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Abstract

We present a 3-D shape-based object recognition system for

simultaneous recognition of multiple objects in scenes

containing clutter and occlusion. Recognition is based on

matching sugaces by matching points using the spin-image

representation. The spin-image is a data level shape

descriptor that is used to match surfaces represented as

su$ace  meshes. We present a compression scheme for spin-

images that results in eficient multiple object recognition

which we verify with results showing the simultaneous

recognition of multiple objects from a library of 20 models.

Furthermore, we demonstrate the robust performance of

recognition in the presence of clutter and occlusion through

analysis of recognition trials on 100 scenes.

1 Introduction

In 3-D object recognition, shape representations are used

to collate the information conveyed by sensed surface

points so that surfaces can be matched efficiently. For object

recognition, the following criteria should be met for any

shape representation used in realistic settings:

l represent general shapes

l robust to clutter and occlusion

l efficient

In the past, the trend in object recognition has been to

restrict the class of objects that can be recognized so that

efficient matching schemes can be developed. (e.g., surface

pa tches  [4], super-quadrics  [ 121 and spherical

representations [2]).  However, the real world comprises

objects of many different shapes without regard to specific

analytic surface descriptions. For an object recognition

system to be widely applicable in the real world, the shape

representation it uses cannot be restrictive.

Some of the more successful object recognition systems

are designed to work on isolated and unoccluded objects

(e.g., parametric appearance [9],  COSMOS [3])  This is a

serious disadvantage for these systems if the object is to be

recognized in real scenes, because real scenes contain

This research was performed at Carnegie Mellon University and was

supported by the US Department of Energy under contract DE-ACZI-

92MC29104.

Martial Hebert

The Robotics Institute

Carnegie Mellon University

hebert@ri.cmu.edu

clutter and occlusion. Consequently, any recognition

system designed to work in the real world must be robust to

clutter and occlusion.

Our final requirement can be split into two related

requirements. Object representations should enable

efficient matching of surfaces from multiple models, so that

recognition occurs in a timely fashion. Furthermore, the

representation should be efficient in storage (i.e., compact),

so that many models can be stored in the model library.

Without efficiency, a recognition system will not be able to

recognize the multitude of objects in the real world.

This paper is organized as follows. In Section 2 we

review the spin-image representation and show how spin-

images can be used to match surfaces of arbitrary shape.

Section 3 explains how correlation between spin-images

can be exploited to compress spin-images for efficient

multiple model object recognition. In Setion  4 we present

an analysis of hundreds of recognition trials that

experimentally validate that recognition with spin-images is

robust to clutter and occlusion.

2 Surface matching

Our object representation is composed of two parts: a

polygonal mesh describing the shape of the surface and a set

of spin-images created from the surface mesh. Surface

meshes are general shape representations because, given a

sufficient number of vertices, surface meshes can represent

almost any shape. This section provides the necessary

background for understanding the rest of the paper; a more

complete description of spin-images and our surface

matching algorithms are given in [6][7].

2.1 Spin-images

Oriented points, 3-D points with associated directions,

are used to create spin-images. We define an oriented point
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Figure 1. An oriented point basis defined at a surface

mesh vertex.
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at a surface mesh vertex using the 3-D position of the vertex

and surface normal at the vertex. The surface normal at a

vertex is computed by fitting a plane to the points connected

to the vertex by edges in the surface mesh.

An oriented point defines a partial. object-centered,

coordinate system. Two cylindrical coordinates can be

defined with respect to an oriented point: the radial

coordinate ct, defined as the perpendicular distance to the

line through the surface normal, and the elevation

coordinate p, defined as the signed perpendicular distance

to the tangent plane defined by vertex normal and position.

The cylindrical angular coordinate is omitted because it

cannot be defined robustly and unambiguously on planar

surfaces.

A spin-image is created for an oriented point at a vertex

in the surface mesh as follows. A 2-D accumulator indexed

by a and p is created. Next, the coordinates (asp) are

computed for a vertex in the surface mesh that is within the

support of the spin-image (explained below). The bin

indexed by (o:p)  in the accumulator is then incremented;

bilinear interpolation is used to smooth the contribution of

the vertex. This procedure is repeated for all vertices within

the support of the spin-image. The resulting accumulator

can be thought of ,as an image; dark areas in the image

correspond to bins that contain many projected points. As

long as the size of the bins in the accumulator is set on order

of the median distance between vertices in the mesh [7],  the

position of individual vertices will be averaged out during

spin-image generation. Figure 2 shows the projected (c~,p)

coordinates and spin-images for three oriented points on a

rubber duckie model. For surface matching, spin-images are

constructed for every vertex in the surface mesh.

The support of a spin-image is ttie part of the surface of

an object around the oriented point basis that can contribute

points to spin-image generation. There are two parameters

that control the spin-image support. The first parameter,

Figure 2. Spin-images of large support for three oriented

points on the surface of a rubber duckie model.

support distance D,, sets the maximum distance between

the oriented point and a point contributing to the spin-

image. Support distance is analogous to window size in 2-D

template matching. The second parameter, support angle

A,, limits the angle between the normal of the oriented point

basis and the normal of points contributing to the spin-

image. As shown in Figure 3, by changing the support

parameters, spin-images can be smoothly transformed from

global to local representations. Spin-images of small

support are robust to clutter and occlusion while spin-

images of large support are highly discriminating.

Spin-images have some useful properties that distinguish

them from other representations for 3-D surface matching.

Since spin-images are object centered representations, they

are invariant to rigid transformations. Consequently,

comparison of spin-images can be used to establish point

correspondences between different views of the same

object. Spin-images can represent general shapes because

they are constructed directly from polygonal surface

meshes without surface fitting (except for surface normal).

Finally, since spin-images are image-based descriptions of

3-D shape, many of the powerful tools available for 2-D

image analysis can also be used to analyze spin-images.

2.2 Surface matching engine

Two surfaces are matched as follows. Spin-images from

points on one surface are compared by computing

correlation coefficient with spin-images from points on

another surface; when two spin-images are highly

correlated, a point correspondence between the surfaces is

established. Point correspondences are then grouped and

outliers are eliminated using geometric consistency. Groups

Model Scene
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Figure 3. How spin-image generation parameters

localize spin-images to reduce the effect of scene clutter
and occlusion on matching.
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of geometrically consistent correspondences are then used

to calculate a rigid transformation that aligns one surface

with the other. After alignment, surface matches are verified

using a modified iterative closest point algorithm. Details of

the surface matching engine are given in [6].

Various factors, including surface normal noise and the

symmetry in spin-image generation, can cause the

generation of similar spin-images for points that should not

be matched. It would appear that these factors would

prevent the matching of surfaces using spin-images.

However, a detailed analysis of spin-image matching and

results on real scenes have shown that spin-images maintain

there descriptiveness even in the presence of large sensor

noise, clutter, occlusion, and local object symmetry[7].

3 Object recognition

Surface matching using spin-images can be extended to

object recognition as follows. Each model in the model

library is represented as a polygonal mesh. Before

recognition, the spin-images for all vertices on all models

are created and stored. At recognition time, a scene point is

selected and its spin-image is generated. Then its spin-

image is correlated with all of the spin-images from ail of

the models. The best matching model spin-image will

indicate both the best matching model and model vertex.

After matching many scene spin-images to model spin-

images, the point correspondences are input into the surface

matching engine described in Section 2.2. The result is

simultaneous recognition and localization of the models

that exist in the scene.

This form of surface matching is inefficient for two

reasons. First, each spin-image comparison requires a

correlation of two spin-images, an operation on order of the

relatively large (-200) number of bins in a spin-image.

Second, when a spin-image is matched to the model library,

it is correlated with all of the spin-images from all of the

models. This operation is linear in the number of vertices in

each model and linear in the number of models. This

linearly growth rate is unacceptable for recognition from

large model libraries. Fortunately, spin-images can be

compressed to speed up matching considerably.

3.1 Spin-image compression

Spin-images coming from the same surface can be

correlated for two reasons: First, spin-images generated

from oriented point bases that are close to each other on the

surface will be correlated. Second, surface symmetry and

the inherit symmetry of spin-image generation will cause

two oriented point bases on equal but opposite sides of a

plane of symmetry to be correlated. Furthermore, surfaces

from different objects can be similar on the local scale.

Therefore, there can exist a correlation between spin-

images of small support generated for different objects.

This correlation can be exploited to make spin-image

matching more efficient through image compression. For

compression, it is convenient to think of spin-images as

vectors in an D-dimensional vector space where D is the

number of pixels in the spin-image. Correlation between

spin-images places the set of spin-images in a low

dimensional subspace  of this D-dimensional space.

A common technique for image compression in object

recognition is principal component analysis (PCA)[9].  PCA

or Karhunen-Loeve  expansion [5] is a well known method

for computing the directions of greatest variance for a set of

vectors. By computing the eigenvectors of the covariance

matrix of the set of vectors, PCA determines an orthogonal

basis, called the eigenspace, in which to describe the

vectors. PCA has become popular for efficient comparison

of images because it is optimal in the correlation sense [5].

PCA is used to compress the spin-images coming from

all models simultaneously as follows. Suppose the model

library contains N spin-images Xi of size D. First, to make

the principal directions computed by PCA more effective

for describing the variance between spin-images, the mean

of all spin-images X is subtracted from each spin-image.
.

xi = xi-f (1)

The set of mean-subtracted spin-images can be represented

as an DxN matrix with each column of the matrix being a

mean-subtracted spin-image

s” = [i, f, . . . PN] . (2)

The covariance of the spin-images is the DxD  matrix C

given by

c” = f(sy . (3)

The eigenvectors of C are then computed by solving the

eigenvector problem

Lye: = Cme7.

Since the dimension of the spin-images is not too large

(-200),  the standard jacobi  algorithm from Numerical

Recipes in C [ 1 l] is used to determine the eigenvectors es

and eigenvalues 17 of Cm. Since the eigenvectors of C”’ can

be considered spin-images, they wi]] be called eigen-spin-

images.

Next the model projection dimension, s, is determined

using a reconstruction metric that depends on the needed

fidelity in reconstruction and the variance among images

(see [7]).  Every spin-image from each model is then

projected into the s-dimensional subspace spanned by the s

eigenvectors of largest eigenvalue; the s-tuple  of projection

coefficients, pb becomes the compressed representation of

the spin-image.

pi = (ijey, Pie;, . . . . Pie:) (5)

The amount of compression is defined by s/D. The

compressed representation of a model library has two
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components: the s most significant eigenvectors and the set

of s-tuples, one for each model spin-image. Since the

similarity between images is determined by computing the

f2 distance between s-tuples, the amount of storage for spin-

images and the time to compare them is reduced.

3.2 Matching compressed spin-images

During object recognition, scene spin-images are

matched to compressed model spin-images represented as

s-tupies. Given the low dimension of s-tuples, it is possible

to match spin-images in time that is sub-linear in the

number of model spin-images using efficient closest point

search structures.

To match a scene spin-image to a model s-tuple, a scene

s-tuple must be generated as follows. First the scene spin-

image is generated. Next the mean of the library spin-

images is subtracted from the scene spin-image. Finally, the

scene spin-image is projected onto the top s library eigen-

spin-images to get the scene s-tuple

To determine the best matching model spin-image to

scene spin-image, the 12 distance between the scene and

model tuples is used. When comparing compressed model

spin-images, finding closest s-tuples replaces correlating

spin-images. Although the 12 distance between spin-images

is not the same as the correlation coefficient used in spin-

image matching (correlation is really the normalized dot

product of two vectors), it is still a good measure of the

similarity of two spin-images.

To find closest points, we use the efficient closest point

search structure proposed by Nene and NayarjlO]. The

efficiency of their data structure is based on the assumption

that one is interested only in the closest point, if it is less

than a predetermined distance E from the query point. This

assumption is reasonable in the context of spin-image

matching, so we chose their data structure. Furthermore, in

our experimental comparison, we found that using their data

structure resulted in order of magnitude improvement in

matching speed over matching using kd-trees or exhaustive

search. The applicability of the algorithm to the problem of

matching s-tuples is not surprising; the authors of the

algorithm demonstrated its effectiveness in the domain of

appearance-based recognition [9], a domain that is similar

to spin-image matching. In out implementation, the search

parameter E was automatically set to the average of the

closest distances between model s-tuples. Setting E in this

way balances the likelihood of finding closest points against

closest point lookup time.

Spin-image matching with compression is very similar

to the recognition algorithm without compression. Before

recognition, all of the model surface meshes are resampled

to the same resolution to avoid scale problems when

comparing spin-images from different models. Next, the

spin-images for each model in the model library are

generated, and the library eigen-spin-images are computed.

The projection dimension s is then determined for the

library. Next, the s-tuples for the spin-images in each model

are computed by projecting model spin-images onto library

eigen-spin-images. Finally, model s-tuples are stored in the

efficient closest point search structure.

At recognition time, a fraction of oriented points are

selected at random from the scene. For each scene oriented

point, a scene s-tupie  is computed. The scene s-tuple is then

used as a query point into the library efficient closest point

search structure which returns a list of model s-tuples close

to the scene s-tuple. These point matches, which encode

model and model vertex, are then fed into the surface

matching engine to find model/scene surface matches.

3.3 Results

To test our recognition system we created a model

library containing twenty complete object models. The

models in the library are shown in Figure 4; each was

created by registering and integrating multiple range views

of the objects. Next, cluttered scenes were created by

pushing objects into a pile and acquiring a range image with

a K2T structured light range finder. The scene data was then

processed to remove faces on occluding edges, isolated

points, dangling edges and small patches. This topological

filter was followed by mesh smoothing without shrinking

and mesh simplification [7]  to change the scene data

resolution to that of the models in the model library.

Figure 5 shows the simultaneous recognition of seven

models from the library of twenty models with a

compression ratio of s/ D = 0.1. In the top right of the figure

is shown the intensity image of the scene, and in the top left

is shown the scene intensity image with the position of

recognized models superimposed as white dots. In the

middle is shown a frontal 3-D view of the scene data, shown

as wireframe mesh, and then the same view of the scene

data with models superimposed as shaded surfaces. The

bottom shows a top view of the scene and models. From the

three views it is clear that the models are closely packed a

condition which creates a cluttered scene with occlusions.

Because spin-image matching has been designed to be

resistant to clutter and occlusion, our algorithm is able to

recognize the seven most prominent objects in the scene

with no incorrect recognitions. Some of the objects present

Figure 4. 20 Models used for recognition.
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were not recognized because insufficient surface data was

present for matching. Figure 6 shows the recognition of 6

objects in a similar format to Figure 5.

4 Recognition in complex scenes

Any recognition algorithm designed for the real world

must work in the presence of clutter and occlusion. In

Section 2.1, we claim that creating spin-images of small

support will make our representation robust to clutter and

occlusion. In this section, this claim is verified

experimentally.

We have developed an experiment to test the

effectiveness of our algorithm in the presence of clutter and

occlusion. Stated succinctly, the experiment consists of

acquiring many scene data sets, running our recognition

algorithms on the scenes, and then interactively measuring

the clutter and occlusion in each scene along with the

recognition success or failure. By plotting recognition

success or failure against the amount of clutter or occlusion

in the scene, the effect of clutter and occlusion on

recognition can be determined.

4.1 Experiments

Recognition success or failure can be broken down into

four possible recognition states. If the model exists in the

scene and is recognized by the algorithm, this is termed a

me-positive state. If the model does not exist in the scene,

and the recognition algorithm concludes that the model

does exist in the scene or places the model in an entirely

incorrect position in the scene, this is termed afufse-positive

state. If the recognition algorithm concludes that the model

does not exist in the scene when it actually does exist in the

scene, this is termed a false-negative state. The true-

negative state did not exist in our experiments because the

model being searched for was always present in the scene.

In our experiment for measuring the effect of clutter and

occlusion on recognition, a recognition trial consists of the

following steps. First, a model is placed in the scene with

intensity ima

3-D top view

Scene Recognized Models

Figure 5. Simultaneous recognition of 7 models from

a library of 20 models in a cluttered scene.

3-D top view

Scene Recognized MockIs

Figure 6. Simultaneous recognition of 6 models from

a library of 20 models in a cluttered scene.
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some other objects. The other objects might occlude the

model and will produce scene clutter. Next, the scene is

imaged and the scene data is processed as described in

Section 3.3 A recognition algorithm that matches the model

to the scene data is applied and the result of the algorithm is

presented to the user. Using a graphical interface, the user

then interactively segments the surface patch that belongs to

the model from the rest of the surface data in the scene.

Given this segmentation, the amounts of clutter and

occlusion are automatically calculated as explained below.

By viewing the model superimposed on the scene, the user

decides the recognition state; this state is then recorded with

the computed clutter and occlusion. By executing many

recognition trials using different models and many different

scenes, a distribution of recognition state versus the amount

of clutter and occlusion in the scene is generated.

The occlusion of a model is defined as

occlusion = 1 -
model surface patch area
total model surface area

(6)

Surface area for a mesh is calculated as the sum of the areas

of the faces making up the mesh. The clutter in the scene is

defined as

clutter = clutter points in relevant volume
(7)

total points in relevant volume

Clutter points are vertices in the scene surface mesh that are

not on the model surface patch. The relevant volume is the

union of the supports (Section 2.1) of ail of the oriented

points on the model surface patch. If the relevant volume

contains points that are not on the model surface patch, then

these points will corrupt scene spin-images and are

considered clutter points.

We created 100 scenes for analysis as follows. We

selected four models from our library of models: bunny,

faucet, Mr. Potato Head and y-split (Figure 4). We then

created 100 scenes using these four models; each scene

contained ail four models. The models were placed in the

scenes without any systematic method. It was our hope that

random placement would result in a uniform sampling of ail

possible scenes containing the four objects.

4.2 Analysis

For each model, we ran recognition without compression

on each of the 100 scenes, resulting in 400 recognition

triais.The recognition states are shown in a scatter plot in

the top left of Figure 7. Each data point in the plot

corresponds to a single recognition trial; the coordinates

give the amount of clutter and occlusion and the symbol

describes the recognition state. This same procedure using

the same 100 scenes was repeated for the matching spin-

images with compression (s/D = 0.1) resulting in 400

different recognition runs. A scatter plot of recognition

states for compressed spin-images is shown at the bottom

left of Figure 7. Briefly looking at both scatter plots shows

Recognition Scatter Recognition Rate vs. Occlusion Recognition Rate vs. Clutter
No Compres’sion
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$0 .4 -false negative

5
0.2
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Figure 7. Recognition states vs. clutter and occlusion for compressed and uncompressed spin-images (left).

Recognition state probability vs. occlusion for compressed and uncompressed spin-images (middle). Recognition

state probability vs. clutter (right).
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that the number of true-positive states is much larger than

the number of false negative states and false-positive state.

Furthermore, as the lines in the scatter plots indicate, no

recognition errors occur below a fixed level of occlusion,

independent of the amount of clutter.

Examining the scatter plots in Figure 7, one notices that

recognition rate is effected by occlusion. At low occlusion

values, no recognition failures are reported, while at high

occlusion values, recognition failures dominate. This

indicates that recognition will almost always work if

sufficient model surface area is visible. The decrease in

recognition success after a fixed level of occlusion is

reached (70%) indicates that spin-image matching does not

work well when only a small portion of the model is visible.

This is no surprise since spin-image descriptiveness comes

from accumulation of surface area around a point. In the

middle of Figure 7 are shown the experimental recognition

rates versus scene occlusion. The rates are computed using

a gaussian weighted running average to avoid the problems

with binning. These plots show that recognition rate

remains high for both forms of compression until occlusion

of around 70% is reached, then the successful recognition

rate begins to fall off.

Examining the experiment scatter plots in Figure 7, one

notices that the effect of clutter on recognition is uniform

across all levels of occlusion until a high level of clutter is

reached. This indicates that spin-image matching is

independent of the clutter in the scene. On the right in

Figure 7, plots of recognition rate versus amount of clutter

also show that recognition rate is fairly independent of

clutter. As clutter increases, there are slight variations about

a fixed recognition rate. Most likely, these variations are due

to non-uniform sampling of recognition runs and are not

actual trends with respect to clutter. Above a high level of

clutter, the successful recognitions decline, but from the

scatter plots we see that at high levels of clutter, the number

of experiments is small, so conclusions about recognition

rate can not be made.

In all of the plots showing the effect of clutter and

occlusion, the true-positive rates are higher for recognition

with spin-images without compression when compared

with the true-positive rates for recognition with

compression. This validates the expected decrease in the

accuracy of spin-image matching when using compressed

spin-images. However, it should be noted that the

recognition rate for both matching algorithms remain high.

For all levels of clutter and occlusion, matching without

compression has an average recognition rate of 90.0% and

matching with compression has an average recognition rate

of 83.2%. Furthermore, the false-positives rate for both

algorithms are low and nearly the same. Our experiments

show that the decrease in recognition rate for matching with

compression is compensated for by an order of magnitude

increase in matching speed [7].

5 Conclusion

We have presented an algorithm for simultaneous shape-

based recognition of multiple objects in cluttered scenes

with occlusion. Our algorithm can handle objects of general

shape because it is based on the spin-image, a data level

shape representation that places few restrictions on object

shape. Through compression of spin-images using PCA, we

have made the spin-image representation efficient enough

for recognition from large model libraries. Finally we have

shown experimentally, that the spin-image representation is

robust to clutter and occlusion. Through improvements and

analysis, we have shown that the spin-image representation

is an appropriate representation for recognizing objects in

complicated real scenes.
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