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Abstract—Image matching is the key step for image registra-
tion. Due to the existing nonlinear intensity differences between
multisource images, their matching is still a challenging task. A
fast matching approach based on dominant orientation of gradient
(DOG) is proposed in this article, which is robust to nonlinear
intensity variations. The DOG feature maps are constructed by
extracting DOG feature of each pixel in the images in the first place.
A template matching method is used to determine correspondences
between images based on the feature representations. We define a
similarity measurement, referred to as sum of cosine differences,
which can be accelerated by fast Fourier transform. Subsequently,
the subpixel accuracy can be achieved by fitting the similarity
measurement using a quadratic polynomial modal. A new variable
template matching (VTM) method has been developed to improve
the matching performance. Experimental results confirm that the
proposed matching approach is robust to nonlinear intensity dif-
ferences and has time efficiency. The VTM method additionally
improves the matching precision effectively.

Index Terms—Dominant orientation of gradient (DOG), image
matching, variable template matching (VTM).

I. INTRODUCTION

W
ITH the development of geospatial information technol-

ogy, quite a few types of remote sensing (RS) images

become very accessible, such as visible image, infrared im-

age, LiDAR image, and synthetic aperture radar (SAR) image.

These multisource RS images provide complementary feature

information for the observation scene, which can be utilized in

many RS applications, including image fusion [1] and change

detection [2]. Multisource image registration is the prerequisite

of these applications. Multisource image registration aims to

strictly align two or more images obtained by different sensors

or at different viewing angles [3]. Although multisource RS

image registration has been intensively studied for decades,

there exists no high-precision automatic registration method that

can be generally applied, especially for multisource RS image

registration.
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Fortunately, most modern RS images are usually attached

with georeferencing information that can be used to prereg-

ister the reference and sensed images. The preregistration

eliminates almost all global distortions including obvious ro-

tation and scale differences and there are only several to

dozens of pixel deviations between the preregistration images,

which provides great convenience for further fine registration

[4]–[6].

The crucial step of image registration is image matching

which extracts and matches the correspondences or the control

points (CPs) between reference and sensed images. The corre-

spondences represent the distinctive and representative points of

the observed scenes. However, the existing nonlinear intensity

differences usually make multisource image matching in trouble.

Hence, this article focuses on multisource RS image matching

to cope with nonlinear intensity changes.

Generally, most image matching methods for multisource im-

ages can be divided into feature-based and area-based types [3].

For feature-based methods, the candidate local features with

salient structure information are first extracted from both ref-

erence image and sensed image. The correspondences between

images are determined based on similarity measures of their

feature descriptors. The extracted features can be points [7],

edges [8], and contours [9]. Recently, matching methods based

on local invariant features, such as scale invariant feature trans-

form (SIFT) [10], speeded up robust feature [11] and KAZE [12],

have been widely utilized in the filed of RS image match-

ing [13]–[15]. Among them, SIFT is recognized as the most

robust method. However, the experimental results show that

SIFT performs better in single-modal images, but not well

in multisource images [16]. This is because it is vulnerable

to nonlinear intensity differences. Many variants of SIFT are

proposed to matching multisource RS images [17], [18]. They

perform well in some cases, but not in others. A mixture model

with multiple features combination is presented to improve the

multiviewpoint RS image matching accuracy [19]. In general,

the repeatability of feature detection is usually the main factor

affecting the performance of these feature-based matching meth-

ods. Significant intensity, texture and potential resolution differ-

ences usually result in lower repeatability and lower matching

performance [20]–[22].

Conversely, area-based methods, also known as template

matching methods, realize the correspondences of CPs by eval-

uating the similarity of the corresponding window pairs or even

the entire images, which have advantages in precision, distribu-

tion, stability, and other aspects [23]. The focus of area-based
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methods is the similarity measurement that can be computed in

either spatial or frequency domain.

There are some commonly used similarity measures oper-

ated in spatial domain [24], [25]. These similarity measures

are calculated with the template patch sliding on the search

region in the sensed image, which is usually time-consuming.

Frequency-based image correlation is also a type of template

matching technique, which can avoid the iterative search process

by Fourier transform (FT) routine. Phase correlation (PC) is a

well known frequency-based matching technique [26]. However,

these conventional area-based matching methods usually utilize

intensity information to matching images, which degrades the

performance of multisource image matching due to nonlinear

intensity differences and noise.

The intensity distortion between multisource images is very

complicated, which can not be fitted with simple mapping rules,

such as linearity, monotonicity, etc. Hence, some matching

methods have poor matching performance because their sim-

ilarity measures are based on intensity mapping rules [27]. The

intensity inversion is a special case of intensity changes, which

results in orientation reversal. The issue frequently degrades the

performance of template matching methods based on gradient

orientation [28]. Meanwhile, noise is usually inevitable in RS

images, especially in LiDAR and SAR images. The gradient

magnitude is more easily affected by noise, which may change

the gradient orientation. This can cause issue to the similarity

measure for these methods based on gradient information with

magnitude and orientation of each individual pixel.

We propose a computational efficient and robust matching

method. First, the dominant orientation of gradient (DOG)

features are extracted as feature representations to reduce the

influence of nonlinear intensity differences. Subsequently, the

similarity measure, i.e., sum of cosine difference (SCD), is im-

plemented to cope with orientation distortion caused by intensity

changes and noise, which can be accelerated using FFT. And

then, CPs with subpixel accuracy are determined by fitting the

similarity measurement using a quadratic polynomial modal.

Furthermore, a novel variable template matching (VTM) method

is proposed to improve the matching performance. The VTM

method is a general method. For template matching methods

based on spatial similarity measurements that can be accelerated

by FFT, the VTM method can be used in the measurement pro-

cess of these methods and improve their matching performance

without increasing computational complexity.

The rest of this article is organized as follows. Section II

briefly reviews the related work for completeness. Section III

details the framework for multisource RS image matching.

Experimental results are presented in Section IV, and Section V

concludes this article.

II. BRIEF OVERVIEW OF RELATED WORK

Nonlinear intensity difference is a major challenge for multi-

source RS image matching. Many area-based matching methods

have been proposed to deal with this problem.

This matching method is utilized to optimize the coarse reg-

istration of RS images, and the adopted similarity measure is a

decisive component of area-based methods [29]. Normalized

cross correlation is a widely used similarity measure, which

can deal with the linear intensity differences [30], while it is

sensitive to nonlinear intensity differences. Further, a template

matching method named matching by tone mapping (MTM)

was proposed to handle nonmonotonic and nonlinear intensity

mapping [27]. However, MTM relies on intensity mapping rule

between two multisource images. Unfortunately, the intensity

relationship between multisource RS images cannot be fitted

by a simple function. Mutual information (MI) [25] can adapt

to nonlinear intensity differences to some extent and has been

extensively used in multisource image matching [31], [32].

Nevertheless, high computational load is a major limitation of

MI-based methods.

Frequency-based image correlation is a specific type of area-

based image matching technique, which realizes image match-

ing with the translation property of FT or similarity model by

means of the image information and operation in the frequency

domain [23]. The frequency-based methods are usually time

efficient due to the use of FFT. In the frequency domain, PC

method can quickly estimate the translation based on Fourier

theorem [26]. Nowadays, PC has been extended to deal with ro-

tation and scale estimation using Fourier–Mellin transform [33],

[34]. By means of FT and phase information, PC can real-

ize superior performance in theoretical subpixel accuracy. The

singular value decomposition and the unified random sample

consensus were performed to achieve high subpixel accuracy

by rank-one matrix approximation and 1-D fitting [35]. The

rank-one matrix factorization with a mixture of Gaussian model

on the PC matrix was utilized to consider more complicated

noise [36]. Although these PC-based methods are more robust

to noise and can get high subpixel matching accuracy, it is often

at the expense of efficiency due to the use of iterative algorithm.

The time-consuming effect is more serious when they are used

to realize the correspondences of CPs, because the number of

iterations increases with the number of CPs.

Moreover, some works have attempted to extract structural

features as the replacement of image intensity and combined

them with the conventional similarity measures to achieve image

matching. Normalized gradient correlation (NGC) was proposed

to realize image matching by directly using the gradient ori-

entation of each individual pixel [28], which is more sensitive

to noise and cannot handle the influence of nonlinear intensity

differences. Phase congruency has been a representative feature

representation to capture the structural information. In [37], the

phase congruency is extended to build a novel feature descriptor

named the histogram of orientated phase congruency, which can

address the influence of nonlinear intensity differences. A robust

matching method based on enhanced subpixel PC adopted phase

congruency information as feature representations to reduce

the influence of nonlinear intensity differences in multisource

cases [38]. Phase congruency information was used as weights

during the similarity calculation based on the adaptive multiscale

structure orientation (AMSO) [39]. However, phase congruency

is highly affected by noise especially in LiDAR and SAR which

are usually more noisy, and the feature representation is sparse

to realize image matching since most pixel values in the phase
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Fig. 1. Overall flowchart of the proposed matching method.

congruency map are close to zero [40], [41]. In [42], channel

features of oriented gradients (CFOG) was proposed and mea-

sured in frequency domain using FFT. The novel feature is an

extension of histogram of gradient (HOG) feature. Nevertheless,

the gradient histogram consists of gradient magnitude which is

more easily affected by noise.

III. PROPOSED APPROACH FOR MULTISOURCE

IMAGE MATCHING

A. Workflow of the Proposed Matching Method

The proposed matching method for multisource images es-

timates displacement between the corresponding window pairs

in the frequency domain. The overall flowchart of the matching

method is presented in Fig. 1, which mainly consists three steps

as follows.

1) Feature points detection in reference image which is usu-

ally visible image. The block strategy is adopted to extract

the Harris feature corners uniformly distributed over the

reference image. In each block, the top k points with the

largest response values are selected as the feature points.

2) Construction of DOG map of both reference and sensed

images. In order to reduce the influence of complicated

intensity differences and capture dense and useful struc-

tural information between multisource images, the DOG

feature of each pixel in images is extracted as the replace-

ment of the original image intensity.

3) Corresponding CPs matching. Considering the nonlin-

ear intensity differences even intensity inversion between

multisource images, SCD similarity measurement is eval-

uated between template window and search region, which

can be accelerated with FFT and improved with VTM

method. Subsequently, based on the similarity map, a

quadratic model is utilized to obtain subpixel accuracy.

B. DOG Map Construction

The pixelwise orientation histogram is first established to

obtain DOG feature map of image. For each image sample of

I(x, y), the gradient magnitude of m(x, y) and orientation of

θ(x, y) are precomputed using pixel differences as

m(x, y) = [(I(x+ 1, y)− I(x− 1, y))2

+ ((I(x, y + 1)− I(x, y − 1))2]
1

2 (1)

θ(x, y) = tan−1

(

I(x+ 1, y)− I(x− 1, y)

I(x, y + 1)− I(x, y − 1)

)

. (2)

It should be noted that there may be orientation reversal at

the matching points of the multisource images due to significant

nonlinear intensity differences. We transfer the gradients from

[180◦, 360◦) to [0◦, 180◦) to deal with the problem.

The pixelwise orientation histogram is formed with the gra-

dient information of sample pixels in the surrounding region

around the center point. In this article, the orientation histogram

has nine bins covering the 180◦ range of orientations. Each

sample pixel added to the histogram is weighted by its gradient

magnitude and by a standard Gaussian-weighted window. The

dense orientation histograms are obtained by performing the

same operation for each pixel in the image. The orientation

histogram can be constructed quickly using convolution with

Gaussian kernel. The computation is defined as

hi(x, y) = gσ ∗ hi
′(x, y) (3)

where gθ and ∗ operation mean standard Gaussian kernel and

convolution operation, respectively. And hi
′(x, y) denotes the

initial histogram component quantized at the orientation of the

ith bin, while hi(x, y) is the ith bin component of pixel-level

orientation histogram.

The DOG feature of each pixel is the orientation correspond-

ing to the bin in which the peak value of each orientation

histogram locates. The DOG feature map is finally formed by

extracting the corresponding DOG feature of each pixel. As

described, the DOG feature map is a non-redundant feature

representation with the same size as the original image.

The proposed method utilizes a Gaussian kernel to collect

the local gradient information centered on each pixel quickly,

which can suppress Gaussian noise effectively. And the unsigned

DOG is extracted from orientation histogram. The unsigned

orientation means the same angle for two opposite orientations,

which can handle the orientation reversal caused by nonlinear

intensity differences. Meanwhile, through this operation, the

DOG feature discards gradient magnitude which is more easily

affected by noise. The analysis of the sensitivity to noise will be

shown in the latter experimental part.

In order to verify the robustness of DOG map to nonlinear

radiation differences, we present the proposed feature maps,

gradient features and phase congruency features of two images

in Fig. 2. For two test images, there are significant nonlinear
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Fig. 2. Comparison of DOG map with gradient information and phase congruency.

intensity differences between them. One can see that phase

congruency retains more structure information than gradient

features including gradient magnitude and orientation. And the

DOG feature map has less changes than phase congruency with

illumination variation on the original image. This shows that

DOG feature map of image is more robust to nonlinear intensity

differences.

C. Fast Similarity Measurement

Based on the DOG feature maps of multisource images, tem-

plate matching method is employed to detect the CPs between

images. The sum of squared differences (SSD) is regarded as an

obvious approach for similarity evaluation for image matching.

The SSD between the two feature representations with the

template window is defined as

Si(u, v) =
∑

x,y

|D1i(x, y)−D2i(x− u, y − v)|2Wi(x, y)

(4)

where D1i and D2i represent the sub feature maps picked from

the DOG maps of reference image and sensed image around the

ith keypoint, respectively. Wi(x, y) means the template window

function over reference subfeature map, where Wi(x, y) = 1
within the template window, otherwise Wi(x, y) = 0.

By minimizing the measurement Si(u, v), the matching func-

tion is defined as

ui, vi = argmin
u,v

{Si(u, v)} (5)

where (ui, vi) represents the offset vector which matches D1i

with D2i.

However, the experimental results show that the CPs detected

by SSD measurement are not precise enough, which would be

illustrated later. The main reason is the orientation distortion

and reversal caused by local geometric and intensity distortions.

Especially, when the distortions occur at the orientation periodic

node (180◦ in this article), the similarity is minimal judged by

SSD, which is opposite to the actual situation. For example,

assuming the orientations of two corresponding pixels are 0◦

and 179◦, respectively, that is caused by intensity inverse and

slight local geometric distortion, the judgment of SSD is the

least similarity, which is unreasonable.

Therefor, SSD is not suitable for the proposed DOG feature.

The SCD method is proposed to measure similarity and cope

with the interfere of orientation distortions. Considering the

orientation range from 0◦ to 180◦, we adjust the period of the

cosine function to the same period as the orientation. The SCD

is defined as

C = cos(2 ·∆φ) (6)

where C and ∆φ represent the similarity value and difference of

two orientations, respectively. Fig. 3 shows the curve of the SCD

measure as the absolute difference of two orientations. Because

the function is a symmetric function, we use the absolute value of

the orientation difference to analyze the proposed measurement

here.

When the absolute difference is 0◦ or 180◦, the proposed

similarity measure obtain the maximum similarity value, while

the similarity measure become the smallest value when the

absolute orientation difference is 90◦. Consequently, the pro-

posed similarity measure can handle the influence of orientation

reversal and orientation distortion.

In template matching, the SCD is presented as

Ci(u, v) =
∑

x,y

cos(2 · (D1i(x, y)−D2i(x− u, y − v))) ·Wi

(7)

where Ci(u, v) is the similarity measure map obtained by SCD.

The rest of the variables have the same meaning as previously

mentioned. Then the matching function is given as

ui, vi = argmax
u,v

{Ci(u, v)} (8)
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Fig. 3. Proposed similarity measurement versus the orientation difference.

Although DOG feature map is a nonredundant feature repre-

sentation, it is still time consuming for SCD to measure simi-

larity in spatial domain, which can not meet some application

requirements. To address that, FFT is considered to accelerate

the measurement.

Considering that the cosine function can be expressed as

the real part of Euler’s formula, the SCD similarity function

is rewritten as

Ci(u, v) = real

(

∑

x,y

ej2(D1i(x,y)Wi−D2i(x−u,y−v)Wi)

)

= real

(

∑

x,y

e(j2D1i(x,y)Wi)
� e(−j2D2i(x−u,y−v)Wi)

)

.

(9)

As stated above, SCD can be seen as a correlation operation of

D1i andD2i, which can be speed up using FFT. The relationship

of correlation operated in spatial domain and frequency domain

is given as

corr(h(x, y), g(x, y)) ⇔ H∗(X,Y )G(X,Y ) (10)

where corr(·) is correlation operation. H∗(X,Y ) represents the

complex conjugate of H(X,Y ), which is the forward FFT of

h(x, y), and G(X,Y ) denotes the forward FFT of g(x, y).
Consequently, the SCD can be represented as

Ci(u, v) = real{F−1[F ∗(ej2D1iWi) � F (e−j2D2iWi)]} (11)

where F and F−1 denote the forward and inverse FFTs, respec-

tively. And F ∗ is the complex conjugate of FFT. The matching

result can be obtained using (8). Given template window of

M ×M pixels and search window of N ×N pixels, the match-

ing computing complexity reduces to O((M +N)2log(M +
N)) from O(M2N2) using (11). And with the larger tem-

plate window or search window, the method will reduce more

computation.

Fig. 4. Actual template with VTM method. The blue overlapping area is the
actual matching template size at the corresponding matching point.

D. VTM Method

During the conventional template matching procedure, the

size of the features participating in the similarity measurement

each time remains constant when a template window sliders

pixel-by-pixel over a search region. Just as mentioned above,

with the computing complexity of O((M +N)2log(M +N)),
only the reference sub feature map of M ×M is used to be

measured with the corresponding sensed subfeature map. And

generally speaking, larger template results higher matching pre-

cision in a local area. Accordingly, we propose VTM method to

use the feature information in the sub feature maps as much as

possible. The VTM method is defined as

C ′
i(u, v) = real{F−1[F ∗(exp(j2D1i)) � F (exp(−j2D2i))]}

(12)

where C ′
i(u, v) is similarity map obtained by VTM method. In

the case, without of limitation of template window, the actual

template size varies spatially. Fig. 4 shows the size of actual

template with VTM method. All of feature representations which

can be utilized are (M +N)× (M +N) pixels for both D1i

and D2i. The actual matching template size varies with the 2-D

offset whenD1i sliders overD2i, just like the overlapping region

as shown in Fig. 4. That means that all candidate matching points

in a search region correspond to different actual template sizes.

Hence, the relationship between the actual template size and

2-D offset is expressed as

Mask(u, v) = (M +N − |u|)× (M +N − |v|) (13)

whereMask(u, v) is the actual template size corresponding 2-D

offset (u, v). Since the template size is not constant, it is not suit-

able to measure similarity by SCD no longer. Accordingly, based

on C ′
i(u, v), mean of cosine difference (MCD) measurement is
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Fig. 5. Similarity maps of V-DOG, DOG, DOG+SSD, and MI, where the template size is 50× 50 pixels and the search window is 40× 40 pixels. (a) Test
images. (b) Similarity maps where the red points mean the positions with the maximum similarities.

defined as

Ci(u, v) =
Ci

′(u, v)

Mask(u, v)
(14)

where Ci(u, v) is the similarity map obtained with VTM and

MCD. The matching result can be obtained in (8). Compared

with the conventional template matching method, the template

gain with VTM method is represented as (1 + (N − |u|)/M)×
(1 + (N − |v|)/M). Given the search window ofN ×N pixels,

the maximum offset is N/2, which means that using VTM

method, the maximum template gain is (1 +N/M)2 and the

minimum gain is (1 +N/2M)2. The gain effect is related to

template to search window ratio, which is presented as α.

The similarity maps of the proposed method are compared

with SSD and MI to verify the effectiveness of the proposed

matching methods. Two pairs of multisource images are used

in the test, which are the optical-to-infrared and optical-to-SAR

image pairs with different resolutions, respectively.

Fig. 5 shows comparison results of these measures, where

V-DOG means test results obtained with VTM method and

DOG feature map. All measures perform well for optical-to-

infrared images. However, the DOG features with SSD measure

(DOG+SSD) and MI occur location errors for optical-to-SAR

images and the similarity maps look more noisy. In contrast,

both methods proposed in this article find the correct match re-

lationships in all cases. Moreover, the similarity maps of V-DOG

are smoother with sharp peaks. The test results confirm that the

proposed methods are resistant to nonlinear intensity differences

between images and can cope with orientation distortions.

The VTM method can not only be applied to the matching

method proposed, but also in some methods of template match-

ing through FFT, which can improve the matching performance

without increasing the computational complexity. More analysis

is given in Section IV.

E. Subpixel Calculation in the Spatial Domain

Subpixel calculation aims to determine the precise subpixel

location of the similarity measurement peak. In this article,

a quadratic model, which is commonly used fitting model, is

applied as an approximation to estimate the subpixel shifts.

Assuming a paraboloid function is denoted asP (x, y) = a0x
2 +

a1y
2 + a2xy + a3x+ a4y + a5, the similarity peak location

(∆x,∆y) can be acquired through coefficients ai(i = 0, . . ., 5)
as

∆x =
2a1a3 − a2a4
a22 − 4a0a1

(15)

∆y =
2a0a4 − a2a3
a22 − 4a0a1

(16)

where the coefficients can be calculated by least square fitting

given some neighbors around the integer-valued peak location.

IV. PROCESSING RESULTS

The datasets, experimental results and their evaluation are

presented. The results are compared with some classic and state-

of-the-art similarity measures, such as MI, NGC, FHOG [42],

CFOG, and AMSO.

A. Datasets

Eight pairs of multisource RS images are used to analyze the

matching performance of the proposed methods. The detailed

information of these test images are shown in Table I. The

test images consist of optical-to-infrared (No. 1, No. 2, No. 3),

optical-to-LiDAR (No. 4) and optical-to-SAR (No. 5, No. 6,

No. 7, No. 8). These images cover a variety of terrain, such as

urban, suburb, farmland, river, and island. Fig. 6 shows the test

image pairs, which have been prerectified using their physical

sensor models. The rectification is employed to remove nearly all
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TABLE I
DETAIL INFORMATION OF THE TEST IMAGE PAIRS

Fig. 6. Matching results of all test image pairs. (a) No. 1. (b) No. 2. (c) No. 3. (d) No. 4. (e) No. 5. (f) No. 6. (g) No. 7. (h) No. 8.
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the global geometric distortions from the unregistered images,

including obvious rotation and scale differences. In addition,

the images of each pair are resampled to the same resolution

or ground sample distance (GSD) to facilitate the subsequent

matching process.

B. Implementation and Evaluation

In the experiments, block strategy is first employed to obtain

200 uniformly distributed Harris keypoints in the reference

images [43], [44]. Then, the CPs can be determined within search

window in the sensed image. Moreover, the subpixel accuracy of

each CP is achieved by local fitting technique based on quadratic

polynomial.

The matching performance is evaluated in terms of correct

matching ratio (CMR), root-mean-square errors (rmse), and

time consumption. In order to determine the correct matching

points, the projective mapping model for each image pair is

estimated using 30 manually selected CPs. The projective model

is used to calculate the location errors of the matching points

obtained by template matching method. The matching points

within positioning errors of 1.5 pixels are defined as the correct

matching points. The CMR is defined as the ratio between the

number of correct matching points and the number of total

matching points. The rmse value is denoted as

RMSE =

√

1

Nc

∑Nc

i=1
(xi −mi)

2 + (yi − ni)
2

(17)

where NC is the number of correct matching points. (xi, yi)
and (mi, ni) are actual matching point transformed by map-

ping model and matching point obtained by template matching

method for each keypoint, respectively.

C. Effect Analysis of VTM

As analyzed in Section III, the template gain will raise with

the increase of α when using VTM method, which is expected

to improve the performance of CPs matching. To verify the

effect of VTM method, the test images are matched in VTM

and conventional template matching method, respectively. For

better reflecting the influence of α on the performance of VTM

method, the template size is fixed as 50 × 50 pixels in the

test, which is expected to remain stable in the performance of

conventional template matching method. In this case, α varies

with the size of search window. It is worth noting that in the

experiment, each actual matching point is added with a uniform

random offset away from the center of search region. Because

the matching performance would be better if the actual matching

points always locate in the center of the search region where the

matching points have larger actual template size. This is just to

achieve more representative and convincing statistical results of

experimental performance.

Figs. 7 and 8 show the average CMR and rmse values

versus the variable α, respectively. It can be seen from Fig. 7

that the CMR index of fixed template matching method is not

stable as expected. When α is small, there is no more selection

for matching point, so as to achieve a higher CMR value. In

contrast, when α become larger, there is more interference to

Fig. 7. Average CMR values with different values of α, the ratio between the
template size, and search window size.

Fig. 8. Average rmse values with different values of α, the ratio between the
template size, and search window size.

the CPs matching, which results in the decline of CMR value.

However, the CMR values achieved by VTM method raise with

the increase of α. They are much higher than the ones obtained

by conventional template matching method.

It can be noticed in Fig. 8 that the rmse values of the correct

CPs are stable with the change of α in conventional template

matching method, while the values achieved by the VTM method

decrease slowly with the increase of α, which indicates that the

VTM method can effectively improve matching performance.

D. Analysis of Noise Sensitivity

In this section, some images with noise are used to assess

all template matching methods mentioned above. Because it is

impossible to use a simple mathematical model to perfectly fit
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Fig. 9. Average correct matching rates of similarity measures versus various
Gaussian noise.

Fig. 10. Average correct matching rates of similarity measures versus various
speckle noise.

the nonlinear intensity relationship between multisource images.

Meanwhile, LiDAR and SAR images are usually more noisy

than infrared images, which makes it hard to measure the effect

of noise on image matching. Consequently, we use three pairs

of real optical-to-infrared images instead of synthetic images to

test the noise sensitivities of these methods. Here, Gaussian and

speckle noise are considered to be added to the sensed images.

The different levels of Gaussian noise with mean 0 and variances

in the range of [0, 0.01] with interval of 0.002, and the different

levels of speckle noise with variances in the range of [0, 0.5]

with interval of 0.1 are added to the sensed images, respectively.

All the similarity measures are performed with template window

of 100 × 100 pixels. The average CMRs are presented in Figs. 9

and 10.

It can be observed that the proposed matching method

achieves superior results under increased noise. The results of

CFOG and FHOG decrease significantly as noise increased. This

is because the two methods are based on the gradient orientation

histogram which is more closely related to gradient amplitude,

while DOG feature extract the dominant component from the

gradient orientation histogram, which discards the amplitude

information and reduce the influence of noise. Although MI

usually presents stable results, its CMR values are lower than the

best performance. NGC method always gets the lowest precision

with both Gaussian and speckle noise, which indicates that

compared with gradient orientation of each individual pixel, the

DOG feature is more robust to noise. In addition, AMSO also

presents a higher sensitivity to noise compared with V-DOG.

E. Performance Analysis

We compare the performance of the proposed method with

some classic and state-of-the-art similarity measures, such as

NGC, MI, FHOG, CFOG, and AMSO. The VTM method can

be utilized in the CFOG and FHOG to obtain the corresponding

VTM+ methods, which are termed as V-FHOG and V-CFOG,

respectively. And like mentioned in the experiment of analyzing

the effect of VTM, we do a random translation for each feature

point to be matched, but it still remains in the search region.

And the random shift against the ground truth is recorded for

analyzing the matching performance.

Fig. 11 shows the CMR values of all similarity measures on

the test image pairs. In most cases, NGC presents the worst

results, and it can hardly work in some cases, which indicates

that NGC cannot handle the multisource image matching. This

is because there is no any process to handle the nonlinear

intensity differences in both feature representation and similarity

measure, and at the same time it loses the ability to cope

with multisource image matching. The matching performance

of AMSO is obviously lower than the DOG-based, CFOG-

based, and FHOG-based methods, especially when matching

optical-to-SAR images. This may be because AMSO uses phase

congruency as weights during the similarity calculation, which

is easily affected by noise. The performance of MI is also not

satisfactory, which shows that MI can not tackle multisource

RS image matching effectively. The proposed V-DOG measure

always achieves the best results in all cases. Moreover, all VTM+

methods get better CMR values than those obtained by original

methods, which verifies the effectiveness of the VTM method.

CFOG-like and FHOG-like methods are all based on orientation

histogram. The amplitudes of histogram are composed of gradi-

ent amplitudes of neighborhood pixels, which are easily affected

by pixel intensity changes. The proposed DOG feature map is

constructed without amplitude information, which is most likely

to avoid the influence of nonlinear intensity differences and

noise. Hence, although DOG feature map is a non-redundant

structure representation, which may not be as informative as

CFOG or FHOG features, it still achieves similar matching

results. V-DOG even achieves the better results than those by

V-CFOG and V-HOG.
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Fig. 11. CMR values of all similarity measures versus the template size. (a) No. 1. (b) No. 2. (c) No. 3. (d) No. 4. (e) No. 5. (f) No. 6. (g) No. 7. (h) No. 8.

Fig. 12. RMSE values of all similarity measures for each image pair.

Fig. 12 shows the rmse values of correct matches of all

similarity measures mentioned above with template window of

100 × 100 pixels. As we can see, the proposed V-DOG achieves

the smallest rmse values. And all VTM+ methods improve the

performance of the original methods. Furthermore, the matching

results obtained by V-DOG are given in Fig. 6. It can be seen from

the partial enlarged drawing that the correspondences between

images are detected precisely.

Fig. 13. Time consumption of all similarity measures with different template
sizes.

F. Computational Load

Both nonredundancy of DOG feature and acceleration in

frequency domain are for fast matching. Therefore, run time of

all similarity measures are compared under different template

sizes in Fig. 13. The run time is tested on a platform with an

Intel Xeon Gold 6128 CPU. As MI needs to compute statistical

information about pixel values, it costs most time among these
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measures. AMSO is the second most time-consuming mea-

surement method because it measures similarity with iterative

process in spatial domain. Except for MI and AMSO, the rest

measurements are all accelerated using FFT, which are time

efficient. Due to the mean operation, the run time of VTM+ meth-

ods are slightly more than the corresponding original methods.

Moreover, DOG and NGC measures cost the shortest time than

CFOG and FHOG due to nonredundant feature representation

instead of histogram information.

All these results have confirmed that the proposed method

is time efficient and robust against the nonlinear intensity dif-

ferences between images. Furthermore, the VTM method can

improve the performance of image matching without increasing

the computational complexity.

V. CONCLUSION

Multisource image matching has always been challenging,

which often requires human intervention to achieve a better

matching result, and is time-consuming and laborious. In this

article, an efficient template matching method is used to re-

alize fast matching for multisource RS images. We propose a

nonredundant structural representation termed as DOG feature,

which is robust to significant nonlinear intensity differences.

Correspondingly, SCD measure is proposed to effectively reduce

the influence of orientation distortions caused by noise, inten-

sity deformations, and local geometric distortions. Meanwhile,

the similarity measure is accelerated using FFT. In addition,

a relatively general method, the VTM method, for template

matching is proposed to improve the performance of multisource

RS images matching. The VTM method can effectively improve

the matching performance without increasing the computational

complexity, especially for those template matching methods

based on spatial similarity measurements that can be accelerated

by FFT.

The proposed approach is based on preregistration images

and cannot deal with rotation and scale changes, which limits

the application scope at this stage. Future work will focus on

improving its robustness to rotation and scale differences.
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