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Abstract: Manually designing a convolutional neural network (CNN) is an important deep learning
method for solving the problem of image classification. However, most of the existing CNN structure
designs consume a significant amount of time and computing resources. Over the years, the demand
for neural architecture search (NAS) methods has been on the rise. Therefore, we propose a novel
deep architecture generation model based on Aquila optimization (AO) and a genetic algorithm (GA).
The main contributions of this paper are as follows: Firstly, a new encoding strategy representing the
CNN coding structure is proposed, so that the evolutionary computing algorithm can be combined
with CNN. Secondly, a new mechanism for updating location is proposed, which incorporates three
typical operators from GA cleverly into the model we have designed so that the model can find
the optimal solution in the limited search space. Thirdly, the proposed method can deal with the
variable-length CNN structure by adding skip connections. Fourthly, combining traditional CNN
layers and residual blocks and introducing a grouping strategy provides greater possibilities for
searching for the optimal CNN structure. Additionally, we use two notable datasets, consisting of
the MNIST and CIFAR-10 datasets for model evaluation. The experimental results show that our
proposed model has good results in terms of search accuracy and time.

Keywords: convolutional neural network; Aquila optimization; residual block; neural architecture
search

1. Introduction

CNN is a widely used neural network architecture which is formulated by biol-
ogists Huber and Wiesel in their early work on cat visual cortices. It can be applied
to many problems in image classification and segmentation [1–3] and natural language
processing (NLP) [4,5]. However, designing CNN structures completely manually is a
complex task. For example, traditional network designs, such as LeNet [6], AlexNet [7], and
ResNet [8]. These networks not only rely heavily on existing deep learning architectures
when designing manually but also require the re-selection of appropriate structures and
hyperparameters for specific tasks.

However, owing to the high-dimensional properties of the neural networks, neuroevo-
lution is mainly employed for reinforcement learning of shallow networks. Stanley et al.
attempted to address this question with hypercubic-enhanced topological neuroevolution
(HyperNEAT) [9], which acts as an indirect coding method that can generate millions of
networks, but still has a low fitness for optimal CNNs and is therefore considered more
suitable as a feature extractor.

In 2016, some academics proposed an approach that would allow the network structure
to be constructed not by humans, but by giving the machine some basic elements of a
neural network and allowing it to automatically construct a better network. This approach
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is called neural architecture search (NAS) [10,11], which combines and selects the basic
elements of a neural network by taking them into a limited search space and finally arriving
at a network with good network performance. However, it is necessary to constantly
try and combine different architectures in the process, which consumes a lot of time and
requires a powerful amount of computation.

In perceptual tasks, the success of deep learning is closely connected to the automation
of the feature extraction process, where hierarchical feature extractors automatically acquire
the information that we need in an end-to-end manner. However, as we manually design
increasingly complex neural architectures for specific tasks, our demand for architecture
engineering is growing. NAS enables automated neural network architecture design and
thus is the next step in the automation of machine learning. NAS can be considered as
a subdomain of AutoML. Most modern deep neural network architectures are created
based on human experience, and most of them require a long and tedious iterative experi-
mentation process, while NAS enables the automatic generation of effective deep learning
frameworks for specific tasks without any human intervention.

There are many methods to perform an automatic search by combining reinforcement
learning, intelligent optimization algorithms, and gradient descent with CNNs. Baker et al.
suggest a reinforcement learning (RL)-based metamodeling approach for automatically
designing CNN architectures, called MetaQNN [12], by training an agent to sequentially
determine the types of layers and their parameters. NASNet [13] uses validation accuracy
as a reward signal, a recursive network of controllers optimized by policy gradients to
generate the best neural structure description. EvoCNN [14] combines with the design of
CNNs, which use GA for searching CNN structures with particular operations. IPPSO [15]
is the first method to use particle swarm optimization (PSO) [16–18] in the design of CNN
networks. It is inspired by the IP address setting, where each layer of the CNN is assigned
an IP address. By the above setting, a new coding method is set. In addition, it uses PSO
to automatically search for the optimal structure of the CNN at variable lengths without
any human intervention in the process. However, this algorithm has limitations on particle
length, and cannot be encoded at variable lengths, and the results are limited to three data
sets. Based on the IPPSO drawbacks, psoCNN [19] proposes a new difference and velocity
operator, respectively, and uses variable-length particles to explore the optimal solution
of the CNN architecture. However, the main drawback is that the search space is only a
combination of existing schemes and does not make maximum use of the solution space.
Therefore, Lawrence et al. [20] use the group operation in psoCNN to maximize the search
solution space and reduce the computational cost to a certain extent, but it is limited by the
length of the particle size.

With deeper research in NAS, some studies are increasingly proved to be not perfect.
Therefore, some more mature and complete solutions have been proposed in related works.
ENAS [21] proposes a faster and more efficient search network structure using weight
sharing, by which the time to obtain the optimal subnetwork is reduced. However, this
approach may lead to weight shifts. DNS [22] reduces the drawbacks coming from ENAS
by modularizing the search space. Although these above algorithms obtain better results
on the corresponding data sets respectively, on the one hand, the time and space cost is
relatively high, and on the other hand, there is no good way to deal with the continuous
space search problem, and our algorithm solves these two problems relatively well.

Based on two metrics, classification accuracy and search speed, and finding the balance
between the two metrics, We use the AO and GA to maximize the exploration of the CNN
optimal structure, which we call HAGCNN. The primary contributions of this paper are
as follows:

1. We design a new binary-based particle-encoding strategy that can efficiently encode
CNN structures and develop new evolutionary computation algorithms based on the
new encoding strategy;

2. A new approach to position updating is proposed, which focuses on combining the
AO with GA. Crossover, Mutation, and Selection operations are added before the
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position update, thus allowing various directions and scales to search the solution
space and increase the chances of diverse network formation;

3. The inclusion of skip connections allows the algorithm to search for reasonable CNN
architectures at variable lengths and generate new models, which break the constraint
of the fixed-length encoding of traditional AO;

4. To obtain better network performance, we introduce the residual block structure and
group strategy, which enables us to explore deeper network structures sensibly.

The remainder of this paper is as follows: Section 2 provides a detailed description
of the AO, GA, CNN, and residual block. Section 3 describes the proposed HAGCNN
algorithm in detail. In Section 4, we introduce the experimental details we have performed.
Section 5, we conclude and analyze the experimental results. Section 6 summarizes the
whole paper and presents future works.

2. Background
2.1. CNN Introduction

CNN [23–26] was proposed in the 1960s and discovered by Hubel and Wiesel while
studying neurons in the cat brain cortex for local sensitivity and an orientation selection.
CNN does not require to be manually designed during the whole-feature extraction but is
processed by convolution operation directly. Deep convolutional neural networks mainly
contain input layers, pooling layers, fully connected layers, convolutional layers, and an
output layer. The input layer is used to receive the input data and the convolution layer is
mainly used to perform feature extraction on the data. The data downsampling process
is performed on the pooling layer. The fully connected layer is a deep network with the
multi-Layer perceptron (MLP) [27–29]. Furthermore, it is mainly implemented through the
activation function to the final output layer. The structure of CNN is shown in Figure 1.
Deep convolutional neural networks stack various layers on top of each other and the
output of each layer is calculated as the sum of the product of the input of each layer and
the internal weights, all of which will be used as input to the next layer, resulting in a
recognition classification result.

In training a CNN, tens of thousands of parameters may have to be processed because
of the different architectures. It may take hours or even days, so it is important to develop
an automatic search mechanism.

Convolution Layer Pooling Layer Pooling LayerConvolution Layer Fully Connected Layer

Figure 1. Normal CNN structure.

2.2. Residual Block

ResNet [8] is made up of a series of residual blocks, and a residual block can be
expressed by Equation (1).

Xl+1 = Xl + F(Xl , Wl) (1)

The residual block is classified into two parts, which are the direct mapping and the
residual section. Among them, F(Xl , Wl) is the residual section that consists of two to three
convolution operations.
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In a convolutional network, Xl may not have the same number of feature maps as
Xl+1, and it is then necessary to use the convolution of 1× 1 for dimensioning up or down,
in which case the residual block representation is given in Equation (2).

Xl+1 = h(Xl) + F(Xl , Wl) (2)

where, h(Xl) = W
′
l X, and W

′
l is the 1× 1 convolution operation. However, generally this is

only used when lifting the dimension.

2.3. Genetic Algorithm (GA)

The genetic algorithm (GA) [30,31] is a population-based optimization search algo-
rithm derived from natural selection. It uses the concept of survival of the fittest. It tries to
exploit the most suitable individuals through iteration, and it abstracts the problem space
as a population of individuals. GA converts the original group of individuals to a group
of individuals where each individual stands for the solution of the problem waiting to be
solved. The computation is achieved by cycling through individuals in a population using
crossover, variation, and selection.

To determine whether a particular string will be involved in the reproduction process,
a selection operation is proposed. Here, there are many ways to select the best chromosome,
for example roulette wheel selection, rank selection, tournament selection, Boltzmann
selection, steady-state selection, and elitist selection, etc.

The crossover operation is implemented mainly by combining genetic information
from two or more parents to generate offspring. This includes signal point, uniform, partial
matching, two-point and k-point orders, crossover with priority retention, reduction of
substitution, shuffling, and cycling.

The mutation operation is used to maintain genetic diversity from one population
to the next. The well-known mutation operations are simple inversions, substitutions,
and hybrid mutations.

2.4. Aquila Optimizer (AO)

The Aquila optimizer (AO) [32,33] is a population-based optimizer proposed in 2021.
It is inspired by Aquila’s social behavior of catching prey. Similar to other population-based
metaheuristics, the algorithm begins with N individuals and the initial population is X. We
perform this initialization process in Equation (3) :

Xij = rand× (UBj − LBj) + LBj, i = 1, 2, . . . , N, j = 1, 2, 3, . . . , Dim (3)

where UBj and LBj are the upper and lower bounds of the j-th exploration space, rand is
a randomly generated parameter in the range from 0 to 1, and Dim is the whole search
space dimension.

The algorithm is divided into two processes: exploration and exploitation, in which
there are four main implementation strategies. The algorithm can determine the possibilities
of transferring the exploration stage to the exploitation stage by judging the condition
t ≤ ( 2

3 )× T. where t and T stand for the current iteration and the maximum number of
iterations, respectively.

In the first strategy, the Aquila discriminates the prey region and selects the best
hunting area by a vertical swoop of high-altitude soaring. This strategy considers the
average agent XM and the best agent Xb in the process of exploration. The mathematical
equation is as Equation (4):

Xi(t + 1) = Xb(t)× (
1− t

T
) + (XM(t)− Xb(t)× rand) (4)

XM(t) =
1
N

N

∑
i=1

X(t), ∀j = 1, 2, . . . , Dim (5)
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where Xi(t + 1), Xb(t) denote the position of the individual at the (t + 1)-th iteration
number and the best solved individual obtained at the t-th iteration, respectively. XM(t)
shows the average value of the current solution position at the t-th iteration, which is
calculated by Equation (5). t and T indicate the current and maximum number of iterations,
and rand is a random value between 0 and 1. Dim is the dimension size and N is the
number of candidate solution.

In the second strategy, the individual position is updated on the basis of the Lévy
flight Lévy(D) distribution and Xb. A mathematical formulation of this strategy is given by
Equation (6)

Xi(t + 1) = Xb(t)× Lévy(D) + XR(t) + (y− x)× rand (6)

Lévy(D) = s× u× σ

|v|
1
β

(7)

σ = (
Γ(1 + β)× sine(πβ

2 )

Γ( 1+β
2 )× β× 2

β−1
2

) (8)

x = r× sin(θ) (9)

y = r× cos(θ) (10)

r = r1 + U × D1 (11)

θ = −ω× D1 +
3× π

2
(12)

where Xi(t + 1) is the position of the i-th individual at the (t + 1)-th iteration. Lévy(D) is
the Lévy flight distribution function and D represents the dimensional space, specifically
calculated by Equation (7). XR(t) is the random individual sampled in the range [1, N] at
the i-th iteration. x and y are computed by Equations (9) and (10), respectively.

In Equation (7), s is a constant with a value of 0.01. u and v are random numbers
ranging from 0 to 1. σ is calculated by Equation (8). In Equations (9) and (10), r is calculated
by Equation (11), θ is calculated by Equation (12), r1 is used to fix the count of search cycles,
whose value is taken between 1 and 20, and U is a small amount that is fixed at 0.00565. ω
is a small value of 0.005, and D1 is an integer from 1 to the length of the search space (Dim).

The third strategy is mainly based on Aquila’s low flying and slow falling attacks.
This action is expressed mathematically as Equation (13):

Xi(t + 1) = (Xbest(t)− XM(t))× α− rand + ((UB− LB)× rand + LB)× δ (13)

where δ and α denote the adjustment parameters of the exploitation process.
The fourth strategy refers to Aquila’s behavior of walking and catching prey. This

behavior is mathematically shown in Equation (14):

Xi(t + 1) = QF× Xbest(t)− (G1 × X(t)× rand)− G2 × Lévy(D) + rand× G1 (14)

QF(t) = t
2×rand−1
(1−T)2 (15)

G1 = 2× rand− 1 (16)

G2 = 2× (1− t
T
) (17)

where Equation (15) is the QF expression. Equations (16) and (17) represent G1 and G2,
respectively. Lévy(D) is the Lévy flight distribution function calculated using Equation (7).
t and T present the current iteration and the maximum number of iterations respectively.
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3. The Proposed Algorithm

This section introduces the main parts of our proposed algorithm separately, mainly
including six parts: convolutional layer representation, the block structure, the grouping
strategy, the position update representation, the fitness representation, and the decoding.

3.1. Convolutional Layer Representation

When we consider the design of algorithms that handle complex structures (e.g.,
CNN architectures), it is important to choose an appropriate encoding method to represent
the CNN architecture and to avoid additional hard-coded management rules to ensure
a reasonable construction of the architecture. In this paper, we directly represent each
block in the CNN with a binary encoding and use evolutionary computation to update
the encoding for the purpose of tuning the neural network architecture. For each training,
testing, and evaluation using CNN, the model is compiled from an array containing the details
of each layer in the particle. However, only different CNN structures can be found using this
method. Therefore, we search the relevant hyperparameters of each layer at the same time.

We use a binary expression to represent the actual meaning of what each layer repre-
sents. Each of the different types of the layer is represented by a three-bit binary encod-
ing, with three bits representing the eight possible options, each containing at least one
activation-function layer, two convolutional layers, and one regularization layer.

Where the binary number ‘000’ indicates that the average pooling layer is selected;
‘001’ indicates we use the maximum pooling layer in the architecture; ‘010’ indicates that
the skip-connection layer is used; ‘011’ indicates the selection of a convolutional layer with a
convolutional kernel size of 3× 3 and a padding value of one; ‘100’ means a convolutional
layer with a kernel size of 5× 5 and a padding value of two; ‘101’ shows a convolutional layer
whose kernel size is 7× 7 and padding value is four; ‘110’ implies choosing a convolutional
layer having a kernel size of 3× 3, a padding value of two, and a dilation size of two; and
‘111’ indicates selecting a convolutional layer with a kernel size of 5× 5, a padding value of
four, and a dilation size of two. The specific representation is shown in Table 1. The details of
the operation will be shown in Algorithm 1.

Table 1. Convolutional layer representation.

Coding Type of Layer Parameter

‘000’ average pooling layer kernel size = 3× 3

‘001’ maximum pooling layer kernel size = 3× 3

‘010’ skip connection

‘011’ convolutional layer kernel size = 3× 3
padding = 1

‘100’ convolutional layer kernel size = 5× 5
padding = 2

‘101’ convolutional layer kernel size = 7× 7
padding = 4

‘110’ convolutional layer
kernel size = 3× 3

padding = 2
dilation size = 2

‘111’ convolutional layer

kernel size = 5× 5
padding = 4

dilation size = 2
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Algorithm 1 The pseudo code of HAGCNN
Initialize: The dimension of each individual is D, and each individual Pi is initialized with
D random numbers, i ∈ [1, N]. f (Pi) represents the fitness function of the individual Pi,
The current number of iterations is T = 1, the maximum number of iterations is M, and R
is the number of iterations executing the communication strategy.
Iteration:

1: while T < M do
2: for i = 1 to N do
3: Decode the individual and generate the corresponding network.
4: Train the network using the training dataset.
5: The network is tested on the test data set, and the accuracy is returned as the

fitness value.
6: for i = 1 to N do
7: Update the mean value of the current solution XM(t).
8: if t ≤ ( 2

3 )× T then
9: if rand ≤ 0.5 then

10: Pi is performed OR operate bit by bit with Pbest.
11: The results were mutated randomly.
12: Then cross operate the mutation result with Pbest.
13: The encoding of the particle representation is divided into n groups and

a pooling layer is inserted in the last position of each group that satisfies the condition.
14: Calculate the fitness value of the new individual. If the value is better

than Pbest, update Pbest with the individual.
15: else
16: Random mutation of Pbest into several bits.
17: The encoding of the particle representation is divided into n groups and

a pooling layer is inserted in the last position of each group that satisfies the condition.
18: Calculate the fitness value of the new individual. If the value is better

than Pbest, update Pbest with the individual.
19: else
20: if rand ≤ 0.5 then
21: Update the mean value of the current solution PM.
22: The optimal individual Pbest and the average individual PM are XORed.
23: The result of XOR is crossed with random binary coding, and the crossing

position is controlled to be in the second half of the coding.
24: The encoding of the particle representation is divided into n groups and

a pooling layer is inserted in the last position of each group that satisfies the condition.
25: Calculate the fitness value of the new individual. If the value is better

than Pbest, update Pbest with the individual.
26: else
27: Random mutation of Pbest into several bits, and the number of mutations

should not exceed half of the total number.
Output: The global best individual Pbest , and the best fitness value f (Pbest).

Since the particle length is fixed after initialization, to search the CNN structure at
variable length and to increase the possibility of searching, this paper achieves this purpose
by using the inclusion of a skip-connection layer by setting the skip-connection layer to be
denoted by ‘010’; if this layer is selected, the output of the previous layer is copied directly
to the next layer, which is equivalent to reducing the actual number of valid layers in the
whole network by one layer and thus achieving a variable length search.

The number of output channels per convolutional layer is another parameter that has
a large impact on the network performance. Therefore, our algorithm also includes this
parameter in the search space. Similarly, we convert the number of output channels of
the convolutional layers to binary and concatenate it to the convolution type. Thus, our
encoding string becomes a L× (3 + X)-bit binary string, where a complete convolution
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block is represented by 3 + X bits, which contain three bits of binary for the convolution
type and X bits for the number of output channels of the layer. Here L denotes the number
of layers present in the network and X remains fixed during a search.

3.2. Block Structure

In past studies, researchers have often combined a number of fixed layers together
to form block structures, and using such block structures can dramatically improve the
performance of the network. In this article, we also used a similar structure. We combine the
convolution layer, batch-normalization layer, and activation layer into a base convolution
block. Furthermore, when encoding, we encode only the convolution block and not
the separate convolution layers. When combining these layers, we consider both the
convolution kernel size, stride size, padding, and dilation to ensure that the resolution
of the input block is the same as the resolution of the block output. To further improve
the performance of the convolution block, we incorporate the idea of a residual block,
and our convolution block similarly copies the input and adds it to the output of the
convolution layer. We add a 1× 1 convolution layer for channel fusion so that the number
of input channels is the same as the number of output channels for direct summation
for blocks where the number of input channels is different from the number of output
channels. For example, Figure 2 shows a basic block structure. An example of a network
with different encoding methods after combining different block structures is shown in
Figure 3. As shown in Figure 3, the numbers indicate the basic block structures, and the
corresponding codes are shown after each structure.

Figure 2. Basic block structure.

Figure 3. Example of the network’s encoding by different codings.
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3.3. Grouping Strategy

In order to generate better architectures, we group the searched architectures. The pur-
pose of grouping is to reasonably intersperse the pooling layers in the network structure to
make our network achieve better results. We divide all the layers into n groups, assuming
that the whole network contains L layers (including skip connections), there are L/n layers
in each group, and we detect whether the last layer in each group is a pooling layer to
avoid adding redundant pooling layers repeatedly. Figure 4 shows an example of grouping
the entire network structure, and we make sure that the last layer of each group is the
pooling layer.

Figure 4. The example of grouping strategy.

3.4. Location Update Representation

After representing the CNN structure with a string of binary characters, this string is
used as input to the evolutionary computation algorithm formula, and several operations
are performed during the bring-up process. Algorithm 1 further describes this part of the
specific process.

3.4.1. Crossover Operation

If the current particle position is multiplied by an arbitrary constant which is more
than 1 in the formula, the algorithm performs a crossover operation. Note that it is
rounded upwards to obtain the final constant if the current particle position is multiplied
by a fractional number. Furthermore, we assume the length of the constant part is C
and the length of the non-constant part is N − C. Then, the two coded strings are first
truncated according to the constant digit and we cross-patch the two intercepted strings
following the behavior of the chromosome crossover. Assuming the code A is codeA =
[ca,1, ca,2, . . . , ca,i, ca,i+1, . . . , ca,N ], and the code B is codeB = [cb,1, cb,2, . . . , cb,i, cb,i+1, . . . , cb,N ].
If the truncation is from the i-th bit, the results after crossing codeA and codeB are as follows,
codeA = [ca,1, ca,2, . . . , ca,i,b,i+1 , . . . , cb,N ], codeB = [cb,1, cb,2, . . . , cb,i, ca,i+1, . . . , ca,N ]. The
specific operation is shown in Figure 5. Figure 5a represents the initial structure of any two
individuals and Figure 5b represents the encoded structure of two individuals after the
crossover operation.
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1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1

0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0

5×5 Conv channel:90 skip connection channel:53

3×3 Conv channel:113 3×3 Dil_Conv channel:102

Particle A

Particle B

(a) Original structure

1 0 0 1 0 1 1 0

5×5 Conv

0 1 1 1 0 1 1 0 0 1 1 0

3×3 Dil_Conv channel:102channel:89

Particle C

(b) Structure after crossover operation

Figure 5. Example of the crossover operation between two particles.

3.4.2. Mutation Operations
Mutation Operation of Random Number

If the current particle position is multiplied by a random number from zero to one,
the algorithm performs a mutation operation. Here we use a random number that is subject
to a uniform distribution. Furthermore, the bits 0 to dim are randomly selected for the
mutation. In this process, the parameter dim represents the dimension of the algorithm.
The specific mutation is that the original 0 bit becomes 1 and the 1 bit becomes 0 for the
mutation operation. Assuming a code of codeA = [1, 0, 1], we randomly selected 2 bits for
mutation. The result may be [0, 1, 1], [1, 1, 0], or [0, 1, 0]. The specific representation is shown
in Figure 6. Figure 6a represents the original structure before the mutation operations and
Figure 6b represents the structure after the mutation operations, where the orange part in
Figure 6b is the coding of the mutation.

1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1

5×5 Conv channel:90 skip connection channel:53

Particle A

(a) Original structure

1 0 1 1 0 0 1 1 0 0 0 1 0 0 0 1 0 1 0 1

7×7 Conv channel:76 skip connection channel:21

Particle A'

(b) Structure after mutation operation

Figure 6. Example about the mutation operation of random number.

Mutation Operation of Lévy Flight

If the current particle position is multiplied by a Lévy flight [34,35] operand in the
formula, the CNN structure corresponding to the best CNN structure is encoded as a
mutation operation. The specific variation is performed in the same way as the random
number mutation operation.

3.4.3. Selection Operation

If two particle positions are added or subtracted in the formula, the selection operation
is performed. In this case, if the two-particle positions are subtracted, the operation is the
Bitwise Exclusive OR operation. If the two-particle positions are added, the operation is
the Bitwise OR operation.
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Bitwise Exclusive OR

The operation of the Bitwise Exclusive OR is an operation in which two numbers par-
ticipating in an operation are converted to binary (0, 1) and then subjected to the Exclusive
OR operation, as long as 1 is given when the numbers in the corresponding bits are not
the same and 0 when they are the same. Assuming the two codes are codeA = [1, 0, 0, 1, 0],
codeB = [0, 0, 1, 0, 0], the result is [1, 0, 1, 1, 0]. The details of the relevant operation are more
prominently represented in Figure 7, where particle A and particle B represent the positions
of two random particles. When the positions of the two particles are subtracted, the Bitwise
Exclusive OR operation is performed, the result is shown in Figure 7b.

1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1

0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0

5×5 Conv channel:90 skip connection channel:53

3×3 Conv channel:113 3×3 Dil_Conv channel:102

Particle A

Particle B

(a) Original structure

1 1 1 0 1 0 1 0

5×5 Dil_Conv

1 1 1 0 0 1 0 1 0 0 1 1

5×5 Conv channel:83channel:43

Particle C

(b) Structure after the Bitwise Exclusive OR

Figure 7. Example about selection operation of the Bitwise Exclusive OR.

Bitwise OR

The Bitwise OR is similar to the Bitwise Exclusive OR, in which is the AND operation
is changed to OR operation. When the two bits are 0, the bit is 0, the rest of the cases the
bit is 1. Assuming the two codes are codeA = [1, 0, 0, 1, 0], codeB = [0, 0, 1, 0, 0], the result is
[1, 0, 1, 1, 0]. Similarly, when the positions of the two particles are added together, the Bitwise
OR operation is performed, the result is shown in Figure 8b.

1 0 0 1 0 1 1 0 1 0 0 1 0 0 1 1 0 1 0 1

0 1 1 1 1 1 0 0 0 1 1 1 0 1 1 0 0 1 1 0

5×5 Conv channel:90 skip connection channel:53

3×3 Conv channel:113 3×3 Dil_Conv channel:102

Particle A

Particle B

(a) Original structure

1 1 1 1 1 1 1 0

5×5 Dil_Conv

1 1 1 1 0 1 1 1 0 1 1 1

3×3 Dil_Conv channel:119channel:123

Particle C

(b) Structure after the Bitwise OR

Figure 8. Example about selection operation of the Bitwise OR.

3.5. Fitness Evaluation

After iterations of the algorithm, the encoding will change and the changed encoding
still corresponds to specific network architecture. The network uses the Adam optimizer to
adjust the trainable parameters in the network and CosineAnnealing is used to adjust the
learning rate. For the first 10 epochs we let the learning rate decrease from a predetermined
maximum to a predetermined minimum, and for the last 10 epochs we let the learning
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rate increase from the minimum to the maximum. To speed up the network training, each
network structure searched by the algorithm during the iterative process is set to an epoch
value of one. When the iteration of the algorithm is completed, the epoch value used
for training the best-obtained network structure is set to 100. The loss function used for
training is set to the cross-entropy loss, and the return value of this function is used as
the fitness value. The return value of this function is used as the fitness value to guide
the execution of the evolutionary computation algorithm. Finally, we transfer part of the
training set as input to the network, train the network, and return the fitness value.

3.6. Decoding

According to Table 1, the different binary strings can be decoded into the correspond-
ing layer and the corresponding parameter information, and these strings represent the
parameter values for this layer. After decoding all the interfaces, the final CNN structure is
achieved by concatenating all the decoding layers in the best global case. By concatenating
all decoding layers in the same order as the interfaces in the particle vector, the final CNN
architecture can be obtained.

4. Experimental Preparation

Our experiments are based on the NVIDIA RTX 3090, with an Intel Xeon Gold 6226R
CPU @ 2.90 GHz.

4.1. Datasets

Considering the cost of time consumption during NAS processing, and the limitation
of our computing device resources, we only select datasets with small input sizes for
testing. We select two basic datasets to evaluate the final results, namely MNIST and CIFAR-
10 datasets.

Specifically, the MNIST [36,37] dataset contains images of handwritten numbers from
0 to 9. Each sample is a 28× 28 pixel. A total of 60,000 training samples and 10,000 test
samples are contained in the dataset.

CIFAR-10 [38,39] is a computer vision dataset for universal object recognition; it is
gathered by Hinton’s students Alex Krizhevsky and Ilya Sutskever. It contains 60,000
32× 32 RGB color images with a total of 10 classifications. All photos are divided into 10
different categories, namely ‘airplane’, ‘bird’, ‘cat’, ‘automobile’, ‘dog’, ‘frog’, ‘horse’, ‘deer’,
‘ship’, and ‘truck’. Of these, 50,000 are used for the training set and 10,000 for the test set.
Specific datasets information is shown in Table 2.

Table 2. Summary of the datasets.

Dataset Input Size Training Test Classes

MNIST 28× 28× 1 60,000 10,000 10
CIFAR-10 32× 32× 1 50,000 10,000 10

4.2. Parameter Setting

The parameter setting in this paper is divided into two main parts—on the algorithm
side and the training side—the details of which are given in Table 3.

Among them, the population size and the number of iterations are used for the setting
of the evolutionary algorithm. The population size indicates the number of networks tested
in one iteration and the number of iterations limits the maximum iterations of the algorithm.
The number of iterations limits the maximum number of iterations of the algorithm.

In addition, the main parameters are batch size, dropout rate, epochs for particle
evaluation, and epochs for the global best in the CNN training process. Batch size controls
the amount of data fed into the model for one training. The dropout rate controls the
rate at which fully connected layers randomly discard neurons in a single training session
to prevent overfitting of the network. The epochs for particle evaluation are the number
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of times the training set is reused in a single training session. Using lower epochs for
particle evaluation can significantly reduce the training time with little impact on the
overall algorithm performance. The epochs for the global best is the number at which the
training set is repeatedly used when training the network represented by that individual
after the optimal individual has been found. Therefore, moderate values need to be selected
to train the network. Note that the trained network will not be capable of achieving the
desired result if the value is too small. Similarly, a large value may lead to overfitting.
Specific information is shown in detail in Table 3.

Table 3. Summary of the parameters.

Parameter Value

HAGCNN Optimizer
population size 20
number of iterations 10
CNN training(MNIST)
bath size 240
dropout 0.5
epochs for particle evaluation 1
epochs for the global best 100
CNN training(CIFAR-10)
bath size 128
dropout 0.5
epochs for particle evaluation 20
epochs for the global best 200

4.3. Baseline Model
4.3.1. On the MNIST Dataset

For better evaluation of the performance of our model, we select the manually designed
networks LeNet-5 [6], ResNet [8,40], CapsNet [41], and DropConnect [42], and the automat-
ically designed network models EvoCNN [14], MetaQNN [12], IPPSO [15], psoCNN [19],
and GeNet [43] as baseline models on the MNIST dataset, and compare them with our
proposed HAGCNN model in terms of test-set error rate, and the number of parameters
and running speed-related metrics are compared with our proposed model.

Firstly, we compare the first convolutional neural network LeNet-5. Although they are
now obsolete, a comparison is still necessary. Secondly, the EvoCNN automatic generation
model, which is based on the GA, is chosen for comparison. In addition, MetaQNN-
based reinforcement learning is used for performance comparison. Additionally, ResNet,
CapsNet, and DropConnect are used as a benchmark model for comparison.

Furthermore, IPPSO is the first model to use the PSO algorithm for automatic CNN
generation. It is mainly inspired by IP addresses, by mapping attribute data to the cor-
responding IP address ranges and processing them to obtain the optimal CNN model.
Besides, the psoCNN model is used for comparison, combining CNN generation with the
PSO algorithm by designing a novel velocity-position calculation. Additionally, it used
10 iterations on 20 particles for experiments, and the experimental results proved to have
better experimental results.

4.3.2. On the CIFAR-10 Dataset

On the CIFAR-10 dataset, we select the manually designed networks VGGNet [44],
ResNet [8], and DensNet [45] and the automatically designed network models MetaQNN [12],
NASNet [13], GeNet [43], CoDeepNEAT [46], and Large-Scale Evolution [47] as benchmark
models to compare with our proposed HAGCNN model in terms of test-set error rate,
parameter footprint, and running speed-related metrics.

VGGNet is a deep convolutional neural network developed by the Oxford University
Computer Vision Portfolio together with researchers at Google DeepMind. In 2014, it was
runner-up in the ILSVRC competition and winner of the localization project, with an error
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rate of 7.5 percent on top 5. Meanwhile, DenseNet starts with features and achieves better
results and fewer parameters by making the best use of the feature.

NASNet, which no longer requires relevant experts to build convolutional network
architectures with human knowledge, directly uses RNN to compute the hyperparameter
and realize AI automatic learning, CoDeepNEAT, which optimizes the deep learning
architecture through evolution. Through the extension of existing neuroevolutionary
methods in terms of components, topology, and hyperparameters, the approach achieves
results comparable to the best human designs in standard baselines in language modeling
and object recognition.

Large-Scale Evolution modified the evolutionary algorithm so that it can be used for
NAS, and it is worth noting that the neural network architecture it searches has no fixed
network depth.

5. Experiment and Analysis

To have a clearer view of the effect of the proposed model, we analyze the effect of the
proposed algorithm from five perspectives: experimental results, comparison experiment
with baseline model, visualization of experimental results, comparison of the effect of
random evolution and the proposed algorithm, and the change of the algorithm position
with the number of iterations, respectively.

5.1. Experimental Results

We search through 20 particles with 10 iterations in the search space and train the net-
work structure obtained from the search with 100 epochs and 200 epochs on the MNIST and
CIFAR-10 datasets, respectively. We compare the performance of the best CNN structure
searched by our proposed algorithm in terms of error rate, parameters, and search speed.

The experimental results show that the automatically generated CNN model reached
an error rate of 0.31% on the MNIST dataset with parameters 1.33M and a search speed of
0.5 h/1 GPU.

Experimental results based on the CIFAR-10 dataset show that the automatically
generated CNN model has an error rate of 6.82% with 10.7M parameters and a search
speed of 12 h/1 GPU. To find a better architecture, the parameters used are different from
those used in the experiment on the MNIST dataset. When we search the optimal network
architecture for the MNIST dataset, we conduct 1-epoch training on the searched network.
In CIFAR-10 dataset search architecture, the network accuracy after 1-epoch training can
not guide the evolutionary computing algorithm to find a better structure, which makes
the evolutionary computing algorithm fall into local optimization. Therefore, we train
20 epochs for each searched network and return the obtained accuracy as a fitness value
to the evolutionary computing algorithm. Similarly, because it is more difficult to train
the network on the CIFAR-10 dataset than on the MNIST dataset, it needs more rounds
of training to obtain a satisfactory accuracy. Therefore, the optimal architecture that can
be found at the end of the iteration of the evolutionary computing algorithm is trained
200 epochs.

5.2. Comparison Experiment with Baseline Model

On the MINIST dataset, we compare our obtained CNN model with the current CNN
network-generated models in manual and automatic modes, respectively. As shown in
Table 4, firstly, our model results in an error rate on the test set that exceeds the baseline
LeNet-5 and ResNet, and it is also near to the results of the two advanced CapsNet and
DropConnect. In the comparison with the automatically generated model, we can find that
our proposed model is not only lower in error than IPPSO, psoCNN, and GeNet, but also
lower in the number of parameters than the currently known IPPSO and psoCNN in terms
of the number of parameters, and nearly three times the number of psoCNN parameters.
Additionally, the speed of searching for the optimal structure is much higher than that of
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the three known NAS models. This indicates that our proposed algorithm can find a better
architecture for the image classification task.

On the CIFAR-10 dataset, we compare the results of the proposed algorithm with
those of current state-of-the-art neural architecture search algorithms. As shown in Table 5,
although our proposed algorithm still has a large gap from these advanced search models
in the item of error rate, we only beat VGGNet, GeNet, and CoDeepNEAT, but compared
to MetaQNN, NASNet, and Large-Scale Evolution, we spend substantially less time to.
Therefore, our proposed algorithm still has practical significance.

Table 4. Comparison with baseline model on the MNIST dataset.

Baseline Model Test Error (%) Params (MB) Cost

LeNet-5 0.75 0.43 -
ResNet 0.41 - -

CapsNet 0.25 - -
DropConnect 0.21 - -

IPPSO 1.12 1.47 2 GPUs/2.5 h
psoCNN 0.44 3.26 1 GPU/7.3 h

GeNet 0.38 - 10 GPUs/2 days
HAGCNN 0.31 1.33 1 GPU/0.5 h

Table 5. Comparison with baseline model on the CIFAR-10 dataset.

Baseline Model Test Error (%) Params (MB) Cost

VGGNet 7.25 - -
ResNet (depth = 110) 6.43 1.7 -
DensNet (depth = 100) 4.10 7.0 -

MetaQNN 6.92 11.2 10 GPUs/8 days
NASNet 4.47 7.1 500 GPUs/33 days
GeNet 7.10 - 10 GPUs/17 days

CoDeepNEAT 7.30 - -
Large-Scale Evolution 5.40 5.4 -/250 h

HAGCNN 6.82 10.7 1 GPU/12 h

5.3. Visualisation of Results

To explore the trajectory trends of the particles in the evolutionary computation, we
visualize the particles that varied with the number of iterations. We chose the principal com-
ponent analysis (PCA) [48,49] method, which selects the two most important components
from all the particle dimensions to form a three-dimensional landscape.

As shown in Figure 9, the x and y axes indicate the two extracted dimensions respec-
tively, while the z axis indicates the accuracy of the network corresponding to that particle
on the test set. This visualization shows the accuracy of the network obtained after the
1 epoch of training for different particle positions.

To investigate the effect of the number of iterations on the search algorithm, we delay
the number of iterations to 30 and re-run the experiment. The results are shown in Figure 10.
Under the result of 1-epoch training, the horizontal coordinate indicates the current number
of iterations and the vertical coordinate indicates the best network accuracy on the test
set that can be found in that iteration. When the number of iterations is 10, our proposed
algorithm converges in the 6-th generation, and when the number of iterations is extended
to 30, the algorithm still converges within 10 generations. This indicates that our proposed
algorithm can converge to the optimal value quickly. This also means that our proposed
algorithm is applicable to solve the neural architecture search problem.
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Figure 9. The particle position visualization.
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Figure 10. Results on the MNIST test set.

5.4. Comparison Experiment between Random Evolution and Proposed Algorithm

As shown in Figure 11, Figure 11a shows the accuracy of the test set using the ran-
dom evolution approach on the MNIST dataset using 20 particles with 10 iterations, and
Figure 11b shows the accuracy of the test set obtained using the proposed model on the
MNIST dataset under the same conditions. The comparison of the two subplots in the
figure shows that our proposed CNN evolution model has a significant improvement,
finally reaching 99.7% on the MNIST dataset, and using random evolution can only reach
96.5% on the MNIST dataset. We can also see from the figure that random search exhibits a
high degree of disorder. The evolutionary computation algorithm, on the other hand, can
use the information from the previous iteration to search for better network architecture in
a more optimal direction. This shows the great advantage of evolutionary computing in
searching neural network architectures. We believe that if we set up the algorithm using a
larger number of iterations, we may have better evolutionary results.
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5.5. Position Movement Analysis of Particles from One Generation to Another

To observe the patterns of the network architecture found by our proposed algorithm,
we study the evolution process, how each particle changed in each generation, and compare
the distance each particle moved in each generation. The result is shown in Figure 12.
In this part of the experiment, we record the position of each particle after each iteration
and calculated the distance of all particles from their positions after the previous iteration.
According to the experimental data, in all 30 iterations, the average distance moved by each
particle is 17.8, the maximum distance moved is 7.21, and the minimum distance moved is
1. On average, each particle moved 3.45 times during all iterations. This shows that the
proposed algorithm can effectively explore the entire architecture space.
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Figure 11. Comparison of the results of random evolution and our proposed algorithm computation
on the MNIST dataset.

Figure 12. The distance of each generation of particles from its position in the previous generation.
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6. Conclusions and Future Works

In this paper, we present a novel deep architecture generation model based on the
AO and GA. The framework performs optimal architectural searches in a specific search
space. By combining hybrid binary coding and particle-layer locations, and adding skip
connections and residual blocks to increase the range of searchable space, a high-accuracy
and low-time-cost automatic generation model is finally obtained, and the computing cost
of NAS has been reduced to an acceptable level. In future work, the inclusion of more
block structures similar to residual blocks and the combination of search directions with a
topology search can be considered to increase the possibility of searching for solutions. Ad-
ditionally, the direct search can be performed with multi-objectives under the simultaneous
consideration of objectives, such as time cost and delay rate, to enrich our search model.
Meanwhile, we can consider applying the model to more areas for further research.
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