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Abstract 23 

Motivation: Current dynamic phenotyping system introduces time as an extra 24 

dimension to genome-wide association studies (GWAS), which helps to explore the 25 

mechanism of dynamical genetic control for complex longitudinal traits. However, 26 

existing methods for longitudinal GWAS either ignore the covariance among 27 

observations of different time points or encounter computational efficiency issues. 28 

Results: We herein developed efficient genome-wide multivariate association 29 

algorithms (GMA) for longitudinal data. In contrast to existing univariate linear 30 

mixed model analyses, the proposed new method has improved statistic power for 31 

association detection and computational speed. In addition, the new method can 32 

analyze unbalanced longitudinal data with thousands of individuals and more than ten 33 

thousand records within a few hours. The corresponding time for balanced 34 

longitudinal data is just a few minutes.  35 

Availability and Implementation: We wrote a software package to implement the 36 

efficient algorithm named GMA (https://github.com/chaoning/GMA), which is 37 

available freely for interested users in relevant fields. 38 

  39 
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Introduction 40 

Genome-wide association studies (GWAS) have been used to detect many genetic 41 

variants associated with various quantitative traits and complex diseases. Linear 42 

mixed models (LMM) adopted to GWAS (Kang, et al., 2008; Lippert, et al., 2011; Yu, 43 

et al., 2006; Zhou and Stephens, 2012) are able to capture genetic correlation among 44 

individuals, correct confounding environmental factors and control population 45 

stratification. However, most LMM based GWAS analytical tools, such as 46 

EMMA/EMMAX (Kang, et al., 2010; Kang, et al., 2008), FaST-LMM (Lippert, et al., 47 

2011), GEMMA (Zhou and Stephens, 2012) and GCTA (Yang, et al., 2011), focus on 48 

traits that are measured only once. There are few methods available for GWAS 49 

dealing with longitudinal traits that are repeatedly measured during the life span of 50 

individual development.  51 

 52 

Longitudinal traits, also known as dynamic traits or functional traits, are dynamically 53 

changing over a period of time controlled by both genetic effects and environmental 54 

factors. Multiple measurements at various time points during a life cycle are usually 55 

collected as longitudinal traits. Recently, advanced dynamic phenotyping system in 56 

animal and plant genetic experiments (Fahlgren, et al., 2015; Porto, et al., 2015) 57 

makes it feasible to acquire high throughput time varied datasets. Such repeated 58 

measurements under varying environmental conditions can improve statistical power 59 

of quantitative trait nucleotide (QTN) detection and help to further explore the 60 

mechanism of dynamical genetic control for complex longitudinal traits (Li and 61 
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Sillanpaa, 2015; Wu and Lin, 2006). Analyzing such types of datasets also promotes 62 

early prediction of longitudinal traits and diseases (Kellogg, et al., 2014; McSweeney, 63 

et al., 2014). 64 

 65 

However, currently employed analytical methods, such as varying-coefficient 66 

regression (Gong and Zou, 2012) and estimation equation (Xiong, et al., 2011), are 67 

computationally intensive compared to the univariate counterpart. An alternative way 68 

to improve computational efficiency is to analyze each single time point separately 69 

and then integrate test statistics across time points to determine the overall 70 

significance (Kwak, et al., 2014). However, the single time point analysis is 71 

inefficient in QTN detection because it ignores the covariance among observations of 72 

different time points. 73 

 74 

Random regression models (RRM) are multivariate linear mixed models (mvLMM) 75 

and have been widely applied to longitudinal data analysis in animal breeding 76 

(Schaeffer, 2004). Our previous studies demonstrated the advantages of longitudinal 77 

GWAS over single trait GWAS (Ning, et al., 2017). In our previous methods, we treat 78 

SNP effects as fixed regression coefficients and use a sparse matrix technique in 79 

ASReml (Gilmour, et al., 2014) along with the population parameters previously 80 

determined (P3D) algorithm (Zhang, et al., 2010) to reduce computing time. 81 

However, it is still computationally challenging when a marker inferred dense kinship 82 

matrix (rather than a sparse pedigree derived numerator relationship matrix) is used to 83 
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capture individual genetic relationships. With the marker inferred kinship matrix, the 84 

computational complexity is O(m3), where m is the total number of phenotypic 85 

records.  86 

 87 

To address the computational efficiency issue, we developed two efficient algorithms 88 

for longitudinal trait GWAS: fixed regression strategy with eigenvalue decomposition 89 

(Kang, et al., 2008; Lee and van der Werf, 2016; Zhou and Stephens, 2014) (GMA-90 

fixed) and linear transformation of genomic estimation values (Gualdron Duarte, et 91 

al., 2014; Ning, et al., 2018) (GMA-trans) for unbalanced and balanced longitudinal 92 

traits, where unbalanced means that different individuals may be recorded at different 93 

time points and balanced means that all individuals are measured at the same time 94 

points. In order to investigate the properties of our new methods, a series of 95 

simulation studies were conducted to compare the methods with the existing 96 

univariate linear mixed model method. Furthermore, we validated our methods using 97 

an unbalanced dairy cow milk production dataset and a balanced mouse growth 98 

dataset. 99 

 100 

Results 101 

1 Method overview 102 

Some key features of the new methods are presented here. Details of the new methods 103 

are presented in Supplementary Note (Additional file 1). In the variance parameters 104 

estimation, we incorporated the expectation-maximization (EM) algorithm into the 105 
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average information (AI) matrix to build a weighted information matrix (Jensen, 106 

1997), which guarantees the variance parameters to converge rapidly within their 107 

legal domain. In the longitudinal GWAS analysis, the GMA-fixed and GMA-trans 108 

algorithms are applied in unbalanced and balanced data, respectively (Figure 1). In 109 

GMA-fixed, we treated each SNP effect as fixed regression coefficients and used the 110 

Legendre polynomials to model the time-dependent SNP effects. Similar to the studies 111 

of Kang, et al. (2010) and Zhang, et al. (2010), we estimated the variance parameters 112 

from the null model and then used these estimated parameters in subsequent analysis 113 

when markers are detected one at a time. The null model does not include the scanned 114 

SNP but it does include the polygenic effect captured with the kinship matrix. We 115 

performed eigenvalue decomposition on the phenotypic (co)variance matrix and 116 

rotated the RRM with eigenvectors. This allows us to transform the mixed model 117 

analysis into a weighted least squares analysis. The computational complexity of such 118 

a longitudinal GWAS step is reduced from O(m3) to O(m2) per-SNP. Parallel to GMA-119 

fixed, we also performed linear transformation on the genomic estimated values in 120 

GMA-trans for unbalanced longitudinal GWAS. The basic idea in phenotype 121 

prediction is that the time varied additive genetic effect of each individual is 122 

cumulative in terms of genome-wide SNP effects. Here, we first estimated the time 123 

varied additive effects with the RRM for each individual and then transformed effects 124 

for individuals to time varied SNP effects. Wald tests were used to examine 125 

significant associations of individual SNPs with the phenotype. Compared with 126 

GMA-fixed, GMA-trans takes advantage of some intermediate results of matrix 127 
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calculation in the variance parameter estimation step and avoids calculation of the 128 

phenotypic (co)variance matrix and its eigenvalue decomposition. This has reduced 129 

the computational complexity from O(m2) to O([n(df + 1)]2), where n is the number of 130 

individuals and df is the order of the Legendre polynomials fitting the SNP effect. To 131 

ensure convergence of the iterations in the process of variance component estimation, 132 

df is usually less than five and thus n(df + 1) is smaller than m for the usual condition 133 

of more than five measures per individual. 134 

Additionally, we further enhanced the GMA performance for balanced longitudinal 135 

data through eigenvalue decomposition of the genomic relatedness matrix (time 136 

complexity of O(n3)) to rotate the RRM (time complexity of O(n2)). The time 137 

complexity of variance component estimation for the rotated RRM is O(n) compared 138 

with O(n3) of the unbalanced longitudinal data. With the rotated RRM, we improved 139 

the QTN detection power of GMA-fixed through re-estimating the variance 140 

components for each tested SNP. The computational complexity for GMA-trans is 141 

also reduced to O(n) in the rotated RRM.  142 

 143 

2 Simulations 144 

We first validated the performance of GMA with simulated data. A total of four 145 

methods were compared in the simulation study. The first two methods are existing 146 

ones and the last two methods are the proposed new methods. 147 

(1) uvLMM-mean: It represents univariate linear mixed model via the mean value. 148 

Here, we analysed a random measurement each time and repeated a certain 149 
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number of times for unbalanced data or analysed the measurement of each single 150 

time point separately for balanced data with the LMM method. The power 151 

estimation was obtained by taking the mean power across different analyses. We 152 

used this simulation study to obtain the empirical power of uvLMM that has 153 

ignored the time variable and thus the covariance matrix among different time 154 

points. 155 

(2) uvLMM-min: It represents univariate linear mixed model via the minimum value. 156 

The algorithm originated from Kwak, et al. (2014). With this method, we analysed 157 

a random measurement each time and repeated a certain number of times for 158 

unbalanced data or analysed one measurement for each time point separately for 159 

balanced data with the LMM method. The minimum p-value was used to 160 

determine the significance for a SNP. 161 

(3) GMA-trans: Linear transformation of genomic estimation values. 162 

(4) GMA-fixed: The fixed regression coefficient with eigenvalue decomposition. 163 

 164 

To make the simulation as close as possible to reality, we perform simulations based 165 

on two real datasets, a dairy cow dataset (Ning, et al., 2017) with milk yield trait and 166 

an inter-cross F2 mouse dataset (Gray, et al., 2015) with body weight trait. The dairy 167 

cow dataset is a large unbalanced one with 5,982 cows of 52,732 total records across 168 

days from the first lactation (from day 5 to day 305) and the total number of SNP 169 

markers is 71,527. The mouse dataset is small and balanced with 11,833 SNPs and 170 

1,212 mice measured from week 1 to week 16 incremented by 1 week. To study the 171 
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null distributions of different methods, we calculated the kinship matrix from the 172 

original SNPs and randomly shuffled each SNP across individuals when it was 173 

scanned to purposely destroy the association of the phenotypes with the scanned SNP. 174 

The p-values from the permuted samples are supposed to follow a uniform 175 

distribution U(0,1) under the null model. Figure 2 (the upper panels) shows that the 176 

type I errors are well controlled by our longitudinal GWAS algorithms and the 177 

uvLMM-mean algorithm, but are not controlled by the uvLMM-min method. 178 

 179 

We obtained empirical statistic powers of different methods by adding QTN effects 180 

back to the original phenotypes (Yu, et al., 2006). Nine different QTN effect functions 181 

(curves) were simulated for the unbalanced dairy cow data and the balanced mouse data 182 

(Supplementary Figure 1 and Supplementary Figure 2). The results are illustrated 183 

in Figure 2 (the lower panels) showing that the new methods have higher power than 184 

two uvLMM methods. In particular, the approximate GMA-fixed algorithm for the 185 

unbalanced data has almost the same power as GMA-trans, while the exact GMA-fixed 186 

algorithm for the balanced data (optimize variance parameters for each SNP) has the 187 

highest power. The uvLMM-mean algorithm has the lowest statistic power, which 188 

demonstrates the benefit of using the new GWAS methods of longitudinal traits. 189 

 190 

3 Application to real data 191 

Prior to scanning markers in the GWAS, we first compared our efficient algorithms 192 

for variance component estimation to two existing methods, Wombat (Meyer, 2007) 193 
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and MTG2 (Lee and van der Werf, 2016) (Table 1). In variance component 194 

estimation, the Wombat program uses a hybrid algorithm consisting of a few initial 195 

rounds of PX-EM (Liu, et al., 1998), followed by the AI algorithm, while MTG2 uses 196 

the pure AI algorithm with eigenvalue decomposition technique and moderates the 197 

magnitude of updates when the parameters go outside the legal domain of the 198 

parameter space. In general, the GMA methods converged faster with fewer iterations 199 

than the two methods. For the balanced longitudinal mouse data, our algorithm took 200 

only 2 seconds to complete the analysis while MTG2 took 5 seconds and Wombat 201 

took 40 minutes. Even for unbalanced longitudinal dairy cow data, the GMA method 202 

was substantially faster than Wombat.  203 

 204 

We now compared results of the longitudinal GWAS obtained via the GMA-trans and 205 

uvLMM method. The two took about the same amount of time for the unbalanced 206 

data, but GMA-trans is much faster than uvLMM for the balanced data. Furthermore, 207 

the current GMA-trans algorithm for unbalanced data is several times faster than the 208 

GMA-fixed algorithm. We compared the p-values from GMA-fixed and GMA-trans 209 

and discovered that they are exactly the same (Supplementary Figure 3, Panel A). 210 

For the balanced mouse data, GMA-fixed optimizes the variance components per SNP 211 

and is much slower than GMA-trans. However, the correlation coefficient of the p-212 

values between the two methods is very high (Pearson's r = 0.995). The p-values of 213 

GMA-fixed are often smaller than the p-values of GMA-trans (Supplementary 214 

Figure S3, Panel B), which means that GMA-fixed may detect more loci than GMA-215 
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trans. Taking into account the fast computational speed of GMA-trans and the high 216 

power of GMA-fixed (due to re-estimation of variance components), we pre-selected 217 

SNPs based on a relaxed p-value criterion, say p-value < 0.01, from GMA-trans and 218 

then recalculated the p-values from GMA-fixed. As a result, the lost power by GMA-219 

trans has been be rescued by GMA-fixed (Supplementary Figure S3, Panel C), yet 220 

the reduced computational time remained at the same level (about 7 minutes) as the 221 

GMA-trans method. 222 

 223 

For the unbalanced dairy cow data, both GMA-fixed and GMA-trans identified four 224 

significant SNPs (three at 1.65-1.81Mb and one at about 4.36Mb on chromosome 14) 225 

for milk yield without inflated false positives after multiple test correction using false 226 

discovery rate (FDR) with FDR < 5% (q value < 0.05) (Supplementary Figure 4). 227 

One of the SNPs (1,801,116bp) is located within the DGAT1 gene (1,795,351-228 

1,804,562bp) that is reported to be a major gene affecting milk production traits 229 

(Grisart, et al., 2004), and all significant SNPs are within the boundary of the reported 230 

QTL for milk yield (Hu, et al., 2015). We compared the additive effect curves of the 231 

four significant SNPs with milk yield trajectory in Supplementary Figure 5 and 232 

found very similar patterns between the curves, though the peak time of SNP effects 233 

(at about 200 days) is delayed compared to the peak time of the phenotypic trajectory 234 

(at about 80 days). The results indicate that DGAT1 exhibits its main effects after the 235 

lactation peak and may contribute to the persistency of milk production (Strucken, et 236 

al., 2015). 237 
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 238 

For the balanced mouse data, GMA-fixed detected two candidate regions (112-128Mb 239 

on chromosome 10 and 75-88Mb on chromosome 13; q value < 0.05) (Figure 3A,B), 240 

while GMA-trans only detected one of the two regions (119-125Mb on chromosome 241 

10; q value < 0.05) (Figure 3C,D). In this study, we also used the uvMLM-min 242 

method for comparison. The quantile-quantile (Q-Q) plot in Figure 3E shows that 243 

uvMLM-min appears to have higher type I errors than GMA, which is consistent with 244 

the simulation study. We then used the permutation test to determine the p-value 245 

threshold (genome-wide significance level of 0.05) for declaration of significance. 246 

This criterion led to the detection of one candidate region (118-125Mb on 247 

chromosome 10) (Figure 3F). Meanwhile, we compared the additive effect curves of 248 

the significant SNPs with the phenotypic trajectory (Figure 4). The additive effect 249 

curves of significant SNPs on chromosome 10 have patterns similar to the phenotypic 250 

trajectory. The region has also been reported as a candidate QTL by Gray, et al. 251 

(2015). However, the additive effect curves of the new candidate QTL on 252 

chromosome 13 are concave in shape and the QTL effect is inverse in the interim 253 

compared to the beginning and end (Figure 4C). 254 

 255 

Discussion 256 

Longitudinal GWAS provides an appealing approach to probe the dynamic genetic 257 

mechanism of complex traits. However, successful application of the longitudinal 258 

GWAS is challenged by cryptic genetic relationship, dependency among the time 259 
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course observations and time-consuming computation challenge. Here, we developed 260 

efficient analysis algorithms for longitudinal GWAS dealing with either balanced or 261 

unbalanced longitudinal data. Our algorithms are based on RRM, a multivariate linear 262 

mixed model (mvMLM). The RRM includes a time varied polygenic effect and a 263 

permanent environmental effect to explain the cryptic genetic relationship and 264 

dependency among observations. To improve the computational efficiency, we built a 265 

weighted information matrix from the EM algorithm and the AI information matrix, 266 

which guarantee the variance parameters to converge with fewer iterations. In the 267 

meantime, we proposed the fixed regression coefficient approach accompanied with 268 

eigenvalue decomposition strategy (GMA-fixed) and linear transformation of 269 

genomic estimation values (GMA-trans) algorithms. Simulations based on genotypes 270 

and phenotypes of actual populations show that our algorithms perform very well in 271 

terms of high statistical power and low false positive rate compared with the 272 

conventional uvLMM implemented GWAS. Application to the unbalanced dairy cow 273 

data and the balanced mouse data further validated the benefits of our longitudinal 274 

GMA. 275 

 276 

There are various dynamic patterns of genetic controls represented by permanent 277 

QTLs, early QTLs, late QTLs and inverse QTLs (Wu and Lin, 2006). In this study, we 278 

used Legendre polynomials to model the dynamic changing process of QTL. This is a 279 

non-parametric approach because it makes no assumption about the shape of the 280 

curve. The method also reduces the correlations between the estimated random 281 
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regression coefficients so that variance parameter estimation converges very rapidly. 282 

From the analyses of the two real data, we observed that the main QTLs tend to have 283 

similar changing patterns with the phenotypic curve, indicating that these QTLs 284 

determine the dynamic genetic mechanism of longitudinal traits. We also identified an 285 

inverse QTL (one genotype performs better than the other during early stage of 286 

growth, but the other genotype performs better during later stage of the growth) for 287 

the mouse data with GMA-fixed. These QTLs and others with minor effects can play 288 

a regulation role in shaping the final phenotypic trajectory. 289 

 290 

For balanced data, GMA-fixed is more powerful than GMA-trans because it optimizes 291 

the variance parameters per SNP, but the latter is much faster. The GMA-trans step 292 

followed by the GMA-fixed step is recommended because it takes advantage of the 293 

high power of GMA-fixed and the high speed of GMA-trans. For unbalanced data, it 294 

is time consuming to optimize the variance components for each SNP. Since GMA-295 

fixed and GMA-trans have similar power for unbalanced data, GMA-trans is 296 

recommended. 297 

 298 

In contrast to uvLMM with only two variance parameters (additive and residual 299 

variances), RRM has a complicated covariance structure with many variance 300 

parameters (depending on the orders of the Legendre polynomials). As a result, RRM 301 

may need more iterations to converge and, sometime, may encounter a convergence 302 

issue. If the iteration process stops early before convergence, the GMA algorithms 303 
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may be subject to a higher Type I error. The orders of the Legendre polynomials can 304 

be determined by a model selection criteria, such as Akaike information criterion 305 

(Akaike, 1974) (AIC) and Bayesian information criterion (Schwarz, 1978) (BIC). To 306 

avoid any convergence issue, three or four orders of Legendre polynomials are 307 

recommended in practice. If the GMA algorithm encounters convergence issue even 308 

with low order of Legendre polynomials, the GMA-trans algorithm with an increased 309 

iteration number in variance parameter estimation step is recommended. 310 

 311 

In our study, we focus on the traits changing over time. However, our developed GMA 312 

algorithm can be naturally applied to traits changing with other dynamic environmental 313 

covariates, such as solar radiation, solar radiation and temperature. Modern automatic 314 

information platforms can record abundant environmental data, while advanced 315 

genotyping technologies allow accessing to genomic information on a large scale. The 316 

GMA can utilize the two types of high dimensional information to tackle genome-wide 317 

genotypes and environments (G×E) interactions efficiently, which facilitates dissecting 318 

the complex genetic architecture of dynamic traits. 319 

 320 

Methods 321 

1 Data  322 

Two datasets were analysed in the study: a mouse data (Gray, et al., 2015) and a dairy 323 

cow data (Ning, et al., 2017). The mouse data contain 1,212 F2 from the cross 324 

between the Gough Island mice and the WSB/EiJ strain. The body weight trait was 325 
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measured from week 1 to week 16 incremented by 1 week (16 measurements per 326 

mouse). There are 11,833 available SNP markers across the mouse genome after 327 

proper quality control. The dairy cow data include 5,982 individual cows. The milk 328 

yield trait of the first parity were analysed in this study. The cows with less than six 329 

records were filtered out, which resulted a total of 52,732 records. The SNPs with a 330 

minor allele frequency (MAF) less than 0.03 and a failed the Hardy-Weinberg 331 

equilibrium (HWE) test (p-value < 10–6) were removed, resulting in 71,527 SNPs for 332 

the subsequent longitudinal GWAS analyses. 333 

 334 

2 Simulation 335 

In order to assess the null distributions of different models, we calculated the kinship 336 

matrix from the original SNPs and randomly shuffled each SNP across individuals 337 

when it was scanned to purposely destroy the association of the phenotypes with the 338 

scanned SNP. The covariance structure of original phenotypes induced by the 339 

complex cryptic genetic relationship among the individuals will not be disorganized 340 

in this way. Under the expectation that random SNPs are unlinked to polymorphisms 341 

controlling these traits, the cumulative p-value distribution follows a uniform 342 

distribution of U(0, 1). The empirical power was obtained from populations simulated 343 

from the genotypes of the current populations (the mouse and the cattle data) by 344 

assigning genetic effects to selected markers and adding maker effects back to the 345 

original phenotypes (Yu, et al., 2006), i.e., )()()(, tSNPstyty iinewi += . Where )(tyi  346 

is the observed phenotypic value of individual i at time t; is  is a genotype indicator 347 
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for individual i which is assigned 0, 1 and 2 for genotype aa, Aa and AA, respectively; 348 

SNP(t) represents the simulated time varied effect for selected marker; )(, ty newi
 is 349 

the newly generated phenotypic value of individual i at time t. We random selected 350 

100 SNPs from the genome and assigned then with nine different maker effect curves. 351 

The time varied SNP effects were then adjusted so that they contributed to some 352 

predetermined proportions of the phenotypic variance (average proportion across the 353 

time points, 0.02-2% at MAF of 0.5). The genetic effect curves were assigned to the 354 

100 random selected SNPs, one at a time. The simulated data were analysed by the 355 

proposed new methods and existing methods. A marker was declared as significant if 356 

the p-value was smaller than the empirical threshold (the 5th percentile of the null 357 

distribution). 358 

 359 

3 GMA algorithms 360 

Details of the GMA algorithms are described in Supplementary Note (Additional file 361 

1). 362 
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Table 1 Computational times of different methods for variance component estimation 469 

(including iteration number) and the subsequent step of GWAS. 470 

  Computational time 

Category Method Mouse data Dairy cow data 

Variance estimation Wombat 40 min (11) 105 (12) 

 MTG2 5 s (15) - 

 GMA 2 s (9) 5.3 h (7) 

    

GWAS uvLMM 14.4 min 3.7 h 

 GMA-fixed 5.1 h 16.5 h 

 GMA-trans 1.7 min 3.8 h 

 GMA-trans + GMA-fixed 7 min - 

 471 

All computations were performed on Intel Xeon E5 2.2 GHz CPU. We used the third 472 

order of Legendre polynomials for the mouse dataset and the forth order for dairy cow 473 

dataset. The same convergence criterion was used for all methods in variance 474 

estimation, where the iteration stopped when the difference of the log likelihood 475 

values between consecutive iterations is smaller than 0.001. The uvLMM method was 476 

implemented in the GEMMA (Zhou and Stephens, 2012) package. In variance 477 

component estimation, the Wombat program uses a hybrid algorithm consisting of a 478 

few initial rounds of PX-EM(Liu, et al., 1998), followed by the AI algorithm; MTG2 479 

uses the pure AI algorithm and moderates the magnitude of updates when the 480 

parameters go outside the legal domain of the parameter space; GMA incorporates the 481 

EM algorithm into the AI matrix to build a weighted information matrix. 482 

 483 
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 485 

 486 

Figure 1 Overview of GMA for unbalanced and balanced longitudinal GWAS. 487 

P3D represents “population parameters previously determined”, which estimates the 488 

variance parameters from the null model (without SNP effects) and keeps these 489 

estimated variances as constants in the marker scanning step that follows; V is the 490 

phenotypic (co)variance matrix; K is the marker inferred relationship matrix. 491 
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 502 

 503 

Figure 2 Cumulative p-value distributions and adjusted statistical powers of 504 

different methods in the simulation study. The left panels (A and C) represent the 505 

unbalanced dairy cow data and the right panels (B and D) represent for the balanced 506 

mouse data. The upper panels (A and B) represent distributions of the randomly 507 

shuffled SNPs. Under the null model, the cumulative p-value distribution should 508 

follow a uniform distribution of U(0,1) that overlaps with the diagonal line. Deviation 509 

from the diagonal line indicates spurious associations. The lower panels (C and D) 510 

represent the adjusted average power at different QTN contributions. The phenotypic 511 

variance is the average variance across different time points for QTN with allele 512 
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frequency 0.5. The average adjusted power is calculated from 100 QTNs with nine 513 

different effects of the genetic curves. The red line overlapping with the blue line in 514 

Panel C indicates that GMA-fixed and GMA-trans have very similar power for the 515 

dairy cow data analysis. 516 
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 518 

 519 

Figure 3 Association studies of growth trajectory in the mouse population with 520 

the GMA-fixed method (panels at the top), the GMA-trans method (panels in the 521 

middle) and the uvMLM-min method (panels at the bottom). 522 

 523 

  524 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted May 12, 2019. ; https://doi.org/10.1101/394197doi: bioRxiv preprint 

https://doi.org/10.1101/394197


26 

 

 525 

 526 

Figure 4 The phenotypic and significant SNPs changing pattern for body weight 527 

in the mouse data. (A) The average phenotypic values plotted against age (from 528 

week 1 to week 16 incremented by 1); (B) The predicted growth trajectories of QTL 529 

effects for all significant SNPs between 112Mb and 128Mb on chromosome 10 by the 530 

GMA-fixed method; (C) The predicted growth trajectories of QTL effects for all 531 

significant SNPs between 75Mb and 88Mb on chromosome 13 by the GMA-fixed 532 

method; (D) The predicted growth trajectories of QTL effects for all significant SNPs 533 

between 118Mb and 125Mb on chromosome 10 by uvMLM-min method. 534 
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