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Abstract

The CRISPR/Cas9 system has been implemented in a variety of model organisms to mediate site-directed mutagenesis. A
wide range of mutation rates has been reported, but at a limited number of genomic target sites. To uncover the rules that
govern effective Cas9-mediated mutagenesis in zebrafish, we targeted over a hundred genomic loci for mutagenesis using a
streamlined and cloning-free method. We generated mutations in 85% of target genes with mutation rates varying across
several orders of magnitude, and identified sequence composition rules that influence mutagenesis. We increased rates of
mutagenesis by implementing several novel approaches. The activities of poor or unsuccessful single-guide RNAs (sgRNAs)
initiating with a 59 adenine were improved by rescuing 59 end homogeneity of the sgRNA. In some cases, direct injection of
Cas9 protein/sgRNA complex further increased mutagenic activity. We also observed that low diversity of mutant alleles led
to repeated failure to obtain frame-shift mutations. This limitation was overcome by knock-in of a stop codon cassette that
ensured coding frame truncation. Our improved methods and detailed protocols make Cas9-mediated mutagenesis an
attractive approach for labs of all sizes.
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Introduction

There is an urgent need for precise, predictable, inexpensive,

and easy-to-use genome engineering tools that are applicable to a

wide range of model organisms and cell types. Existing genome

editing tools such as zinc-finger nucleases (ZFNs) and transcription

activator-like effector nucleases (TALENs) have enabled reverse

genetics in many systems [1], but their widespread adoption has

been limited by the cost of commercially available reagents, a

requirement for substantial molecular cloning, and/or unpredict-

able activity. The CRISPR/Cas system of bacterial adaptive

immunity has been recently applied to genome editing in many

model organisms [2,3]. Briefly, the S. pyogenes Cas9 enzyme uses a

short CRISPR RNA that directs cleavage through its comple-

mentarity to 20 bases of genomic DNA sequence, and a trans-

activating RNA that induces sequence-specific double-strand

breaks in targeted DNA adjacent to an NGG trinucleotide known

as the protospacer adjacent motif (PAM). The CRISPR RNA and

the trans-activating RNA can be fused to generate a single-guide

RNA (sgRNA) sufficient for site-directed cleavage of target DNA

[4]. This simplified system has been implemented in a variety of in

vivo settings, resulting in efficient mutagenesis by NHEJ-mediated

small insertions or deletions [5–9]. A primary advantage of the

Cas9 method over existing methods is that mutagenesis can be

directed to diverse genomic locations by simply exchanging the

sgRNA, without the need to reengineer the Cas9 enzyme. This

flexibility and the published rates of mutagenesis (comparable or

superior to ZFNs and TALENs) make Cas9 an attractive system

for site-directed mutagenesis.

Despite the rapid progress in Cas9-mediated genome engineer-

ing, several questions and limitations remain. Only a small

number of loci have been targeted in model organisms. For

example, in zebrafish [9–15], only 21 genes have been targeted.

Thus, the sequence rules for sgRNA effectiveness and the

spectrum of generated alleles remain unknown. Moreover, the

optimal methods for generating and delivering sgRNAs and Cas9

enzyme are still unclear. For example, in zebrafish, the current

design of sgRNAs restricts the targeting range to a subset of the

genome and it has been claimed that Cas9 protein injection

generates only modest indel frequencies [9,11]. Here we address
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these questions by targeting a large number of genomic loci in

zebrafish using an optimized Cas9 system and detecting mutations

with next-generation sequencing.

Materials and Methods

Detailed protocols for implementation are available as Supple-

mental Protocols S1.

Ethics Statement
All vertebrate animal work was performed at the facilities of

Harvard University, Faculty of Arts & Sciences (HU/FAS). The

HU/FAS animal care and use program maintains full AAALAC

accreditation, is assured with OLAW (A3593-01), and is currently

registered with the USDA. This study was approved by the

Harvard University/Faculty of Arts & Sciences Standing Com-

mittee on the Use of Animals in Research & Teaching under

Protocol No. 25–08.

Target site selection for the initial screen
Briefly, target sites were selected in exons across the genome

that matched the sequence GG-N19-GG, GA-N19-GG, or AG-

N19-GG. These sites were checked for uniqueness in RefSeq

protein coding regions using Bowtie [16] and the initially defined

specificity rules [6], which suggested an intolerance for mismatches

in the 39 twelve bases of the target site.

Cas9 cloning and protein expression
For in vivo expression of Cas9, the Cas9 open reading frame was

amplified from hCas9 [5] and cloned into the pCS2 vector to

generate pCS2-Cas9. For in vitro expression of Cas9, the hCas9

open reading frame cloned into pET-28b to generate pET-28b-

Cas9-His. Cas9 protein was expressed in E. coli Rosetta cells

(Novagen) using the auto-induction method [17], growing for

12 hours at 37uC, followed by 24 hour expression at 18uC.

Purification was performed using his-tag resin (G-Biosciences).

Buffers were 20 mM Tris pH 8, 30 mM Imidazole, 500 mM NaCl

for washes and 20 mM Tris pH 8, 500 mM Imidazole, 500 mM

NaCl for elutions. Fractions were dialyzed into 20 mM Tris,

200 mM KCl, 10 mM MgCl2 and single-use aliquots were frozen

in liquid nitrogen and stored at 280uC. Plasmids are available

from Addgene at http://www.addgene.org/Alex_Schier/.

sgRNA template generation and transcription
To generate templates for sgRNA transcription, gene-specific

oligonucleotides containing the T7 (59-TAATACGACTCAC-

TATA-39) or SP6 (59- ATTTAGGTGACACTATA-39) promoter

sequence, the 20 base target site without the PAM, and a

complementary region were annealed to a constant oligonucleo-

tide encoding the reverse-complement of the tracrRNA tail

(Supplementary Figure S1 and Table S1). The ssDNA overhangs

were filled in with T4 DNA polymerase (NEB), and the resulting

sgRNA template were purified using Qiaquick columns (Qiagen).

sgRNAs were transcribed using Megascript kits (Ambion). All

Figure 1. Cas9 directs a wide range of indel frequencies depending on sgRNA base composition. A. (left) Embryo survival at 24–30 hpf
compared to indel frequency. 59GG is black, 59GA is blue, 59AG is red. (right) Distribution of sgRNAs by indel frequency. B. G/C content of sgRNAs
compared to indel frequency. Means for each category are indicated in red and the mean across all sgRNAs is indicated in blue. C. Heatmap plot
showing position-specific effects on indel rates for nucleotide positions 3–21 (21 is the first base of the PAM). Color scale represents the increase in
indel frequency of a given sgRNA containing the indicated nucleotide at the specified position. D. sgRNA 59 dinucleotide pair compared to indel
frequency.
doi:10.1371/journal.pone.0098186.g001
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sgRNAs were then DNase treated and precipitated with ammo-

nium actetate/ethanol. Cas9 mRNA was transcribed from

linearized template DNA using mMachine SP6 kit (Ambion),

DNase treated, and precipitated with lithium chloride. RNA

concentration was quantified using Nanodrop spectrophotometer

and diluted and aliquoted as a 500 ng/ul 206 stock (sgRNAs) or

600 ng/ul 26 stock (Cas9 mRNA).

Fish husbandry and microinjection
For the initial screen, zebrafish TLAB strain zygotes were

collected and injected through the chorion with a mix of 25 pg

sgRNA, 300 pg Cas9 mRNA, and phenol red dye in a single mix.

Embryos were grown to 24–30hpf and genomic DNA extracted

from pools of 8–10 embryos (unless otherwise indicated) using the

HotSHOT method [18]. For comparison between Cas9 mRNA

and protein, higher levels of sgRNA were co-injected (200–300

pg). Cas9/sgRNA complex was formed by incubating protein with

sgRNA at room temperature for 5 minutes before injection.

Determination of somatic mutagenesis rates
To determine indel percentage using sequencing, a fusion PCR

method was used to attach Illumina P5 sequencing adapters and

barcodes to amplicons designed to surround the target site (Table

S1). Amplicons were quantified by visualization on agarose gel

before being pooled at roughly equal molar ratios. Pools of

amplicons were gel extracted and sequenced with MiSeq Personal

Sequencer (Illumina), 150 bp paired-end sequencing.

Each pair of reads was assigned to the correct loci based on

comparing the start of the sequenced reads (corresponding to the

amplicon primers) to the loci sequence. A match was required for

both reads for the pair to be associated with a locus. Next, both

reads were aligned to the locus using the Needleman-Wunsch

algorithm. A gap open penalty of 50 and an extend penalty of 0

Figure 2. 59GG dinucleotide pair and promoter choice influence sgRNA activity. A. Indel frequencies of 59GG sgRNAs modified with the
addition of a 59adenine. B. Indel frequencies of sgRNAs modified by substituting the 59 dinucleotide as indicated. C. Indel frequencies of sgRNAs
transcribed using either T7 (repeated data from above) or SP6 polymerase. Altered bases to the template are indicated in bold, mismatched bases to
the genome are underlined.
doi:10.1371/journal.pone.0098186.g002
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was used, reflecting the a priori assumption that there is either zero

or one gap of unknown length present.

A paired end read was considered to originate from a cut site if

it differed in length (i.e. contained an indel) by more than 1 nt in

comparison to the genome reference locus sequence [19]. In the

few cases where the two reads disagreed on the length, the most

conservative estimate was considered. Even some wild-type loci

have putative indels, likely due to genomic heterogeneity, technical

artifacts or sequencing errors, and therefore overall indel

frequency was calculated as the indel frequency of the reads from

Figure 3. Cas9 generates minimal allele diversity. Target sites and alleles are shown for four genes for pools of embryos or single embryos
(n = 12 per target with Cas9 mRNA, n = 12 per target with Cas9 protein). For each target site, the top panel is from a pool of embryos while the
bottom panel represents alleles from single embryos. Each plot indicates the observed mutant alleles using arches that connect the bases
surrounding the deletion. In the top panel, the y-axis and color of the arch indicate allele abundance; for ease of visualization, the bottom panel
indicates allele abundance only with color. PAM is indicated on the DNA sequence in uppercase. gria3a sgRNA induces only low indel frequencies
when injected with Cas9 mRNA.
doi:10.1371/journal.pone.0098186.g003
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the injected embryos minus the expected indel frequency

represented by the uninjected embryos.

Position specific biases were calculated by taking the mean cut

rate for all sgRNAs that have a given nucleotide at a given

position. The cut rate fold change was further calculated by taking

log2 of this value over the mean cut rate for all sgRNAs.

Stop codon cassette oligonucleotide design and
injection
Each oligonucleotide contained two 20 base homology arms

which flank the predicted Cas9-mediated breakpoint. These

homology arms surround the stop codon cassette, with sequence

59-GTCATGGCTAATTAATTAAGCTGTTGTAG-39. Embry-

os were injected as previously described, except with a mix of Cas9

protein/sgRNA complex and 1 mM oligonucleotide.

Verifying germline transmission of stop cassette insertion
Clutches of 20 embryos were collected from crossing adult

injected fish with uninjected wild-type fish. The isolated genomic

DNA was used for PCR amplification with a gene-specific primer

and a primer specific to the inserted sequence.

Figure 4. Overcoming allele biases by inserting stop codon oligonucleotide with injected Cas9/sgRNA complexes. A. Diagram of
Cas9/sgRNA complex injection. B. Purified His-tagged Cas9 protein complexed with sgRNA (n = 12 embryos per target) or Cas9 mRNA and sgRNA
(n = 12 embryos per target) were injected and indel frequency measured in single embryos at 1 dpf. C. Diagram of a stop codon oligonucleotide and
genomic target site for mezzo. D. Clutches of embryos from adult injected fish were screened by PCR for germline transmission using PCR with a
gene-specific primer and a primer specific to the inserted sequence (top panel), or two primers specific to the genome (bottom panel) as a positive
control. Specific products indicated with arrows, non-specific product indicated with an asterix. E. DNA sequence of a mezzo insertion allele
transmitted through the germline, 6/16 embryos in this clutch contained this mutation.
doi:10.1371/journal.pone.0098186.g004
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Results

Previous studies of ,20 genes have shown that Cas9-mediated

mutagenesis is effective in zebrafish [9–15]. To understand the

rules underlying optimal sgRNAs, we extended these studies by

targeting 122 loci in the zebrafish genome and used MiSeq deep

sequencing to analyze indel frequencies and compositions. We

used the previously described 59GG-N18-NGG sgRNA architec-

ture, while also relaxing the first two bases to allow 59AG-N18-

NGG or 59GA-N18-NGG target sites for some loci, since these

were previously suggested to be acceptable as initiating bases for

T7 RNA polymerase [9]. We chose target sites most likely to

generate a null allele in the target gene via NHEJ-generated indels.

As a simple approach to reduce Cas9-mediated off-target

mutations, we predicted possible off-targets in the genome using

the previously identified in vitro and in vivo determined rules for

targeting specificity (see Materials and Methods).

We developed a simple, scalable and cloning-independent

method for generating sgRNAs that requires only a single

oligonucleotide per target sequence (Figure S1). This method

generates a template for in vitro transcription of sgRNAs containing

the constant region shown to mediate the highest rates of

mutagenesis [20]. Cas9 mRNA and sgRNA were co-injected into

zebrafish zygotes, survival was scored at 24–30 hours post-

fertilization (hpf) and genomic DNA was prepared from injected

and uninjected embryos. PCR was used to amplify ,120–300

base pairs of genomic sequence surrounding the targeted locus and

to attach barcoded sequencing adapters. These amplicons were

purified, pooled, and subjected to sequencing using MiSeq to

obtain 1–2 million 26150 base paired-end reads. We adapted a

previously implemented algorithm to determine indel frequency

[19], and improved it to account for technical artifacts and

sequencing errors (see Materials and Methods).

85% of the sgRNAs induced somatic mutations with a mean

indel frequency of 17.7%, ranging across several orders of

magnitude (Figure 1A). There was no correlation between survival

rate and mutagenic activity. Many sgRNAs induced indel

frequencies .50%, suggestive of extensive biallelic conversion

(Figure 1A). This high level of mutagenesis indicates that Cas9 is

an effective method for generating targeted mutations in zebrafish,

in agreement with previously published results [9,10,12,13,15].

We used our large dataset to investigate several aspects of sgRNA

sequence composition to determine rules which governed effec-

tiveness. We observed a positive correlation between G/C content

and indel frequency (Figure 1B). Segregating the indel frequencies

of sgRNAs by nucleotide position revealed that sgRNAs with a

guanine adjacent to the PAM motifs exhibited significantly higher

indel frequencies than other bases (Figure 1C). These biases

confirm and extend a genome-scale assessment of Cas9 affinity for

sgRNAs in tissue culture cells, which indirectly indicated similar

G/C content and purine biases associated with sgRNA activity

[21]. These results indicate that sgRNAs with over 50% G/C

content and with a G adjacent to the PAM motif are optimal for

ensuring high rates of mutagenesis.

We observed a bias for sgRNAs generated from transcription

reactions initiating with the dinucleotide 59 AG to have poor or no

activity. While embryos injected with sgRNAs templated to initiate

with a 59AG, 59GA, and 59GG had similar survival rates

(Figure 1A) and transcription reaction efficiencies, 59AG sgRNAs

exhibited poor mutagenic activity in vivo, on average 5-fold worse

than 59GG sgRNAs (Figure 1D). 59GA sgRNAs showed a less

pronounced decrease in indel frequency. To determine whether

the 59adenine directly impacts sgRNA quality, several highly

active 59GG sgRNAs were modified by adding a single adenine

base to the 59 ends, and their mutagenic capacities were assayed in

vivo. The mutagenic activity of all three sgRNAs tested was

reduced 2 to 12-fold by addition of a 59 adenine (Figure 2A),

indicating that the 59A prevented mutagenic activity independent

of genomic location. To test whether G-to-A substitutions (instead

of additions) of 59GG sgRNAs would alter activity, 59GG sgRNAs

were converted to 59GA, 59AG, and 59AA. In all cases, the

mutagenic activity of the sgRNA was reduced by these base

substitutions (Figure 2B). Based on these results, we hypothesized

that 59GG may be sufficient to improve the mutagenic activity of

poor 59AG or 59GA sgRNAs. We converted several ineffective

59AG or 59GA sgRNAs to 59GG sgRNAs and observed up to 10-

fold increases in indel frequency (Figure 2B). We conclude that (i)

Cas9 can tolerate single base mismatches between the genome and

the 59end of the sgRNA, in agreement with previous studies

[6,13], and (ii) that these changes can improve activity.

We hypothesize that the poor activity of 59AG or 59GA sgRNAs

is caused by T7-derived in vitro transcription errors or heteroge-

neity caused by attempted initiation with bases other than 59GG,

as previously described [22–24]. Alternatively, Cas9 enzyme may

bias against 59AG or 59GA sgRNAs, though this seems unlikely

given published activities of sgRNAs containing alternative 59

dinucleotides generated by in vitro transcription-independent

methods [5,6]. To distinguish between these two possibilities, we

generated several 59GG or 59 GA sgRNAs using SP6 RNA

polymerase (Figure 2C). In contrast to T7 polymerase, the SP6

polymerase consensus initiation site is 59GA [25]. These sgRNAs

should be identical in sequence to those previously generated by

T7 polymerase. When we assayed the sgRNAs for in vivo activity,

we observed that all 59GA sgRNAs that previously exhibited poor

activity when transcribed by T7, now elicited strong mutagenesis

(Figure 2C). We conclude that the previous poor activity of 59AG

or 59GA sgRNAs was at least partially due to 59 end transcript

heterogeneity from in vitro transcription using T7 polymerase.

Additionally, SP6-derived 59GG sgRNAs were equally effective as

T7-derived sgRNAs. Although these data come from a limited set

of sgRNAs, they suggest that SP6 is a more flexible and thus

superior polymerase for in vitro synthesis of sgRNAs.

In addition to determining indel frequencies for targets, we used

our deep sequencing data to investigate the diversity of mutant

alleles. We discovered that many targets had a surprisingly small

number of predominant mutant alleles, even within a pool of ten

embryos (Figure 3, top panels). To exclude the possibility that

PCR amplification reduced diversity during library preparation,

we prepared genomic DNA from individual embryos at 24–30 hpf

and profiled somatic allele diversity. For all four targets tested,

specific mutant alleles were found to predominate in nearly all

embryos (Figure 3, lower panels). Indeed, analysis of the initial

screen sequencing data revealed that fewer than five alleles

predominated for most genes, suggesting widespread allele bias

after Cas9-mediated double strand breaks. We found that the

recurrent somatic alleles remained predominant in the germline

for the five genes that were tested. For certain genes, the

predominant alleles were not generating frame-shifting mutant

alleles (for example camk2g1 in Figure 3), which makes generating

mutants for protein-coding genes less predictable. These results

suggest that the DNA repair machinery corrects breaks in a

stereotyped and genome position-specific fashion, reducing allele

diversity.

We developed two improvements to our Cas9 methodology.

First, we hypothesized that injecting Cas9 protein would be more

effective than Cas9 mRNA because it could act immediately

following injection without a translational delay. However, a

recent publication showed only weak mutagenesis (#12% indel

Mutagenesis by Cas9 Protein-Mediated Oligonucleotide Insertion
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frequency) at two genes by direct injection of Cas9 protein/sgRNA

complexes [11]. We expressed a His-tagged Cas9 protein in E. coli

and purified it using standard nickel-based affinity purification

(Figure 4A). We co-incubated Cas9 protein and sgRNA at room

temperature to form the Cas9 protein/sgRNA complex in vitro,

microinjected the complex into zygotes and assayed indel

frequency as before. Injection of Cas9 protein/sgRNA complex

was remarkably non-toxic (,90% survival) andinduced as high or

higher rates of mutagenesis in vivo when compared to Cas9 mRNA

injection for all four targeted genes (Figure 4B). For example,

gria3a sgRNA, which generates only moderate indel frequencies

when injected with Cas9 mRNA, exhibited 6-fold better muta-

genesis with complexed and injected with Cas9 protein. This

suggests that the limiting step for some poor sgRNAs may be

binding to Cas9 and/or in vivo instability. Second, we developed a

method for ensuring production of a translation-terminating

mutation regardless of target site DNA repair biases. Several

groups have reported knock-in of small sequences, such as protein

tags or loxP sites, using single-stranded DNA oligonucleotides in

zebrafish [10,13,15]. We used a similar insertional strategy with an

oligonucleotide containing stop codons in all frames and 20

nucleotide homology arms on both ends to mediate insertion

(Figure 4C). Regardless of indel, frame, or orientation, upon

insertion the cassette will generate an in-frame stop codon to

terminate translation of the coding region. We implemented this

strategy for three genes, and determined germline transmission in

adults by screening pools of embryos by PCR using a gene-specific

primer and an insert-specific primer. For all three genes, we

observed germline transmission of the inserted stop codon cassette

(Figure 4D). To confirm that the stop codon cassette generated an

in-frame stop codon, we sequenced germline transmitted mutant

alleles and verified that they contain the predicted insertion and a

premature termination codon (Figure 4E). In conclusion, use of

Cas9 protein and stop cassette oligonucleotide insertion led to

consistently high rates of putative null alleles inherited through the

germline.

Discussion

Our study provides a large-scale assessment of sgRNA activity

and allele diversity and introduces several improvements to the

zebrafish Cas9 mutagenesis strategy. The detailed protocols for

target site selection, sgRNA production, stop codon cassette

design, Cas9 protein purification, injection and downstream

analysis are provided on our website and in the supplement

(Figure S2, Supplemental Protocols S1) and have already been

successfully implemented by several other laboratories. While we

tested these methods exclusively in zebrafish, they will also be

adaptable to Cas9-mediated mutagenesis methods in other model

organisms.

Our study provides seven advances in our understanding and

implementation of Cas9-mediated mutagenesis. First, our screen

of more than 100 sgRNAs revealed that sgRNAs can differ in

activity across orders of magnitude. Second, our large dataset

identified rules for optimal target site selection: a threshold of 50%

G/C content and a guanine adjacent to the PAM. Third, we

expanded the Cas9 targeting range using base substitution,

confirming and extending findings from other reports [13].

Fourth, we uncovered issues with the use of T7 polymerase for

in vitro transcription of sgRNAs, and we suggest SP6 polymerase as

a superior alternative. Fifth, we demonstrated high mutation rates

by directly injecting Cas9 protein/sgRNA complexes. The

discrepancy between our observations and a previous report

demonstrating only modest activity by Cas9 protein in zebrafish

embryos [11] could be due to locus-specific effects, protein

concentration differences, and/or other technical issues. Sixth, our

deep sequencing data showed that certain alleles dominate after

DNA repair of Cas9-mediated double strand breaks, and these

predominant alleles are transmitted through the germline. Finally,

knock-in mutagenesis of a stop codon cassette ensures open

reading frame truncation regardless of predominant indel alleles.

Use of an insertion-based mutagenesis approach for open reading

frame truncations has an additional advantage: while small indel-

based mutations require laborious allele-specific genotyping assays,

the stop codon cassette can be used as a site for primer binding,

allowing rapid genotyping.

Supporting Information

Figure S1 Generating sgRNAs through template assem-

bly and in vitro transcription. A gene-specific oligo is

annealed to a constant oligonucleotide and filled in with DNA

polymerase. This template is purified and used in an in vitro

transcription reaction.

(TIF)

Figure S2 Pipeline for making mutants with Cas9.

Flowchart of Cas9/sgRNA-mediated mutagenesis.

(TIF)

Table S1 Screen results and primer design. Genomic

coordinates, target site, 59 dinucleotide, percent survival at 24 hpf,

indel frequency and primer design for amplicon sequencing for all

targets in the initial screen are provided.

(XLSX)

Supplemental Protocols S1 Detailed protocols are provided in

the Supplemental Protocols to guide users through each step of

Cas9/sgRNA-mediated mutagenesis.

(DOCX)
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