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Abstract. Multiplicative threshold schemes are useful tools in thresh- 
old cryptography. For example, such schemes can be used with a wide 
variety of practical homomorphic cryptosystems (such as the RSA, the 
El Gamal and elliptic curve systems) for threshold decryption, signa- 
tures, or proofs. The paper describes a new recursive construction for 
multiplicative threshold schemes which makes it possible to extend the 
number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof users of such schemes for a relatively small expansion of the 
share size. We discuss certain properties of the schemes, such as the 
information rate and zero knowledge aspects. 
The paper extends the Karnin-Greene-Hellman bound on the parame- 
ters of ideal secret sharing schemes to  schemes which are not necessarily 
ideal and then uses this as a yardstick to  compare the performance of 
currently known multiplicative sharing schemes. 

1 IntroductioIi 

Secret sharing - the process of distributing a secret key amongst several par- 
ticipants so that only certain subsets of these participants can recover any in- 
formation about the key - has been intensively studied since its invention by 
Blakley [2] and Shamir [13] in the late 1970's. The more specific notion of homo- 
rnorphic secret sharing was introduced by Benaloh [l] in the context of creating 
secret ballot election schemes and can be used to achieve secret sharing without 
a mutually trusted authority. In such schemes, binary operations are defined on 
the set of keys and the set of shares in such a way that the process of a collection 
of participants pooling their shares to recompute the key may be regarded as a 
homomorphism from the set of n-tuples of shares to the set of keys. This paper 
is concerned with the design of sharing schemes which possess a close analogue 
of the homomorphic property known as the multiplicative property. In multi- 
plicative sharing schemes there is a multiplication defined on the set K of all 
possible keys such that the recomputation of the key can be achieved by multi- 
plying together appropriate elements of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK derived from some of the participants' 
shares (see Section 2 for a formal definition). Any ideal homomorphic sharing 
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scheme automatically satisfies the rtiultiplicative property [7, 81. Such schemes 
have played a crucial role in threshold cryptography and function sharing - 
see for example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 3 ,  6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA41. Threshold cryptography refers to the study of schemes 
which share the ability to  compute a cryptographic function analogously to the 
way threshold secret sharing schemes share a secret. One application, for exam- 
ple, allows shareholders to co-sign messages non-interactively. In the process of 
co-signing, users divulge only enough information to allow the co-signature of a 
particular message and nothing more - for example, no information about their 
secret shares is revealed. This property is achieved by requiring that  the secret 
sharing scheme has such properties as being zero-knowledge (the computational 
equivalent of perfect sharing). 

In applications where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK can be regarded as the additive group of a finite field, 
multiplicative and homomorphic zero-knowledge threshold schemes exist that are 

ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[13] (i.e. the size of the shares is the same as the size of the key). But in 
many applications K cannot be regarded in this way (for example in the context 
of RSR based threshold schemes) and known multiplicativc and homomorphic 
zero-knowledge threshold schemes have a large share expansion (the reciprocal 
of the information rate). Indeed in the Desmedt-Frankel zero-knowledge t out of 
n threshold scheme [7],  which is multiplicative and homoniorphic, the shares are 

roughly n times larger than the key. Although the scheme in [4] has only a log2 n 
expansion of the shares when t = 2 ,  its performance when t is only moderately 
larger is poor. 

The goal of this paper is to present multiplicative zero-knowledge threshold 
schemes for which the share expansion is substantially better than for competing 
schemes. The schemes we present are also homomorphic if the group K is abelian. 
We also consider an inequality of Karnin, Greene and Hellinan [12] which bounds 
the number n of participants of an ideal t out of n secret sharing scheme in terms 
o f t  and the size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq of the set of shares. We extend their bound to the case when 
the scheme is not necessarily ideal. 

The paper is organised as follows. Section 2 contains some basic definitions 
and introduces the notation that we use in the remainder of the paper. In Sec- 
tion 3 we extend the Karnin-Greene-Hellman bound from the situation of ideal 
threshold schemes to the general case. The result will be used in Section 5 to 
prove that if t and the order of K are held constant, our threshold schemes 
are asymptotically optimal as n + 03. All our schemes are recursive in nature 
(cf. [4]) - we construct a t out of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn scheme by using several copies of a t out of 
e scheme for some f! < n. This recursive construction is given in Section 4. An 
analysis of the share expansion of the  schemes, the zero-knowledge properties, 
and a discussion of the performance of the schemes can be found respectively i n  
Sections 5, 6 and 7. 

2 Definitions and Notation 

Informally, a perfect t out of n threshold schprnc is a scheme in which a collection 
of n users (called participants) are each given a sharr (which may, for example, 
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be a finite string or an element of a finite field). The shares are chosen such that 
any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt of the participants can pool their shares to compute some secret piece of 
information (called the key) and such that the knowledge of a t  most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt - 1 of the 
shares gives absolutely no information about the key. 

We define our notation as follows. Let P be a set of n participants which we 
identify with the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ 1 , 2 ,  . . ., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn}. Let K be a finite set whose elements we call 
keys and suppose that K has two or more elements (to avoid trivialities). Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS 
be a finite set o f  order zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq whose elements we call shares4. Finally, let V be the set 
of all n-tuples of elements from S ,  where each n-tuple is indexed by the elements 
of P .  

Definitionl. A t out of n threshold scheme consists of two algorithms. The 
distribution algorithm 2) is a probabilistic algorithm which takes as input an 
element k E K .  It randomly generates an element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( ~ 1 ~ 5 2 , .  . . , 9%) E V according 
to some distribution depending on k. The algorithm then distributes share zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsi 

to  participant i. The reconstruction algorithm R is an algorithm which takes as 

input an element (s1, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA52,. . . , sn) E V with up to n-t  erasures (i.e. up to n-t  o f  
the components sl, . . . , s, have been omitted). It outputs a key k E K .  The pair 
(V ,R)  is a perfect t out of n threshold scheme if the following two conditions 
arc satisfied. 

Any t participants may use algorithm R to reconstruct the key. More for- 
mally, if c € V is a possible output from algorithm 2) when k € K is input, 
then algorithm R outputs k when the element c with up to n - t erasures is 
input. 
No information is revealed about the key k by knowing up to t - 1 of the 
participants’ shares. More formally, suppose that X is a random variable 
taking values in K according to  some distribution. Let Y; (where i E P )  
be random variables taking values in S defined by the distribution on the 
set of shares given to participant i when algorithm V is run on input X .  
Then the variable X is independent of the joint distribution of the variables 
x,, . . ., Et-l  for all 2 1 , .  . ., i t_ l  E P .  

We remark that ,  since S and K are finite, Condition 2 is equivalent to Equation 
(2) in the paper of Karnin, Green and Hellman [la]. All schemes that we consider 
are perfect, that is, satisfy Condition 2 above, so from now on we drop this term 
and just refer to t out of n threshold schemes. 

In this paper we concentrate on multiplicative threshold schemes [4]. 

Definition2. Let ( D , R )  be a t out of n threshold scheme for which the key 
space K is a finite group5 with respect to the operation “ir”. The scheme (D, R) 

’ In this paper we assume, for simplicity, that all participants receive shares taken 
from the same set S. The results of the paper easily extend to the situation where 
the share sets associated with each participant are allowed to  differ. 
The definitions and results in this paper can easily be extended to the case when K 
is a finite quasigroup. 
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is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmultiplicative over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( K ,  *) if for all sets B = { i l l  iz, . . . , z t }  oft distinct partic- 
ipants there exists a family f i , , ~ ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i a , ~ ,  . . . ,  fit,^ of functions from S to K and 
a public ordering i l l  iz, . . . , it of the elements of B with the following property. 
For all keys k E K and shares zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs i ,  , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs ; ~ , .  . . , s;, that have been distributed to R 
by algorithm 'D on input k ,  we may express k in the form: 

k = f i l ,B(S i l )  * zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf i z , B ( s i 2 )  * . . . * f i t ,B(s i t ) .  (1) 

Note that multiplicative schemes only impose a group structure on the set of keys 

K - no group structure on the set of shares S is assumed. This is in contrast 
to  the notion of hoxriomorphic schemes [l]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.1 An Example 

We illustrate the concept of a multiplicative threshold scheme and its use in 
threshold cryptography with the following example. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq be a prime and let 
K = ( F q ,  +) be the additive group of the field zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF, of q elements. The Shamir 
threshold scheme [13] over IF, is a multiplicative scheme over K .  Indeed, in the 
Shamir t out of n threshold scheme, Lagrange interpolation allows the secret 
k E K to be written as 

k = ei l ,BSi ,  + ei , ,Bsi ,  + .  . . + e i , , ~ s i ~  

where B is a set o f t  participants {il , i z ,  . . . , it} who hold shares si, , siZl.. . , sit, 

and ei l ,B,  ei2,B1 . . . , e;,,B are elements of IFq which may be calculated from public 
information about the subset B. Thus, in this case, f i J , ~ ( s i j )  = e i .  3 '  BS; 3 for 
j =  1, . . . ,  t .  

This multiplicative scheme may be used to provide threshold decryption in 
the El Ganial public key cryptosystem as follows (see [5]). 

Let p be a prime and let q be a prime divisor of p - 1. Let g be an element 
of IFp of multiplicative order q. Let k E K and put y = gk.  The value y is the 
public key (corresponding to secret key k )  used to encrypt messages so that only 
a threshold o f t  participants holding shares of k can decrypt the corresponding 
cryptograms. 

To encrypt a message block m E IFp, a value T is chosen a t  random in K and 
cryptogram (R,  c )  is formed, where R = g' and c = zrn with z = y'. A set B o f t  
participants i l l  2 2 ,  . . . , it decrypt ( R ,  c )  as follows. Individually, using their secret 
shares, they calculate zii = Reaj+"j for j = 1 , .  . . l t .  Provided q is large, these 
values z;, , ziti . , . , zit  may be made public without compromising sil , s i 2 ,  . . . , si, - 
From these values, z = zi1zi2 . . ..zit may be calculated and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArn = c2-l recovered. 
Thus the cryptogram is decrypted (by a threshold of participants) while the 
secret key k and shares s;, , s;?, . . . , sit remain secret. 

Schemes which are multiplicative over the group of units of the integers 
modulo n can be used in conjunction with RSA to  achieve threshold decryption 
and signature schemes (see [7] for a description of suitable schemes). Note that 
the Shamir scheme can no longer be used in this situation because there is no 
natural way of regarding the group of units of the integers modulo n as a field. 
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Schemes which are multiplicative over a non-abelian group are useful in zero- 
knowledge proofs which utilise joint knowledge of a graph isomorphism (see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEd]). 
Multiplicative schemes are especially useful in this last situation, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas suitable 
homomorphic schemes do not always exist zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9]. 

Because of the above applications, it is desirable to construct multiplicative 
threshold schemes for a wide range of groups. Note that, for such schemes to be 
practical, a multiplicative scheme should be computationally feasible. Moreover, 
one must take care that the computational information required to carry out 
the multiplicative scheme efficiently does not compromise any public key system 
used as part of the application. For example, the factorisation of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn should not be 
required in RSA based schemes. Thus one should check in any given situation 
whether the use of a given multiplicative scheme is appropriate. Such issues 
motivate the study of zero-knowledge techniques, see Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6.  

3 Extending the Karnin-Greene-Hellman bound 

Karnin, Greene and Hellman established [12, Theorem 51 that for an ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt 
out of n threshold scheme where the set of shares has order q ,  the inequality 
n 5 q + t - 2 always holds, provided that t 2 2. They used a correspondence 
between ideal schemes and Maximum Distance Separable codes together with a 
bound on the lengths of such codes due to Singleton [14]. The aim of the present 
section is to show that this bound holds for schemes which are not necessarily 
ideal - our method of proof is of necessity quite different. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Theorem3. Let t 2 2 and suppose there exists a perfect t out of n threshold 
scheme where the shares are taken f r o m  a set of order q .  T h e n  

n 5 q + t  - 2. 

Proof: We may realise a 2 out of n - (t - 2 )  threshold scheme using a t out of n 

scheme by making public the shares of a fixed set o f t  - 2 participants in the t 
out of n scheme. Thus the existence of a t out of n scheme implies the existence 
of a 2 out of TL - (t  - 2) scheme. So in order to prove (2), it suffices to show that 
for a 2 out of n threshold scheme with shares taken from a set of order q ,  wr 
have 

( 2 )  

n 59 .  ( 3 )  

Suppose, for a contradiction, that there exists a 2 out of n threshold scheme 
( D , R )  with a share set of order q and such that n 2 q + 1. Recall that the 
algorithm ID proceeds by generating an element zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc E V and distributing the i th 
component of c to participant i. For k E K ,  define C k  to be the set of all c E V 
generated by algorithm D with positive probability when k is given as input. If 
k ,  k' f K are distinct keys and c E Ck, c' E C k t ,  then c and c' can agree in at  
most one component, because two components uniquely determine the key in a 

2 out of n threshold scheme. 
Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX be a random variable taking values uniformly in the set of keys K .  Let 

Y be the random variable taking values in V formed by applying algorithm D 
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to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX ,  and for all z zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE (1,. . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.n} let Y; be its it11 component. For k E K ,  define Y k  
to be the random variable taking values in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACI, C V with probability distribution 
equal to the distribution of elements c E V generated by algorithm D when the 
key k is input, and for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz E (1,. . . , n} let, yk  be the i th  component of Y k .  
Since yi and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX are independent, we may note that  Prob(Kk : zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs) = Prob(Y; = 
s I X = k)  = Prob(yi = s). So Prob(yk = s) = Prob(Kk' = s) for all s E S and 
all 12, k' E K .  Let k ,  k' E K be distinct keys. Define 6 : S x S + Z by 

1 if s = s' and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc 0 if s # s/. 
6(s, s') = 

Let Z!7k' be a random variable defined by Z!'k' : 6(xk,  Y,"). Let E denote the 
expected value function. Since our scheme is perfect, we find 

E(Z,k'") = Prob(Yk = Y f )  = C P F O b ( y , k  = s) ' P*Ob(Xk' = s) 

1 E S  

2 1  
2 - 

9 
= c (Prob(Y,k = s)) 

S E S  

s o  

This implies that there exist c E ck and c' t C k ,  such that c and c' agree in 
more than one component (indeed, they zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAagree in more than one of their first 
q + 1 components). This is the contradiction that  we have been seeking, so the 
inequality (3) ,  and therefore the inequality ( 2 ) ,  follow. 0 

4 A Recursive Construction 

We describe a method for constructing a t out of !* threshold scheme whenever 
e is a prime power such that 

by using a t out of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI threshold scheme. The t out of l d  scheme is multiplicative 
provided that  the t out oft! scheme is. 

Let ( D ,  R) be a t out of 1 threshold scheme, where I is a prime power. Let S 
be the set of shares of the scheme ( D , R )  and identify the set P of participants 
of the scheme with the finite field IFl of order t. Suppose that  d is a positive 
integer such that  l >  (i)(d - 1) and set b = ( i ) ( d  - 1). We define a t out of t d  
threshold scheme (D', 72') as follows. 

The shares of our new scheme will be taken from the set S' = Sb+', the set of 
all ( b  + 1)-tuples of shares from ( D ,  R). We identify the set P' of participants in 
our new scheme with the set of polynomials of degree less than d with coefficients 
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in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAF t .  If f(x) = ~~~~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa;Xi E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP', then define f (w)  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAad-1. Let Q I ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 x 2 ,  - .  . , a b  

be distinct elements of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFL and let a0 = m. 

We define the distribution algorithm V' as follows. On being given IF E K ,  
algorithm V' executes algorithm 'D a total of b + 1 times, t o  produce elements 
co, c', c 2 , .  . . , cb E S'. The random input used by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2) in each execution should 
be independent of the random inputs used by previous executions. For each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
j E ( 0 , .  . . , b } ,  we may write zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACi = ( & ) a E F t  for some elements & E S.  The 
algorithm then distributes the share c; E S' to f E P' where c; is defined by 

We define the reconstruction algorithm R' as follows. Let f i ,  f i ,  . . . , ft be 
distinct participants. The algorithm 72' must recompute the key k E K given the 
shares c ; ~ ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc;~, . . . , c;~. The algorithm R' begins by trying to find an integer z E 
{ 0 , 1 , .  . ., b }  such that the elements fl(a;), fZ(ai), . . . , f t ( a i )  are distinct. Such 
an integer i always exists, by the following argument. Consider the polynomial 
h defined by  

1 5 ?'<,I 5 t 

Then h is a nonzero polynornial of degree a t  most 6. We consider two cases 
separately. 

Firstly, suppose that deg h 5 6 - 1. Since h can have a t  most. degh roots, 
there exists an integer i E {1,2,. . . ~ b }  such that h(n;) # 0. But for any a 
h(a)  = 0 if and only if f,(a) = f,,(cr) for some distinct u, v E { 1 , 2 , .  . . , t } .  So 
the values f l ( a i ) ,  f2((ai), . . . , f t ( q )  are distinct, as required. 

We now consider the case when degh = 6. This condition implies that 
deg(fu - f v )  = d - 1 for all u and u such that 1 5 u < v 5 t .  But deg(f, - f v )  = 
d - 1 if and only if f,,(co) # fv (m).  So the elements f l (oo) ,  f?(co),.  . ., f t (m)  

are distinct and we may take i = 0. 
The algorithm 72' now extracts the i th component from each of the shares 

c ; ~ ,  . . . , c ; ~  to obtain the set c ; ~ ( ~ , ) ,  . . ., c ; ~ ( ~ , ) .  Now f ~ ( q ) , f z ( a i ) ,  . . . , ft(ai) are 

distinct elements of P ,  so the algorithm R' possesses t distinct components of 

t h e  element, ci E S' and can use algorithm R to reconstruct the key Ic E K .  

, . ~  

Theorern 4 .  The  scheme ('D', 72') is a perfect t out of t d  threshold scheme, pro- 
vided that ('D, R) is a perfect. t out of f threshold scheme. T h e  scheme (D', R') 2s 

also multiplicatzve or homomorphic,  provided that this is also t rue of the scheme 

P, 72). 

The argument above shows that algorithm R' reconstructs the key from t distinct 
shares, so any t participants can recover the key. Furthermore, any t - 1 partici- 
pants possess a t  most t - 1 rornponents of each of the elements co, cl, c 2 , .  . . , cb, 

so are unable to deduce any information about, the key Ic. It is also clear that 
the scheme ('D',R') is multiplicative if ('D,R) is, for in this case the algorithm 
R' uses the multiplicative algorithm R in its final step. A similar remark holds 
for the homornorphic property. 
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4.1 Geometric interpretation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
For the reader familiar with normal rational curves the following provides a geo- 
metrical description of our construction. (The construction above was originally 
found by using this geometrical approach and so we include this interpretation 
in the hope that it might prove a fruitful perspective in future. However, readers 
unfamiliar with finite geometry may skip this subsection without prejudicing 
their understanding of the remainder of t h e  paper) 

We identify the participants of the threshold scheme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(23’) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA72’) with the points 
of the affine geometry AG(d,!) of dimension d over zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIF!. The coordinates of a 
point correspond to the coefficients of a polynomial of degree a t  most zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd - 1. A 

parallel class of this geometry consists of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt mutually disjoint hyperplanes. We 
identify these hyperplanes with the participants of the threshold scheme (’D, R). 
The b + 1 executions of (Dl zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR) correspond to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb + 1 parallel classes. Points in the 
same hyperplane of a given parallel class are given the share for that hyperplane 
in the corresponding execution of ( D ,  R) to  obtain their share (a ( b  + 1)-tuple) 
in (D’ ,R’) .  

The property required of the b + 1 parallel classes is that any t points should 
belong to  distinct hyperplanes of some parallel class. If this is the case then these 
t participants can use their shares of the corresponding execution of ( D I E )  to 
reconstruct the key. There is a correspondence between the parallel classes of 
AG(d, !) and the hyperplanes of the projective space PG(d - 1, .!) that  is the 
hyperplane at infinity of A G ( d , ! ) .  Two points belong to different hyperplanes 
of a parallel class if and only if the line joining them does not meet PG(d - 1, !) 
in a point of the hyperplane corresponding to the parallel class. Our objective 
is achieved if the b + 1 hyperplanes in PG(d - 1, f )  are chosen on a dual normal 
rational curve. 

Any d hyperplanes of a dual normal rational curve in PG(d - 1, !) are in- 
dependent so that any point of PG(d - l,.!) is on a t  most d - 1 hyperplanes 
belonging to  the curve. For any t points of AG(d,!) the (i) lines joining two of 

them meet PG(d - 1, !) in points belonging to a t  most ( i ) ( d  ~ 1) hyperplanes 
of the dual normal rational curve. Thus if b = ( i ) ( d  - 1) there exists at least 
one of the b + 1 parallel classes with the property that the t points belong to 
distinct hyperplanes of this class. Since a dual normal rational curve consists of 
! + 1 hyperplanes we obtain the condition .! 2 ( i ) ( d  - 1). 

5 Share expansion 

Let ( D ,  R) be a threshold scheme with share set S of order q and a key set K of 
order rn. We define the share expunsion E of the scheme by E = ( logq)/( logm). 
(Thus the share expansion of a scheme is just the reciprocal of its information 
rate). The share expansion of a scheme is a measure of its inefficiency. For all 
perfect schemes, the share expansion is at least 1 and it is desirable to construct 
schemes whose expansion is as close to 1 as possible. Define S K ( ~ ,  n)  to be the 
smallest share expansion of a t out of n threshold scheme which is multiplicative 
over K .  Theorem 3 gives the following corollary. 
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Corollary5. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBALet K be a group of order m. For all integers t and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn such that 
2 5 t 5 n ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S K ( t ,  n )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 (log(n - (t - 2))) / logm. 

Proof: If the set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS of shares has order q,  then Theorem 1 states that n - (t - 2) <_ 
q. So the share expansion (logq)/(logm) of any t out of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn scheme which is 
multiplicative over K is a t  least (log(n - (t - 2)))/(log m). n 

On the other hand, the construction of the previous section shows that 

s x ( t , l d )  5 ( ( i ) (d -  I ) +  l ) S K ( t , f )  

whenever l is a prime power such that e >_ ( i ) ( d  - 1). By using this construction 
repeatedly, one can show that we may realise a scheme with a share expansion of 
U((logn)'+') zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas n + 00 for fixed t and for any E > 0. Comparing this expansion 
with the bound in the corollary above, we see that this scheme seems to be good 
when n is large compared with t .  

5.1 An Explicit Construction 

Analysing the behaviour of our recursive construction when we allow t to vary 
as well as n is a delicate matter. In general, when the recursive construction is 
being used several times in order to achieve a scheme with desired parameters 
t and n,  it is better to use the recursive construction a small number of times 
with values for d as large as possible. In this subsection, we use our recursive 
construction to produce an explicit t out of n scheme for any values o f t  and n 

in the case when K is abelian. Although the explicit scheme will not use our 
recursive construction in an optimal way, the resulting bound on the achievable 
share expansion for a multiplicative t out of n scheme will be useful in the next 
section. 

Let t and n be arbitrary integers such that 2 < t 5 n and let K be an 
abelian group. We construct a t out of n threshold scheme as follows. We choose 

a positive constant a.  Let e be the first prime power such that l 2 (2) . We 
produce a multiplicative t out of l scheme by using a construction of Desmedt 
and Frankel 171. This scheme has a share expansion of less than zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2e. We then 
apply our recursive construction with d = [ l /(f) l a total of m times where 
m = [logd logL nJ + 1. Note that we can do this since e 2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 5 )  (d  - 1). At the end 
of this process, we have a t out of N scheme where N = edm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 n. By removing 
the N - n surplus participants, we have constructed a t out of n scheme which 
is multiplicative over the abelian group K .  One can calculate that the share 
expansion of this scheme is at  most 

t l+a 

When t = 2, one may use the same methods to pruduce a scheme with share 
expansion at most 4 log n. 
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6 Zero Knowledge 

In many threshold cryptosystems it is irnportant that the amount of knowledge 
that participants obtain (individually or jointly in groups) from their shares and 
any public information is no more than is strictly necessary. The study of zero- 
knowledge threshold schemes [7] addresses this issue. In this section we analyse 
our scheme from a computational complexity point of view in order to study 
its zero-knowledge aspects. For this purpose, we implicitly assume that we are 
studying a family of schemes indexed by some parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz taken €ram a set of 
finite binary strings -this allows us to talk meaningfully about such notions as 

polynomial time. For reasons ofspace, we do not explicitly refer to this parameter 
(e.g. we use the term 'scheme' for a family of schemes) exccpt when discussing 
the computational complexity of our algorithms. We assunie the computat,ional 
power of the participants in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP is polynomially bounded in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ X I ,  the binary length 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ,  and for a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt out of R threshold schenie to be mult ipl icat ive we require in 
addition to (1) that a polynomial time (in 1.1) algorithm exists tu cumpute tltv 
operations of the group K and a polynomial time (in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1x1) algorithm exists that  
can compute the image of any element of the set of shares zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS under any one of 
the family of mappings { f i , ~  : S zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 K 1 i t B}. We must, also take into account 
the fact that the distribution algorithm 'D, given the key, may have to distribute 
shares to a possibly superpolynomial number of participants, and that in the 
reconstruction algorithm R the power of many participants may be combined. 
For this reason we allow 2, (when given k )  to  run in expected polynoriiial t ir i le 

in m a z { i z l ,  R }  and R to run in polynomial time in maz{iz i ,  t ,  inl}. 
A t out of n threshold scheme is perfectly zero-knowledge if the shares of any 

t - 1 or less participants can be simulated perfectly in expected polynomial t ime 
bounded by ( t  ~- l)\zIc where c is some constant. Informally, this condition says 
that t - 1 participants learn nothing new frorn their shares and any publicly avail- 
able information. A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 out of n threshold scheme is pe,rfectly minimal-knowledge if, 
given any key k E K ,  the shares of any m 2 t participants can be simulated per- 

fectly in expected polynomial time bounded by ~ n / z / ~ ,  where c is some constant. 
Informally, this condition says that  t or more participants learn no more than is 
strictly necessary from their shares and any publicly availahlr information. Sin-  
ilar definitions can be formulated for statistical and computational analogues 
of perfect zero- and minimal-knowledge. For the formal definitions and a more 
rigourous approach, the readpr is referred to 17, 10, 111. 

Theorem 6 .  Let ( ' D , R )  be a multzpl icat ive t out o f t  threshold scheme over th.c 
group K and let d be po lynomia l l y  bounded in 1x1 wi th  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe 2 ( i ) ( d  - 1). Then the 
scheme (D ' ,  R') constructed in Sect ion  4 is a mult ipl icat ive t out of td threshold 
scheme.  If, fu r thermore ,  t zs polynomial ly bounded zn 1x1 and ( D ,  R )  zs perfectly 
zero-knowledge or minimal-knowledge, then  so i s  (V ' ,  I?,'). Simi la r  statem.mt.s 
can be made f o r  the stat ist ical and computat ional  analogues of perfect zt:ro- (in({ 

min imal -know ledge. 

Sketch  Proof: We use the same notation as in Section 4 .  First observe that a l p -  
rithm R' can certainly find an  integer i such that 1 < i 5 6 with t he  property 
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that all the field elements fl(a;), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfz(a;), . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf t (u ; )  are distinct, since zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAd is poly- 
nomially bounded. It follows that (D', 73') is a threshold scheme. 

Next suppose that t is polynomially bounded, that (D, R) is zero-knowledge 
and that f i ,  f z ,  . . ., ft-1 are t - 1 participants in (D ' ,R ' ) .  The simulator for 
(D', R') runs the simulator for (D, R) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a black box 6 + 1 times, indepen- 
dently. For i E {0 ,1 , .  . . , b } ,  define B; = {fl(a;),f~(cxi), . . - , f t - l ( u i ) )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC IF!, 
which we regard as a set of participants in ( D , R ) .  For each i, let tk, be the 
vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti2(a,)l.. . , i?>t-l(a,l) of simulated shares and let til be defined 

by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt i j  = ( t~ j (ml l  c ~ ~ ( ~ ~ ) ,  . . . , E ! j ( a b ) ) ,  for 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 j 5 t ~ 1 .  The components of the 
shares 2' for the partic- 

ipants f l ,  f i , . .  . ,  ft- l in (V ,R ' ) ,  which are also independent. So . . l t > t + l  

simulates the shares of f 1 , .  . . , ft-l. Hence the threshold scheme (D ' ,R ' )  is zero- 
knowledge. The proof for minimal-knowledge is similar and is omitted. 

Corollary Y. If K zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi s  abelian and both t and logz n are polynomially bounded 
in 121 with t 2 2 then there ezists a multiplicative and homomorphic zero- and 
minimal-knowledge t out of n threshold cryptosystem. 

Proof: The constructions of Subsection 5.1 (with a any positive constant) have 
share expansion at  most ~ t ~ ~ ~ " ( l o g ,  n)l+l /a,  for some constant c. 0 

If n = 0(21z1)l but t is polynomially bounded in 121, then the scheme in [7,  

pp. 673-6741 is not zero-knowledge, but. Corollary 7 shows that ours is. 

-1 

are independent and simulate those of the shares c' 
f i  fi 

7 Discussion 

We have presented a recursive construction of threshold schemes that has several 
useful properties, the property that it preserves the homomorphic and multiplica- 
tive nature of the underlying scheme being amongst the most important. The 
explicit scheme in Subsection 5.1 implies the following. 

Corollary8. For all constants 6 such that 0 < 6 5 1/4, if t = O(n'/4-b) then 
the shares are asymptotically shorter than in the zero-knowledge sharing scheme 
i n  [7, pp.  673-6741, which has share expansion 0 ( n ) .  

Proof: If we set a 1 4b, then the result follows by the proof of Corollary 7.  0 
It is also obvious that the explicit scheme in Subsection 5.1 is substantially 

better than the scheme in [7, pp. 673-6743 when t = O((lqg2 n ) b )  for any constant 
b - in this case our share expansion is only O((log2n)b ) for some constant b'. 

When t > 2 and n is large compared to t ,  the recursive construction given 
in this paper is considerably more efficient than the scheme presented in [4]. In 
particular, when E is any positive constant, t is constant and n t 00, the scheme 
presented here has share expansion of the order of (log n)'+' whereas the scheme 
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA141 has share expansion of at  least c(10g n)t- l  for some constant c.  

Our construction can be combined with existing threshold cryptosystems 
such as the ones in [3, 41 to make them more efficient (with shorter shares and 
hence fastkr computation), whilst maintaining their security. 
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We conclude by observing that although we were able to  prove that our 

scheme zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAis asymptotically optimal when the order of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK and t are constant, the 

discovery of good bounds on the share expansion of multiplicative or homomor- 

phic zero-knowledge threshold schemes for all parameters K ,  t and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn (and the 
construction of  schemes which meet these bounds) is still an open problem. 
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