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Abstract. We consider multisplitting of numerical value ranges, a task that is encountered as a discretization
step preceding induction and also embedded into learning algorithms. We are interested in finding the partition
that optimizes the value of a given attribute evaluation function. For most commonly used evaluation functions
this task takes quadratic time in the number of potential cut points in the numerical range. Hence, it is a potential
bottleneck in data mining algorithms.

We present two techniques that speed up the optimal multisplitting task. The first one aims at discarding cut
point candidates in a quick linear-time preprocessing scan before embarking on the actual search. We generalize
the definition of boundary points by Fayyad and Irani to allow us to merge adjacent example blocks that have the
same relative class distribution. We prove for several commonly used evaluation functions that this processing
removes only suboptimal cut points. Hence, the algorithm does not lose optimality.

Our second technique tackles the quadratic-time dynamic programming algorithm, which is the best schema
for optimizing many well-known evaluation functions. We present a technique that dynamically—i.e., during the
search—prunes partitions of prefixes of the sorted data from the search space of the algorithm. The method works
for all convex and cumulative evaluation functions.

Together the use of these two techniques speeds up the multisplitting process considerably. Compared to the
baseline dynamic programming algorithm the speed-up is around 50 percent on the average and up to 90 percent
in some cases. We conclude that optimal multisplitting is fully feasible on all benchmark data sets we have
encountered.
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1. Introduction

Numerical data is frequently encountered in the data mining task. In most cases, the used
learning algorithms require splitting the numerical domains into two or more intervals
(Fayyad and Irani, 1992, 1993; Ching et al., 1995; Dougherty et al., 1995; Fulton et al.,
1995; Kohavi and Sahami, 1996; Liu and Setiono, 1997; Hong, 1997; Cerquides and López
de Màntaras, 1997; Ho and Scott, 1997). Depending on the method, this task is encountered
either in preprocessing, where the numerical domain is “discretized,” or embedded within,
for example, a decision tree learning algorithm.

Numerical attribute handling is critical in inductive learning. For instance, the quadratic
time complexity of the popular C4.5 decision tree learning algorithm (Quinlan, 1993) for
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non-numeric data increases by a logarithmic factor when numerical attributes are processed
(Provost et al., 1999; Utgoff, 1989). In the course of decision tree construction numer-
ical value domains are discretized into intervals. Many practical decision tree learning
algorithms—including C4.5—use in partitioning techniques that only look for the best
halving of the domain (Breiman et al., 1984; Quinlan, 1993). Recently, however, consider-
ing multisplits of the domain with more than two intervals has gained popularity (Fayyad
and Irani, 1993; Fulton et al., 1995; Auer et al., 1995; Zighed et al., 1997; Elomaa and
Rousu, 1999).

Numerical domain partitioning algorithms operate on the set of candidate cut points.
Therefore, their number is decisive for the efficiency. This is particularly important in algo-
rithms that partition numerical ranges into many subsets; e.g., greedy (Catlett, 1991; Fayyad
and Irani, 1993) and optimal (Fulton et al., 1995; Zighed et al., 1997; Elomaa and Rousu,
1999) multisplitters in decision tree learning, rule induction, and nearest neighbor meth-
ods. In data mining applications one has been forced to pay special attention to numerical
attributes because of their inefficiency. For example, Ankerst et al. (2000) proposed an
user-assisted approach to numerical domain partitioning.

This paper explores ways to enhance the efficiency of numerical attribute handling in
classification learning. Previous work has shown that many evaluation functions are well-
behaved in the sense that optimal partitions do not split class uniform intervals (Fayyad
and Irani, 1992; Elomaa and Rousu, 1999). Thus, only the cut points in between class
uniform intervals need to be examined in finding an optimal partition for these evaluation
functions. In this paper we show that evaluating an even smaller set of cut points suffices
for many functions. This set can be extracted in a linear-time scan over the sorted example
sequence. The technique can be coupled, e.g., with optimal search algorithms like dynamic
programming and brute-force search, and with the greedy best-first search.

As a second contribution, we present a technique for speeding up the generic dynamic
programming algorithm (Fulton et al., 1995; Zighed et al., 1997; Elomaa and Rousu, 1999),
which runs in time that is quadratic in the number of cut points in the range. The technique
is based on dynamically—during partition candidate evaluation—removing partitions of
prefixes of the data in an optima-preserving manner. It is applicable to all convex and
cumulative evaluation functions, which include, e.g., the Average Class Entropy, Gini Index,
and Training Set Error functions.

Our setting is bounded-arity discretization in which an upper bound for the number of
intervals is given a priori. For many evaluation functions it is necessary to limit the number
of intervals, because they would benefit from any splitting of the data and in practice one
wants to have a small number of intervals for the domain at hand (see Section 4). There
are many possible ways to select the upper bound; for example, the MDL principle has
been used in this task (Fayyad and Irani, 1993; Pfahringer, 1995). For other possible ways
to decide the upper bound see, e.g. (Catlett, 1991; Ching et al., 1995; Wu, 1996; Ho and
Scott, 1997; Cerquides and López de Màntaras, 1997; Liu and Setiono, 1997). In this paper,
however, we do not consider the problem of selecting the upper bound.

The remainder of this paper is organized as follows. In Section 2 the situation in par-
titioning a numerical domain is reviewed. We also introduce different example groupings
that retain the possibility to partition the data optimally. In Section 3 we prove for six
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commonly-used attribute evaluation functions that a large fraction of candidate cut points
can be eliminated statically, without evaluating the partition candidates. The background
and algorithmic implementation of the dynamic partition pruning is presented in Section 4.
The next section reports an empirical evaluation of the proposed partition candidate elimi-
nation techniques. Major reductions in the number of examined candidates and evaluation
time are obtained by combining both approaches. Finally, Section 6 gives the concluding
remarks of this study and outlines some future research directions.

2. Cut point candidates in numerical domains

In supervised learning the goal of numerical value range discretization is to find a set of cut
points to partition the range into a small number of intervals that have good class coherence,
which is usually measured by an evaluation function. Throughout this paper we denote by
S the set of examples, k is the (maximum) arity of a partition, and

⊎k
i=1 Si stands for the

partitioning of S into k non-empty, disjoint subsets that cover the whole domain.
When splitting a set S of examples on the basis of the value of an attribute A, there is a

set of thresholds {T1, . . . , Tk−1} ⊆ Dom(A) that defines a partition
⊎k

i=1 Si for the sample
in an obvious manner:

Si =




{s ∈ S | valA(s) ≤ T1} if i = 1,

{s ∈ S | Ti−1 < valA(s) ≤ Ti } if 1 < i < k,

{s ∈ S | valA(s) > Tk−1} if i = k,

where valA(s) denotes the value of attribute A in example s. The classification of an example
s is its value for the class attribute C , valC (s).

The processing of a numerical attribute usually begins with sorting of the training data
by the value of the attribute under consideration. This preprocessing produces a categorized
version of the data, where all examples with an equal value for the attribute constitute a
bin of examples. There are as many bins as distinct values for the attribute; this number is
denoted by V . By n we denote the total number of examples in the training set. In the worst
case V = n.

Bin borders are the only possible cut points of the value range. In figure 1 a hypothetical
sample has been arranged into bins with respect to an integer-valued attribute A. There
are only instances of two classes, their numbers within the bins are depicted by the pair of
figures inside each bin. To determine the correlation between the value of an attribute and
that of the class it suffices to examine their mutual frequencies.

Figure 1. The bins in the domain of a numerical attribute A in a hypothetical sample. Bin borders are the potential
cut points of the domain. The class frequency distributions of the bins are denoted by the figures within them.
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Figure 2. The blocks in the domain of attribute A in the sample of figure 1. The blocks are separated by the
boundary points.

2.1. Boundary points

Fayyad and Irani (1992) introduced boundary points in analyzing the binarization technique
for the Average Class Entropy, ACE, and Information Gain, IG (Quinlan, 1986, 1993), func-
tions. They showed that for these functions the optimal binary split is always defined by a
boundary point due to the convexity of the functions. Intuitively it means that these functions
do not needlessly separate instances of the same class. The result reveals interesting funda-
mental properties of the functions and it can also be put to use in practice: only boundary
points need to be examined as potential cut points to recover the optimal binary split of the
data.

We restrain ourselves from giving an unnecessarily complicated formal definition for
boundary points. Instead, we introduce them through blocks of examples and an illustration.
To construct blocks of examples we merge together adjacent class uniform bins with the same
class label (see figure 2). The boundary points of the example sequence are the borders of its
blocks. The points thus obtained are exactly the same as those that come out from the defini-
tion of Fayyad and Irani (1992). Block construction leaves all bins with a mixed class distri-
bution as their own blocks. We denote the number of blocks in a dimension of the data by B.

Recently the utility of boundary points has been extended to cover other commonly-used
evaluation functions and optimal multisplitting of numerical ranges (Elomaa and Rousu,
1999). Other recent studies concerning the splitting properties of attribute evaluation func-
tions include Breiman’s (1996) research of the characteristics of ideal partitions of some
impurity functions and Codrington and Brodley’s (1997) study of the general requirements
of well-behaved splitting functions. Similar research lines for nominal attributes are fol-
lowed by Coppersmith et al. (1999).

Elomaa and Rousu (1999) defined well-behaved evaluation functions as those that always
have a bounded-arity optimal multisplit on boundary points. The definition requires that
for any upper bound k, 2 ≤ k ≤ B, there exists an optimal partition of arity at most k
that is defined on boundary points only. All the most commonly used attribute evaluation
functions fall into the category of well-behaved functions, including all convex evaluation
functions (see Section 4) and some non-convex such as the Gain Ratio, GR (Quinlan, 1986)
and the Normalized Distance measure, ND (López de Màntaras, 1991). However, a stricter
notion of well-behavedness, requiring for each k the existence of an optimal k-partition on
boundary points, is not possessed by GR and ND.

2.2. Segment borders

Concentrating on boundary points represents a bias that refrains from splitting class uniform
intervals. What about intervals with mixed class distributions? Can we say anything about



EFFICIENT MULTISPLITTING REVISITED 101

the minima of the evaluation functions on those? In Section 3 we show that the answer is
affirmative for many well-known evaluation functions.

The idea is to generalize the concept of an example block. It is easy to see that a boundary
point occurs between two adjacent blocks S′ and S′′ when

1. S′ and S′′ have different relative class distributions, or
2. both S′ and S′′ have mixed class distributions.

Let us consider the two conditions separately. The first condition seems to be necessary.
Consider a situation where S′ and S′′ are both class uniform consisting of instances of
different classes. Then, the partition S′ � S′′ separates the classes perfectly. But without the
first condition there would not be a candidate cut point in between S′ and S′′.

The second condition, on the other hand, does not seem as important as the first one.
If the first condition does not hold, the subsets S′ and S′′ have the same relative class
distribution. In other words, the class distribution is independent of the numerical at-
tribute’s value in the interval S′ ∪ S′′. Therefore, there is no reason to separate the two
sets with a cut point, independent of whether the blocks have mixed class distributions or
not.

By combining adjacent bins with an equal relative class distribution we obtain example
segments (see figure 3). Segments group together adjacent mixed-distribution bins that
have equal relative class distribution. Also adjacent class uniform bins fulfill this condition;
hence, uniform blocks are a special case of segments and segment borders are a subset of
boundary points.

Bins, blocks, and segments can all be identified in the same single scan over the sorted
sample. Thus, taking advantage of them only incurs a linear computational cost. It is ma-
jorized by the usually unavoidable O(n log n) time requirement of sorting. In multiway
partitioning the partition candidate evaluation often takes at least quadratic, even exponen-
tial, time in the number of candidate cut points. Our subsequent tests demonstrate up to 75%
savings in time consumption by preprocessing the data into segments instead of running
the algorithms on the example bins.

In the next section we show that it suffices to examine segment borders in optimizing
the value of the best-known attribute evaluation functions. Hence, the changes in class
distribution, rather than absolute impurities of the subsets, define the potential locations of
the optimal cut points (cf. López de Màntaras, 1991). Two of the examined functions are
non-convex. Thus, the property of splitting on segment borders is not only a consequence
of the convexity of a function.

Figure 3. The segments and their borders in the domain of attribute A in the sample of figure 1. Segment borders
are a subset of the boundary points.



102 ELOMAA AND ROUSU

3. Most common evaluation functions minimize on segment borders

The time requirement of numerical range partitioning depends on the number of candidate
cut points. Therefore, reducing their number makes numerical attribute handling more
efficient. Cut points, however, cannot be removed arbitrarily; we want to preserve the
possibility to find the optima of the value range as determined by some evaluation function.
In this section we show that many commonly-used attribute evaluation functions have their
local optima on segment borders. Hence, partitions with intra-segment cut points can be
disregarded.

3.1. Proof setting

All the following proofs have the same setting. The sample S contains three subsets, P , Q,
and R with class frequency distributions

p =
m∑

j=1

p j , q =
m∑

j=1

q j , and r =
m∑

j=1

r j ,

where p is the total number of examples in P and p j is the number of instances of class j
in P . Furthermore, m is the number of classes. The notation is similar also for Q and R.
By w j we denote the proportion of instances of class j in Q; w j = q j/q ∈ [0, 1].

We consider the k-ary partition
⊎k

i=1 Si of the sample S, where subsets Sh and Sh+1

consist of the set P ∪ Q ∪ R, so that the split point is inside Q, on the border of P and Q, or
that of Q and R (see figure 4). Let � be an integer, 0 ≤ � ≤ q. We assume that splitting the
set Q so that � examples belong to Sh and q − � to Sh+1 results in identical class frequency
distributions for both subsets of Q regardless of the value of �. In other words, for all j and
� it holds that q j (�) = w j�, where q j (�) is the frequency of class j in Sh .

The underlying idea in the proof setting is that Q is a segment of examples; no matter
from which cut point within it we divide Q into two, the resulting parts will always have
the same relative class frequency distribution. The objective of the proofs is to show that
the evaluation functions that are considered receive their optimal value on a segment border
rather than on a cut point within a segment.

The proofs treat the evaluation functions and their component functions as continuous
in [0, q] and twice differentiable, even though they are defined to be discrete. Observe

Figure 4. The following proofs consider partitioning of the example set P ∪ Q ∪ R into two subsets Sh and Sh+1

within Q. No matter where, within Q, the cut point is placed, equal class distributions result.
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that this causes no harm, since we only consider proving the absence of certain local
extrema.

The proofs show in the multisplitting situation that the cut point in between two arbitrarily
chosen partition subsets Sh and Sh+1 is on a segment border. The remaining partition subsets
are not affected by the placement of the cut point within Sh ∪ Sh+1. Therefore, their impact
usually disappears when the proof involves differentiation of the function.

We take all logarithms in this paper to be natural logarithms; it makes the manipulation
and notation simpler. It is easy to check that our proofs can be worked through with binary
logarithms as well.

3.2. Average class entropy

The evaluation functions that as used in class-driven partitioning tasks are many. Perhaps
the most important of them is the Average Class Entropy

ACE

(
k⊎

i=1

Si

)
= 1

|S|
k∑

i=1

|Si |H (Si ) = 1

n

k∑
i=1

|Si |H (Si ),

where H is the entropy function:

H (S) = −
m∑

j=1

P(C j , S) log P(C j , S),

in which m denotes the number of classes and P(C, S) stands for the proportion of examples
in S that have class C . Since the function x log x is convex (Cover and Thomas, 1991), the
entropy function is concave.

Many other evaluation functions use ACE as their building block. Such functions include,
e.g., IG, GR, and ND. For instance, IG is defined as

IG

(
k⊎

i=1

Si

)
= H (S) − ACE

(
k⊎

i=1

Si

)
.

The entropy of the data set S prior to partitioning it by any of the attributes, H (S), is constant
with respect to the dimensions of the data. Therefore, the maximum value of IG coincides
with the minimum value of ACE.

Theorem 1. The Average Class Entropy optimal partitions are defined on segment borders.

Proof: Let L(�) denote the value of
∑h

i=1 |Si |H (Si ) when Sh contains P and the first �

examples from Q, and R(�) the value
∑k

i=h+1 |Si |H (Si ) in the same situation. To simplify
and unify the notation, we write t = r + q and t j = r j + q j for all j ∈ { 1, . . . , m }.
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Now,

L(�) =
h−1∑
i=1

|Si |H (Si ) −
m∑

j=1

(p j + w j�) log
p j + w j�

p + �

=
h−1∑
i=1

|Si |H (Si ) + log(p + �)
m∑

j=1

(p j + w j�)

−
m∑

j=1

(p j + w j�) log(p j + w j�)

=
h−1∑
i=1

|Si |H (Si ) + (p + �) log(p + �) −
m∑

j=1

(p j + w j�) log(p j + w j�)

and, similarly,

R(�) = (t − �) log(t − �) −
m∑

j=1

(t j − w j�) log(t j − w j�) +
k∑

i=h+2

|Si |H (Si ).

Since the first sum in the formula of L(�) is independent of the placing of the h-th cut
point, it differentiates to zero and the second derivative of L(�) is

L ′′(�) = d

d�

(
log(p + �) −

m∑
j=1

w j log(p j + w j�)

)

= 1

p + �
−

m∑
j=1

w2
j

p j + w j�

= 1

p + �
−

m∑
j=1

w j

p j/w j + �
.

The remaining sum can be interpreted as the weighted arithmetic mean of the terms
1/(p j/w j + �), 1 ≤ j ≤ m, and be bound, by the arithmetic-harmonic mean inequality
(Hardy et al., 1934; Meyer, 1984), from below by the corresponding harmonic mean

m∑
j=1

w j
1

p j/w j + �
≥ 1∑m

j=1 w j (p j/w j + �)
= 1∑m

j=1(p j + w j�)
= 1

p + �
.

Thus, L ′′(�) ≤ 0.
Correspondingly, the second derivative of R(�) can be approximated by majorizing the

second term by the harmonic mean

R′′(�) = 1

t − �
−

m∑
j=1

w2
j

t j − w j�
≤ 1

t − �
− 1∑m

j=1 w j (t j/w j − �)
= 0.
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Hence, we have shown that the second derivative of ACE,

ACE ′′(�) = L ′′(�) + R′′(�)

|S| ,

is non-positive for all �. This forces all local extrema of ACE within Q to be maxima.

3.3. Information gain

Since IG is a simple modification of ACE, proving that it does not partition within segments
is straightforward.

Theorem 2. The Information Gain optimal partitions are defined on segment borders.

Proof: The Information Gain of the partition
⊎k

i=1 Si , when the h-th cut point is placed
after the �-th example of Q, is

IG(�) = H (S) − ACE(�).

The constant term H (S) that does not depend on the value of � differentiates to zero.
Therefore, IG ′(�) = −ACE ′(�) and the second derivative of IG is IG ′′(�) = −ACE ′′(�).
From the proof of Theorem 1 we know that ACE ′′(�) ≤ 0, which means that IG ′′(�) ≥ 0.
Hence, IG cannot have a local maximum within the segment Q.

3.4. Gain ratio

To penalize against IG’s excessive favoring of multi-valued nominal attributes and multi-
splitting numerical attribute value ranges (Quinlan, 1986, 1988) suggested dividing the IG
score of a partition by the term

κ

(
k⊎

i=1

Si

)
= −

k∑
i=1

|Si |
|S| log

|Si |
|S| .

The resulting evaluation function is the Gain Ratio

GR

(
k⊎

i=1

Si

)
= IG

(
k⊎

i=1

Si

) /
κ

(
k⊎

i=1

Si

)
.

The nominator of this formula—the IG function—was already inspected above. There-
fore, the following proof concentrates on the denominator κ .

Theorem 3. The Gain Ratio optimal partitions are defined on segment borders.
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Proof: The denominator κ of the GR formula in our proof setting is

κ(�) = κ

(
h−1⊎
i=1

Si

)
+ K (�) + κ

(
k⊎

i=h+2

Si

)
,

where

K (�) = −|Sh |
|S| (log|Sh | − log|S|) − |Sh+1|

|S| (log|Sh+1| − log|S|)

= 1

|S| ((|Sh | + |Sh+1|)log|S| − |Sh |log|Sh | − |Sh+1|log|Sh+1|)

= 1

|S| ((p + q + r )log|S| − (p + �)log(p + �) − (t − �)log(t − �)).

Since the first and the last term of κ(�) are independent of placing � within Q, the first
derivative of κ(�) with respect to � is κ ′(�) = K ′(�) and its second derivative is

κ ′′(�) = d

d�

(
1

|S| (−log(p + �) − log(t − �))

)

= 1

|S|
( −1

p + �
+ −1

t − �

)
< 0. (1)

The first derivative of GR(�) is given by

GR′(�) = IG ′(�)κ(�) − κ ′(�)IG(�)

κ2(�)
.

Let us define N (�) = IG ′(�)κ(�) − κ ′(�)IG(�), and note that

N ′(�) = IG ′′(�)κ(�) + κ ′(�)IG ′(�) − κ ′′(�)IG(�) − κ ′(�)IG ′(�)

= IG ′′(�)κ(�) − κ ′′(�)IG(�)

≥ 0,

because for each 0 < � < q it holds by definition that κ(�) > 0 and IG(�) ≥ 0. Furthermore,
by Theorem 2 we know that IG′′(�) ≥ 0 and by Eq. (1) that κ ′′(�) < 0.

Now the second derivative of GR(�) can be expressed as

GR′′(�) = N ′(�)κ2(�) − 2κ(�)κ ′(�)N (�)

κ4(�)
.
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Let ψ ∈ ]0, q[ be a potential location for a local maximum of GR, i.e., such a point that
GR′(ψ) = 0. Then also N (ψ) = 0 and the expression for GR′′(ψ) is further simplified to

GR′′(ψ) = N ′(ψ)/κ2(ψ),

which is larger than zero because N ′(ψ) ≥ 0 and κ2(ψ) > 0. In other words, GR(ψ) is
not a local maximum. Since ψ was chosen arbitrarily, we have shown that GR(�) can only
obtain its maximum value when the threshold is placed at either of the segment borders,
where � = 0 and � = q , respectively.

3.5. Normalized distance measure

Normalized Distance Measure (López de Màntaras, 1991) can be expressed with the help
of IG as

ND

(
k⊎

i=1

Si

)
= 1 − IG

(
k⊎

i=1

Si

)/
λ

(
k⊎

i=1

Si

)
,

where

λ

(
k⊎

i=1

Si

)
= −

k∑
i=1

m∑
j=1

M( j, Si )

|S| log
M( j, Si )

|S| ,

in which M( j, S) stands for the number of instances of class j in the set S.
The following proof concerns, instead, the function

ND1

(
k⊎

i=1

Si

)
= 1 − ND

(
k⊎

i=1

Si

)
= IG

(
k⊎

i=1

Si

)/
λ

(
k⊎

i=1

Si

)
,

from which the claim directly follows for ND.
The ND1 formula resembles that of GR. Therefore, the proof outline is also the same.

Theorem 4. The Normalized Distance Measure optimal partitions are defined on segment
borders.

Proof: Let L(�) denote the value of λ(
⊎h

i=1 Si ) and R(�) the value λ(
⊎k

i=h+1 Si ).

L(�) = λ

(
h−1⊎
i=1

Si

)
−

m∑
j=1

p j + w j�

|S| log
p j + w j�

|S|

= λ

(
h−1⊎
i=1

Si

)
+ 1

|S|

(
(p + �) log |S| −

m∑
j=1

(p j + w j�) log(p j + w j�)

)
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and

R(�) = 1

|S|

(
(t − �) log |S| −

m∑
j=1

(t j − w j�) log(t j − w j�)

)
+ λ

(
k⊎

i=h+2

Si

)
.

The second derivative of L(�) is given by

L ′′(�) = d

d�

1

|S|

(
log |S| −

m∑
j=1

w j log(p j + w j�)

)

= −1

|S|
m∑

j=1

w2
j

p j + w j�

≤ 0,

because |S|, w j , p j , and � are all non-negative.
Correspondingly, the second derivative of R(�) is

R′′(�) = −1

|S|
m∑

j=1

w2
j

t j − w j�
≤ 0.

Thus, we have proved that the second derivative of λ, λ′′(�) = L ′′(�) + R′′(�) is non-
positive for all �.

The proof for ND1 is easy to complete similarly as the proof for the Gain Ratio. Thus, the
local extrema of ND1 within Q are minima, which makes them local maxima of ND(�) =
1−ND1(�). Hence, Normalized Distance measure does not obtain its minimum value within
a segment.

3.6. Gini index

The Gini Index of diversity, or the Quadratic Entropy, (Breiman et al., 1984; Breiman,
1996) is defined as

GI

(
k⊎

i=1

Si

)
=

k∑
i=1

|Si |
|S| gini(Si ),

in which gini is the impurity measure

gini(S) =
m∑

j=1

P(C j , S)(1 − P(C j , S)) = 1 −
m∑

j=1

P2(C j , S),

where P(C, S) again denotes the proportion of instances of class C in the data S. For the
properties of Gini Index see also Coppersmith et al. (1999).



EFFICIENT MULTISPLITTING REVISITED 109

Theorem 5. The Gini Index optimal partitions are defined on segment borders.

Proof: Let L(�) denote the value of
∑h

i=1 |Si |gini(Si ) when Sh contains P and the first �

examples from Q. Respectively, R(�) is the value
∑k

i=h+1 |Si |gini(Si ). Now,

L(�) =
h−1∑
i=1

|Si |gini(Si ) +
m∑

j=1

(p j + w j�)

(
1 − p j + w j�

p + �

)

=
h−1∑
i=1

|Si |gini(Si ) + (p + �) −
m∑

j=1

(p j + w j�)2

p + �
.

The second derivative of L(�) is:

L ′′(�) = d

d�

(
1 −

m∑
j=1

2(p j + w j�)w j (p + �) − (p j + w j�)2

(p + �)2

)

= d

d�

(
1 −

m∑
j=1

2(p j + w j�)w j

(p + �)
+

m∑
j=1

(p j + w j�)2

(p + �)2

)

= −
m∑

j=1

2w2
j (p + �) − 2(p j + w j�)w j

(p + �)2

+
m∑

j=1

2(p j + w j�)w j (p + �)2 − 2(p + �)(p j + w j�)2

(p + �)4

= 1

(p + �)3

m∑
j=1

(
2(p j + w j�)w j (p + �) − 2w2

j (p + �)2

+ 2(p j + w j�)w j (p + �) − 2(p j + w j�)2
)

= −2

(p + �)3

m∑
j=1

(p j + w j p)2

≤ 0.

By symmetry we determine that R′′(�) ≤ 0 as well. Thus, GI ′′(�) = (L ′′(�)+R′′(�))/|S| ≤
0 and, therefore, GI does not obtain its minimum value within the segment Q.

3.7. Training set error

Sometimes, instead of even trying to minimize the error of future instances, one is simply
satisfied with minimizing the error of the already available training examples. We call this
evaluation function as Training Set Error.

The majority class of sample S is its most frequently occurring class:

majC (S) = arg max
1≤ j≤m

|{s ∈ S | valC (s) = j}|.
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The number of disagreeing instances, those in the set S not belonging to its majority
class, is given by

δ(S) = |{s ∈ S | valC (s) �= majC (S)}|.

Training Set Error is the number of training instances falsely classified in the partition.
For a partition

⊎
Si of S it is defined as

TSE

(
k⊎

i=1

Si

)
=

k∑
i=1

δ(Si ).

The number of instances in Sh from other classes than j , (p − p j )+ (1−w j )�, is linearly
increasing for any j , since the first term is constant and 0 ≤ w j ≤ 1. Respectively, in Sh+1

the number of those instances, (r − r j ) + (1 − w j )(q − �), decreases with increasing �.
In our proof setting, the majority class of Sh depends on the growth rates of classes in Q

and the number of their instances in P . First, when � = 0, the majority class of P , say u, is
also the majority class of Sh . Subsequently an other class x , with strictly larger proportion
of instances in Q, wx > wu , may become the majority class of Sh (see figure 5). Observe
that px ≤ pu . As a combination of non-decreasing functions, δ(Sh) is also non-decreasing.

Theorem 6. The Training Set Error optimal partitions are defined on segment borders.

Proof: Let us examine the value of TSE(l) = δ(Sh) + δ(Sh+1) at an arbitrary cut point
� = l, 0 ≤ l ≤ q . Let u and v be the majority classes of Sh and Sh+1, respectively, in this
situation. Then,

TSE(l) = (p − pu) + (1 − wu)l + (r − rv) + (1 − wv)(q − l).

Figure 5. In Q the number of instances of other classes than j , (1 − w j )�, grows linearly with increasing � for
all j . The number of disagreements δ(Sh ) is convex.
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We now show that a smaller Training Set Error is obtained by moving the cut point to
the left or to the right from l. There are four possible scenarios for the changes of majority
classes of Sh and Sh+1 when the cut point is moved: (i) neither of them changes, only the
majority class of (ii) Sh or (iii) Sh+1 changes, or (iv) both of them change. Let x and y,
when needed, be the new majority classes of Sh and Sh+1, respectively.

Assume, for now, that wu ≤ wv . Let us consider the four scenarios mentioned when
moving the cut point one example to the left.

(i) Now, majC (Sh) = u and majC (Sh+1) = v independent of whether � = l − 1 or � = l.
Then,

TSE(l − 1) = (p − pu) + (1 − wu)(l − 1) + (r − rv) + (1 − wv)(q − l + 1)

= TSE(l) + wu − wv

≤ TSE(l),

because wu − wv ≤ 0 by the assumption.
(ii) The majority class of Sh becomes x and v remains to be the majority class of Sh+1.

Then, the error in Sh with respect to x must be at most the same as that with respect to
u; (p − px ) + (1 − wx )(l − 1) ≤ (p − pu) + (1 − wu)(l − 1). Hence,

TSE(l − 1) = (p − px ) + (1 − wx )(l − 1) + (r − rv) + (1 − wv)(q − l + 1)

≤ (p − pu) + (1 − wu)(l − 1) + (r − rv) + (1 − wv)(q − l + 1)

= TSE(l) + wu − wv,

Since wu ≤ wv by the assumption, we have shown that TSE(l − 1) ≤ TSE(l).
(iii) The majority class of Sh remains to be u and y becomes the majority class of Sh+1.

Observe that then (r − ry) + (1 − wy)(q − l + 1) ≤ (r − rv) + (1 − wv)(q − l + 1),
by y being the majority class of Sh+1. Thus,

TSE(l − 1) ≤ TSE(l) + wu − wv ≤ TSE(l).

(iv) If both majority classes change, then by combining (ii) and (iii) we see that TSE(l−1) ≤
TSE(l).

Hence, in all scenarios a smaller value of TSE is obtained by moving the cut point.
Similarly, if wu ≥ wv we can obtain a smaller training set error for Sh � Sh+1 by sliding the
cut point forward in Q.

In any case, the cut point can be slid all the way to one of the borders of Q. Because l
was chosen arbitrarily and

TSE

(
k⊎

i=1

Si

)
=

h−1∑
i=1

δ(Si ) + TSE(l) +
k∑

i=h+2

δ(Si ),

we have proved the claim.



112 ELOMAA AND ROUSU

3.8. Discussion

Given a numerical value range that has been sorted into (ascending) order, we can preprocess
it in linear time into segments. If we are using one of the common evaluation functions
examined above, we only need to examine the segment borders to find an optimal multisplit
of the value range.

An alternative proof for the ACE, IG, and GI functions is given by Elomaa and Rousu
(2003). The proof applies to concave evaluation functions, hence the proofs for the non-
concave GR and ND functions are not covered by it. In addition, it is shown that no segment
border can be ignored without risking the optimality.

Incidentally, the result above is not the best possible for TSE. Elomaa and Rousu (2003)
show that TSE-optimal cut points lie on a subset of segment borders, called alternation
points.

Even though all of the above-examined functions have optimal multisplits defined on
segment borders, the time required to compute the function values varies. Those functions
that take the form of a weighted sum (ACE, IG, GI, and TSE) can be optimized in quadratic
time by using dynamic programming (Fulton et al., 1995; Zighed et al., 1997; Elomaa
and Rousu, 1999). In fact, TSE can be optimized even in linear time (Maass, 1994; Fulton
et al., 1995; Auer, 1997; Birkendorf, 1997), which is a consequence of the function being a
combination of several monotonic functions (Elomaa and Rousu, 2001). For the remaining
functions—GR and ND—no better optimization method than the exponential-time exhaus-
tive search is known. In any case, linear, quadratic, and exponential search algorithms can
all take advantage of example segments. The benefits of the preprocessing are, of course,
the larger the more demanding the subsequent search phase is.

4. Dynamic pruning of partition candidates

As shown above, preprocessing of the data makes it possible to reduce the number of
partition candidates that need to be examined in order to find the optimal multisplit of the
data. However, even after the static pruning of partition candidates, there still are many
candidates out of which only a small part are promising.

In this section we present a technique to improve the efficiency of the quadratic-time
generic dynamic programming algorithm, which is the fastest known algorithm for the op-
timization of, e.g., ACE, IG, and GI functions. As mentioned above, no efficient optimization
scheme is known for the non-cumulative GR and ND.

The technique is based on removing, during the left-to-right scan over the data, such
partitions of the prefixes of the data that cannot be part of an optimal multisplit of the whole
data. A test for such condition is developed that requires only a constant time per partition
of a prefix. Depending on the stage of the search, when the removal happens, up to O(G)
candidate comparisons are avoided, where G is the number of example segments in the
range. The technique is applicable to all convex and cumulative functions; that is, functions
that take the form

F

(
k⊎

i=1

Si

)
=

k∑
i=1

|Si |
|S| Imp(Si ),
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for some convex impurity function Imp. The functions ACE, IG, GI, and TSE all belong to
this group of functions.

4.1. Convex evaluation functions

Many, though not all, of the most widely used attribute evaluation functions are either
convex or concave (Breiman, 1996; Hickey, 1996; Codrington and Brodley, 1997; Elomaa
and Rousu, 1999). Some functions are not convex themselves, but their values can be
computed in constant or, at worst, linear time from the value of a convex component of the
function. It is common to call also concave functions as convex, since a function that is
concave upwards is at the same time convex downwards.

Definition 1. A function f (x) is said to be convex over an interval (a, b) if for every
x1, x2 ∈ (a, b) and 0 ≤ ρ ≤ 1,

f (ρx1 + (1 − ρ)x2) ≤ ρ f (x1) + (1 − ρ) f (x2).

A function f is concave if − f is convex.

Let X be a variable with domain X . Let E denote the expectation. In the discrete case
E X = ∑

x∈X p(x)x , where p(x) = Pr{X = x}, and E X = ∫
x f (x)dx in the continuous

case.

Theorem 7 (Jensen’s inequality; Cover and Thomas, 1991). If f is a convex function and
X is a random variable, then

E f (X ) ≥ f (E X ).

As mentioned already, many commonly-used attribute evaluation functions are convex
and, thus, fulfill Jensen’s inequality. Out of the functions examined in Section 3 only GR
and ND are non-convex. In the following we show how Jensen’s inequality can be utilized
to dynamically prune unfruitful partition candidates from further evaluation. In practice,
significant speed-up is obtained, although the worst-case asymptotical time-complexity is
not helped by the technique (Elomaa and Rousu, 2001).

The convexity of an evaluation function is known to manifest itself in two ways. First,
adding cut points to a partition always decreases the impurity, which is a direct consequence
of Jensen’s inequality. For this reason, in practice, the arity of the partition needs to be
bounded, either a priori or by using some penalizing term. Second, if the evaluation function
is convex in between potential cut points, then the function cannot obtain its optimal value
within that segment of examples (cf. Section 3).

Figure 6 depicts these effects for the data of figure 3: the vertical axis is the value of the
ACE function relative to the entropy of the data and the horizontal axis corresponds to the
locations of cut points in the data. We see that the curve is at its highest in the end points
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Figure 6. The two manifestations of convexity of the ACE function on the data of figure 3. All cut points lead to
improved partition quality. Best values for segments are obtained on borders.

of the range. This follows from the Jensen’s inequality: A (non-trivial) partition of the data
can only decrease entropy.

Furthermore, there are five potential cut points in between which the curve takes a concave
(downward convex) form. The cut points are exactly the segment borders.

4.2. Pruning partition candidates dynamically with convex evaluation functions

Jensen’s inequality does not restrict the probability distribution underlying the expectation.
Hence, for a concave function f it holds that

∑
i

αi f (ti ) ≤ f

( ∑
i

αi ti

)
(2)

for αi ≥ 0,
∑

i αi = 1.
Typically, partition ranking functions give each interval a score using an other function,

which tries to estimate the class coherence of the interval. A common class of such functions
are the impurity functions (Breiman et al., 1984). The interval scores are weighted relative
to the sizes of the intervals. Thus, a common form of an evaluation function F is

F

( ⊎
i

Si

)
=

∑
i

|Si |
|S| Imp(µSi ), (3)

where Imp is an impurity function and µS is the class frequency distribution of the set S.
Now, |Si |/|S| ≥ 0 and

∑
i (|Si |/|S|) = 1. If the impurity function Imp is concave, then by

Eq. (2):

F

( ⊎
i

Si

)
=

∑
i

|Si |
|S| Imp(µSi ) ≤ Imp

( ∑
i

|Si |
|S| µSi

)
= F(S), (4)
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in which F(S) is the score of the unpartitioned data. Observe that, since Imp is concave,
any splitting of the data can only decrease the value of F . Thus splitting on all cut points
will lead to best score. This fact can be utilized in estimating the goodness scores of
partitions.

Theorem 8. Let F be the evaluation function defined in Eq. 3 and let Imp be a concave
impurity function. Let S be a sequence of examples consisting of consecutive intervals S1,

S2, . . . , Sl . Let P1 be, for some fixed k ≥ 2, a (k − 1)-partition for the interval S1 and P2

be a (k − 1)-partition for S1 ∪ S2. If

|S1 ∪ S2|F(P2) − |S1|F(P1) − |S2|Imp(S2) ≤ 0, (5)

then for any example set S∗

F(P2 � S∗) ≤ F(P1 � {S2 ∪ S∗}).

Proof: Let us consider different k-partitions of S1 ∪ S2 ∪ S∗, where S∗ is a combination
of any number of intervals (bins) immediately following S2. P1

∗ = P1 � (S2 ∪ S∗) and
P2

∗ = P2 � S∗ are two k-partitions of S1 ∪ S2 ∪ S∗ (see figure 7). Assume that Inequality 5
holds.

According to Inequality 4

|S|F(P1
∗ ) = |S1|F(P1) + |S2 ∪ S∗|Imp(S2 ∪ S∗)

≥ |S1|F(P1) + |S2|Imp(S2) + |S∗|Imp(S∗)

and

|S|F(P2
∗ ) = |S1 ∪ S2|F(P2) + |S∗|Imp(S∗).

The difference of these two candidates can be bound from above by Inequality 5

|S|F(P2
∗ ) − |S|F(P1

∗ ) ≤ |S1 ∪ S2|F(P2) − |S1|F(P1) − |S2|Imp(S2) ≤ 0,

from where the claim follows by dividing by |S|.

Figure 7. P1 and P2 are two (k−1)-partitions of the prefixes of the data set. They can be extended into k-partitions
P1∗ and P2∗ , respectively, for a larger sample by augmenting a new interval to them.
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Inequality 5 is independent of S∗. Hence, we can test the bound for empty S∗ and, if the
pruning condition is satisfied, subsequently drop all partitions containing P1 from further
consideration.

This pruning does not improve the asymptotic time requirement of partition evaluation,
but its practical significance is high. Subsequent experiments show that on the average as
much as half of the partition candidates can be omitted.

4.3. An algorithm for optimal partitioning

As noted above, convex evaluation functions always obtain their optimal value by splitting
on all possible cut points. A partition with the same score for the functions of our interest
can be obtained by splitting on all segment borders. However, in practice one wants to have
partitions with a relatively small number of subsets. Therefore, bounded-arity partitioning
is of practical interest. We now apply the above-presented pruning approach to finding
optimal bounded-arity partitions.

We incorporate the candidate pruning method to the quadratic-time search algorithm
(Elomaa and Rousu, 1999). The algorithm uses a dynamic programming scheme similar to
that suggested by Fulton et al. (1995), but works on intervals of examples (bins, blocks, or
segments) rather than on individual examples. The intervals are extracted in a linear-time
preprocessing phase. The search algorithm takes in as parameters a preprocessed sequence
of intervals, an evaluation function g, and an upper limit for the arity, i.e., the number of
subsets of the partition.

Each interval Ii is represented by its class frequency distribution µi . In addition, the index
of the last example of the interval is stored to facilitate extracting the result. The function
f (
µ) is required to return |S|Imp(S) for some concave function Imp, where 
µ is the class
frequency distribution of S.

The search algorithm (Table 1) scans the intervals I1, . . . , IG from left to right and
stores the intermediate results into four arrays: Array P stores the costs of the best mul-
tisplits; P[i, k] is the minimum cost obtained when the i first intervals are split opti-
mally into k subsets. Array L is used for storing the corresponding cut points; L[i, k]
is an index to the segment that contains the rightmost cut point of the multisplit hav-
ing the cost P[i, k]. Array N stores the search space of remaining partition candi-
dates in linked lists; N [i, k − 1] = j denotes that the next (k − 1)-partition to be con-
sidered as the prefix of an optimal k-split, after the best (k − 1)-split of the segments
I1 ∪ · · · ∪ Ii , is the optimal (k − 1)-split of the segments I1, . . . , I j . The lists are pruned
during the search by checking against the bound derived in the previous section.
The fourth array cost is used to eliminate the repeated calculation of interval
impurities.

Lines 5–14 compute the best k-split of I1, . . . , Ii for each k. Lines 9–13 scan the list of
remaining candidate (k −1)-splits. Line 10 checks whether the current split be pruned from
further comparisons and, if so, prunes it. Otherwise (lines 11 and 12) the candidate could
be the optimal one.

Since the class distribution of the interval I j is not needed, as such, after the scan has
passed it, the algorithm reuses the space: at point i , each µ j , j ≤ i , represents the class
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Table 1. The search algorithm for multisplits.

procedure Search(
µ, f, arityMax)

input: 
µ = {µ1, . . . , µG} contains the class frequency distributions of intervals I1, . . . , IG , f (µ j ) =
|Sj |Imp(Sj ), where Imp is a concave function, arityMax is the maximum number of intervals allowed
in the split.

(1) for i ← 1 to G {
(2) for j ← 1 to i − 1 { µ j ← µ j + µi ; cost[ j] ← f (µ j ); }
(3) P[i, 1] ← cost[1]; N [i, 1] ← i − 1;

(4) limit ← arityMax; if (i < G) limit − −;

(5) for k ← 2 to min{i, limit} {
(6) min ← ∞; rejLevel ← P[i, k − 1];

(7) l ← i ; j ← N [l, k − 1];

(8) while j ≥ k {
(9) curr ← P[ j, k − 1] + cost[ j + 1];

(10) if (curr ≥ rejLevel) N [l, k − 1] ← N [ j, k − 1];

(11) else { if (curr < min) {min ← curr; minInd ← j ; }
(12) l ← j ; }
(13) j ← N [ j, k − 1]; }
(14) P[i, k] ← min; L[i, k] ← minI nd; N [i, k] ← i − 1; }}

distribution of the union of the intervals I j , . . . , Ii . This is performed by merging the
distributions and recalculating the costs.

At step i , the array P is updated according to a formula, which has the following intuitive
interpretation. The optimal partitioning of I1, . . . , Ii into k subsets is the minimum cost
over all combinations of fixing the last interval

⋃i
l= j+1 Il and adding the cost of the best

(k −1)-split of I1, . . . , I j remaining in the search phase. This update needs to be performed
for every arity 2 ≤ k ≤ i .

The space is pruned incrementally by comparing the best (k − 1)-split of the processed
intervals so far with each remaining candidate k-split of the same range. Whenever

P[i, k − 1] ≤ P[ j, k − 1] + cost[ j + 1],

the candidate is pruned from the space. The connection to Theorem 8 is the following:
P[ j, k −1] corresponds to P1, P[i, k −1] to P2, I j+1 ∪· · ·∪ Ii to S2, and an empty set to S∗.

Note that the pruning condition is tested first and, only if the candidate passes the test, we
check whether it could be the best candidate so far. The reason for this is that by convexity
there is always a k-split that is at least as good as the best (k − 1)-split. Hence, the optimal
k-split will always pass the first test.
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The time complexity of the algorithm is O((k + m)G2), where k is the maximum arity
of the partition, m is the number of classes, and G is the number of example segments. The
asymptotic bound is the same as that of the original algorithm (Elomaa and Rousu, 1999).
In practice, the time consumption of the dynamic pruning algorithm is clearly lower than
that of the original algorithm.

There are many ways to optimize the algorithm in Table 1, including implementation
with pointers instead of table indices, the use of integer arithmetic, the use of sentinels to
decrease the number of comparisons needed and other techniques (Rousu, 2001).

An optimized implementation of the multisplitting algorithms including the above de-
scribed one is available from: www.cs.helsinki.fi/u/rousu/splittER.tgz.

5. Empirical evaluation

This section reports the results of empirical experiments with the speed-up techniques
developed in this paper. We test the pruning techniques embedded into the C4.5 decision
tree learning algorithm (Quinlan, 1993). As test domains we use twenty-eight data sets from
the UCI repository (Blake and Merz, 1998). The data sets are described in Table 2.

5.1. Static pruning of partition candidates

Figure 8 illustrates the average numbers of bin borders (the figures on the right) and the
relative portions of boundary points (black bars) and segment borders (white bars) per
numerical attribute of the domain.

On the average approximately 50% of bin borders are boundary points. However, the dif-
ferences between domains are huge. The average number of segment borders per attribute is
only marginally smaller than that of the boundary points. By combining bins into segments,
in real-world data, almost all reduction in the number of points that need to be examined
comes from combination of class uniform bins, only very few mixed bins get combined.
The reason for this is obvious: even small changes—caused, e.g., by attribute noise—to the
class distribution prevent combining neighboring mixed bins. However, since the segment
construction is as efficient as block combination, nothing is lost by taking advantage of the
small reduction in the number of cut points examined.

5.2. Dynamic pruning of partition candidates

Our second test isolates the effects of dynamic pruning. We record the average number of
partition candidates considered in searching for the optimal multisplit on bins when neither
preprocessing nor dynamic pruning is used and when the candidates are dynamically pruned.
As a baseline method we use a best-first search implementation of the widely used greedy
top-down multisplitting scheme (Fayyad and Irani, 1993). Keep in mind that this method
does not produce optimal partitions, even though the scores of the resulting partitions are
often very close to optimal (Elomaa and Rousu, 1999). The asymptotic time consumption
of the approximative greedy heuristic is linear in the number of potential cut points. As the
evaluation function we use IG, which is convex (thus also well-behaved) and cumulative.
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Table 2. Characteristic figures of the twenty-eight test domains.

Data set ATTRS m n V̄ B̄ Ḡ

Abalone 7/8 29 4,177 863.7 826.4 823.6

Adult 6/14 2 32,561 3,673.7 1,668.2 1,651.0

Annealing 10/20 5 798 27.5 17.7 17.7

Australian 6/15 2 690 188.2 129.7 125.8

Auto insuran. 15/25 6 205 61.3 50.5 50.5

Breast W 9/9 2 699 9.9 9.3 9.3

Colic 21/23 2 368 85.8 52.4 50.6

Diabetes 8/8 2 768 156.8 108.1 104.5

Euthyroid 6/29 2 2,800 164.0 89.8 88.0

German 7/20 2 1,000 203.0 98.2 97.8

Glass 9/9 6 214 115.3 70.8 70.2

Heart C 13/13 5 303 30.5 27.3 27.2

Heart H 12/13 2 294 26.8 20.8 20.6

Hepatitis 19/19 2 155 53.8 29.3 28.8

Hypothyroid 7/25 2 3,163 184.3 67.0 66.0

Iris 4/4 3 150 30.8 15.0 14.5

Letter recogn. 16/16 26 20,000 16.0 15.7 15.7

Liver 6/6 2 345 54.7 45.8 44.5

Page blocks 10/10 5 5,473 909.2 338.9 337.1

Satellite 36/36 6 4,435 76.3 62.6 62.4

Segmentation 19/19 7 210 145.3 95.1 94.8

Shuttle 9/9 7 58,000 123.2 85.3 85.0

Sonar 60/60 2 208 187.6 96.8 96.2

Vehicle 18/18 4 846 79.4 68.6 67.8

Vowel 10/10 11 990 808.7 708.8 707.2

Waveform 21/21 3 5,000 714.0 653.2 636.9

Wine 13/13 3 178 98.2 56.1 55.8

Yeast 8/8 10 1,484 51.5 47.9 47.8

Column m is the number of classes, n is the total number of examples in the domain, ATTRS

gives the number of numerical attributes out of the total number of attributes, V̄ is the
average number of bins for an attribute, B̄ is that of blocks, and Ḡ is that of segments.

In the experiment we partition the numerical dimensions of the 28 test domains using all
three partitioning strategies. For each domain we record the number of candidate partitions
evaluated in processing each numerical attribute.

Figure 9 depicts the results of this experiment. The figures on the right are the average
number of evaluations per numerical attribute performed by the algorithm that does not prune
and operates on example bins, the black bars represent the relative number of evaluations
per attribute for the dynamically pruning algorithm, and the white bars are those of the
greedy heuristic selection.
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Figure 8. The average number of bin borders (the figures on the right) and the relative numbers of boundary
points (black bars) and segment borders (white bars) per numerical attribute of the domain.

From figure 9 it can be seen that the average saving in the number of examined partition
candidates by dynamic pruning is slightly over 50%. These reductions do not correspond
linearly to the search times. The relation between the number of pruned candidates and time
consumption is discussed in the next section. Also, the actual time consumption of different
evaluation algorithms are reported in the next set of experiments.

Pruning fails to attain any savings in the two domains with the least numbers of initial
comparisons, Breast W and Letter recognition. Instead, the overhead involved with dynamic
pruning means that on these domains more partition candidate comparisons are performed
when dynamic pruning is employed. However, for these domains the time consumption is
very low to begin with. Moreover, these domains are exceptions that clearly stand out from
the results.
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Figure 9. The number of partition candidate evaluations. The figures on the right are the average numbers of
partition candidate evaluations per attribute performed on bins. Black bars depict the relative numbers of evaluations
performed by the algorithm that dynamically prunes partition candidates and white bars correspond to those of
the greedy approach. In the domains with a broken bar, the relative time consumption grows over 100%. For these
domains the figure on top of the bar gives the relative time consumption.

On other domains better pruning results are observed. Systematically (with the exception
of domain Abalone) whenever less than 50% of partition comparisons is saved through
dynamic pruning, the bar corresponding to the relative number of comparisons of the greedy
method can also be seen figure 9. This indicates that the efficient greedy method executes a
comparable number of partition candidate comparisons on these domains. Let us still stress
that in these cases the optimal multisplit can be recovered with almost as little work as the
suboptimal partition produced by the greedy algorithm.

For most domains less than 50% of initial comparisons are required when dynamic
pruning is employed. Clearly the best result is obtained for the most difficult domain to start
with, Adult. Dynamic pruning only requires approximately 6% of the initial 313 million
comparisons in this particular domain.
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Figure 10. The effects of combined static and dynamic pruning on 28 UCI test domains. The figures on the right
are the average processing times per numerical attribute when operating on bins. Black bars depict the relative
times of dynamic pruning on bins, gray bars are the relative times of processing example segments instead of bins,
and white bars correspond to the relative times of the combined approach operating on example segments and
using dynamic pruning.

5.3. Combined effects of preprocessing and dynamic pruning

Our final comparison contrasts static and dynamic pruning with each other. Figure 10 shows
the relative processing times used by the multisplitting algorithm using dynamic pruning
only, static pruning only, and combining both pruning approaches in our 28 test domains.

The figures on the right are the average processing times—in one hundredths of a second
per numerical attribute—when using IG as the evaluation function and operating on bins.
Black bars depict the relative times of dynamic pruning on bins. Gray bars are the relative
times when the discretization algorithm operates on example segments instead of bins.
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Finally, the white bars correspond to the relative times of the combined approach, which
operates on example segments and uses dynamic pruning.

Dynamic pruning alone brings about 20% average time saving. This figure is significantly
smaller than what could be expected from the 50% reduction in the number of candidate
comparisons. This difference is partly explained by the overhead associated with making
the pruning test but, more importantly, by the fact that for each pair of candidate cut points
the impurity of the subset in between them needs to be computed even when using dynamic
pruning. This computation induces the term O(mG2) in the asymptotic time-complexity
O((k +m)G2) of the algorithm. Dynamic pruning, on the other hand, affects the other term,
O(kG2).

The effects of the preprocessing into example segments surpass these savings clearly. On
the average the algorithms run 45% faster when the preprocessing into example segments is
used. Combining the two techniques—i.e., running the algorithm on the segment sequence
dynamic pruning enabled—reduces the time-consumption below 50% of the baseline. This
shows that the two techniques are complementary.

For some of the most time consuming domains (e.g., Adult and Page blocks) static and
combined pruning reduce the time consumption below one fifth of the original. However,
in the domains, where almost all cut points are boundary points (e.g., Abalone, Breast W,
and Letter recognition; see figure 8) the utility of static and dynamic pruning remains low.
The same can be observed from the number of partition candidates evaluated (see figure 9).

6. Conclusions and further work

Soundness and efficiency are two important aspects of knowledge discovery methods. Data
mining often resorts to purely heuristic methods to ensure efficient discovery. This may
endanger or, at least, make it harder to assess the quality of the discovered knowledge. For
this reason it is important to develop efficient data mining methods that can give guarantees
of the quality of the answer.

Partitioning numerical value ranges into a small number of subranges is a task frequently
encountered in data mining and machine learning algorithms both as a “discretization” step
prior the actual induction phase and also integrated within the learning algorithms. This
important task is typically solved by heuristics, since up until recently, the efficiency of
optimal algorithms has not been satisfactory.

In this article, we presented techniques for speeding up the discovery of optimal—with
respect to an evaluation function—multisplits along numerical value ranges. Both tech-
niques are based on proving some cut points or prefixes of partitions as suboptimal and thus
discarding them from the search space of the algorithms.

In the development of the first technique, we introduced segment borders, which are
boundary points that separate adjacent example segments with different relative class dis-
tributions. Subsequently we proved that many evaluation functions frequently used in class-
driven partitioning place their optima on segment borders. There is no need to consider any
other cut points in the value range than segment borders. The set of segment borders can
be found in linear time, so the time-requirement is negligible compared to the subsequent
search, which typically takes at least quadratic time in the number of candidate cut points.
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The preprocessing can be coupled with different search algorithms, including dynamic
programming, brute-force, and greedy best-first search. Based on our experiments concen-
trating on segment borders instead of boundary points brings only a marginal advantage,
since most of the boundary points are already segment borders. However, when compared
to the original set of cut points in the range, the reduction is significant.

To further improve the preprocessing, it would be useful to consider situations where the
relative class distributions of the neighboring segments were allowed to differ. The questions
for further research include whether the absence of optima can still be guaranteed, how
much deviation can be allowed, and which types of deviations make it easier to guarantee
the absence of optima within the example segment? A step towards this direction is made
for TSE by Elomaa and Rousu (2003).

With our second technique, we aimed at speeding up the quadratic-time dynamic pro-
gramming algorithm by pruning dynamically the search space during the left-to-right scan
over the data. The technique is applicable for all convex and cumulative evaluation func-
tions, a set that includes, e.g., the commonly used Average Class Entropy and Gini Index
functions. In our experiments, the number of candidate comparisons in the algorithms was
halved on the average. The time-usage of the algorithms was improved by ca. 20 percent.

The combined effect of the preprocessing and pruning is significant. Overall, the
quadratic-time dynamic programming algorithm runs twice as fast on the average and
in some cases up to 90 percent faster than the baseline algorithm. All in all, solving
the multisplitting problem optimally is fully feasible even with modest computational
resources.
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