
Efficient multiple hyperparameter
learning for log-linear models

Chuong B. Do Chuan-Sheng Foo Andrew Y. Ng
Computer Science Department

Stanford University
Stanford, CA 94305

{chuongdo,csfoo,ang}@cs.stanford.edu

Abstract

In problems where input features have varying amounts of noise, using distinct
regularization hyperparameters for different features provides an effective means
of managing model complexity. While regularizers for neuralnetworks and sup-
port vector machines often rely on multiple hyperparameters, regularizers for
structured prediction models (used in tasks such as sequence labeling or pars-
ing) typically rely only on a single shared hyperparameter for all features. In this
paper, we consider the problem of choosing regularization hyperparameters for
log-linear models, a class of structured prediction probabilistic models which in-
cludes conditional random fields (CRFs). Using an implicit differentiation trick,
we derive an efficient gradient-based method for learning Gaussian regularization
priors with multiple hyperparameters. In both simulationsand the real-world task
of computational RNA secondary structure prediction, we find that multiple hy-
perparameter learning can provide a significant boost in accuracy compared to
using only a single regularization hyperparameter.

1 Introduction

In many supervised learning methods, overfitting is controlled through the use of regularization
penalties for limiting model complexity. The effectiveness of penalty-based regularization for a
given learning task depends not only on the type of regularization penalty used (e.g.,L1 vsL2) [29]
but also (and perhaps even more importantly) on the choice ofhyperparameters governing the regu-
larization penalty (e.g., the hyperparameterλ in an isotropic Gaussian parameter prior,λ||w||2).

When only a single hyperparameter must be tuned, cross-validation provides a simple yet reliable
procedure for hyperparameter selection. For example, the regularization hyperparameterC in a
support vector machine (SVM) is usually tuned by training the SVM with several different values
of C, and selecting the one that achieves the best performance ona holdout set. In many situations,
using multiple hyperparameters gives the distinct advantage of allowing models with features of
varying strength; for instance, in a natural language processing (NLP) task, features based on word
bigrams are typically noisier than those based on individual word occurrences, and hence should
be “more regularized” to prevent overfitting. Unfortunately, for sophisticated models with multiple
hyperparameters [23], the naı̈ve grid search strategy of directly trying out possible combinations of
hyperparameter settings quickly grows infeasible as the number of hyperparameters becomes large.

Scalable strategies for cross-validation–based hyperparameter learning that rely on computing
the gradient of cross-validation loss with respect to the desired hyperparameters arose first in the
neural network modeling community [20, 21, 1, 12]. More recently, similar cross-validation opti-
mization techniques have been proposed for other supervised learning models [3], including sup-
port vector machines [4, 10, 16], Gaussian processes [35, 33], and related kernel learning meth-
ods [18, 17, 39]. Here, we consider the problem of hyperparameter learning for a specialized class
of structured classification models known asconditional log-linear models(CLLMs), a generaliza-
tion of conditional random fields(CRFs) [19].

Whereas standard binary classification involves mapping an objectx ∈ X to some binary output
y ∈ Y (whereY = {±1}), the input spaceX and output spaceY in a structured classification task
generally contain complex combinatorial objects (such as sequences, trees, or matchings). Design-
ing hyperparameter learning algorithms for structured classification models thus yields a number of
unique computational challenges not normally encounteredin the flat classification setting. In this
paper, we derive a gradient-based approach for optimizing the hyperparameters of a CLLM using the
loss incurred on a holdout set. We describe the required algorithms specific to CLLMs which make
the needed computations tractable. Finally, we demonstrate on both simulations and a real-world
computational biology task that our hyperparameter learning method can give gains over learning
flat unstructured regularization priors.

2 Preliminaries

Conditional log-linear models (CLLMs) are a probabilisticframework for sequence labeling or pars-
ing problems, whereX is an exponentially large space of possible input sequencesandY is an
exponentially large space of candidate label sequences or parse trees. LetF : X × Y → R

n be
a fixed vector-valued mapping from input-output pairs to ann-dimensional feature space. CLLMs
model the conditional probability ofy given x asP (y | x;w) = exp(wT F(x, y))/Z(x) where
Z(x) =

∑

y′∈Y exp(wT F(x, y′)). Given a training setT =
{

(x(i), y(i))
}m

i=1
of i.i.d. labeled input-

output pairs drawn from some unknown fixed distributionD overX × Y, the parameter learning
problem is typically posed asmaximum a posteriori(MAP) estimation (or equivalently, regularized
logloss minimization):

w⋆ = arg min
w∈Rn

(

1

2
wT Cw −

m
∑

i=1

log P (y(i) | x(i);w)

)

, (OPT1)

where 1
2w

T Cw (for some positive definite matrixC) is a regularization penalty used to prevent
overfitting. Here,C is the inverse covariance matrix of a Gaussian prior on the parametersw.

While a number of efficient procedures exist for solving the optimization problem OPT1 [34, 11],
little attention is usually given to choosing an appropriate regularization matrixC. Generally,C is
parameterized using a small number of free variables,d ∈ R

k, known as thehyperparametersof the
model. Given a holdout setH =

{

(x̃(i), ỹ(i))
}m̃

i=1
of i.i.d. examples drawn fromD, hyperparameter

learning itself can be cast as an optimization problem:

minimize
d∈Rk

−

m̃
∑

i=1

log P
(

ỹ(i) | x̃(i);w⋆(C)
)

. (OPT2)

In words, OPT2 finds the hyperparametersd whose regularization matrixC leads the parameter
vectorw⋆(C) learned from the training set to obtain small logloss on holdout data. For many real-
world applications,C is assumed to take a simple form, such as a scaled identity matrix, CI. While
this parameterization may be partially motivated by concerns of hyperparameter overfitting [28],
such a choice usually stems from the difficulty of hyperparameter inference.

In practice, grid-search procedures provide a reliable method for determining hyperparam-
eters to low-precision: one trains the model using several candidate values ofC (e.g., C ∈
{

. . . , 2−2, 2−1, 20, 21, 22, . . .
}

), and chooses theC that minimizes holdout logloss. While this strat-
egy is suitable for tuning a single model hyperparameter, more sophisticated strategies are necessary
when optimizing multiple hyperparameters.

3 Learning multiple hyperparameters

In this section, we lay the framework for multiple hyperparameter learning by describing a simple
yet flexible parameterization ofC that arises quite naturally in many practical problems. We then
describe a generic strategy for hyperparameter adaptationvia gradient-based optimization.

Consider a setting in which predefined subsets of parameter components (which we callreg-
ularization groups) are constrained to use the same hyperparameters [6]. For instance, in an
NLP task, individual word occurrence features may be placedin a separate regularization group
from word bigram features. Formally, letk be a fixed number of regularization groups, and let
π : {1, . . . , n} → {1, . . . , k} be a prespecified mapping from parameters to regularizationgroups.
Furthermore, for a vectorx ∈ R

k, define its expansionx ∈ R
n asx = (xπ(1), xπ(2), . . . , xπ(n)).

In the sequel, we parameterizeC ∈ R
n×n in terms of some hyperparameter vectord ∈ R

k

as the diagonal matrix,C(d) = diag(exp(d)). Under this representation,C(d) is necessar-

ily positive definite, so OPT2 can be written as an unconstrained minimization over the variables
d ∈ R

k. Specifically, letℓT (w) = −
∑m

i=1 log P
(

y(i) | x(i);w
)

denote the training logloss and

ℓH(w) = −
∑m̃

i=1 log P
(

ỹ(i) | x̃(i);w
)

the holdout logloss for a parameter vectorw. Omitting the
dependence ofC ond for notational convenience, we have the optimization problem

minimize
d∈Rk

ℓH(w⋆) subject to w⋆ = arg min
w∈Rn

(

1

2
wT Cw + ℓT (w)

)

. (OPT2’)

For any fixed setting of these hyperparameters, the objective function of OPT2’ can be evaluated by
(1) using the hyperparametersd to determine the regularization matrixC, (2) solving OPT1 using
C to determinew⋆ and (3) computing the holdout logloss using the parametersw⋆. In this next
section, we derive a method for computing the gradient of theobjective function of OPT2’ with
respect to the hyperparameters. Given both procedures for function and gradient evaluation, we may
apply standard gradient-based optimization (e.g., conjugate gradient or L-BFGS [30]) in order to
find a local optimum of the objective. In general, we observe that only a few iterations (∼ 5) are
usually sufficient to determine reasonable hyperparameters to low accuracy.

4 The hyperparameter gradient

Note that the optimization objectiveℓH(w⋆) is a function ofw⋆. In turn,w⋆ is a function of the hy-
perparametersd, as implicitly defined by the gradient stationarity condition,Cw⋆ +∇wℓT (w⋆) =
0. To compute the hyperparameter gradient, we will use both ofthese facts.

4.1 Deriving the hyperparameter gradient

First, we apply the chain rule to the objective function of OPT2’ to obtain

∇dℓH(w⋆) = JT
d
∇wℓH(w⋆) (1)

whereJd is then × k Jacobian matrix whose(i, j)th entry is∂w⋆
i /∂dj . The term∇wℓH(w⋆) is

simply the gradient of the holdout logloss evaluated atw⋆. For decomposable models, this may
be computed exactly via dynamic programming (e.g., the forward/backward algorithm for chain-
structured models or the inside/outside algorithm for grammar-based models).

Next, we show how to compute the Jacobian matrixJd. Recall that at the optimum of the smooth
unconstrained optimization problem OPT1, the partial derivative of the objective with respect to any
parameter must vanish. In particular, the partial derivative of 1

2w
T Cw + ℓT (w) with respect towi

vanishes whenw = w⋆, so

0 = CT
i w⋆ +

∂

∂wi

ℓT (w⋆), (2)

whereCT
i denotes theith row of theC matrix. Since (2) uniquely definesw⋆ (as OPT1 is a

strictly convex optimization problem), we can use implicitdifferentiation to obtain the needed partial
derivatives. Specifically, we can differentiate both sidesof (2) with respect todj to obtain

0 =

n
∑

p=1

(

w⋆
p

∂

∂dj

Cip + Cip

∂

∂dj

w⋆
p

)

+

n
∑

p=1

∂

∂wp

∂

∂wi

ℓT (w⋆)
∂

∂dj

w⋆
p, (3)

= I{π(i)=j}w
⋆
i exp(dj) +

n
∑

p=1

(

Cip +
∂

∂wp

∂

∂wi

ℓT (w⋆)

)

∂

∂dj

w⋆
p. (4)

Stacking (4) for alli ∈ {1, . . . , n} andj ∈ {1, . . . , k}, we obtain the equivalent matrix equation,

0 = B + (C + ∇2
w

ℓT (w⋆))Jd (5)

whereB is then × k matrix whose(i, j)th element isI{π(i)=j}w
⋆
i exp(dj), and∇2

w
ℓT (w⋆) is the

Hessian of the training logloss evaluated atw⋆. Finally, solving these equations forJd, we obtain
Jd = −(C + ∇2

w
ℓT (w⋆))−1B. (6)

4.2 Computing the hyperparameter gradient efficiently

In principle, one could simply use (6) to obtain the JacobianmatrixJd directly. However, computing
then × n matrix (C + ∇2

w
ℓT (w⋆))−1 is difficult. Computing the Hessian matrix∇2

w
ℓT (w⋆) in

a typical CLLM requires approximatelyn times the cost of a single logloss gradient evaluation.
Once the Hessian has been computed, typical matrix inversion routines takeO(n3) time. Even
more problematic, theΩ(n2) memory usage for storing the Hessian is prohibitive as typical log-
linear models (e.g., in NLP) may have thousands or even millions of features. To deal with these

Algorithm 1 : Gradient computation for hyperparameter selection.

Input: training setT =
{

(x(i), y(i))
}m

i=1
, holdout setH =

{

(x̃(i), ỹ(i))
}m̃

i=1
current hyperparametersd ∈ R

k

Output: hyperparameter gradient∇dℓH(w⋆)

1. Compute solutionw⋆ to OPT1 using regularization matrixC = diag(exp(d)).

2. Form the matrixB ∈ R
n×k such that(B)ij = I{π(i)=j}w

⋆
i exp(dj).

3. Use conjugate gradient algorithm to solve the linear system,
(C + ∇2

w
ℓT (w⋆))x = ∇wℓH(w⋆).

4. Return−BT x.

Figure 1: Pseudocode for gradient computation

problems, we first explain why(C+∇2
w

ℓT (w⋆))v for any arbitrary vectorv ∈ R
n can be computed

in O(n) time, even though forming(C + ∇2
bwℓT (w⋆))−1 is expensive. Using this result, we then

describe an efficient procedure for computing the holdout hyperparameter gradient which avoids the
expensive Hessian computation and inversion steps of the direct method.

First, sinceC is diagonal, the product ofC with any arbitrary vectorv is trivially computable in
O(n) time. Second, although direct computation of the Hessian isinefficient in a generic log-linear
model, computing the product of the Hessian withv can be done quickly, using any of the following
techniques, listed in order of increasing implementation effort (and numerical precision):

1. Finite differencing. Use the following numerical approximation:

∇2
w

ℓT (w⋆) · v = lim
r→0

∇wℓT (w⋆ + rv) −∇wℓt(w
⋆)

r
. (7)

2. Complex step derivative[24]. Use the following identity from complex analysis:

∇2
w

ℓT (w⋆) · v = lim
r→0

Im {∇wℓT (w⋆ + i · rv)}

r
. (8)

whereIm {·} denotes the imaginary part of its complex argument (in this case, a vector).
Because there is no subtraction in the numerator of the right-hand expression, the complex-
step derivative does not suffer from the numerical problemsof the finite-differencing
method that result from cancellation. As a consequence, much smaller step sizes can be
used, allowing for greater accuracy.

3. Analytical computation. Given an existingO(n) algorithm for computing gradients ana-
lytically, define the differential operator

Rv{f(w)} = lim
r→0

f(w + rv) − f(w)

r
=

∂

∂r
f(w + rv)

∣

∣

∣

∣

r=0

, (9)

for which one can verify thatRv{∇wℓT (w⋆)} = ∇2
w

ℓT (w⋆) · v. By applying stan-
dard rules for differential operators,Rv{∇wℓT (w⋆)} can be computed recursively using
a modified version of the original gradient computation routine; see [31] for details.

Hessian-vector products for graphical models were previously used in the context of step-size adap-
tation for stochastic gradient descent [36]. In our experiments, we found that the simplest method,
finite-differencing, provided sufficient accuracy for our application.

Given the above procedure for computing matrix-vector products, we can now use theconjugate
gradient (CG) method to solve the matrix equation (5) to obtainJd. Unlike direct methods for
solving linear systemsAx = b, CG is an iterative method which relies on the matrixA only
through matrix-vector productsAv. In practice, few steps of the CG algorithm are generally needed
to find an approximate solution of a linear system with acceptable accuracy. Using CG in this
way amounts to solvingk linear systems, one for each column of theJd matrix. Unlike the direct
method of forming the(C + ∇2

w
ℓT (w⋆)) matrix and its inverse, solving the linear systems avoids

the expensiveΩ(n2) cost of Hessian computation and matrix inversion.
Nevertheless, even this approach for computing the Jacobian matrices still requires the solution

of multiple linear systems, which scales poorly when the number of hyperparametersk is large.

(a) (b) (c)
y1 y2 · · · yL

xj
1 xj

2
· · · xj

L

xj
1 xj

2
· · · xj

Lxj
L

“observed features” j ∈ {1, . . . , R}

“noise features” j ∈ {R + 1, . . . , 40}
0 10 20 30 40

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of relevant features, R

P
ro

po
rt

io
n

of
 in

co
rr

ec
t l

ab
el

s grid
single
separate
grouped

0 20 40 60 80
0.3

0.35

0.4

0.45

0.5

0.55

Training set size, M

P
ro

po
rt

io
n

of
 in

co
rr

ec
t l

ab
el

s grid
single
separate
grouped

Figure 2: HMM simulation experiments. (a) State diagram of the HMM used in the simulations. (b)
Testing set performance when varyingR, usingM = 10. (c) Testing set performance when varying
M , usingR = 5. In both (b) and (c), each point represents an average over 100 independent runs of
HMM training/holdout/testing set generation and CRF training and hyperparameter optimization.

However, we can do much better by reorganizing the computations in such a way that the Jacobian
matrixJd is never explicitly required. In particular, substituting(6) into (1),

∇dℓH(w⋆) = −BT (C + ∇2
w

ℓT (w⋆))−1∇wℓH(w⋆) (10)
we observe that it suffices to solve the single linear system,

(C + ∇2
w

ℓT (w⋆))x = ∇wℓH(w⋆) (11)

and then form∇dℓH(w⋆) = −BT x. By organizing the computations this way, the number of least
squares problems that must be solved is substantially reduced fromk to only one. A similar trick
was previously used for hyperparameter adaptation in SVMs [16] and kernel logistic regression [33].
Figure 1 shows a summary of our algorithm for hyperparametergradient computation.1

5 Experiments

To test the effectiveness of our hyperparameter learning algorithm, we applied it to two tasks: a sim-
ulated sequence labeling task involving noisy features, and a real-world application of conditional
log-linear models to the biological problem of RNA secondary structure prediction.

Sequence labeling simulation.For our simulation test, we constructed a simple linear-chain
hidden Markov model (HMM) with binary-valued hidden nodes,yi ∈ {0, 1}.2 We associated 40
binary-valued featuresxj

i , j ∈ {1, . . . , 40} with each hidden stateyi, includingR “relevant” ob-
served features whose values were chosen based onyi, and(40 − R) “irrelevant” noise features
whose values were chosen to be either 0 or 1 with equal probability, independent ofyi.3 Figure 2a
shows the graphical model representing the HMM. For each run, we used the HMM to simulate
training, holdout, and testing sets ofM , 10, and 1000 sequences, respectively, each of length 10.

Next, we constructed a CRF based on an HMM model similar to that shown in Figure 2a in
which potentials were included for the initial nodey1, between eachyi and yi+1, and between
yi and eachxj

i (including both the observed features and the noise features). We then performed
gradient-based hyperparameter learning using three different parameter-tying schemes: (a) all hy-
perparameters constrained to be equal, (b) separate hyperparameter groups for each parameter of the
model, and (c) transitions, observed features, and noise features each grouped together. Figure 2b
shows the performance of the CRF for each of the three parameter-tying gradient-based optimization
schemes, as well as the performance of scheme (a) when using the standard grid-search strategy of
trying regularization matricesCI for C ∈

{

. . . , 2−2, 2−1, 20, 21, 22, . . .
}

.
As seen in Figures 2b and 2c, the gradient-based procedure performed either as well as or bet-

ter than a grid search for single hyperparameter models. Using either a single hyperparameter or
all separate hyperparameters generally gave similar results, with a slight tendency for the separate

1In practice, roughly 50-100 iterations of CG were sufficient to obtain hyperparameter gradients, meaning
that the cost of running Algorithm 1 was approximately the same as the costof solving OPT1 for a single fixed
setting of the hyperparameters. Roughly 3-5 line searches were sufficient to identify good hyperparameter
settings; assuming that each line search takes 2-4 times the cost of solvingOPT1, the overall hyperparameter
learning procedure takes approximately 20 times the cost of solving OPT1once.

2For our HMM, we set initial state probabilities to0.5 each, and used self-transition probabilities of0.6.
3Specifically, we drew eachxj

i independently according toP (xj

i = v | yi = v) = 0.6, v ∈ {0, 1}.

(a)

(b)

RNA sequence secondary
structure

uccguagaaggc
5’ 3’

3’5’
.a
.
g
.
g

|
|

|

.u

.c

.c
.. ag
.. au
..

ga .

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

Mfold

ViennaRNA

PKNOTS

ILM

Pfold

CONTRAfold (our algorithm)

Specificity

S
en

si
tiv

ity

single (AUC=0.6169, logloss=5916)
separate (AUC=0.6383, logloss=5763)
grouped (AUC=0.6406, logloss=5531)

(c)

Regularization group exp(di)
fold A fold B

hairpin loop lengths 0.0832 0.456
helix closing base pairs 0.780 0.0947
symmetric internal loop lengths 6.32 0.0151
external loop lengths 0.338 0.401
bulge loop lengths 0.451 2.03
base pairings 2.01 7.95
internal loop asymmetry 4.24 6.90
explicit internal loop sizes 12.8 6.39
terminal mismatch interactions 132 50.2
single base pair stacking interactions 71.0 104
1 × 1 internal loop nucleotides 139 120.
single base bulge nucleotides 136 130.
internal loop lengths 1990 35.3
multi-branch loop lengths 359 2750
helix stacking interactions 12100 729

Figure 3: RNA secondary structure prediction. (a) An illustration of the secondary structure predic-
tion task. (b) Grouped hyperparameters learned using our algorithm for each of the two folds. (c)
Performance comparison with state-of-the-art methods when using either a single hyperparameter
(the “original” CONTRAfold), separate hyperparameters, or grouped hyperparameters.

hyperparameter model to overfit. Enforcing regularizationgroups, however, gave consistently lower
error rates, achieving an absolute reduction in generalization error over the next-best model of 6.7%,
corresponding to a relative reduction of 16.2%.

RNA secondary structure prediction. We also applied our framework to the problem of RNA
secondary structure prediction. Ribonucleic acid (RNA) molecules are long nucleic acid polymers
present in the cells of all living organisms. For many types of RNA, three-dimensional (or tertiary)
structure plays an important role in determining the RNA’s function. Here, we focus on the task
of predicting RNA secondary structure, i.e., the pattern ofnucleotide base pairings which form the
two-dimensional scaffold upon which RNA tertiary structures assemble (see Figure 3a).

As a starting point, we used CONTRAfold [7], a current state-of-the-art secondary structure
prediction program based on CLLMs. In brief, the CONTRAfoldprogram models RNA secondary
structures using a variant of stochastic context-free grammars (SCFGs) which incorporates features
chosen to closely match the energetic terms found in standard physics-based models of RNA struc-
ture. These features model the various types of loops that occur in RNAs (e.g., hairpin loops, bulge
loops, interior loops, etc.). To control overfitting, CONTRAfold uses flatL2 regularization. Here,
we modified the existing implementation to perform an “outer” optimization loop based on our al-
gorithm, and chose regularization groups either by (a) enforcing a single hyperparameter group, (b)
using separate groups for each parameter, or (c) grouping according to the type of each feature (e.g.,
all features for describing hairpin loop lengths were placed in a single regularization group).

For testing, we collected 151 RNA sequences from the Rfam database [13] for which
experimentally-determined secondary structures were already known. We divided this dataset into
two folds (denoted A and B) and performed two-fold cross-validation. Despite the small size of
the training set, the hyperparameters learned on each fold were nonetheless qualitatively similar,
indicating the robustness of the procedure (see Figure 3b).As expected, features with small regular-
ization hyperparameters correspond to properties of RNAs which are known to contribute strongly
to the energetics of RNA secondary structure, whereas many of the features with larger regulariza-
tion hyperparameters indicate structural properties whose presence/absence are either less correlated
with RNA secondary structure or sufficiently noisy that their parameters are difficult to determine
reliably from the training data.

We then compared the cross-validated performance of algorithm with state-of-the-art methods
(see Figure 3c).4 Using separate or grouped hyperparameters both gave increased sensitivity and
increased specificity compared to the original model, whichwas learned using a single regulariza-
tion hyperparameter. Overall, the testing logloss (summedover the two folds) decreased by roughly
6.5% when using grouped hyperparameters and 2.6% when usingmultiple separate hyperparame-
ters, while the estimated testing ROC area increased by roughly 3.8% and 3.4%, respectively.

6 Discussion and related work

In this work, we presented a gradient-based approach for hyperparameter learning based on mini-
mizing logloss on a holdout set. While the use of cross-validation loss as a proxy for generalization
error is fairly natural, in many other supervised learning methods besides log-linear models, other
objective functions have been proposed for hyperparameteroptimization. In SVMs, approaches
based on optimizing generalization bounds [4], such as the radius/margin-bound [15] or maximal
discrepancy criterion [2] have been proposed. Comparable generalization bounds are not generally
known for CRFs; even in SVMs, however, generalization bound-based methods empirically do not
outperform simpler methods based on optimizing five-fold cross-validation error [8].

A different method for dealing with hyperparameters, common in neural network modeling, is
the Bayesian approach of treating hyperparameters themselves as parameters in the model to be es-
timated. In an ideal Bayesian scheme, one does not perform hyperparameter or parameter inference,
but rather integrates over all possible hyperparameters and parameters in order to obtain a posterior
distribution over predicted outputs given the training data. This integration can be performed using
a hybrid Monte Carlo strategy [27, 38]. For the types of large-scale log-linear models we consider in
this paper, however, the computational expense of sampling-based strategies can be extremely high
due to slow convergence of MCMC techniques [26].

Empirical Bayesian (i.e., ML-II) strategies, such as Automatic Relevance Determination
(ARD) [22], take the intermediate approach of integrating over parameters to obtain the marginal
likelihood (known as the log evidence), which is then optimized with respect to the hyperparame-
ters. Computing marginal likelihoods, however, can be quite costly, especially for log-linear models.
One method for doing this involves approximating the parameter posterior distribution as a Gaussian
centered at the posterior mode [22, 37]. In this strategy, however, the “Occam factor” used for hyper-
parameter optimization still requires a Hessian computation, which does not scale well for log-linear
models. An alternate approach based on using a modification of expectation propagation (EP) [25]
was applied in the context of Bayesian CRFs [32] and later extended to graph-based semi-supervised
learning [14]. As described, however, inference in these models relies on non-traditional “probit-
style” potentials for efficiency reasons, and known algorithms for inference in Bayesian CRFs are
limited to graphical models with fixed structure.

In contrast, our approach works broadly for a variety of log-linear models, including the
grammar-based models common in computational biology and natural language processing. Fur-
thermore, our algorithm is simple and efficient, both conceptually and in practice: one iteratively
optimizes the parameters of a log-linear model using a fixed setting of the hyperparameters, and then
one changes the hyperparameters based on the holdout logloss gradient. The gradient computation
relies primarily on a simple conjugate gradient solver for linear systems, coupled with the ability
to compute Hessian-vector products (straightforward in any modern programming language that al-
lows for operation overloading). As we demonstrated in the context of RNA secondary structure
prediction, gradient-based hyperparameter learning is a practical and effective method for tuning
hyperparameters when applied to large-scale log-linear models.

Finally we note that for neural networks, [9] and [5] proposed techniques for simultaneous opti-
mization of hyperparameters and parameters; these resultssuggest that similar procedures for faster
hyperparameter learning that do not require a doubly-nested optimization may be possible.

References
[1] L. Andersen, J. Larsen, L. Hansen, and M. Hintz-Madsen. Adaptive regularization of neural classifiers.

In NNSP, 1997.
[2] D. Anguita, S. Ridella, F. Rivieccio, and R. Zunino. Hyperparameter design criteria for support vector

classifiers.Neurocomputing, 55:109–134, 2003.

4Following [7], we used the maximum expected accuracy algorithm for decoding, which returns a set of
candidates parses reflecting different trade-offs between sensitivity(proportion of true base-pairs called) and
specificity (proportion of called base-pairs which are correct).

[3] Y. Bengio. Gradient-based optimization of hyperparameters.Neural Computation, 12:1889–1900, 2000.
[4] O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choosingmultiple parameters for support vector

machines.Machine Learning, 46(1–3):131–159, 2002.
[5] D. Chen and M. Hagan. Optimal use of regularization and cross-validation in neural network modeling.

In IJCNN, 1999.
[6] C. B. Do, S. S. Gross, and S. Batzoglou. CONTRAlign: discriminative training for protein sequence

alignment. InRECOMB, pages 160–174, 2006.
[7] C. B. Do, D. A. Woods, and S. Batzoglou. CONTRAfold: RNA secondary structure prediction without

physics-based models.Bioinformatics, 22(14):e90–e98, 2006.
[8] K. Duan, S. S. Keerthi, and A.N. Poo. Evaluation of simple performance measures for tuning SVM

hyperparameters.Neurocomputing, 51(4):41–59, 2003.
[9] R. Eigenmann and J. A. Nossek. Gradient based adaptive regularization. InNNSP, pages 87–94, 1999.

[10] T. Glasmachers and C. Igel. Gradient-based adaptation of general Gaussian kernels.Neural Comp.,
17(10):2099–2105, 2005.

[11] A. Globerson, T. Y. Koo, X. Carreras, and M. Collins. Exponentiated gradient algorithms for log-linear
structured prediction. InICML, pages 305–312, 2007.

[12] C. Goutte and J. Larsen. Adaptive regularization of neural networks using conjugate gradient. InICASSP,
1998.

[13] S. Griffiths-Jones, S. Moxon, M. Marshall, A. Khanna, S. R. Eddy, and A. Bateman. Rfam: annotating
non-coding RNAs in complete genomes.Nucleic Acids Res, 33:D121–D124, 2005.

[14] A. Kapoor, Y. Qi, H. Ahn, and R. W. Picard. Hyperparameter and kernel learning for graph based semi-
supervised classification. InNIPS, pages 627–634, 2006.

[15] S. S. Keerthi. Efficient tuning of SVM hyperparameters using radius/margin bound and iterative algo-
rithms. IEEE Transaction on Neural Networks, 13(5):1225–1229, 2002.

[16] S. S. Keerthi, V. Sindhwani, and O. Chapelle. An efficient method for gradient-based adaptation of
hyperparameters in SVM models. InNIPS, 2007.

[17] K. Kobayashi, D. Kitakoshi, and R. Nakano. Yet faster method to optimize SVR hyperparameters based
on minimizing cross-validation error. InIJCNN, volume 2, pages 871–876, 2005.

[18] K. Kobayashi and R. Nakano. Faster optimization of SVR hyperparameters based on minimizing cross-
validation error. InIEEE Conference on Cybernetics and Intelligent Systems, 2004.

[19] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: probabilistic models for segmenting
and labeling sequence data. InICML 18, pages 282–289, 2001.

[20] J. Larsen, L. K. Hansen, C. Svarer, and M. Ohlsson. Design and regularization of neural networks: the
optimal use of a validation set. InNNSP, 1996.

[21] J. Larsen, C. Svarer, L. N. Andersen, and L. K. Hansen. Adaptive regularization in neural network
modeling. InNeural Networks: Tricks of the Trade, pages 113–132, 1996.

[22] D. J. C. MacKay. Bayesian interpolation.Neural Computation, 4(3):415–447, 1992.
[23] D. J. C. MacKay and R. Takeuchi. Interpolation models with multiple hyperparameters.Statistics and

Computing, 8:15–23, 1998.
[24] J. R. R. A. Martins, P. Sturdza, and J. J. Alonso. The complex-step derivative approximation.ACM Trans.

Math. Softw., 29(3):245–262, 2003.
[25] T. P. Minka. Expectation propagation for approximate Bayesian inference. InUAI, volume 17, pages

362–369, 2001.
[26] I. Murray and Z. Ghahramani. Bayesian learning in undirected graphical models: approximate MCMC

algorithms. InUAI, pages 392–399, 2004.
[27] R. M. Neal.Bayesian Learning for Neural Networks. Springer, 1996.
[28] A. Y. Ng. Preventing overfitting of cross-validation data. InICML, pages 245–253, 1997.
[29] A. Y. Ng. Feature selection,L1 vs.L2 regularization, and rotational invariance. InICML, 2004.
[30] J. Nocedal and S. J. Wright.Numerical Optimization. Springer, 1999.
[31] B. A. Pearlmutter. Fast exact multiplication by the Hessian.Neural Comp, 6(1):147–160, 1994.
[32] Y. Qi, M. Szummer, and T. P. Minka. Bayesian conditional randomfields. InAISTATS, 2005.
[33] M. Seeger. Cross-validation optimization for large scale hierarchical classification kernel methods. In

NIPS, 2007.
[34] F. Sha and F. Pereira. Shallow parsing with conditional random fields. InNAACL, pages 134–141, 2003.
[35] S. Sundararajan and S. S. Keerthi. Predictive approaches forchoosing hyperparameters in Gaussian

processes.Neural Comp., 13(5):1103–1118, 2001.
[36] S. V. N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and K.P. Murphy. Accelerated training of

conditional random fields with stochastic gradient methods. InICML, pages 969–976, 2006.
[37] M. Wellings and S. Parise. Bayesian random fields: the Bethe-Laplace approximation. InICML, 2006.
[38] C. K. I. Williams and D. Barber. Bayesian classification with Gaussianprocesses.IEEE Transactions on

Pattern Analysis and Machine Intelligence, 20(12):1342–1351, 1998.
[39] X. Zhang and W. S. Lee. Hyperparameter learning for graph based semi-supervised learning algorithms.

In NIPS, 2007.

