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Efficient multi-target visual tracking

using Random Finite Sets
Emilio Maggio, Murtaza Taj, Andrea Cavallaro

Abstract—We propose a filtering framework for multi-target
tracking that is based on the Probability Hypothesis Density
(PHD) filter and data association using graph matching. This
framework can be combined with any object detectors that
generate positional and dimensional information of objects of
interest. The PHD filter compensates for missing detections and
removes noise and clutter. Moreover, this filter reduces the growth
in complexity with the number of targets from exponential
to linear by propagating the first-order moment of the multi-
target posterior, instead of the full posterior. In order to account
for the nature of the PHD propagation, we propose a novel
particle resampling strategy and we adapt the dynamic and
observation models to cope with varying object scales. The
proposed resampling strategy allows us to use the PHD filter
when a priori knowledge of the scene is not available. Moreover,
the dynamic and observation models are not limited to the PHD
filter and can be applied to any Bayesian tracker that can handle
State Dependent Variances (SDV). Extensive experimental results
on a large standard video surveillance dataset using a standard
evaluation protocol show that the proposed filtering framework
improves the accuracy of the tracker, especially in cluttered
scenes.

Index Terms—Video surveillance, clutter, tracking, multi-
target, PHD filter, Monte Carlo methods.

I. INTRODUCTION

The growth of adoption of video surveillance systems has

been recently driven by hardware advances, such as camera

miniaturization, digitization and increased availability of low-

cost data storage. However, the opportunities offered by auto-

mated video surveillance are not yet exploited due to the lack

of accurate and efficient algorithms for data-mining, content

retrieval, event detection and behavior analysis. The extrac-

tion of high-level information from surveillance video mainly

relies on the analysis of lower level video data like objects

and their trajectories, which are generated by multi-target

trackers. While reliable tracking is possible under constrained

conditions, the problem of tracking in a generic unconstrained

scenario (for example in a dense scene with uncontrolled

illumination) is still unsolved.

The multi-target visual tracking problem can be decomposed

into two main tasks, namely the detection of the objects

of interests in each frame and the association of unique

identities to the detections over time. The major challenge in

the estimation of the number of targets and their position is that

the estimate is based on a set of uncertain observations (i.e.,
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the detections). A target may fail to generate an observation

when occluded, an additional observation may be generated by

clutter, and observations from actual targets may be corrupted

by noise, thus affecting the state estimator. A multiple object

tracker must also account for target interactions and for the

time-varying number of targets in the scene by modeling their

birth (when a new target appears in the scene or is a spawn

from another target, such as a person stepping out of a car)

and their death. Although the complete modeling of the multi-

target problem is possible, its computational cost inevitably

grows exponentially with the number of targets.

A. Prior work

Bayesian recursion is a popular approach to filter noisy

observations in single-target tracking [1], [2], [3]. The Bayes

filter first predicts the target state based on a dynamical

model and then updates the resulting density using the newly

available observation. Two algorithms implementing this re-

cursion are the Kalman Filter [4] and the Particle Filter

(PF) [5]. Multi-target tracking requires the extension of these

algorithms to cope with target birth and target death, clutter

and missing observations (Tab. I). Although the multi-target

state can be seen as a concatenation of single-target states, each

modeled as a random variable [6], Bayes multi-target filtering

is computationally intensive due to the increase of the state

dimensionality with the number of targets. To alleviate this

problem several approaches have been proposed, as described

below.

One solution is to model the multi-target problem in the

single-target state by propagating a mixture of single-target

pdfs approximated by particles [7]. When a target appears in

the scene, a new component of the mixture is initialized and

then propagated independently. The birth event is governed by

heuristics and it is not included in the filtering framework. The

volume of the multi-target state sampled by PF can be reduced

by assuming that the targets do not appear simultaneously and

by modeling the birth as a Poisson process [8]. To reduce the

computational cost, Markov Chain Monte Carlo methods can

be used to better sample the multi-target density [9].

Although the above-mentioned approaches make the multi-

target problem tractable, they do not account for clutter and

missing observations. An attempt to alleviate these limitations

is presented in [10], but in this case the number of visible

targets is assumed to be known and fixed. Jump Markov

Systems (JMS) approximated by PF have also been used to

model the varying number of targets in the scene, clutter and

missing detections [11], [12]. A JMS models the dependencies
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in the multi-target state evolution thus allowing the design of

an efficient importance sampling function for PF. A similar

path is followed in [13] where the marginal association pdfs

of the Joint Probability Data Association Filter (JPDAF)

are sampled using PF. The approach is less complex than

sampling the full multi-target state, as filtering is applied

to independent association hypotheses pruned by a gating

procedure. Recently, Rao-Blackwellization (RB) has been used

to reduce the computational cost [14]. The RB multi-target

filter integrates the state propagation in closed form, while

Monte Carlo integration is used for data association. The

data association problem can also be modeled using graph

theory [16]. The graph structure accounts for target birth, death

and missing detections, but a pre-filtering step is necessary to

remove spatial noise and clutter.

A general Bayesian framework for multi-target tracking

makes use of Finite Set Statistics (FISS) [17]. This framework

considers the multi-target state as a single meta-target and

the observations as a single set of measurements of the

meta-sensor [15]. In this case, the multi-target state can be

represented by a Random Finite Set (RFS), whose Bayesian

propagation is similar to that of the single-target case. How-

ever, the dimensionality of the target state still grows with

the number of targets. This means that the approximation of

the RFS with Monte Carlo sampling requires a number of

samples that grows exponentially, thus making the propaga-

tion of the full posterior impractical. A less computationally

intensive alternative is to propagate the Probability Hypothesis

Density (PHD) (i.e., the first-order moment of the multi-target

posterior) [17]. The integrals of the PHD recursion can either

have an exact solution by assuming the PHD to be a mixture

of Gaussians (GM-PHD) [18] or can be approximated with

the samples generated by a Sequential Monte Carlo (SMC)

method (Particle-PHD) [15]. As the dimensionality of the PHD

is that of the single-target state, efficient sampling requires a

number of particles that is proportional to the expected number

of targets, thus leading to linear complexity.

The cost for the lower complexity is the lack of information

on the identity of the targets. For Particle-PHD a clustering

step is necessary to associate the peaks of the PHD with

target identities [19], [20]. Data association for the GM-PHD

is easier as the identity can be associated directly with each

Gaussian [21], [18]. However, these methods are limited by

the linearity and Gaussianity assumptions on the transition and

measurement models. Recently, Jump Markov Models have

been used to extend GM-PHD to maneuvering targets [22],

[23]. Filtering techniques based on the Particle PHD have been

tested on synthetic data [15], [24], 3D sonar data [25], feature

point filtering [26], and groups-of-humans detection [27].

However, as no data association is performed [15], [24], [26],

[27] nor the target size is estimated [25], none of the above

approaches can be applied to multi-target visual tracking.

B. Contribution

In this paper we propose a complete multi-target visual

tracking framework based on the PHD filter that addresses the

problems of clutter, spatial noise and missing detections. Our

TABLE I
MODELING CAPABILITIES OF MULTI-TARGET TRACKING ALGORITHMS.
MD: MISSING DETECTIONS; PF: PARTICLE FILTER; MCMC: MARKOV

CHAIN MONTE CARLO; JMS: JUMP MARKOV SYSTEMS; JPDAF: JOINT

PROBABILISTIC DATA ASSOCIATION FILTER

Ref. Algorithm Modeling capabilities

Birth Clutter MD

[7] PF mixture Heuristic No No

[8] Multi-target Condensation One at a time No No

[9] Multi-target MCMC-PF No No No

[10] Multi-target Condensation No Yes Yes

[11] JMS and PF One at a time Yes Yes

[12] JMS and PF One spawn No No

[13] JPDAF and PF Yes Yes Yes

[14] Rao-Blackwellized-PF Yes Yes Yes

[15] Particle PHD filter Yes Yes Yes

[16] Graph matching Yes No Yes

Object 

detection
Data

association

Occlusion handling

PHD filter

GMM
clustering

Filter noise and clutter

Prediction Update Resampling

Xk

Zk

Fig. 1. Multiple target tracking scheme based on object detection and on
Particle PHD filtering. The PHD filter removes spatio-temporal noise from
the observations before the tracker performs data association.

main contribution is the adaptation of a filter based on Random

Finite Sets to real–world visual tracking scenarios. These

adaptations are not straightforward as, unlike conventional

applications of the PHD filter, we have to account for non–

punctual observations like those produced by video object

detectors. Compared to our preliminary work in [28], we

present here a novel resampling strategy, enhanced dynamic

and observation models, and an evaluation on a larger dataset.

Unlike the single-target particle filter, the multi-target PHD

filter generates particles with two different purposes: (i) to

propagate the state of existing targets and (ii) to model

the birth of new ones. The proposed multi-stage resampling

strategy accounts for the different nature of the particles and,

compared to the multinomial strategy used in [28], improves

the quality of the Monte Carlo estimation from a tracking

perspective. As for the dynamic and observation models, we

use State Dependent Variances (SDV) to account for the size of

the targets. These models are not limited to the PHD recursion

and can be implemented in any Bayesian recursive algorithms

that can handle SDV.

We incorporate the PHD filter in an end-to-end flexible

tracking framework that can deal with any detectors that gener-

ate a set of observations representing the position and the size

of the targets. First, clutter and spatial noise are filtered by the

particle PHD filter. Next, clustering is used on the samples of

the PHD to detect filtered target positions. Finally, the cluster

centers are processed by a data association algorithm based on

the maximum path cover of a bi-partitioned graph. Figure 1

shows the block diagram of the proposed tracking framework.

We demonstrate the multi-target framework using two different

detectors, one based on background subtraction [29] and one

based on Adaboost classifiers [30], and we objectively evaluate

the results on a large outdoor surveillance dataset containing
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more than 1 hour and 20 minutes of annotated surveillance

videos (the CLEAR-2007 dataset).

The paper is organized as follows. Section II describes the

Particle PHD filter with the dynamic model, the resampling

strategy and the particle clustering. Section III describes the

data association method. In Sec. IV we show the results on

surveillance and face tracking scenarios. In Sec. V we draw

conclusions.

II. FILTERING DETECTIONS WITH THE PARTICLE PHD

Let us approximate the target area in the image plane with

a w×h rectangle centered at
(
y(1), y(2)

)
. Let the single target

state at time k be xk =
(

y
(1)
xk
, ẏ

(1)
xk
, y

(2)
xk
, ẏ

(2)
xk
, wxk

, hxk

)

∈ Es,

where ẏ
(1)
xk

and ẏ
(2)
xk

are the speed components of the target and

Es is the state space. Finally, let the single-target observation

zk =
(

y
(1)
zk , y

(2)
zk , wzk

, hzk

)

∈ Eo in the observation space Eo

be a rectangle generated by an object detector (e.g., a change

detector or a face detector).

A. Single-target recursive Bayes filtering

The single-target tracking problem can be modeled using

the state and the measurement equations [5]

xk = fk(xk−1, nk), (1)

and

zk = gk(xk, vk), (2)

where fk and gk are non-linear, time-varying functions; and

{nk}k=1,... and {vk}k=1,... are assumed to be independent

and identically distributed stochastic processes. The goal of

tracking is to estimate pk|k(xk|z1:k), the pdf of the object

being in state xk, given all the observations zk up to time

k, based on (1) and on (2). The estimation is performed

recursively in two steps, namely prediction and update. The

prediction step uses the dynamic model defined in (1) to obtain

the prior pdf as

pk|k−1(xk|z1:k−1)

=

∫

fk|k−1(xk|xk−1)pk−1|k−1(xk−1|z1:k−1)dxk−1,
(3)

with pk−1|k−1(xk−1|z1:k−1) known from the previous itera-

tion and the transition density fk|k−1(xk|xk−1) determined

by (1). The update step uses the Bayes’ rule once the obser-

vation zk is available, so that

pk|k(xk|z1:k) =
gk(zk|xk)pk|k−1(xk|z1:k−1)

∫
gk(zk|xk)pk|k−1(xk|z1:k−1)dxk

, (4)

where gk(zk|xk) is determined by (2). When (1) and (2) are

linear and the stochastic processes are Gaussian, the recursion

has a closed form solution known as Kalman filter [4]. A

more generic approximation can be obtained using Monte

Carlo estimation [5]. In this case the densities pk|k(xk|z1:k) are

approximated with a sum of L Dirac δ functions (the particles)

centered in
{

x
(i)
k

}L

i=1
as

pk|k(xk|z1:k) ≈
L∑

i=1

ω
(i)
k δ

(

xk − x
(i)
k

)

, (5)

where
{

ω
(i)
k

}L

i=1
are the weights associated with the particles

and are defined as

ω
(i)
k ∝

pk|k(x
(i)
k |z1:k)

qk(x
(i)
k |z1:k)

i = 1, . . . , L. (6)

qk(.) is the importance density function defined as the density

that generated the current set of particles.

Let us assume that pk−1|k−1(xk−1|z1:k−1) is appro-

ximated by the set of particles and associated weights
{

ω
(i)
k−1, x

(i)
k−1

}L

i=1
, as in (5). By substituting this approxima-

tion in (3) and by applying importance sampling and (4),

we obtain a recursion to propagate the particles and their

weights [5]. The filters, based on Monte Carlo sampling and

recursive Bayes equations, are known as Particle Filters.

B. Multi-target recursive Bayes filtering with RFS

In order to extend the single-target Bayes framework to

multiple targets, let us define the multi-target state, Xk, and

the multi-target state measurement, Zk, as the finite collection

of the states and observations of each target. If M(k) is the

number of targets in the scene at time k, then the multi-target

state, Xk, is the set

Xk =
{
xk,1, ...xk,M(k)

}
∈ F(Es). (7)

The multi-target measurement, Zk, is the set

Zk =
{
zk,1, ...zk,N(k)

}
∈ F(Eo) (8)

and is formed by the N(k) observations. Note that some

of these observations may be due to clutter. F(E) is the

collection of all the finite subsets of E.

The uncertainty in the state and measurement is introduced

by modeling the multi-target state and the multi-target mea-

surement using two Random Finite Sets (RFS). Let Ξk be the

RFS associated with the multi-target state:

Ξk = Sk (Xk−1) ∪Bk (Xk−1) ∪ Γk, (9)

where Sk (Xk−1) denotes the RFS of survived targets, while

Bk (Xk−1) is the RFS of targets spawned from the previous

set of targets Xk−1, and Γk is the RFS of the new-born

targets [15]. The RFS Ωk associated with the measurement

is defined as

Ωk = Θk (Xk) ∪Kk, (10)

where Θk (Xk) is the RFS modeling the measurements gen-

erated by the targets Xk, and Kk models clutter and false

alarms.

Similarly to the single-target case, the dynamics of

Ξk are described by the multi-target transition density

fk|k−1(Xk|Xk−1), while Ωk is described by the multi-target

likelihood gk(Zk|Xk). The recursive equations equivalent

to (3) and (4) are

pk|k−1(Xk|Z1:k−1) =
∫

fk|k−1(Xk|Xk−1)pk−1|k−1(Xk−1|Z1:k−1)µ(dXk−1)

(11)
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and

pk|k(Xk|Z1:k) =
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)

∫
gk(Zk|Xk)pk|k−1(Xk|Z1:k−1)µ(dXk)

,

(12)

where µ is an appropriate dominating measure on F(Es) (for

a detailed description of RFSs, set integral and formulations

of µ, please refer to [17] and [15]). Although a Monte Carlo

approximation of this recursion is possible [15], the number

of particles required is exponentially related to the number

of targets in the scene. For this reason, an approximation

is necessary to make the problem computationally tractable.

To this extent Mahler proposes to propagate the first-order

moment of the multi-target posterior instead of the posterior

itself [17]. The resulting filter is known as the Probability

Hypothesis Density (PHD) filter.

C. The PHD filter

The PHD is a function in the single-target state space whose

peaks identify the likely position of the targets. The PHD,

DΞ(x), is the first-order moment of a RFS, Ξ, and it is a

function on Es. The property of the PHD is that for any region

R ⊆ Es

E[|Ξ ∩R|] =

∫

R

DΞ(x)dx, (13)

where |.| is used to denote the cardinality of a set. In

practice, (13) means that by integrating the PHD on any region

R of the state space we obtain the expected number of targets

in R.

If we denote Dk|k(x) as the PHD at time k associated

with the multi-target posterior density pk|k(Xk|Z1:k), then

the Bayesian iterative prediction and update of Dk|k(x) is

known as the PHD filter. The recursion of the PHD filter

is based on three assumptions: (i) the targets evolve and

generate measurements independently; (ii) the clutter RFS,

Kk, is Poisson-distributed and (iii) the predicted multi-target

RFS is Poisson-distributed. While the first two assumptions

are common to most Bayesian multi-target trackers ([6], [10],

[11], [13], [14]), the third is specific to the derivation of the

PHD update operator.

The PHD prediction is defined as

Dk|k−1(x) =

∫

φk|k−1(x, ζ)Dk−1|k−1(ζ)dζ + γk(x), (14)

where γk(.) is the intensity function of the new target birth

RFS (i.e., the integral of γk(.) over a region R gives the

expected number of new objects per frame appearing in R).

φk|k−1(x, ξ) is the analogue of the state transition probability

in the single-target case:

φk|k−1(x, ξ) = ek|k−1(ξ)fk|k−1(x|ξ) + βk|k−1(x|ξ), (15)

where ek|k−1(ξ) is the probability that the target still exists

at time k, and βk|k−1(.|ξ) is the intensity of the RFS that a

target is spawned from the state ξ.

The PHD update is defined as

Dk|k(x) =
[

pM (x) +
∑

z∈Zk

ψk,z(x)

κk(z) +
〈
ψk,z ,Dk|k−1

〉

]

Dk|k−1(x),
(16)

where pM (x) is the missing detection probability; ψk,z(x) =
(1−pM (x))gk(z|x), and gk(z|x) is the single-target likelihood

defining the probability that z is generated by a target with

state x; 〈f, g〉 =
∫
f(x)g(x)dx, and κk(.) is the clutter

intensity.

No generic closed form solution exists for the integral

of (14) and (16). Under the assumptions of Gaussianity and

linearity one can obtain a filter that in principle is similar to

the Kalman filter. This filter is known as the Gaussian Mixture

PHD filter (GM-PHD) [21]. However, given the limitations on

the dynamic and observation models (Sec. II-E), we prefer the

Monte Carlo implementation of the PHD recursion, known as

the Particle PHD filter.

D. The Particle PHD filter

A numerical solution for the integrals in (14) and (16) is

obtained using a Sequential Monte Carlo method that approxi-

mates the PHD with a (large) set of weighted random samples

(see (5)). A more detailed explanation of the procedure is

available in [15].

Given the set
{

ω
(i)
k−1, x

(i)
k−1

}Lk−1

i=1
of Lk−1 particles and

associated weights approximating the PHD at time k − 1 as

Dk−1|k−1(x) ≈

Lk−1∑

i=1

ω
(i)
k−1δ

(

x− x
(i)
k−1

)

, (17)

an approximation of the predicted PHD, Dk|k−1(x), with

weighted particles
{

ω̃
(i)
k , x̃

(i)
k

}Lk−1+Jk

i=1
is obtained by substi-

tuting (17) into (14) and then applying separately importance

sampling to both terms on the r.h.s.. In practice, first we draw

Lk−1 samples from the importance function qk(.|x
(i)
k−1, Zk)

to propagate the tracking hypotheses from the samples at

time k − 1; we then draw Jk samples from the new-born

importance function pk(.|Zk) to model the state hypotheses of

new targets appearing in the scene. This last set also defines the

configuration of the particles at initialization. We will discuss

the choice of qk(.|x
(i)
k−1, Zk) and pk(.|Zk) in Section II-E. The

values of the weights ω̃
(i)
k|k−1 are computed as

ω̃
(i)
k|k−1 =







φk

(
x̃
(i)

k
,x

(i)

k−1

)
ω

(i)

k−1

qk

(
x̃
(i)

k
|x

(i)

k−1
,Zk

) i = 1, ..., Lk−1

γk(x̃
(i)

k
)

Jkpk

(
x̃
(i)

k
|Zk

) i = Lk−1 + 1, . . . , Lk−1 + Jk

.

(18)

Once the new set of observations is available, by substitut-

ing the approximation of Dk|k−1(x) into (16), the weights
{

ω̃
(i)
k|k−1

}Lk−1+Jk

i=1
are updated according to

ω̃
(i)
k =

[

pM (x̃
(i)
k ) +

∑

z∈Zk

ψk,z(x̃
(i)
k )

κk(z) + Ck(z)

]

ω̃
(i)
k|k−1, (19)

where Ck(z) =
∑Lk−1+Jk

j=1 ψk,z(x̃
(i)
k )ω̃

(j)
k|k−1.

The Particle PHD filter was originally designed to track

targets generating punctual observations (radar tracking [17]).

To deal with targets from videos, we have to adapt the dynamic

and the observation models to account for the size of the
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target on the image plane. In the following we describe how

to account for the two additional dimensions, the width and

the height of a target, in the observation.

E. Dynamic and observation models

In order to compute the PHD filter recursion, the proba-

bilistic model needs information regarding object dynamics

and sensor noise. The information contained in the dynamic

and observation models is used by the PHD filter to classify

as clutter, detections not fitting these priors.

The magnitude of the motion of an object in the image plane

depends on the distance of the object from the camera. Since

acceleration and scale variations in the camera far-field are

usually smaller than those in the near-field, we model the state

transition fk|k−1(xk|xk−1) as a first-order Gaussian dynamic

with State Dependent Variances (SDV). This model assumes

that each target has constant velocity between consecutive

time steps and acceleration and scale changes approximated

by random processes with standard deviations proportional to

the object size at time k − 1, i.e.

xk =

G
︷ ︸︸ ︷




A 02 02

02 A 02

02 02 I2



 xk−1 +





B1 02

B2 02

02 B3












n
(1)
k

n
(2)
k

n
(w)
k

n
(h)
k







,

(20)

with

A =

[
1 T
0 1

]

, B1 = wxk−1

[
T 2

2 0
T 0

]

,

B2 = hxk−1

[

0 T 2

2
0 T

]

, and B3 =

[
Twxk−1

0
0 Thxk−1

]

,

where 0n and In are the n × n zero and identity matrices,

and {n
(1)
k },{n

(2)
k }, {n

(w)
k } and {n

(h)
k } are independent white

Gaussian noises with standard deviations σn(1) ,σn(2) ,σn(w) and

σn(h) , respectively. {n
(1)
k } and {n

(2)
k } model the acceleration

of the target, while {n
(w)
k } and {n

(h)
k } model the variation in

size. T = 1 is the interval between two consecutive steps (k−1
and k), which we take to be constant when the frame rate is

constant. For simplicity, no spawning of targets is considered

in the dynamic model.

The observation model is derived from the following consid-

erations: when an object is partially detected (e.g., the body

of a person is detected while her/his head is not detected),

the magnitude of the error is dependent on the object size.

Moreover, the error on the estimation of the target size is twice

the error on the estimation of the centroid. This is equivalent

to assuming that the amount of noise on the observations is

proportional to the size of the targets, and that the standard

deviation of the noise on the centroid is half that on the size. To

this extent we define the single-target likelihood as a Gaussian

SDV model, such that

gk(z|x) = N (z;Cx,Σ(x)), (21)

where N (z;Cx,Σ(x)) is a Gaussian function evaluated in z,

centered in Cx and with covariance matrix Σ(x). C is defined

as

C =

[
D 02×3

02×4 I2

]

, with D =

[
1 0 0
0 0 1

]

and 0n×m is the n × m zero matrix. Σ(x) is a diagonal

covariance matrix defined as

diag(Σ(x)) =
[σv(w)

2
wx,

σv(h)

2
hx, σv(w)wx, σv(h)hx

]

.

Note that the SDV models described in (20) and (21) do

not allow closed-form solution of the PHD filter recursive

equations (see (14) and (16)). They require an algorithm

such as the Particle PHD that can handle generalized state

space models. In order to use GM-PHD [18] with SVD, an

approximation based on the Extended Kalman filter or on

the Unscented transformation is necessary [21]. The other

functions that define the PHD recursion are defined below.

In the absence of any prior knowledge about the scene,

we assume that the missing detection probability, pM (x), the

probability of survival, ek|k−1(x), and the birth intensity γk(x)
are constant over x. To this extent, we decompose γk(x) as

s̄b(x), where s̄ is the average birth events per frame and b(x)
is the probability density of a birth that we take to be uniform

on the state space. Similarly, we define the clutter intensity

κk(z) as r̄c(z), and we assume the clutter density c(z) to be

uniform over the observation space.

In order to complete the definition of the Particle PHD filter

recursion we need to design the importance sampling functions

for the Monte Carlo approximation. On the one hand, Lk−1

old particles are propagated, as in CONDENSATION [1],

according to the dynamics (i.e., qk(.|.) ∝ fk|k−1(.|.)). On

the other hand, drawing the Jk new-born particles is not

straightforward as the tracker should be able to reinitialize

after an unexpected lost track or target occlusion. When prior

knowledge on the scene is available, the samples could be

drawn from a localized γk(.). However, no target birth would

be possible in state regions with low γk(.), as no particles

would be sampled in these areas. When no prior knowledge

is available, drawing from a uniform non-informative γk(.)
(as in the one we use) would require too many particles to

obtain a dense sampling on a 6D state space. To avoid this

problem, we assume that the birth of a target happens in a

limited volume around the measurements; thus we draw the

Jk new-born particles from a mixture of Gaussians centered on

the components of the set Zk. Hence, we define the importance

sampling function for new-born targets pk(.|Zk) as

pk(x|Zk) =
1

N(k)

∑

z∈Zk

N (x; [z, 0, 0],Σb(z)), (22)

where the elements of the 6 × 6 diagonal covariance matrix

Σb are proportional to wz and hz , and are defined as

diag(Σb(z)) =
[
σb,y(1)wz, σb,ẏ(1)wz , σb,y(2)hz, . . .

. . . , σb,ẏ(2)hz, σb,wwz , σb,hhz

]
.

Although drawing new-born particles from (22) allows dense

sampling around regions where a birth is possible, the Particle

PHD recursion is also influenced by the resampling strategy

used to select the most promising hypotheses. In the next

section we discuss the resampling issues for the Particle PHD

filter that accounts for the different nature of the particles.
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F. Resampling

At each iteration, Jk new particles are added to the old Lk−1

particles. To limit the growth of the number of particles, a

resampling step is performed after the update step. If classical

multinomial resampling is applied ([15], [5]), then Lk particles

are resampled with probabilities proportional to their weights

from
{

ω̃
(i)
k /M̂k|k, x̃

(i)
k

}Lk+Jk

i=1
, where M̂k|k is the total mass.

This resampling procedure gives greater chance to tracking

hypotheses with higher likelihood to propagate by pruning

from the set unlikely hypotheses.

Lk is usually chosen to keep the number of particles per

target, ρ, constant. At each time step, a new Lk is computed

so that Lk = ρM̂k|k. Hence the computational cost of the

algorithm grows linearly with the number of targets in the

scene. After resampling, the weights of
{

ω
(i)
k , x

(i)
k

}Lk

i=1
are

normalized to preserve the total mass.

Although multinomial resampling is appropriate for a

single-target Particle Filter, this strategy poses a series of

problems when applied to the PHD filter. The prediction stage

of the PHD (see (14)) generates two different sets of particles:

(i) the Lk−1 particles propagated from the previous steps to

model the state evolution of existing targets, with weights

proportional to ω
(i)
k−1, and (ii) the remaining Jk particles

modeling the birth of new targets, with weights proportional

to the birth intensity γk(.).
For multi-dimensional state spaces where the birth event

is sparse (i.e., low γk(.)), the predicted weights ω̃
(i)
k|k−1 of the

new-born particles may be several orders of magnitude smaller

than the weights of the propagated particles. In this case, as the

probability of resampling is proportional to ω̃
(i)
k and thereby

to ω̃
(i)
k|k−1, it is possible that none of the new-born particles

is resampled and propagated to the next step. Although the

approximation of the PHD is still asymptotically correct, the

birth of a new target also depends on combinatorial factors.

Furthermore, when one or a few new-born particles are finally

propagated, the PHD is not densely sampled around the new-

born target, thus reducing the quality of the spatial filtering

effect. Increasing the number of particles per target, ρ, is not

effective as the value should be very large and comparable

with 1/γk(.).
To overcome this problem, we construct a multi-stage

pipeline that resamples the new-born particles independently

from the others. The idea is to separately apply multinomial

resampling to the new-born particles by segregating them for

a fixed number Ns of time steps. In this way we allow the

weights to grow till they reach the same magnitude as those

associated with particles modeling older targets. The proposed

multi-stage multinomial resampling strategy for the particle

PHD filter is summarized in Algorithm 1. Figure 2 shows an

example of the multi-stage resampling pipeline when Ns = 3.

The multi-stage multinomial resampling preserves the total

mass of whole set of particles M̂k|k (this is a requirement of

the PHD filter), as it preserves the total mass of the particles

in each stage (see Step 7 and Step 11 of Algorithm 1). As we

model proposal density pk

(

x̃
(i)
k |Zk

)

of the new-born particles

Stage 13 2

Before resampling: 

After resampling: 

Stage 13 2

Jk

Jk

M
ultinom

ial

Lk 1

Lk

n
�
(i)
k
, �x
(i)
k

oLk 1+Jk

i=1

n
(i)
k
, x
(i)
k

oLk
i=1

Fig. 2. Schema of the multi-stage resampling strategy for the three-stages
case. The Jk particles modeling the birth of new targets are resampled
separately from the older ones for a fixed number of time steps.

Algorithm 1 Multi-stage multinomial resampling
{

ω̃
(i)
k

, x̃
(i)
k

}Lk−1+Jk

i=1

→

{

ω
(i)
k

, x
(i)
k

}Lk

i=1

1: if k = 0 then
2: Si = 0 ∀i = 1, . . . Ns

3: else if k ≥ 1 then

4: SNs
= SNs−1 + Jk

5: Compute the stage mass M̂S1
=

∑S1

i=1
ω̃i

k

6: Compute the number of particles S̃1 = M̂S1
ρ

7: Multinomially resample

{

ω̃
(i)
k

/M̂S1
, x̃

(i)
k

}S1

i=1

to get

{

ω
(i)
k

= 1/M̂S1
, x

(i)
k

}S1

i=1
8: for j = 2 : Ns do

9: Compute the stage mass M̂Sj
=

∑Sj

i=Sj−1+1
ω̃i

k

10: Compute the number of particles S̃j = S̃j−1 +
max{M̂Sj

ρ, Sj − Sj−1}

11: Multinomially resample

{

ω̃
(i)
k

/M̂Sj
, x̃

(i)
k

}Sj

i=Sj−1+1

to get

{

ω
(i)
k

= 1/M̂Sj
, x

(i)
k

}S̃j

i=S̃j−1+1

12: end for

13: Lk = S̃Ns

14: S1 = S̃1 + S̃2

15: Si = S̃i+1 ∀i = 2, . . . Ns − 1
16: end if

with a mixture of Gaussians centered on the observations

(see (22)), we can take Jk = N(k)·τ , where τ is the number of

new-born particles per observation. The overall computational

cost of the algorithm grows linearly with the number of targets

Xk, and linearly with the number of observations Zk.

In order to compare the proposed resampling strategy with

the standard multinomial resampling, we analyze the statistics

of the delay in the response of the filter produced by the

resulting Monte Carlo approximations. To ensure that the

difference is generated only by the resampling, we produce

a synthetic scenario where the targets move according to the

model described in Sec. II-E. We fix one target in the center

of the scene and then we generate new targets uniformly

distributed over the state space and according to a Poisson

process. The two components of the speed of the new targets

are uniformly drawn over the ranges [−4σb,ẏ(1)wz , 4σb,ẏ(1)wz ]
and [−4σb,ẏ(2)hz, 4σb,ẏ(2)hz] respectively. This also produces

targets in regions of the state space with low density of new-

born particles (see (22)). We collect the measurements Zk
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TABLE II
COMPARISON OF FILTERING RESPONSE STATISTICS BETWEEN THE

STANDARD MULTINOMIAL (MUL) RESAMPLING AND THE PROPOSED

(PROP) MULTI-STAGE MULTINOMIAL RESAMPLING

Delay Never detected %

Avg Std dev 0-.25 0-.05 .05-.1 .1-.15 .15-.2

Mul 11.2 10.5 37.2 23.8 29.4 45.6 50.0

Prop 5.1 3.8 14.8 9.9 8.7 16.2 27.5

for 1000 synthetic targets. We then give the measurements

as input to the approximated PHD recursions using the two

resampling strategies. Table II shows the statistics related to

the time delay in validating the new-born targets (expressed

in frames), and the percentage of never–detected targets with

respect to the speed ranges expressed as ratios between speed

and object size. Higher ratios are associated with regions of

the state space where filtering is more difficult as the density

of sampled particles (see (22)) is lower. Also, faster targets are

more likely to leave the scene before the PHD filter manages

to produce a target birth. The standard deviation of the filtering

delay (Tab. II) shows that the multi-stage resampling strategy

has a beneficial effect in stabilizing the behavior of the filter

(lower standard deviation). The higher average delay produced

by multinomial resampling is due to those situations where

none of the new-born particles is propagated to the next time-

step. This is also confirmed by the higher percentage of never–

detected targets produced by multinomial resampling.

A comparison between the proposed resampling strategy

and the standard multinomial resampling is shown in Fig. 3.

The top row shows a delayed target birth (box) caused by

the standard multinomial resampling. In this situation, dense

sampling is made more difficult by the fast motion of the

vehicle. Note that 30 frames of consecutive coherent detections

are not enough to validate the target. Furthermore, when

the first particles are resampled and propagated, the filtering

result is poor due to the low number of samples available.

Figure 3, bottom row, shows how the proposed resampling

strategy improves the quality of the PHD approximation when

new targets appear in the scene. The proposed multi-stage

multinomial resampling that uses the same birth intensity

validates the track in 4 frames only, despite the motion of

the target.

G. Particle clustering

After the resampling step, the PHD is represented by a

set of particles,
{

ω
(i)
k , x

(i)
k

}Lk

i=1
, defined in the single-target

state space. An example of PHD approximated by particles is

shown in Fig. 4. The peaks of the PHD are on the detected

vehicles and the mass M̂k|k ≈ 3 estimates the number of

targets. The local mass of the particles is larger where the

tracking hypotheses are validated by consecutive detections.

Note that although the set of particles carries information about

the expected number of targets and their location in the scene,

the PHD does not hold information about the identity of the

targets. A clustering algorithm is required to detect the peaks

of the PHD. These peaks define the set of candidate states

X̄k =
{
x̄k,1, ...x̄k,M̄(k)

}
of the targets in the scene and are

Fig. 3. Sample tracking results using multinomial and multi-stage multino-
mial resampling (CLEAR-2007 dataset, sequence 102a03, frames 1354, 1359
and 1385). The multinomial resampling (top row) delays the initialization
of the track and introduces an error in the state estimation due to the low
number of available samples. These behaviors are corrected by the proposed
multi-stage resampling strategy (bottom row).
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Fig. 4. Visualization of the particles approximating the PHD (before
resampling step) on the frame at the left when the vehicles are the targets
(red boxes: input detections; green boxes: cluster centers).

the input of the data association algorithm. The information

carried on by X̄k is richer than the one carried on by the

original set of detections Zk, as the elements of X̄k are filtered

in space and time by the PHD and include an estimate of the

target velocity. Further information is also carried on by the

total mass M̂k|k estimating the expected number of targets

in the scene. However, M̂k|k may be composed of several

clusters of particles with mass smaller than 1 and therefore

the real number of clusters may be larger than M̂k|k.

To avoid underestimating the number of clusters, we pro-

pose a top-down procedure based on Gaussian Mixture Models

(GMM) that accounts for the new set of particles associated

with target births, and updates the cluster parameters by means

of Expectation Maximization (EM). The intuitive reason for

using GMM is that both state dynamics and observation

models are Gaussian, and therefore also the clusters of par-

ticles tend to be Gaussian-distributed. The procedure works

as follows: first, the set of clusters obtained at the previous

step, k − 1, is augmented with new clusters initialized on

the observations to model candidate new-born targets. Next, a

hypothesis test is conducted to discard the new clusters that are

similar to old ones. The parameters of the remaining clusters

are optimized running EM on a set of Ľk = ρGMM̂k|k parti-

cles multinomially resampled from
{

ω
(i)
k /M̂k|k, x

(i)
k

}Lk

i=1
[5].

Resampling is performed to obtain particles with uniform

weights and also to reduce the computational cost of the EM

recursion. After convergence we discard small clusters (with
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Algorithm 2 Particle clustering
{

θk−1, Zk,

{

ω
(i)
k

, x
(i)
k

}Lk

i=1

}

→
{

θk, X̄k

}

1: Multinomially resample

{

ω
(i)
k

/M̂k|k, x
(i)
k

}Lk

i=1
to get

{

ω̌
(i)
k

= 1/M̂k|k, x̌
(i)
k

=

}Ľk

i=1
2: ∀z ∈ Zk initialize a new cluster {1/Nk , [z, 0, 0], Σb(z)} and add it to

θN

3: ∀ clusters cj = {x̄j , Σj} ∈ θN compute hypothesis test that x̄k−1,i ∈
θk−1 is in the 99 percentile of cj , and remove cj from θN if ∃i| the
test is positive

4: Add the clusters to θk−1 and, to obtain θ̃k , run EM till convergence on
the particles obtained at step 1

5: Prune from θ̃k the small clusters with π̃k,j < S
6: Merge similar clusters (with the procedure defined in [21]) thus obtaining

θk

7: Create the set of cluster centers X̄k according to X̄k = {x̄k,i, i =

1, . . . Nc,k|πk,iM̂k|k < TM}

mass below a threshold S) as they are usually associated

with disappeared targets. Finally, we merge similar clusters

according to a criterion based on hypothesis testing [21].

Let us define the parameters of the GMM at time k as

θk = {πk,1, x̄k,1,Σk,1, . . . , πk,Nc,k
, x̄k,Nc,k

,Σk,Nc,k
},

where πk,i is a weight coefficient of the mixture, x̄k,i is the

cluster center, Σk,i is the covariance matrix and Nc,k is the

number of clusters at time k. Given the cluster parameters

θk−1 at k − 1, the observation Zk and the set of particles
{

ω
(i)
k , x

(i)
k

}Lk

i=1
, the clustering procedure that outputs the new

set of clusters θk and the set of states X̄k is detailed in

Algorithm 2.

III. DATA ASSOCIATION

To obtain a consistent identity of each target over time

we use an optimized data association procedure based on

graphs [16]. Although this algorithm does not account for

clutter and spatial noise, it is less computationally intensive

than other probabilistic techniques (e.g., the Multi Hypotheses

Tracker [31]) and produces comparable or better results [16].

This choice is motivated by the fact that we do not need to

handle clutter measurements and sensor noise at this stage as

they have been already treated by the PHD filter.

Let a cluster center x̄k ∈ X̄k be represented by a vertex

v(x̄k) ∈ Vk of the graph G, where Vk is the set of vertices

representing the targets at time k. The tentative associations

between candidate targets at different instants of time are

described by the gain associated with each edge in G. The

graph is formed by iteratively creating new edges from the

old set of vertices, {Vk−j}j=1...W , to the new set of vertices,

Vk, associated with cluster centers of frame k. The possible

combinations of set of edges represent multiple track hy-

potheses, which account also for possible missing detections

and occlusions (i.e., edges between two vertices v(x̄k) and

v(x̄k−j), with j > 1). The final tracks are identified by the

best set of edges generated by the path cover of G with the

maximum gain. We define the gain g(x̄k, x̄k−j) of the edge

between x̄k and x̄k−j as

g(x̄k, x̄k−j) = log(N (x̄k;Gx̄k−j ,Σg(x̄k−j))P
k−j−1
m ) − Tg,

(23)

where Pm ≤ 1 penalizes shorter trajectories, G is defined

in (20), Σg(x) is a diagonal matrix with

diag(Σg(x)) = [σg,y(1)wx, σg,ẏ(1)wx, σg,y(2)hx, . . .
. . . , σg,ẏ(2)hx, σg,wwx, σg,hhx]

and Tg is a gating threshold defined by the 99 percentile of

the Gaussian. An edge is added to Vk if g(x̄k, x̄k−j) > 0.

Estimating the maximum path cover (i.e., the maximum sum of

edges given the tracking constraints) of the graph corresponds

to maximizing the likelihood over the set of edges (i.e.,

correspondences) represented in the graph. To this end, we

enforce a bi-partitioning of the graph and solve the maximiza-

tion problem by means of the algorithm from Hopcroft and

Karp [32]. The complexity of this algorithm is O(n2.5), where

n is the number of vertices in Vk.

IV. EXPERIMENTAL RESULTS

In this section we report on tests of the proposed multi-target

tracking framework on real-world scenarios. In particular,

we assess the contribution of the Particle PHD filter and

of the dynamic and observation models with state-dependent

variances on the tracking result. To test the flexibility of the

proposed framework we use two different detectors, namely a

change detector and a face detector.

The parameters used in the simulations are the same for

all test sequences and, unless otherwise stated, they are the

same for the two detectors. The values of the parameters are

empirically chosen and a sensitivity analysis for these choices

is given later in this section. The particle PHD filter uses

ρ = 2000 particles per target and τ = 500 particles per detec-

tion. The standard deviations of the dynamic model defining

target acceleration and scale changes are: σn(1) = σn(2) =
σn(w) = σn(h) = 0.04. The standard deviations of the Gaussian

observation noise are: σv(w) = σv(h) = 0.15 for the change

detector and 0.1 for the face detector. Larger spatial noise is

used in the change detector case as we have to cope with

the errors related to merging and splitting of the blobs. The

birth intensity parameter defining the number of new targets

per frame is s̄ = 0.005. The number of observations due to

clutter is set to r̄ = 2.0 clutter points per frame. The missing

detection probability PM = 0.05, and the survival probability

ek|k−1 = 0.995. The new-born particles are spread around the

detections with σb,y(1) = σb,y(2) = σb,w = σb,h = 0.02 and

σb,ẏ(1) = σb,ẏ(2) = 0.05. The resampling strategy uses Ns = 7
stages. The number of resampled particles for GMM clustering

is ρGM = 500 per target. Clusters with weight lower than

S = 10−3 are discarded, while TM = 0.5 is used to accept the

cluster centers as real targets. For data association, the depth of

the graph is W = 50 and means that the algorithm is capable

of resolving occlusions for a maximum of 2 seconds with a

25Hz frame rate. The parameters of the gain function of (23)

are: σg,y(1) = σg,y(2) = 0.075, σg,ẏ(1) = σg,ẏ(2) = 0.09,

σg,w = σg,h = 0.15, Pm = 0.5 for the change detector and

0.9 for the face detector. The higher value of Pm used in the
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TABLE III
COMPARATIVE RESULTS ON SDV DYNAMIC AND OBSERVATION MODELS

ON THE TWO TESTING SCENARIOS BW (BROADWAY CHURCH) AND QW
(QUEENSWAY) FROM THE CLEAR-2007 DATASET.

BW QW
SDV Linear SDV Linear

MODP
Avg 0.537 0.530 0.382 0.377

Significance 5.55E-09 1.54E-02

MODA
Avg 0.444 0.429 0.211 0.153

Significance 2.63E-04 7.33E-06

MOTP
Avg 0.544 0.536 0.388 0.381

Significance 9.75E-08 3.37E-03

MOTA
Avg 0.436 0.415 0.194 0.128

Significance 2.11E-06 1.28E-06

face detector lowers the penalty on edges modeling missing

detections and occlusions. As we will see in the following

this facilitates track continuity when a face is occluded by the

other objects in the scene.

The main body of the tests is conducted on the CLEAR-

2007 dataset using a change detector. The dataset contains 25
sequences from two different surveillance scenarios, Broadway

Church (BW) and Queensway (QW).The videos have a frame

size of 720×480 pixels with a frame rate of 25Hz. The ground-

truth annotation is available for 121354 frames (approximately

1 hour and 21 minutes of video), divided into 50 evaluation

segments.

The detector used is a color statistical change detector [29],

followed by morphological filtering and connected component

analysis. To facilitate the reproducibility of the experiments,

the files containing the detector output Zk are available at

http://www.elec.qmul.ac.uk/staffinfo/andrea/PHD-MT.html.

The objective performance evaluation follows the VACE-

CLEAR protocol [33], which uses four scores, namely Multi-

ple Object Detection Accuracy (MODA), Multiple Object De-

tection Precision (MODP), Multiple Object Tracking Accuracy

(MOTA) and Multiple Object Tracking Precision (MOTP).

Unless otherwise stated the MOTP and MOTA values for each

scenario are the average over the evaluation segments weighted

by the segment frame span.

Table III shows the performance comparison between the

SDV dynamic and observation models described in Sec. II-E,

and linear models with fixed variances. Fixing the variances

is equivalent to removing from (20) and (21) all references

to target width, w, and height, h. The fixed values of the

standard deviations are chosen as a compromise between large

and small targets (σn(1) = σn(2) = σn(w) = σn(h) = 3 and

σv(w) = σv(h) = 5). The tracker with SDV models is better in

terms of both precision and accuracy. Also, the significance of

the performance difference is always below the 5% validation

threshold. The compromise selected for the standard deviation

values is not appropriate near the extrema of the target scale

range. When a large object (i.e., 200 pixels wide) is partially

detected, the error associated with the observation zk may

be several times larger than the standard deviation. Similarly,

while an acceleration of 3 pixels per frame may be appropriate

for a middle–size target, this value is large compared to the

typical motion of a pedestrian located in the camera’s far-field.

To quantify the change in performance when adding the

PHD-MT vs MT (Score difference) - BW
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Fig. 5. Difference of tracking result between the multi-target tracker
with (PHD-MT) and without (MT) PHD filter. The bar plots show the
evaluation score difference for all the evaluation segments in the two scenarios
of the CLEAR-2007 dataset. Top: BW (Broadway Church); bottom: QW
(Queensway). The last set of four bars shows the average difference over
the segments of each scenario. Positive values correspond to performance
improvements achieved with the PHD filter.

PHD filter to the tracking pipeline, we compare the multi-

target tracker based on the particle PHD filter (PHD-MT)

with the multi-target tracker (MT) where the data association

described in Sec. III is performed directly on Zk. Figure 5

shows the difference in terms of evaluation scores between

PHD-MT and MT. The last set of bars in the two plots

shows the average results over the segments. It is possible

to notice that the filtering of clutter and noise consistently

improves both accuracy and precision for all the evaluation

segments in both scenarios. In the video segments with higher

levels of clutter and where tracking is more challenging, the

performance improvement is larger. Similar considerations

can be drawn by comparing the results of the two different

scenarios. More false-positive detections are generated by the

change detector on QW; by removing these false positives, the

PHD-MT obtains larger improvements in terms of evaluation

scores than on BW (Fig. 5).

Sample results of the PHD-MT used to process the output

of the change detector are shown in Fig. 6. In this challeng-

ing situation generated by a sudden change in illumination,

although the target size accuracy is not perfect, the heavy

clutter is filtered by PHD-MT (Fig. 6, second, third and fourth

row). Furthermore, in cases when a target generates noisy

observations, the spatial smoothing produced by the PHD filter
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(a) (b) (c)
Fig. 6. Comparison of tracking results between the multi-target tracker with
(PHD-MT) and without (MT) PHD filter. (a) Detections (color-coded in red)
and PHD output (color-coded in green). Several false detections are filtered by
the PHD (second, third and fourth row). (b) MT results. (c) PHD-MT results.
False tracks due to clutter are removed by PHD-MT.

facilitates data association preventing an identity switch on the

same target (Fig. 6, third row, the pedestrian in the center of

the scene).

Figure 7 shows the accuracy and the precision scores when

we change the set-up of the PHD filter parameters. Each plot

was obtained by changing with log2 scale one parameter at a

time while fixing the rest to values defined at the beginning

of this section. It is interesting to observe that large variations

of tracking performance are associated with changes of the

observation and dynamic model configurations (see Fig. 7

for σv(.) and σn(.)). Too large or too small noise variances

result in insufficient or excessive filtering and produce a drop

of tracking accuracy. Also, decreasing ρ (i.e, the number

of particles per estimated target) reduces the quality of the

filtering result as the approximation of the PHD propagation

becomes less accurate. The PHD filter is less sensitive to

variation of the other parameters. In the case of birth and

clutter parameters (s̄ and r̄), low variability is associated with

the fact that birth and clutter events are relatively sparse in

the state and observation spaces. When varying r̄, the average

number of clutter points per scan, the result is stable until

r̄ is grossly overestimated. Similarly, only a small impact

is associated with variations of missing detection (PM ) and

survival (ek|k−1) probabilities.

To demonstrate the flexibility and modularity of the pro-

posed multi-target framework, we show the results obtained

when substituting the change detector with a face detec-

tor [30]. The dataset used in this section is available at

ftp://motinas.elec.qmul.ac.uk/pub/multi face. Figure 8 shows a

comparison of the results obtained with and without the use of

the PHD filter on the detected faces. When false detections are

processed, the mass of the PHD starts growing around them.
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Fig. 7. Sensitivity analysis on the parameters of the PHD filter. Average
evaluation scores on the Broadway Church (BW) scenario.

Multiple coherent and consecutive detections are necessary to

increase the mass to a level greater than TM . For this reason,

when the clutter is not persistent, the PHD filter removes it. As

mentioned earlier, due to the trade-off between clutter removal

and response time, the drawback of this filtering is a slower

response in accepting the birth of a new target.

In addition to the above, Fig. 8 shows how the combination

of PHD filtering with the graph-based data association is able

to recover the identity of faces after a total occlusion: in the

third and fourth row, although a face is occluded by another

person, data association successfully links the corresponding

tracks. Finally, the results of PHD-MT compared with MT

shows that two false tracks on the shirt of one of the targets

are removed by the PHD-MT only.

To complete the analysis of the results, Fig. 9 shows two

examples of failure modalities of the particle PHD filter.

The close-up images in Fig. 9, top row, show a first failure

modality. The change detector generates for the person in

the far-field detections that are inconsistent over time. These

detections are considered by the PHD filter as clutter and

therefore eliminated. Figure 9, bottom row, shows a sample

result when one of the assumptions of the PHD filter is violated

(Sec. II-C), i.e., the targets generate dependent observations.

As the targets overlap, the change detector merges the two

blobs and produces one observation only. In this case the

change of size is outside the range of changes modeled

as noise. When the targets split, the delay introduced by
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(a) (b) (c)
Fig. 8. Comparison of tracking results between the multi-target tracker
with (PHD-MT) and without (MT) Particle PHD filtering. (a) Detections
(color-coded in red) and PHD output (color-coded in green). Several false
detections are filtered by the PHD (First, second and third row). (b) MT
results. (c) PHD-MT results. The PHD-MT successfully recovers the faces
after a total occlusion without generating false tracks.

Fig. 9. Failure modalities of the Particle-PHD filter when using a change
detector. The red boxes are the observations and the green boxes are the
output of the PHD filter. (Top row) Inconsistent detections in the far field are
interpreted by the PHD filter as clutter and therefore removed. (Bottom row)
Interaction between targets (object merging) generates a bounding box for a
group of objects.

the PHD filter generates a set of missing detections. While

splitting could be partially handled by enabling spawning form

targets (see (15)), merging of observations poses a problem

as the PHD was originally designed to track using punctual

observations just as for those generated in a radar scenario,

where the target interaction is weak. These problems can be

overcome by using a trained object detector (e.g., a vehicle

detector), within the same framework.

The computational cost of the Particle PHD filter is com-

parable to that of the two object detectors (Fig. 10). The

data association has low influence on the overall cost as the

Tracking based on face detection

81.4%

0.2% 4.5% 13.9%

Tracking based on change detection

67.6%

0.5% 5.4%
26.5%

Detector

Particle PHD

GMM clustering

Data association

Fig. 10. Percentage of computational resources allocated to each of the
tracker blocks. The PHD filter requires fewer resources than the detectors.

computation is based on positional information only. If more

complex gain functions are used to weight the edges of the

graph (for example by comparing target appearances using

color histograms), then the data association would significantly

contribute to the overall computational cost. The larger re-

source share claimed by the Particle PHD filter with the change

detector, compared to the face tracking case, is mainly due to

the larger average number of targets in the scene.

Figure 11 shows the processing time versus the number of

targets estimated on the BW scenario. The processing time of

the full tracker (PHD-MT) is compared with that of the recur-

sive filtering step (PHD&GMM). The results are obtained with

a non-optimized C++ implementation running on a Pentium

IV 3.2GHz. As the number of particles grows linearly with

the number of targets and the number of observations, the

theoretical computational cost is also linear. The mild non-

linearity of the curve PHD&GMM is due to the fact that with

a low number of particles the processor performs most of

the operations using the cache memory. When the number of

targets increases, the filter propagates more particles and the

curves become steeper as the cost is now associated with the

use of off-chip memory. Also, a larger overhead of PHD-MT is

due to the non-optimal implementation of the object detector

(0.5 seconds/frame), and not to the filter itself. Furthermore,

as most of the calculations necessary to propagate a particle

depend on its previous state only, the Particle PHD is well

suited for a parallel implementation. With an optimized im-

plementation of the detector and a GPU (Graphics Processing

Unit) or multi-core implementation of the PHD filter, the

tracker could achieve real-time performance. It is of interest

also to compare the computational time of PHD&GMM with

the hypothetical results of a particle implementation that

propagates the full multi-target posterior (FP). When one target

only is visible, then the PHD and the FP resort to the same

algorithm (that takes 40 milliseconds/frame). With multiple

targets, because the dimensionality of the state space in FP

grows, an exponential number of particles is necessary to

achieve a constant density sampling. The computational time

per frame of an FP implementation would then be: 1.5 seconds

for two targets, 40 minutes for four targets and 187 years

with 8 targets. In this case, the only feasible approach would

be to use a more efficient sampling method in an MCMC

fashion [9]. Unlike FP, the PHD filter limits the propagation

of the particles to the single target state space and thus achieves

linear complexity.

V. CONCLUSIONS

We have presented a multi-target visual tracker that employs

Particle PHD filtering to remove clutter and missing detections
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Fig. 11. Processing time in milliseconds versus estimated number of targets
in the scene on a sequence from the CLEAR-2007 dataset. PHD-MT: full
tracker; PHD&GMM: PHD filtering and GMM particle clustering steps.

from noisy observations. The motion of the targets and the

noise on the observations are modeled using Gaussians with

scale-dependent variances. To account for the different nature

of the particles a multi-stage resampling strategy has been

proposed. The resulting set of particles is clustered by a

modified GMM adapted to the Particle PHD. To generate the

final tracks, the centers of the clusters are processed by a data

association algorithm based on graph matching. The proposed

algorithm has the capability to remove non-persistent clutter, to

filter missing detections, to smooth the tracks, and to overcome

short-term occlusions. The approximation introduced by the

PHD filter allows the reduction of computational cost from ex-

ponential (with the number of targets) to linear. Experimental

results over a large dataset of real-world sequences show that

the Particle PHD filter improves the robustness of the tracker

against clutter by verifying the coherence of consecutive sets

of detections.

As part of our current work, we are investigating data-

driven methods to learn the parameters of the filter and models

of track merging and splitting that combine the information

within the PHD filter and the vertices of the graph. Future

work also includes the integration of the proposed framework

with an event detection algorithm to extract higher-level in-

formation from surveillance videos.
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