE,(rJk) - AikA,,. 

The interaction for each level arises from reconstructing Ak from these pieces of Ak, 
which involves a single broadcast of each piece by each player. (Byzantine faults - 
inconsistencies in pieces supplied by faulty players - are covered by BCH error-correction 
without the need for Byzantine Agreement or other interaction.) 

Now, note that because every i-g is uniformly random, every Ak value is dso uniformly 
random, regardless of the inputs. Thus, no information whatsoever is revealed by recon- 
structing the Ak values. The only reconstruction that contains nonrandom information 
is the reconstruction of the final output secret z~ = F ( z l , .  . . , zn). 

With this explanation in hand, the  reader should be prepared to read Figure 2, which 
describes the protocol. Note that the final level is computed differently because the secret 
IN does not need to be fed into a new, randornizcd gate. 

2.1 An Optimization 

With a simple optimization, additive layers in the circuit can be ignored, in the sense 
that they need not lead to interaction. We “compress” additive gates by computing the 
corrections to their outputs at the same time as the corrections to their input wires. In 
fact, no “randomization” of additive gates (secrec generation of R1, R2, and computation 
of S = R, + Rz during preprocessing) is needed. 

Let us illustrate the technique with an esample. Let gate g s ( x l , s z )  = 5 1 5 2 ,  

g t j ( z 3 , q )  = 5324, and g7(zS,q) = 2 5  + .rG. That is, the output of g7 is ( ~ 1 ~ 2  + 33x4). 
Rather than go through two stages (mulliply, add), we need only one (multiply). Define 
6 k  = sk - xk for 1 5 k 5 N .  Although the Sk values are not uniformly distributed (and 
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RANDCIRCUIT (C,) 
1.1 (1 5 25 n) 
1.2 (1 5 k 5 N )  Run UNIFSECRET(Tk) 

2.2 
2.2 

3 

3.1 

Player z :  run SIIARE(I;), dealing secret xi 

2.1 (1 5 k 5 7L) Run LINEAR-COMBINE: Ak t Tk - Zk 

(1 5 k 5 n )  Run REC(Ak) to reveal h k  
( N  + 1 5 k 5 N )  if gk = (f) then  run LINEAR-COMBINE: S k  +- Tik f rj, 

else run MULTIPLY: S k  * rikrjk 

(Vk such that level(gk) = L):  
For L = ~ . . ( D F  - 1)  do 

If gk = (+) then  run LINEAR-COMBINE: 

else run MULTIPLY: 
Ak C r k  - s k  - A;, - Ajk 

f l k  +- Tk - s k  - ri,A,, - Aikrj, - &,Aj, 
3.2 Run R E C ( A ~ )  
4.1 If g~ = (t) then run LINEAR-COMBINE: 

else run MULTIPLY: 
X N  + S N  f AiN + Aj, 

XN +- S N  + riNAjN f A i N ~ j N  + AiNnjN 
4.1 Run REC(XN) to reveal F(x1,. . .,x,,) = ZN. 

Figure 2: Protocol to evaluate function F represented by arithmetic 
circuit CF of size N and depth DF over field E. SHARE, REC, 
LINEAR-COMBINE, MULTIPLY, and UNIFSECRET are described in 
the text. “( 1 5 i 5 n)” means run in parallel; for loops are executed 
in sequence. 

hence should not be revealed), they satisfy a set of equations similar to those for the A, 
values; thus, 

6 5  = - q A Z  - Airz - AlA2,  
66 = -ran4 - A3r4 - A3A4. 

This gives 

A7 = r 7 - ( z 5 + z f i )  
5 5fi + 66) - - i-7 - (s5 + 6 ) - ( 

r7 - s5 - 56 + rlAz + Alrz + A1A2 + raA4 + A ~ r 4  + A3A4, - - 

which expresses A7 as a linear combination of secret inputs to g5 and g6, not of inputs to 
97. Random secrets r5 and rfi are avoided altogether. Thus, not only need gate g7 not be 
“randomized,” the computation of the correction A7 to its output need not wait for the 
computation and reconstruction of values A, and As. 
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A simple way to think of this is to set r ,k  = s,, and rlk = s j k  for every additive gate 
sk = gk(r ,k , r ,k) ;  then sk = r,k + t-,k = stk + s , ~ ,  and the formula for Ak depends only 
on the A values for the inpuls to g,k and g I r .  The example given above generalizes in a 
natural way to give a general technique that “ignores” additive gates. 

2.2 Main Results 
The definitions of resilience - a combination of security and fault-tolerance - and of 
perfect and ezponential are given in 32.3. 

Theorem 1 Let t (n )  < n/3 .  Let S be the number of rounds to share a secret, and let M 
be the number of rounds to multiply. Let F Ire uny Junction from En to E described b y  a 
poly-site circuit C F .  Then RANDCIRCUIT is n perfectly t-resilient protocol for F against 
Byzantine adversaries and requires only  S + i1.I + D F  rounds of interaction, a savings of 
n( DF) rounds over previous protocols. 

Proof. Referring to Figure 2 ,  step 1 requires S rounds, step 2 requires M rounds, step 3 
uses ( D F  - 1) secret reconstructions, and step 4 uses one secret reconstruction. Earlier 
protocols used S + M D F  + 1; the improvement is ( D F  - 1 ) ( M  - 1) = ~ ( D F )  rounds. See 
$2.3 for a proof of resilience (security). 

Let RANDCIRCUIT‘ denote the protocol obtained from RANDCIRCUIT by using secret- 
sharing, addition, and multiplication protocols designed to withstand t < n/2 rather than 
2 < n/3 faults, and let S’,iM’ be the number of rounds required by the corresponding 
su bprotocols. 

Theorem 2 For t ( n )  < n/2 ,  RANDCIIICUIT’ is an ezponentially t-resilient protocol for 
F against Byzantine adversaries and requires only 5’’ + M’ + DF rounds of iriteraction, a 
savings of f l ( n D F )  rounds over previous protocols. 

Proof. As in Theorem 1, the number of rounds used is S’ + M‘ + DF; existing meth- 
ods for multiplication require n(t) rounds when t faults are possible, so the difference of 
( D F  - l)(M‘ - 1) gives the savings reported. Because of the exponentially small chance 
of error in the secret addition and multiplication protocols, the resilience of our protocol 
is only exponential; but better resilience is shown impossible in [7 ] .  0 

Using the optimization described in $2.1, we observe that the round complexity de- 
pends only on the multiplicative depth o€ a circuit CF for F .  Let RANDCIRCUIT’ denote 
the protocol obtained from RANDCIRCUIT by computing corrections to additive gates at 
the same time as the corrections to the multiplicative gates that feed them, as described in 
$2.1; “randomization” is not performed for additive gates. Let depth,(C) give the multi- 
plicative depth of circuit C, and let dep th ,  ( F )  be the minimum over all polynomial-size 
bounded-fanin arithmetic circuits C F  computing function F. 
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Theorem 3 For t ( n )  < n / 3 ,  protocof RANDCIRCUIT’  is a perfectly t-resilient protocol f o r  
F against Byzant ine adversarzes and requires only S+ M + d e p t h , ( F )  rounds of interac- 
t ion.  An analogous result with ezponential reszlience holds f o r  a protocol RANDCIRCUIT.’ 
designed for t ( n )  < nj2.  

We remark that avoiding the randomization for additive gates reduces the message corn- 
plexity = well; the UNIFSECRET protocol is called only for multiplicative gates, not for 
all 1%‘ gates in C F .  
Proof. The proof follows the lines of thc proof of Theorem 1. The improvement in 
round complexity arises from “compressing” additive gates as described in 52.1. 0 

2.3 Proof Sketch 
We adopt the security definitions of [2,  31. A brief sketch is included here for com- 
pleteness. An ensemble P is a collection of distributions P ( t , k )  for .z E C* and 
k E N. The difference between distributions P and Q on finite domain X is 
Cx 1Pr.p [x] - Pre [.]I. Ensembles P and Q are 0(6(k))-indistinguishable (P dk) Q )  
i f  (3kO)(Vk 2 ~ ~ ) ( V Z ) ~ P ( Z ,  k) - Q ( Z ,  k) l  < 6 ( k ) .  Perfect (o(o)), exponential (O(C-~) ,  
s ta t i s t ica l  ( ( v c ) O (  kc)), and computa t iona l  indistinguishability are straightforwardly 
defined. 

A protocol a with n players having rn-bit inputs Z = (xl,. . . , z,) and auxiliary inputs 
a = ( a l , .  . . ,a,)  induces a distribution [a](.‘...’, k) on outputs f = ( y l , .  . . , y,,); k is a 
security parameter given to each player. When an adversary A with auxiliary input aA is 
allowed to attack a, the resulting distribution on alloutputs f.yA is denoted [a, d](&h~).  
An in te r face  is an interactive machine with two tapes; it  communicates with an adversary 
A on one, and acts as an adversary on the other. The distribution induced by running 
protocol p with adversary Z ( A )  (z .c .  A with interface Z translating its corruptions) is 
denoted [P,I(A)]( .”a’aA).  Ranging over all i = 5 ~ i . a ~  and k, we consider ensembles 

Protocol a is as resilient (i .e.  secure and reliable) as p if an adversary A, when it 
attacks a, gains the same information and has the same effect on nonfaulty outputs as 
when A attacks p through 2: 

Definit ion 1 (Rela t ive  Resilience) Let ADV, and ADVa denote the  set of allowed ad- 
versaries f o r  a and ,@. Protocol a is as resilient as @, written a 2 p, i f  there exists a n  
interface 1 f r o m  CY to 3 such that f o r  all A E ADV,, we have Z(A) E ADVp and 

d 

[a,  A1 and IP, 1(-4)1. 

[ c b - 4  %5 [PJ(A)I.  

The ideal protocol for F, ID(F), contains an incorruptible host that  collects inputs 2, in 
the first round and returns F’(zcl,. . . ,z,) in the second. 

Definit ion 2 (Resilience) CI is n t-resilient protocof f o r  F af a 
adversaries. 

ID(F), against 1-  
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Proof of T h e o r e m  1. We must find an interface that translates attacks on 
RANDCIRCUIT to  attacks on the ideal, trusted-host protocol ID(F) for F .  Because initial 
messages (preprocessing steps 1 and 2) between nonfaulty players are not seen by an 
adversary, and because most messages created by nonfaulty players (whether sent to COT- 
rupted players or seen when later corruptcd) are generated uniformly at random, subject 
to simple linear algebraic conditions and the input values and output value F ( x ~ ,  . . , ,x, , ) ,  
an interface is neither hard to design nor to prove correct. The following lemmas describe 
the responses that Z must make in order to supply A with a proper set of responses to 
corruption requests while at  the same time inducing the same outputs in ID(F) that A 
induces in RANDCIRCUIT. 

Lemma 4 (Messages f r o m  nonfaulty to  faulty before final round.) Let t ( n )  < 7213. For 
any corrupted subset T c { 1, .., n }  and any round r except the last, the set of messages 
f r o m  players not in T to  players an T consists of uniformly random field dements  subject 
to  interpolating to a uni&ormly random polynomial of degree t .  

Proof. Simple linear algebra. In the case of messages regarding A reconstructions, the 
“uniformly random polynomials” have uniformly random A values as their free terms. 
In the case of messages regarding secretly-shared inputs or random secrets, a set of 1 
messages to players in T is a uniformly random t-vector, whether i t  be generated from a 
uniformly random polynomial of degree t having free term 2, or from a uniformly random 
polynomial of degree t .  0 

Lemma 5 (Newly corrupt player i lejore final round; how to  generate past view.) Let 
t (n)  < n / 3 .  For any corrupted subset T c { 1, .., n ) ,  any round r except the last, and any 
i 4 T ,  the distribution on secret values generated b y  i through round r is uniform, the 
distribution on messages through round r from players not in T to  player i is unijorm 
subject to  interpolating to  already reuealed Ak values, and the distribution on messages 
from player i to players not in T is uniform f r o m  among the set of solutions consistent 
with the secret values player i randomly generated, the & values revealed through round 
r ,  and its input xi. 

Proof. Simple linear algebra. 0 

Lemma 6 (Messages f r o m  nonfaulty at Jinal round.) Let t ( n )  < n / 3 .  For any  corrupted 
subset T C {l , . . ,n} ,  at the final round the distribution o n  messages from players not in 
T to players in  T is uniform subject to inteigolating to F ( x l , .  . . ,xn)  [with x ;  replaced by  
default value 0 f o r  any player who failed to  share an input]. 

Proof. Simple linear algebra. 0 

Lemma 7 (Newly corrupt player z at jinal round: how to  generate past view.) Let t ( n )  < 
n/3. For any corrupted subset T c { I ,  ... n } ,  any round r except the last, and any i # T ,  
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the  distribution on secret vaiues generated by i through round r is uniform, the distribution 
on messages through round r from players not in T to player i is uni/orm subject to 
interpolating to already revealed A, values, and the distribution on messages f rom player 
i to  players not in T is unijorm jrom among the set of solutions consistent with the secret 
values player i randomly generated, the Ah values revealed through round r ,  its input x i ,  

and F ( x ; ,  . . . ,XI) [where X: is x, for nonfaulty j but is default value 0 f o r  any player j 
who /ailed to share an input]. 

Proof. Simple linear algebra. 0 

The interface collects pieces of I, distributed by players i corrupted at the start, and 
sets x: accordingly. For every player i corrupted by A, 1 requests the corruption of i 
in I D ( F ) ,  obtaining x,, which it then returns to A along with a view of RANDCIRCUIT 
constructed according to the lemmas (this involves solutions to simple linear algebraic 
equations). For messages sent from nonfaulty players to faulty players, Z chooses random 
elements according to the lemmas and sends them to A. Interface 1 records all outgoing 
messages from A intended to replace messages from corrupted players, and uses them to 
construct deterministic responses from nonfaulty, virtual players (in preprocessing steps 1 
and 2, nonfaulty players may detect cheating and use default value 0 for cheating players; 
in later steps, fewer than t modifications to the n-vector used in reconstruction does 
not affect the A value computed by nonfaulty players). For space reasons, we shall not 
describe the interface in greater detail. 

The resilience of RANDCIRCUIT follows directly from the fact that the messages sent to 
A from 1 are identical to responses to corruption requests when A attacks RANDCIRCUIT, 
and the inputs x: that 1 passes on to ID(F)  are exactly what A chooses and shares 
(whether or not by default). 0 

3 Theory and Practice 
We have reduced the number of rounds of interaction by an order of magnitude, removing 
yet another obstacle to the use of theoretical results in practice. Our methods apply to 
any protocol based on circuit evaluation, including cryptographic multiparty protocols, 
two-party oblivious circuit evaluation, etc.. The advantage of circuit randomization over 
direct evaluation is proportional to the cost of multiplication vs. the cost of addition. 

Theoretically, the number of rounds can be reduced further by an O(log n) factor using 
the results of [l]. In practice, the choice whether to follow this route as well depends on 
just how large the O(1ogn) reduction is. The methods of [I] require multiplying three 
3 x 3 matrices, which normally costs two multiplications, but which now costs 2 rounds 
(each matrix multiplication costs a round to correct the x-gates). Since the submission of 
this abstract, we have discovered an alternative to [I] that permits unbounded fan-in mul- 
tiplication but suffers neither from expected round complexity (a complication that makes 
implementation difficult) nor from having to convert circuit layers to matrix products. 

The RANDCIRCUIT protocol is, in many senses, simpler than direct circuit evaluation. 
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The initial processing is perhaps less than immediately intuitive, but it contains the same 
set of computations that must be done during direct circuit evaluation, parallelized and 
applied to random secrets. The only added complexity arises from creating random secrets 
at the start, but this subprotocol is easy relative to the one for multiplication. 

In fact, implementation is far easier than for direct circuit evaluation, since the body of 
thc protocol consists of reconstructions, which require simply a weak broadcast (all non- 
faulty players broadcast their value, without Byzantine Agreement) from each player. A 
weak broadcast is far simpler to implement than a complicated multiplication subprotocol 
that itself contains private communications and Byzantine Agreement protocols. In asyn- 
chronous settings, using weak broadcast rather than interaction becomes a tremendous 
advantage, not just for efficiency but for correctness in implementation. 

Interestingly, because the steps of the protocol are reconstructions, error correction 
in the sense of zero-knowledge proofs of behavior is not needed. Error detection and 
correction is performed locally without interaction. Detection is simple: check whether 
received pieces interpolate to a degree-t polynomial. Correction uses a local BCH-error- 
code correction, without interaction. Thus, the overhead of repeated proofs, cut-and- 
choose methods, or other interactive error detection techniques is not necessary after the 
first multiplication. 

It is interesting to note that the randomization techniques used here apply to circuit 
evaluation in both the cryptographic and the noncryptographic settings. The techniques 
we present were inspired by a proof system for multilinear polynomials [2] that has a 
similarity to recent interactive proof systems for functions expressible as low-degree poly- 
nomials, perhaps suggesting deeper connections and a wider applicability than simply to 
cryptographic protocol optimization. In any case, the practical advantages are evident. 
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