Efficient multiple hyperparameter
learning for log-linear models

Chuong B. Do Chuan-Sheng Foo Andrew Y. Ng
Computer Science Department
Stanford University
Stanford, CA 94305
{chuongdo, csf oo, ang}@s. st anf or d. edu

Abstract

In problems where input features have varying amounts adeyaising distinct
regularization hyperparameters for different features/jates an effective means
of managing model complexity. While regularizers for neuretworks and sup-
port vector machines often rely on multiple hyperparansteegularizers for
structured prediction models (used in tasks such as seguabeling or pars-
ing) typically rely only on a single shared hyperparameterdil features. In this
paper, we consider the problem of choosing regularizatipetparameters for
log-linear models, a class of structured prediction prdisic models which in-
cludes conditional random fields (CRFs). Using an implidfiedentiation trick,
we derive an efficient gradient-based method for learningsSian regularization
priors with multiple hyperparameters. In both simulatiamsl the real-world task
of computational RNA secondary structure prediction, we fimat multiple hy-
perparameter learning can provide a significant boost imr@oy compared to
using only a single regularization hyperparameter.

1 Introduction

In many supervised learning methods, overfitting is cofgtbthrough the use of regularization
penalties for limiting model complexity. The effectivesesf penalty-based regularization for a
given learning task depends not only on the type of regudéiin penalty used (e.gly vs Ls) [29]
but also (and perhaps even more importantly) on the choibgmérparameters governing the regu-
larization penalty (e.g., the hyperparameXen an isotropic Gaussian parameter pribjiw||?).

When only a single hyperparameter must be tuned, crossat@lidprovides a simple yet reliable
procedure for hyperparameter selection. For example, ébalarization hyperparametérf in a
support vector machine (SVM) is usually tuned by training 8VM with several different values
of C', and selecting the one that achieves the best performanadoldout set. In many situations,
using multiple hyperparameters gives the distinct adygmntaf allowing models with features of
varying strength; for instance, in a natural language psiog (NLP) task, features based on word
bigrams are typically noisier than those based on indiMige@d occurrences, and hence should
be “more regularized” to prevent overfitting. Unfortungtdbr sophisticated models with multiple
hyperparameters [23], theiva grid search strategy of directly trying out possible tamations of
hyperparameter settings quickly grows infeasible as tmebar of hyperparameters becomes large.

Scalable strategies for cross-validation—based hypampeter learning that rely on computing
the gradient of cross-validation loss with respect to theirdd hyperparameters arose first in the
neural network modeling community [20, 21, 1, 12]. More r&bg similar cross-validation opti-
mization techniques have been proposed for other supeniésening models [3], including sup-
port vector machines [4, 10, 16], Gaussian processes [35,a88 related kernel learning meth-
ods [18, 17, 39]. Here, we consider the problem of hyperpatamearning for a specialized class
of structured classification models knownamditional log-linear modeléCLLMs), a generaliza-
tion of conditional random field6CRFs) [19].

Whereas standard binary classification involves mappinggtbr € X' to some binary output
y € Y (where) = {£1}), the input spac&’ and output spac® in a structured classification task
generally contain complex combinatorial objects (sucheagisnces, trees, or matchings). Design-
ing hyperparameter learning algorithms for structuredsifécation models thus yields a number of
unique computational challenges not normally encounterele flat classification setting. In this
paper, we derive a gradient-based approach for optimitiapyperparameters of a CLLM using the
loss incurred on a holdout set. We describe the requiredittiges specific to CLLMs which make
the needed computations tractable. Finally, we demomestmatboth simulations and a real-world
computational biology task that our hyperparameter lemymiethod can give gains over learning
flat unstructured regularization priors.

2 Preliminaries

Conditional log-linear models (CLLMs) are a probabilidti@mework for sequence labeling or pars-
ing problems, whereX is an exponentially large space of possible input sequeacdg’ is an
exponentially large space of candidate label sequencearserees. LeF : X x) — R™ be

a fixed vector-valued mapping from input-output pairs tonadimensional feature space. CLLMs
model the conditional probability of givenx as P(y | x;w) = exp(w!F(x,y))/Z(x) where
Z(x) =, ey exp(wlF(z,y)). Given atraining set’ = {(z(),y(")}" ofi.i.d. labeled input-
output pairs drawn from some unknown fixed distributibrover X x), the parameter learning
problem is typically posed asaximum a posterio(MAP) estimation (or equivalently, regularized
logloss minimization):

w”* = arg min <1WTCW — Z log P(y(i) | 2@ w)), (OPT1)
weRn? 2 i—1
Where%wTCw (for some positive definite matriC) is a regularization penalty used to prevent
overfitting. Here C is the inverse covariance matrix of a Gaussian prior on tmarpatersw.
While a number of efficient procedures exist for solving thérajzation problem OPT1 [34, 11],
little attention is usually given to choosing an appromrieggularization matrixC. Generally,C is
parameterized using a small number of free variakles,R*, known as thdyperparametersf the

model. Given a holdout séf = {(z(), () 111 of i.i.d. examples drawn fror®, hyperparameter
learning itself can be cast as an optimization problem:

P _ ~(1) | A(1). ok
minimize i_zllogP(y | 25w (C)) (OPT2)
In words, OPT2 finds the hyperparametersvhose regularization matri&C leads the parameter
vectorw*(C) learned from the training set to obtain small logloss on hotdlata. For many real-
world applicationsC is assumed to take a simple form, such as a scaled identityxm@l. While

this parameterization may be partially motivated by consesf hyperparameter overfitting [28],
such a choice usually stems from the difficulty of hyperpaeteninference.

In practice, grid-search procedures provide a reliablehorbtfor determining hyperparam-
eters to low-precision: one trains the model using sevesalditate values o (e.g., C €
{...,272,271,20 2! 22 1), and chooses th€ that minimizes holdout logloss. While this strat-
egy is suitable for tuning a single model hyperparametergraophisticated strategies are necessary
when optimizing multiple hyperparameters.

3 Learning multiple hyperparameters

In this section, we lay the framework for multiple hyperpaeter learning by describing a simple
yet flexible parameterization & that arises quite naturally in many practical problems. Wt
describe a generic strategy for hyperparameter adaptatiogradient-based optimization.

Consider a setting in which predefined subsets of parametaponents (which we caleg-
ularization group$ are constrained to use the same hyperparameters [6]. Btanice, in an
NLP task, individual word occurrence features may be pldoed separate regularization group
from word bigram features. Formally, lét be a fixed number of regularization groups, and let
m:{1,...,n} — {1,...,k} be a prespecified mapping from parameters to regularizationps.
Furthermore, for a vectar € R¥, define its expansioR € R™ asx = (Tr(1)s Tr(2)s- s Tr(n))-

In the sequel, we parameterige ¢ R™*" in terms of some hyperparameter vectbre R*

as the diagonal matrixC(d) = diag(exp(d)). Under this representatiorC(d) is necessar-

ily positive definite, so OPT2 can be written as an unconsd@iminimization over the variables
d € R*. Specifically, letr(w) = — 3" log P(y") | 2(9; w) denote the training logloss and
Cp(w) =—3" log P(5% | #9;w) the holdout logloss for a parameter vecter Omitting the
dependence df ond for notational convenience, we have the optimization probl

minimize {g(wW") subjectto w* = arg min <1WTCW + éT(w)>. (OPT2)
deRF weER? 2
For any fixed setting of these hyperparameters, the obgefitivction of OPT2’ can be evaluated by
(1) using the hyperparametedsto determine the regularization mati, (2) solving OPT1 using
C to determinew™ and (3) computing the holdout logloss using the paramaters In this next
section, we derive a method for computing the gradient ofabjective function of OPT2’ with
respect to the hyperparameters. Given both procedureatiotibn and gradient evaluation, we may
apply standard gradient-based optimization (e.g., catpigradient or L-BFGS [30]) in order to
find a local optimum of the objective. In general, we obsehat bnly a few iterations~ 5) are
usually sufficient to determine reasonable hyperparamébdow accuracy.

4 The hyperparameter gradient

Note that the optimization objectivig; (w*) is a function ofw*. In turn,w* is a function of the hy-
perparameterd, as implicitly defined by the gradient stationarity conalitj Cw* + V{7 (w*) =
0. To compute the hyperparameter gradient, we will use bothese facts.

4.1 Deriving the hyperparameter gradient
First, we apply the chain rule to the objective function off@Pto obtain

Valg(w*) = J§Vwla(w") 1)
whereJq is then x k Jacobian matrix whosg, j)th entry isOw} /0d;. The termVy £y (w*) is
simply the gradient of the holdout logloss evaluatedvéat For decomposable models, this may
be computed exactly via dynamic programming (e.g., the &odibackward algorithm for chain-
structured models or the inside/outside algorithm for greanbased models).

Next, we show how to compute the Jacobian malgx Recall that at the optimum of the smooth
unconstrained optimization problem OPT1, the partiahddive of the objective with respect to any
parameter must vanish. In particular, the partial deneatif ;w” Cw + (1 (w) with respect taw;
vanishes wherw = w*, so

0=Clw* +

(w"), 2)

where CT' denotes theth row of the C matrix. Since (2) uniquely defines* (as OPT1 is a
strictly convex optimization problem), we can use impldifferentiation to obtain the needed partial
derivatives. Specifically, we can differentiate both side€) with respect tal; to obtain

n 8 n * 8 *
O_;(»ad; Clﬁc“’ad >+Zaw,,awz V)5, ®)
0 8 ~) 0
- I{Tr()=]}’UJ GXp + Z <C74p t 5 w (9’LU7 ()) Td_lwp (4)
Stacking (4) forall € {1,...,n} andj € {1,...,k}, we obtain the equivalent matrix equation,
0=B+ (C+ Vilr(w*)Ja (5)

whereB is then x k matrix whose(i, j)th element i, w} exp(d;), andV2, (1 (w*) is the
Hessian of the training logloss evaluatedsat Finally, solving these equatlons fdp, we obtain

Ja = —(C+ V2 lr(w*)) 'B. (6)

4.2 Computing the hyperparameter gradient efficiently

In principle, one could simply use (6) to obtain the Jacolpmatrix J 4 directly. However, computing
then x n matrix (C + V2 ¢r(w*))~! is difficult. Computing the Hessian matrik2, /7 (w*) in

a typical CLLM requires approximately times the cost of a single logloss gradlent evaluation.
Once the Hessian has been computed, typical matrix inversiotines takeO(n?) time. Even
more problematic, th€(n?) memory usage for storing the Hessian is prohibitive as giding-
linear models (e.g., in NLP) may have thousands or evenangliof features. To deal with these

Algorithm 1: Gradient computation for hyperparameter selection.

Input: training sef” = { (=¥, y)} ™ holdout set = {(fé(i),g(“)}il
current hyperparametedsc R¥
Output: hyperparameter gradieVity { ; (w™*)
1. Compute solution* to OPT1 using regularization matr® = diag(exp(d)).
2. Form the matriB € R"** such that(B);; = L), yw} exp(d;).
3. Use conjugate gradient algorithm to solve the linearesyst
(C+ V2 lp(Ww*))x = Vly(w*).

4. Return—BTx.

Figure 1: Pseudocode for gradient computation

problems, we first explain wh§C + V2, ¢ (w*))v for any arbitrary vector € R"™ can be computed
in O(n) time, even though formingC + VZw/r(w*))~! is expensive. Using this result, we then
describe an efficient procedure for computing the holdopengarameter gradient which avoids the
expensive Hessian computation and inversion steps of teetanethod.

First, sinceC is diagonal, the product & with any arbitrary vectoy is trivially computable in
O(n) time. Second, although direct computation of the Hessiameiicient in a generic log-linear
model, computing the product of the Hessian witban be done quickly, using any of the following
techniques, listed in order of increasing implementatifore(and numerical precision):

1. Finite differencing. Use the following numerical approximation:
Vilr(wh) v = lil% Vwlr(w” +1v) = Vwli(w)
r— T

()

2. Complex step derivative[24]. Use the following identity from complex analysis:
Im {Vlr(w* +1i-
Valr(w) v = lim mAVwlr (W i 1v)} ®)
r— T

wherelm {-} denotes the imaginary part of its complex argument (in taisec a vector).
Because there is no subtraction in the numerator of the-tightl expression, the complex-
step derivative does not suffer from the numerical problerhghe finite-differencing
method that result from cancellation. As a consequencehrsowller step sizes can be
used, allowing for greater accuracy.

3. Analytical computation. Given an existing)(n) algorithm for computing gradients ana-
Iytically, define the differential operator

Ry {f(w)} = tim TVITDZIOD 0 iy | ©
r—0 r or —0

for which one can verify thaR, {Vy (r(w*)} = VZ/{r(w*) - v. By applying stan-

dard rules for differential operator®., {V¢r(w*)} can be computed recursively using

a modified version of the original gradient computation noeit see [31] for details.

Hessian-vector products for graphical models were preshoused in the context of step-size adap-
tation for stochastic gradient descent [36]. In our expernits, we found that the simplest method,
finite-differencing, provided sufficient accuracy for oyapdication.

Given the above procedure for computing matrix-vector pais, we can now use tlenjugate
gradient (CG) method to solve the matrix equation (5) to obtdinn Unlike direct methods for
solving linear system&Ax = b, CG is an iterative method which relies on the matAxonly
through matrix-vector productAv. In practice, few steps of the CG algorithm are generallydeee
to find an approximate solution of a linear system with acalelgt accuracy. Using CG in this
way amounts to solving linear systems, one for each column of the matrix. Unlike the direct
method of forming thé€ C + V2,/7-(w*)) matrix and its inverse, solving the linear systems avoids
the expensiv&(n?) cost of Hessian computation and matrix inversion.

Nevertheless, even this approach for computing the Jacabérices still requires the solution
of multiple linear systems, which scales poorly when the benof hyperparameters is large.

(@) (b) (c)
T > 0.5 0.55
0 % * grid 0 * grid
l‘ i i 2045 N single 2 single
< 04 \ B separate < 05 B separate
@ @ @ 8 Q e g k o
ce £ 035 £
<} qQ 045 \
o (5]
X £ 03 £ \
“observed features” jedl,..., R} 5 s '
025 04 \
c c
kel o L™
£ oo = Nl
o [} [] .
0.35 - & -4
@ @ @ o : 3
- g0 o
0.1 03
— g . 0 10 20 30 40 0 20 40 60 80
noise features je{R+1,...,40} Number of relevant features, R Training set size, M

Figure 2: HMM simulation experiments. (a) State diagramheftiMM used in the simulations. (b)
Testing set performance when varyilgusingM = 10. (c) Testing set performance when varying
M, usingR = 5. In both (b) and (c), each point represents an average o@einti@pendent runs of
HMM training/holdout/testing set generation and CRF tirggrand hyperparameter optimization.

However, we can do much better by reorganizing the commutatin such a way that the Jacobian
matrix J 5 is never explicitly required. In particular, substituti(@) into (1),

Valy(w*) = =BT(C + V4 lr(w*)) 'V ly(w") (10)
we observe that it suffices to solve the single linear system,
(C + V2,0 (w*)x = Vol (w*) (11)
and then fornvV 4/ (w*) = —B”x. By organizing the computations this way, the number oftleas

squares problems that must be solved is substantially esblffrom £ to only one. A similar trick
was previously used for hyperparameter adaptation in S\MMkdnd kernel logistic regression [33].
Figure 1 shows a summary of our algorithm for hyperparamgrtadient computatioh.

5 Experiments

To test the effectiveness of our hyperparameter learniggrgthm, we applied it to two tasks: a sim-
ulated sequence labeling task involving noisy featured,areal-world application of conditional
log-linear models to the biological problem of RNA secondstructure prediction.

Sequence labeling simulation.For our simulation test, we constructed a simple lineaircha
hidden Markov model (HMM) with binary-valued hidden nodgs,c {0,1}.> We associated 40

binary-valued features?, j € {1,...,40} with each hidden statg;, including R “relevant” ob-
served features whose values were chosen based, @md (40 — R) “irrelevant” noise features
whose values were chosen to be either 0 or 1 with equal priityabidependent ofy;.3 Figure 2a
shows the graphical model representing the HMM. For eachwenused the HMM to simulate
training, holdout, and testing sets bf, 10, and 1000 sequences, respectively, each of length 10.

Next, we constructed a CRF based on an HMM model similar tb ghawn in Figure 2a in
which potentials were included for the initial noge, between eachy; andy;,,, and between
y; and eache! (including both the observed features and the noise fesjtut&e then performed
gradient-based hyperparameter learning using threeréiff@parameter-tying schemes: (a) all hy-
perparameters constrained to be equal, (b) separate larperpter groups for each parameter of the
model, and (c) transitions, observed features, and no&erfes each grouped together. Figure 2b
shows the performance of the CRF for each of the three paeshyéihg gradient-based optimization
schemes, as well as the performance of scheme (a) when bsistgindard grid-search strategy of
trying regularization matrice§'I for C e{..,272,271 2021 22

As seen in Figures 2b and 2c, the gradlent based procedtfmrrped either as well as or bet-
ter than a grid search for single hyperparameter modelsndJsither a single hyperparameter or
all separate hyperparameters generally gave similartegsuith a slight tendency for the separate

YIn practice, roughly 50-100 iterations of CG were sufficient to obtairengarameter gradients, meaning
that the cost of running Algorithm 1 was approximately the same as theteslving OPT1 for a single fixed
setting of the hyperparameters. Roughly 3-5 line searches wereisniffto identify good hyperparameter
settings; assuming that each line search takes 2-4 times the cost of DRl the overall hyperparameter
learning procedure takes approximately 20 times the cost of solving ©RJe.

2For our HMM, we set initial state probabilities €05 each, and used self-transition probabilitie$)df.

$Specifically, we drew each independently according tB(z) = v | y; = v) = 0.6, v € {0,1}.

@ ag ©

u a
g a
c—49g
uccguagaaggC —m— . .
’ 3 c—9
u_a 0.8
!) CONTRAfold (our algorithm)
5 3 FEs====== meefe
0.75}F ~~a
RNA sequence secondary e
structure o
0.7} . Mfold ‘\\\
x AY \
(b) \

. exp(d;) ViennaRNA 3
Regularization group foldA fold B ? 0.65 e\
hairpin loop lengths 0.0832 0.456 Z N\
helix closing base pairs 0.780 0.0947 o ook . PKNOTS 3
symmetric internal loop lengths 6.32 0.0151 oo \
external loop lengths 0.338 0.401 \
bulge loop lengths 0.451 2.03 ossh P
base pairings 2.01 7.95 LY)
internal loop asymmetry 4.24 6.90 “‘
explicit internal loop sizes 12.8 6.39 osh Pfold L]
terminal mismatch interactions 132 50.2 single (AUC=0.6169, logloss=5916) *
single base pair stacking interactions ~ 71.0 104 DA i iabey
1 x 1internal loop nucleotides 139 120. 0.45 n n . n n " " s
single base bulge nucleotides 136 130. 04 045 05 0'555 0‘; 065 07 075 08
internal loop lengths 1990 35.3 pecilicity
multi-branch loop lengths 359 2750
helix stacking interactions 12100 729

Figure 3: RNA secondary structure prediction. (a) An illatibn of the secondary structure predic-
tion task. (b) Grouped hyperparameters learned using garighm for each of the two folds. (c)
Performance comparison with state-of-the-art methodswising either a single hyperparameter
(the “original” CONTRAfold), separate hyperparametensgmuped hyperparameters.

hyperparameter model to overfit. Enforcing regularizatjooups, however, gave consistently lower
error rates, achieving an absolute reduction in genet@iz&rror over the next-best model of 6.7%,
corresponding to a relative reduction of 16.2%.

RNA secondary structure prediction. We also applied our framework to the problem of RNA
secondary structure prediction. Ribonucleic acid (RNA)euales are long nucleic acid polymers
present in the cells of all living organisms. For many typERNA, three-dimensional (or tertiary)
structure plays an important role in determining the RNAIsdtion. Here, we focus on the task
of predicting RNA secondary structure, i.e., the patternugleotide base pairings which form the
two-dimensional scaffold upon which RNA tertiary stru@sitassemble (see Figure 3a).

As a starting point, we used CONTRAfold [7], a current statehe-art secondary structure
prediction program based on CLLMs. In brief, the CONTRAfpldgram models RNA secondary
structures using a variant of stochastic context-free gnams (SCFGs) which incorporates features
chosen to closely match the energetic terms found in stdrufarsics-based models of RNA struc-
ture. These features model the various types of loops tlaatrac RNAs (e.g., hairpin loops, bulge
loops, interior loops, etc.). To control overfitting, CONARId uses flatL, regularization. Here,
we modified the existing implementation to perform an “oUtgtimization loop based on our al-
gorithm, and chose regularization groups either by (a) ririg a single hyperparameter group, (b)
using separate groups for each parameter, or (c) groupt@diag to the type of each feature (e.g.,
all features for describing hairpin loop lengths were pthitea single regularization group).

For testing, we collected 151 RNA sequences from the Rfanabdae [13] for which
experimentally-determined secondary structures weeadr known. We divided this dataset into
two folds (denoted A and B) and performed two-fold crossdatlon. Despite the small size of
the training set, the hyperparameters learned on each feté wonetheless qualitatively similar,
indicating the robustness of the procedure (see Figure/bgxpected, features with small regular-
ization hyperparameters correspond to properties of RNAglwvare known to contribute strongly
to the energetics of RNA secondary structure, whereas mathedeatures with larger regulariza-
tion hyperparameters indicate structural properties whpresence/absence are either less correlated
with RNA secondary structure or sufficiently noisy that thegrameters are difficult to determine
reliably from the training data.

We then compared the cross-validated performance of &hgonwith state-of-the-art methods
(see Figure 3c). Using separate or grouped hyperparameters both gave ssttesensitivity and
increased specificity compared to the original model, whiels learned using a single regulariza-
tion hyperparameter. Overall, the testing logloss (sumowedl the two folds) decreased by roughly
6.5% when using grouped hyperparameters and 2.6% when osiftgple separate hyperparame-
ters, while the estimated testing ROC area increased byhtp3g8% and 3.4%, respectively.

6 Discussion and related work

In this work, we presented a gradient-based approach foerdpgpameter learning based on mini-
mizing logloss on a holdout set. While the use of cross-viibddoss as a proxy for generalization
error is fairly natural, in many other supervised learningthods besides log-linear models, other
objective functions have been proposed for hyperparanggigmization. In SVMs, approaches
based on optimizing generalization bounds [4], such asab&is/margin-bound [15] or maximal
discrepancy criterion [2] have been proposed. Comparaemlization bounds are not generally
known for CRFs; even in SVMs, however, generalization bebasled methods empirically do not
outperform simpler methods based on optimizing five-folassrvalidation error [8].

A different method for dealing with hyperparameters, comnroneural network modeling, is
the Bayesian approach of treating hyperparameters theessat parameters in the model to be es-
timated. In an ideal Bayesian scheme, one does not perfoperpgrameter or parameter inference,
but rather integrates over all possible hyperparametetgparameters in order to obtain a posterior
distribution over predicted outputs given the trainingad@khis integration can be performed using
a hybrid Monte Carlo strategy [27, 38]. For the types of lasgale log-linear models we consider in
this paper, however, the computational expense of samplirsgd strategies can be extremely high
due to slow convergence of MCMC techniques [26].

Empirical Bayesian (i.e., ML-Il) strategies, such as Au#ditn Relevance Determination
(ARD) [22], take the intermediate approach of integratimgroparameters to obtain the marginal
likelihood (known as the log evidence), which is then optieai with respect to the hyperparame-
ters. Computing marginal likelihoods, however, can beajoistly, especially for log-linear models.
One method for doing this involves approximating the patameosterior distribution as a Gaussian
centered at the posterior mode [22, 37]. In this strategydver, the “Occam factor” used for hyper-
parameter optimization still requires a Hessian compaiativhich does not scale well for log-linear
models. An alternate approach based on using a modificatierpectation propagation (EP) [25]
was applied in the context of Bayesian CRFs [32] and lateraded to graph-based semi-supervised
learning [14]. As described, however, inference in thesel@®relies on non-traditional “probit-
style” potentials for efficiency reasons, and known aldoris for inference in Bayesian CRFs are
limited to graphical models with fixed structure.

In contrast, our approach works broadly for a variety of lmgar models, including the
grammar-based models common in computational biology atdral language processing. Fur-
thermore, our algorithm is simple and efficient, both congalty and in practice: one iteratively
optimizes the parameters of a log-linear model using a fir¢tihg of the hyperparameters, and then
one changes the hyperparameters based on the holdoutd@ghmient. The gradient computation
relies primarily on a simple conjugate gradient solver foear systems, coupled with the ability
to compute Hessian-vector products (straightforward ywrandern programming language that al-
lows for operation overloading). As we demonstrated in tbetext of RNA secondary structure
prediction, gradient-based hyperparameter learning igatigal and effective method for tuning
hyperparameters when applied to large-scale log-lineatatso

Finally we note that for neural networks, [9] and [5] propg$echniques for simultaneous opti-
mization of hyperparameters and parameters; these resigitgest that similar procedures for faster
hyperparameter learning that do not require a doubly-degpéimization may be possible.

References

[1] L. Andersen, J. Larsen, L. Hansen, and M. Hintz-Madsen. pida regularization of neural classifiers.
In NNSR 1997.

[2] D. Anguita, S. Ridella, F. Rivieccio, and R. Zunino. Hyperparamdgsign criteria for support vector
classifiers.Neurocomputing55:109-134, 2003.

“Following [7], we used the maximum expected accuracy algorithm foodieg, which returns a set of
candidates parses reflecting different trade-offs between sensjriportion of true base-pairs called) and
specificity (proportion of called base-pairs which are correct).

[3] Y. Bengio. Gradient-based optimization of hyperparametsiesural Computation12:1889-1900, 2000.
[4] O.Chapelle, V. Vapnik, O. Bousquet, and S. Mukherjee. Choasinlgiple parameters for support vector
machinesMachine Learning46(1-3):131-159, 2002.
[5] D. Chen and M. Hagan. Optimal use of regularization and crobdatén in neural network modeling.
In IJCNN, 1999.
[6] C. B. Do, S. S. Gross, and S. Batzoglou. CONTRAIlign: discrimireatiaining for protein sequence
alignment. INRECOMB pages 160-174, 2006.
[7] C.B. Do, D. A. Woods, and S. Batzoglou. CONTRAfold: RNA sedary structure prediction without
physics-based modelBioinformatics 22(14):e90-e98, 2006.
[8] K. Duan, S. S. Keerthi, and A.N. Poo. Evaluation of simple perfomoe measures for tuning SVM
hyperparameterdNeurocomputing51(4):41-59, 2003.
[9] R. Eigenmann and J. A. Nossek. Gradient based adaptive regtian. INNNSR pages 87-94, 1999.
[10] T. Glasmachers and C. Igel. Gradient-based adaptation of gJeBaussian kernelsNeural Comp.
17(10):2099-2105, 2005.
[11] A. Globerson, T. Y. Koo, X. Carreras, and M. Collins. Expoti@ed gradient algorithms for log-linear
structured prediction. IfCML, pages 305-312, 2007.
[12] C. Goutte and J. Larsen. Adaptive regularization of neural nedswasing conjugate gradient. IBASSR
1998.
[13] S. Griffiths-Jones, S. Moxon, M. Marshall, A. Khanna, S. Rd§dnd A. Bateman. Rfam: annotating
non-coding RNAs in complete genomégucleic Acids Re33:D121-D124, 2005.
[14] A. Kapoor, Y. Qi, H. Ahn, and R. W. Picard. Hyperparameted &arnel learning for graph based semi-
supervised classification. MIPS pages 627-634, 2006.
[15] S. S. Keerthi. Efficient tuning of SVM hyperparameters usingusithargin bound and iterative algo-
rithms. IEEE Transaction on Neural Networks3(5):1225-1229, 2002.
[16] S. S. Keerthi, V. Sindhwani, and O. Chapelle. An efficient mettardgfadient-based adaptation of
hyperparameters in SVM models. NIPS 2007.
[17] K. Kobayashi, D. Kitakoshi, and R. Nakano. Yet faster methodotonize SVR hyperparameters based
on minimizing cross-validation error. IICNN, volume 2, pages 871-876, 2005.
[18] K. Kobayashi and R. Nakano. Faster optimization of SVR hyparpaters based on minimizing cross-
validation error. INEEE Conference on Cybernetics and Intelligent Syst@0i4.
[19] J. Lafferty, A. McCallum, and F. Pereira. Conditional randontdfie probabilistic models for segmenting
and labeling sequence data.l@ML 18, pages 282-289, 2001.
[20] J. Larsen, L. K. Hansen, C. Svarer, and M. Ohlsson. Degighregularization of neural networks: the
optimal use of a validation set. NNSP, 1996.
[21] J. Larsen, C. Svarer, L. N. Andersen, and L. K. Hansen.aptile regularization in neural network
modeling. InNeural Networks: Tricks of the Tradpages 113-132, 1996.
[22] D.J. C. MacKay. Bayesian interpolatioNeural Computation4(3):415-447, 1992.
[23] D. J. C. MacKay and R. Takeuchi. Interpolation models with multiplpengarametersStatistics and
Computing 8:15-23, 1998.
[24] J. R.R. A. Matrtins, P. Sturdza, and J. J. Alonso. The compiep-derivative approximatiolACM Trans.
Math. Softw.29(3):245-262, 2003.
[25] T. P. Minka. Expectation propagation for approximate Bayesiagrémice. InUAI, volume 17, pages
362-369, 2001.
[26] I. Murray and Z. Ghahramani. Bayesian learning in undirecteglgical models: approximate MCMC
algorithms. InUAI, pages 392—-399, 2004.
[27] R. M. Neal.Bayesian Learning for Neural NetworkSpringer, 1996.
[28] A.Y.Ng. Preventing overfitting of cross-validation data.lGML, pages 245-253, 1997.
[29] A.Y. Ng. Feature selectior,; vs. L» regularization, and rotational invariance. ML, 2004.
[30] J. Nocedal and S. J. WrighWumerical OptimizationSpringer, 1999.
[31] B. A. Pearlmutter. Fast exact multiplication by the Hessldaural Comp6(1):147-160, 1994.
[32] Y. Qi, M. Szummer, and T. P. Minka. Bayesian conditional randiefds. InAISTAT$2005.
[33] M. Seeger. Cross-validation optimization for large scale hieraatltiassification kernel methods. In
NIPS 2007.
[34] F. Sha and F. Pereira. Shallow parsing with conditional randonsfiéitdNAACL, pages 134-141, 2003.
[35] S. Sundararajan and S. S. Keerthi. Predictive approacheshfosing hyperparameters in Gaussian
processesNeural Comp.13(5):1103-1118, 2001.
[36] S. V. N. Vishwanathan, N. N. Schraudolph, M. W. Schmidt, and®PKMurphy. Accelerated training of
conditional random fields with stochastic gradient method$CML, pages 969-976, 2006.
[37] M. Wellings and S. Parise. Bayesian random fields: the Bethe-taplpproximation. IfCML, 2006.
[38] C. K. I. Williams and D. Barber. Bayesian classification with GauspiacesseslEEE Transactions on
Pattern Analysis and Machine Intelligen@9(12):1342-1351, 1998.
[39] X. Zhang and W. S. Lee. Hyperparameter learning for grapgeté@emi-supervised learning algorithms.
In NIPS 2007.

