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ABSTRACT

The popularity of collaborative tagging sites presents a unique
opportunity to explore keyword search in a context where
query results are determined by the opinion of a network of
taggers related to a seeker. In this paper, we present the
first in-depth study of network-aware search. We investi-
gate efficient top-k processing when the score of an answer
is computed as its popularity among members of a seeker’s
network. We argue that obvious adaptations of top-k al-
gorithms are too space-intensive, due to the dependence of
scores on the seeker’s network. We therefore develop algo-
rithms based on maintaining score upper-bounds. The global
upper-bound approach maintains a single score upper-bound
for every pair of item and tag, over the entire collection
of users. The resulting bounds are very coarse. We thus
investigate clustering seekers based on similar behavior of
their networks. We show that finding the optimal clustering
of seekers is intractable, but we provide heuristic methods
that give substantial time improvements. We then give an
optimization that can benefit smaller populations of seekers
based on clustering of taggers. Our results are supported by
extensive experiments on del.icio.us datasets.

1. INTRODUCTION
The unprecedented popularity of collaborative tagging sites

such as CiteULike for academic papers, del.icio.us for web-
pages, Flickr and Snapfish for photos and YouTube for videos,
presents a unique opportunity for incorporating social be-
havior into processing search queries. In del.icio.us, users
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bookmark and tag URLs, form social ties with others, and
subscribe to their friends’ feeds to discover which URLs are
being bookmarked. Although browsing by tag or by net-
work is currently the predominant way of reaching content
on these sites, ranked keyword-based search is supported as
well, and search will become more important as the size of
networks and tagged content expand. An important ques-
tion then is how to support network-aware search – a mech-
anism that will return the top-ranked answers to a query
consisting of a set of tags, given a user with a particular
network. Such a mechanism is important not only for sup-
porting search within these sites, but also for incorporating a
seeker’s network and tagging behavior in general web search.
In this paper, we revisit top-k processing in this context.

Information Retrieval (e.g., web search) generally assumes
content to be relatively static, while user interests are dy-
namic, expressed via keyword queries [1]. On the other
hand, Publish/Subscribe assumes static publisher needs and
dynamic streaming content [20]. In collaborative tagging
sites, both content and interest are dynamic. Users tag new
photos on Flickr and new videos on YouTube every day and
develop interest in new topics. We model collaborative tag-
ging sites as follows: users in the system can be either taggers
or seekers. Taggers annotate items with one or more tags; a
query is composed of a set of tags and is asked by a seeker; a
linking relation connects seekers and taggers, thereby form-
ing the network associated with each seeker. In practice
seekers and taggers may be the same and our model and
algorithms will not preclude this possibility.

Given a seeker, a network of taggers, and a query in the
form of a set of tags, we wish to return the most relevant
items. Relevance of an item should certainly be a func-
tion of the number of taggers within the seeker’s network
who tagged the item with a tag in the query. We formal-
ize network-aware search in collaborative tagging sites and
define the problem of efficiently processing top-k queries in
the presence of dynamic scores (Section 2). We introduce a
general class of scoring functions that reflects this intuition.
This class captures the core of the ranking functions desired
in many application scenarios, such as hotlists, popularity
among friends, and popularity among a network of peers in
the same age group or geographic location. Our core ques-
tion is then how to achieve efficient top-k processing of these
network-aware search queries.



We consider what sort of storage structures are needed to
support such queries. In the network-unaware setting, one
would use per-tag inverted lists, listing items ranked by their
score. A naive extension of this is to generate similar lists
for each (tag,seeker) pair since items have a different score
per seeker’s network. Items would then be sorted according
to their network-aware score in each inverted list. The well-
known top-k algorithms [4] could then be directly applied to
aggregate over tags in a query. We refer to this storage strat-
egy as Exact, since it requires storing exact scores for each
item for each (tag,seeker) pair. This strategy can clearly
benefit from the efficiency of traditional top-k algorithms.
However, materializing each of these lists would be pro-
hibitive in terms of space, since there are potentially as many
lists per tag as there are seekers. Consequently, we explore
dynamic computation of scores, given a seeker’s network and
a tag, as a way of achieving a balance between processing time
and storage space. Note that while traditional top-k algo-
rithms aggregate scores on different keywords at query time,
they assume the inverted lists are ordered by exact scores,
even if exact scores of list entries are not available. The most
straightforward dynamic approach materializes only per-tag
inverted lists. These inverted lists are seeker-independent,
so their entries cannot contain exact per-seeker scores but
only upper-bounds for each item, i.e., its max score over all
seekers. We refer to this strategy as Global Upper-Bound.
We develop generalizations of top-k processing algorithms to
incorporate network-aware search. In particular, we modify
the classic NRA (No Random Access) and TA (Threshold Al-
gorithm) to account for score upper-bounds and dynamic
computation of exact scores (Section 3).

The Exact and Global Upper-Bound strategies represent
two extremes in the space-time tradeoff. While Global Upper-

Bound will offer considerable savings in space, we expect
query processing to take much longer, since the upper-bounds
may be very coarse. The finer the upper-bounds, the closer
they are to exact scores for a given seeker, which affects
the order of entries in the inverted lists. We explore two
refinements in Section 4.

Our first refinement identifies groups of seekers whose
“network-aware” scores are close. The score upper-bound
computed for such a group will then be tighter than the
global upper-bound. These groups represent seekers who
exhibit similar networking behavior. We refer to this strat-
egy as Cluster-Seekers. This strategy leads to one in-
verted list per (tag,cluster) pair. At query time, we find the
(tag,cluster) inverted lists associated to that seeker and ag-
gregate over them. We will see that the Cluster-Seekers

strategy performs faster than Global Upper-Bound and con-
sumes less space than Exact.

The performance of Cluster-Seekers depends on finding
good clusterings. We explore quality metrics that measure
how well the order of entries in a per-cluster inverted list re-
flects their order in a seeker-specific inverted list, for seekers
who belong to that cluster.

Next, we explore Cluster-Taggers, a strategy which aims
to group taggers in networks based on similarity in their
tagging behavior. Each tagger cluster is associated with an
inverted list, where items are ranked by their upper-bound
within the cluster of taggers. At query time, we determine
the tagger clusters associated with a given seeker and com-
pute scores by aggregating over the inverted lists associated
with these tagger clusters. Taggers in a seeker’s network

may belong to different clusters, and so multiple inverted
lists per tag may be relevant for a given seeker. We thus
may have to aggregate over a larger number of inverted lists,
albeit with tighter upper-bounds per list. In our experi-
ments, we found that Cluster-Taggers imposes little space
penalty compared to Global Upper-Bound, and outperforms
Cluster-Seekers in both space overhead and query time.
However, not every seeker will benefit from this approach,
e.g., seekers whose taggers fall into many clusters.

We run extensive experiments on datasets from del.icio.us
(Section 5). We measure the performance of clustering in
terms of space consumption and the performance of top-k
algorithms in terms of the number of sequential and random
accesses. To the best of our knowledge, this is the first

attempt to incorporate social behavior into indexing and

top-k query processing.

2. DATA MODEL
Our model represents collaborative tagging sites where

users have ties with other users and can express their en-
dorsement of visited items – e.g., photos in Flickr and videos
in YouTube – by tagging. We model the underlying social
network as a directed graph G = (V, E) whose nodes are
users and (directed) edges correspond to ties between them.
The edges may correspond to explicit ties such as friendship,
similar age group, or people living in the same neighborhood.
Alternatively, they may correspond to implicit ties, derived
through some further analysis. We describe examples below.

We represent the data relevant to this application using
the following relations: (i) Link(u, v) which says there is a
directed edge from user u to user v. We assume every user
participates in at least one link. (ii) Tagged(v, i, t) which
says tagger v tags item i with tag t.

Often we will be interested in iterating over all users in
one of the projections of Link or Tagged. The projection on
the first component of Link is the Seekers set; we will be
interested in queries from these users. The projection on the
first component of Tagged represents the Taggers set. We
want the tags assigned by these users to influence the way
answers to queries are scored. It is convenient to use the
following notation. For a seeker u ∈ Seekers, Network(u) is
the set of neighbors of u, i.e., Network(u) = {v | Link(u, v)}.
We will use the notation Items(v, t) = {i | Tagged(v, i, t)} to
denote the set of items tagged with t by tagger v ∈ Taggers.

2.1 Example Networks
We elaborate on a few natural implicit ties that may exist

between users in G. Let Items(v) be the set of items tagged
by user v with any tag. Then we could define Link(u, v) to
mean that of the items tagged by u, a large fraction are also
tagged by v, i.e., |Items(u)∩ Items(v)|/|Items(u)| > thres,
where thres is a given threshold.

Alternatively, we could define Link(u, v) iff v tags a suf-
ficient fraction of the items tagged by u with the same tag
as u, i.e., |{i | ∃t : Tagged(u, i, t) ∧ Tagged(v, i, t)}|/|{i | ∃t :
Tagged(u, i, t)}| > thres.

Figure 1 shows our running example. The network of
seeker Jane overlaps with Leia’s and Amanda’s. This is re-
flected in Tagged, where taggers common to Jane and Leia
tag various items.

The techniques of the paper do not assume any particular

semantics of how the networks are obtained.



Figure 1: Seekers, Networks and Tagging Actions

2.2 Queries and Scoring
Seekers issue queries in the form of a set of keywords.

In order to focus on the aggregation problems rather than
the (orthogonal) text matching issues, we treat keywords
and tags alike, and our scoring method is based on exact
string match. More specifically, given a seeker u and a query
Q = t1, ..., tn, we define the score of an item i for u w.r.t. a
tag tj as a monotone function of the number of taggers in
u’s network who tagged i with tag tj , i.e.,
scoretj

(i, u) = f(|Network(u)∩{v | Tagged(v, i, tj)}|), where
f is a monotone function.

We define the overall query score of an item i for a seeker
u ∈ Seekers as a monotone aggregation of the scores for the
individual keywords in the query, i.e.,
score(i, u) = g(scoret1(i, u), ..., scoretn(i, u)), where g is a
monotone aggregate function.

While the framework is general enough to permit arbitrary
monotone functions f and g, we will use f = count and
g = sum for ease of exposition. Prior work [18] has shown
that when these scoring functions are applied to networks
based on implicit common-interest, the resulting lists are
good predictors of relevance to the seeker. Hence we use
common-interest networks in our experiments.

2.3 Problem Statement
Given a query Q = t1, ..., tn, issued by user u, and a num-

ber k, we want to efficiently determine the top k items, i.e.,
the k items with the highest overall score.

In the next section, we address the following questions:
given the input data modeled using the logical relations Link
and Tagged, what information should we pre-compute in
order that well-known top-k algorithms can be leveraged,
and how should we adapt these algorithms to work correctly
and efficiently in our setting?

3. INVERTED LISTS AND TOPK
We wish to compute the top-k items which have been

tagged by people in a seeker’s network with query relevant
tags. We organize items in inverted lists and study the appli-
cability of typical top-k processing algorithms to our setup.

3.1 Computing Exact Scores

Typically, in Information Retrieval, one inverted list is
created for each keyword [1]. Each entry in the list con-
tains the identifier of a document along with its score for
that keyword. Storing scores allows to sort entries in the
inverted list thereby enabling top-k pruning [6]. While in
classic IR each document has a unique score for a keyword
(typically, tf*idf [1] or probabilistic [7]), one characteristic
of our problem is that the score of an item for a tag de-
pends on who is asking the query, i.e., the seeker’s network.
One straightforward adaptation is to have one inverted list
per (tag,seeker) pair and sort items in each list according to
their score for the tag and seeker. Therefore, each item will
be replicated along with its exact score in each (tag,seeker)
inverted list. This solution is illustrated on the right-hand
side of Figure 2. We refer to it as Exact and use it as our
baseline for experiments on space overhead.

Clearly, for each tag, Exact would store as many inverted
lists as there are distinct networks – and there could be one
for each seeker in the worst case. Consider a collaborative
tagging site with 100,000 users, 1,000,000 items, and 1000
distinct tags. Suppose that on an average each item re-
ceives 20 tags which are given by 5% of the users. Now,
were we to maintain an inverted list for each (tag,seeker)
pair with entries of the form (item,score), the size of the
index would be:
100, 000 seekers × 1, 000, 000 items × 20 tags × 5% × size
of each entry. Assuming 10 bytes per entry, the size of the
index is then = 1012 bytes = 1 terabyte. The space re-
quirement of 1 terabyte was obtained by using modest sizes.
Actual numbers in real social tagging sites may be much
higher [9]. The space requirements of Exact can easily be-
come prohibitive as the network and tagging activity ex-
pand.

We now review top-k processing in the context of Exact.

3.2 TopK Processing with Exact Scores
Existing top-k algorithms are directly applicable to Exact.

Rather than describe them in detail, we give a brief overview
of NRA (No Random Access) and TA (Threshold Algorithm) [6],
two representative algorithms.

In NRA, the inverted list for each query keyword is assumed
to be sorted on the exact score of items. In the first phase,
the algorithm maintains a heap which contains the current
candidate entries for the top-k (there could be many more
than k of these). The inverted lists are scanned sequentially
in parallel. When a new entry is found, it is added to the
heap along with its partial (exact) score. If the item was
seen before, its score in the heap entry is updated. For ev-
ery heap entry, a worst-case score and a best-case score is
maintained. The worst-case score is based on the assump-
tion that the item does not appear in those lists where it is
so far unseen. The best-case score assumes that the item’s
score in a list where it is unseen equals the bottom score
of the heap (for that list). Items in the heap are sorted
on their worst-case score, with ties broken using best-case
scores, and subsequent ties broken arbitrarily. The algo-
rithm stops when none of the entries outside of the top-k
items examined so far has a best-case score higher than the
worst-case score of the kth item in the buffer. The output of
NRA consists of the set of top-k items in the buffer, for which
we have only partial score and hence no rank information.
Subsequent work (e.g., [11]) has adapted NRA so as to ob-
tain exact rank information. Clearly, NRA could be directly



applied in the context of Exact by picking the lists which
correspond to the current seeker and query keywords and
aggregating over them as described above.

In TA, the inverted lists are sorted on score as for NRA, but
random access is assumed in addition to sequential access.
The algorithm accesses items in the various lists sequentially
and in parallel. It maintains a heap, where items are kept
sorted on their complete score. When a new entry is seen in
any list under sequential access, its scores from other lists are
obtained by random access. If its overall score is more than
the score of the kth entry in the heap, they are swapped.
Otherwise this new entry is discarded. At any stage, the
bottom score (seen under sequential access) is maintained
for every list and is used to compute a threshold. No unseen
item can have a score higher than the threshold, so if the kth
highest heap entry is greater or equal to the threshold, then
the algorithm stops. The output consists of the top-k list in
the buffer, including items and their scores (and hence their
ranks). Unlike in NRA, much less of the lists will need to be
explored, and the heap never needs to contain more than
k items. This may result in more random accesses. The
applicability of TA in the context of Exact is straightforward
once the lists corresponding to the current seeker and query
keywords are identified.

We now turn to describing our space-saving strategy and
how top-k processing is adapted to fit it.

3.3 Computing Score UpperBounds
In order to save space in storing inverted lists, we factor

out the seeker from each per-tag list and maintain entries
of the form (item,itemTaggers) where itemTaggers are all
taggers who tagged the item with the tag. In this case,
every item is stored at most once in the inverted list for a
given tag, as opposed to being replicated potentially once for
each seeker. The question now is which score to store with
each entry, which will in turn determine how the lists are
ordered. Since scores are used for top-k pruning, it is safe to
store, in each per-tag inverted list, the maximum score that
an item could have for the tag across all possible seekers.
Given a query keyword tj , we have

ub(i, tj) = maxu∈Seekers|{ v | Tagged(v, i, tj)} &

v ∈ Network(u)|

In other words, the score upper-bound is the highest score
an item could have for a tag. We refer to an inverted list or-
ganization based on these ideas as the Global Upper-Bound

strategy. We will assume that the inverted lists are supple-
mented by the Link relation indexed by the seeker and the
Tagged relation indexed by tag and item; these will support
our equivalent of random access. They also support efficient
computation of exact scores, given a seeker and an item.

Figure 2 shows the inverted list for tag music according
to the Global Upper-Bound strategy and its counter-part
in Exact. Notice that Exact may store one item multiple
times across lists (e.g., item i19 is stored with seekers Jane,
Amanda, and Leia). In the case of Global Upper-Bound, an
item is stored only once with its highest score ever (e.g., the
score of item i19 in Global Upper-Bound is higher than its
score in the lists of Leia and Amanda since it corresponds
to its score for Jane). While the per-seeker inverted lists in
Exact are shorter than in Global Upper-Bound, the overall
space consumption of Exact is expected to be much higher.
However, the relative ordering of items in the inverted list

Figure 2: Inverted Lists Organization for Global

Upper-Bound and Exact, for the tag music.

for Global Upper-Bound does not necessarily reflect that
of any per-seeker order in Exact (e.g., i19 is scored lower
than i5 in Leia’s list while it is scored higher in the Global

Upper-Bound list). This may cause Global Upper-Bound to
scan many more entries in the inverted lists than Exact,
thereby increasing query processing time. We next describe
adaptations of NRA and TA that use score bounds; their ap-
plication to the bounds in Global Upper-Bound will serve as
another baseline (for processing time) in our experiments.

3.4 TopkProcessingwithScoreUpperBounds
We assume a function that does a “local aggregation”,

taking a seeker and a pair (item,itemTaggers) from an in-
verted list and calculating the number of itemTaggers that
are friends of the seeker. We also assume a function
computeExactScore(i, u, tj), which both retrieves the tag-
gers of item i (for tag tj) and counts the number of friends
of u who tagged with tj . Such a function can be imple-
mented as a SQL aggregate query over the join of Link and
Tagged.

3.4.1 NRA Generalization

Algorithm 1 shows the pseudo-code of gNRA. For any query,
the inverted lists (ILt) corresponding to each query keyword
t are identified and are accessed sequentially in parallel, us-
ing a criterion such as round-robin. When an item is en-
countered in a list, we: (i) record the upper-bound of the
item and (ii) compute the exact score of the item for that
tag using the itemTaggers component of the IL entry. If
the item has not been previously encountered, it is added to
the heap along with its score. If it is already in the heap,
the score is updated. Thus scores of items in the heap are
partial exact scores and correspond to the notion of worst-
case score of classic NRA. The set of bottom (i.e., last seen)
bounds of the lists is used to compute best-case scores of
items: for any item, its best-case score is the sum of its par-
tial exact score and the bottom bounds of all lists where the
item has not been seen. If an item is unseen anywhere, its
partial exact score is 0 and its best-case score is the sum of
bottom bounds over all lists. The heap is kept sorted on the
worst-case score, with ties broken using best-case score, and
then arbitrarily. The stopping condition is similar to that
for classic NRA: none of the items outside the top-k of the
heap has a best-case score that is more than the kth item’s
worst-case score. However, for classic NRA, it is sufficient to
compare the kth item’s worst-case score in the heap with the



largest best-case score of an item in the heap outside of the
top-k items. In our case, this would not be sound, since the
lists are only sorted on bounds, not necessarily on scores.
Thus, a completely unseen item can have a best-case score
higher than the largest best-case score in the heap. Thus, we
compare the maximum of the largest best-case score outside
of top-k in the heap and the sum of all bottom bounds with
the worst-case score of the kth item in the heap, stopping
when the latter is higher.

Algorithm 1 Bounds-Based NRA Algorithm (gNRA)

Require: seeker u, Query Q;
1: Open inverted lists ILt for each keyword t ∈ Q;
2: while worstcase(kth heap item) ≤

max{BestcaseUnseen, max{bestcase(j) | j ∈ heap − top-k}}
do

3: Get next list ILt using round-robin;
4: Get entry e = (i, ub, itemTaggers) in ILt;
5: Update the bottom bound of ILt;
6: Compute partial exact score of i for t using itemTaggers;
7: If i is not in heap add it, otherwise update its partial exact

score;
8: Update best-case scores of items in heap, and re-order

heap;
9: BestcaseUnseen = sum of bottom bounds over all lists;

10: end while

11: Return top-k set of items from heap.

At this point, we are guaranteed that the set of items in
the top-k of the heap belong to the final top-k list. If the
exact score (and rank) is of interest, we need to compute the
exact score of items in the heap on those lists where they are
not seen. We can do this by computing exact scores (our
analog of Random Access) for the remaining terms of the
top-k heap items. 1 We omit the pseudocode of phase 2 for
brevity.

Note that during exact score computation when a cursor is
moved we get the entry e = (i, ub, itemTaggers) in memory
without a search, and can thus get the exact score using
a local exact score computation. We will reuse the term
“sequential access” (and the abbreviation SA) to refer to
the combination of advancement of a cursor and local exact
score computation. In our algorithm, these two always occur
in tandem. We will reuse the term “random access” (RA)
to refer to the calls to computeExactScore, which in this
algorithm occur only in phase 2. The ability to quickly
get the scores to be aggregated in memory allows sequential
access to be much more efficient than random access, as in
the classical case. We discuss this further in Section 5.

Several optimizations are possible to the basic algorithm
above. Clearly, we have no need to update scores of items
in the heap whose best-case is below the worst-case of the
kth highest heap item, nor do we need to re-order these as
the lower bounds are updated. It is also possible to check
whether an element is a candidate for entry into the top-k
prior to performing an exact score computation, by checking
its new upper bound against the worst-case score of the cur-
rent kth item; this optimization can be easily incorporated
into the algorithm above.

3.4.2 TA Generalization

We now present gTA – our adaptation of TA that works

1Thus, gNRA in our setting is really “generalized Not many
Random Accesses”.

with score upper-bounds. Algorithm 2 shows the pseudo-
code. Given a query Q from a seeker u, all relevant inverted
lists are identified. We access them sequentially in parallel.
When an entry is seen for the first time under sequential
access in a list, we compute its exact score in that list (as
part of SA) and perform exact score computations on the
other lists (a set of RAs). Thus, we always have complete
exact scores for the items in the buffer. For each list, we
remember the bottom bound seen. The threshold is the
sum of the bottom bounds over all lists. The algorithm
stops whenever the score of the kth item in the heap, which
is kept sorted on score, is no less than the threshold. At this
stage, we can output the top-k items together with their
scores and hence rank them.

Algorithm 2 Bounds-Based TA Algorithm (gTA)

Require: seeker u, Query Q
1: Open inverted lists ILt for each keyword t ∈ Q;
2: while score(kth heap item) ≤

sum of bottom bounds over all lists do
3: get next list ILt using round-robin;
4: Let e = (i, ub, itemTaggers) be the next entry in ILt;
5: Update the bottom bound of ILt;
6: if i not in current top-k then
7: Use local aggregation to get exact score of i in ILt using

itemTaggers;
8: Use computeExactScore to get exact score of i in other

lists;
9: if i’s overall score > kth score in heap then

10: Swap kth item with i; keep top-k heap sorted;
11: end if
12: end if
13: end while

14: Output the heap as is.

As with gNRA, there are slight modifications that can save
accesses: when we find a new item i we could iteratively
retrieve scores in other lists, curtailing the iteration if we
find that the best-case of i is below the exact score of the
kth item in the heap.

To summarize, both variants of Global Upper-Bound (gNRA
and gTA) differ from Exact in that the former needs to com-
pute the exact score of an item for a tag and seeker at query
time. Using a simple variation of the argument in [6], we can
show that both Global Upper-Bound variants are instance
optimal over all algorithms that use the same upper-bound
based storage. In the case of gTA, this means that gTA based
on a round-robin choice of cursors uses no more sequential
accesses than any other “reasonable” algorithm, up to a lin-
ear factor. Reasonable here means that the algorithms can
not make a call to computeExactScore for an item until
the item has been reached under sequential access. This is
the analog of the “no wild guesses” restriction of [6]. Similar
statements can be made for gNRA: Algorithm 1 is optimal, up
to a constant factor, in number of sequential accesses made,
over algorithms that perform only sequential accesses. If we
consider the optimization where exact score computations
are done only for items that have a best-case score above
the current kth highest-score, we find that it is optimal in
terms of the number of exact score computations.

However, any of these optimality statements only justify
the use of these query processing algorithms once a storage
structure is fixed; they do not justify the storage structures
themselves. The accuracy of upper-bounds in the inverted
list is clearly the key factor in the efficiency of top-k prun-



ing. The finer the upper-bound, the closer it is to the item’s
exact score and the faster an item can be pruned. Therefore,
we need to explore further optimizations of our inverted list
storage strategies. The clustering-based approaches intro-
duced in the next section work by identifying upper-bound
based inverted lists for a (query,seeker) pair and then ap-
plying either gNRA or gTA. They will differ on which lists are
identified and on how the clusters are formed.

4. CLUSTERING & QUERY PROCESSING
As discussed in Section 3, it is intuitively clear that the

greater the distance between the score upper-bound and the
exact score of an item for a tag, the more processing may be
required to return the top k results for a given (seeker,query)
pair. The aim of this section is to describe methods which
reduce the distance between exact scores and upper-bounds
by refining upper-bounds. The core idea is to cluster users
into groups and compute score upper-bounds within each
group. The intuition is that by making a cluster contain
users whose behavior is similar, the exact scores of users in
the cluster will be very close to their upper-bound score. The
remaining question is thus: which users should the clustering
algorithm group together to achieve that goal.

4.1 Clustering Seekers
Since the score of an item depends on the network of tag-

gers, a natural approach is to cluster the seekers based on
similarity in their scores. Given any clustering of seekers,
we form an inverted list ILt,C for every tag t and clus-
ter C, containing all items tagged with t by a tagger in
S

u∈C
Network(u), with the score of an item being the max-

imum score over all seekers in the cluster. That is, an item
i in the list gets score maxu∈Cscoret(i, u). Query process-
ing for Q = t1 . . . tn and seeker u proceeds by finding the
cluster C(u) containing u and then performing aggregation
(using one of the algorithms in Section 3) over the collection
of inverted lists ILti,C(u).

Figure 3: Example of Cluster-Seekers

Global Upper-Bound is a special case of Cluster-Seekers
where all seekers fall into the same cluster and the same
cluster is used for all tags. That is not the case in general
with Cluster-Seekers as illustrated in Figure 3 where Jane
and Leia fall into the same cluster C1 for the tag music, but
into different clusters for the tag news. Upper-bounds within
each list are computed for members of the associated cluster,
which makes the bounds necessarily tighter. For example,
item i7 has a tighter upper-bound in cluster C2 for tag music

than in Global Upper-Bound in Figure 2. It is necessary
to compute seekers’ clusters on a per-tag basis in order to
reflect (i) the overlap in networks among different seekers
and (ii) the overlap in tagging actions of taggers in clusters.
Indeed, if we generated a set of clusters which are agnostic
to the tags, we could end up creating a cluster containing
Jane, Leia and Amanda (since they share some taggers in
their networks). The score upper-bounds for such a cluster
would be coarser (e.g., i19 would have a score upper-bound
equal to 65 for tag news while it is equal to 30 in C2!).

One can easily show that, for single keyword queries, as we
refine the clustering, the upper bounds can only get tighter,
and hence the processing time of the generalized threshold
algorithms of the previous section can only go down, regard-
less of the seeker. In particular, Exact is optimal over all
algorithms that use Cluster-Seekers, for any clustering,
assuming single-keyword queries.

For multi-keyword queries, this is not the case. Consider a
seeker u and a top-1 query Q = t1, t2. Assume that, for this
seeker, the lists of scores for the two keywords are ILt1,u =
(x:10, i1:2, i2:1.5, . . .), where the . . . is a long tail of scores be-
low 1.5; ILt2,u = (i′1:20, i′2:19, . . . , i′1000:19, . . . , x:15). Sup-
pose a clustering puts this seeker in her own cluster, thus
making the bounds exact for her! Under gNRA, we would
have to keep making sequential accesses until we reach the
entry x:15 in the second list. However, it is possible that
in Global Upper-Bound (the coarsest possible clustering),
the global inverted lists for the two keywords are: ILt1 =
(x:10, i1:2, i2:1.5, . . .); ILt2 = (x:22, i′1:20, i′2:19, . . . , i′1000 :19).
The entry x might have a much coarser (i.e., higher) bound
in Global Upper-Bound and hence may bubble to the top
of the second list. Now, gNRA, after one round-robin, gets
the full exact score of x (still 25 for u). After this the algo-
rithm will stop, since this score is higher than the sum of all
bottom scores. This example shows that an ideal clustering

would take into account both the scores and the ordering.
How do we cluster seekers? Ideally, we would find clus-

ters that are optimal for the running time of one of our
algorithms in Section 3. We could look at the worst-case
running time over all users (for, say, a particular tag or set
of tags). For simplicity, we consider the case of single key-
word queries, where the distinction between gNRA and gTA

will not be important. Consider a seeker u asking a query
for a single keyword t, where we want to return the top
k answers. For a fixed data set D, set of seeker clusters
C1 . . . Cn, let CompTime(C1 . . . Cn, D, t, u, k) be the num-
ber of sequential accesses made in gNRA or gTA for u while
doing top-k processing for query t over D, where processing
is done using the inverted lists ILt,Ci

as discussed above.
Let WCompTime(C1 . . . Cn, D, t, k) be

maxu∈SeekersCompTime(C1 . . . Cn, D, t, u, k)

Given (n, D, t, k), one would like to find C1 . . . Cn that min-
imizes WCompTime(C1 . . . Cn, D, t, k).

It is well-known that finding clusters of points that min-
imize the diameter within a metric space is NP-hard, even
for metrics in 2-dimensions [8]. This does not immediately
imply that clustering is hard in our setting, since our objec-
tive function WCompTime(C1 . . . Cn, D, t, k) does not cor-
respond to the diameter in a metric. Indeed, the behavior
of gNRA and gTA depends not on pairwise interactions of the
items tagged by users in the cluster, but the relationship
between all the ordered lists. Nevertheless, we can show:



Theorem 1. The problem of finding C1 . . . Cn that mini-
mizes WCompTime(C1 . . . Cn, D, t, k) (given D, t, k) is NP-
hard, even for n = 2 and k = 1.

The proof is by reduction from the independent task schedul-
ing problem which is known to be NP-hard [8] even for 2
processors. The rough idea of the reduction is that tasks
are mapped to items tagged by taggers in distinct networks,
with the number of users tagging an item corresponding to
the time delay induced by the task. A clustering will yield
inverted lists that partition the items, hence yielding a par-
tition of tasks.

Similar results can be shown for the average case comput-
ing time for a cluster. We state here only one result, which
shows that one cannot easily find the clusters that minimize
the size of the inverted lists for most users. Given a data set
D, a set of seeker clusters C1 . . . Cn, a tag t, and a seeker
u, we let SZ(C1 . . . Cn,D,t,u) be the size of the inverted
list ILt,C(u), and let AVGSZ(C1 . . . Cn, D, t) = AVGu∈Seekers

SZ(C1 . . . Cn, D, t, u). We then have:

Theorem 2. Finding the clusters that minimize
AVGSZ(C1 . . . Cn) is NP-hard, even for n = 2.

The proof is by reduction from the minimum sum of squares
problem [8]. Again a collection of items is used that are
tagged by distinct networks, with the networks associated
with many users.

Given the above results, we must rely on heuristic meth-
ods to find clusters of seekers. One natural approach is based
on overlap of the seekers’ networks. The intuition is that,
given two seekers u and u′, the higher the number of com-
mon taggers in their networks, the higher the chance that
the score of an item for those networks be similar. However,
two taggers may have different tagging behaviour for differ-
ent tags. Therefore, we propose to compute per-tag network
overlap between seekers.

Given the set of all seekers in Seekers, we can construct
a graph where nodes are seekers and an edge between two
seekers u and u′ is created iff |Network(u, t)∩Network(u′, t)| ≥
thres, where Network(u, t) is the set of users in Network(u)
who tagged at least one item with tag t. The threshold thres
is application-dependent. Once the graph is instantiated, we
apply off-the-shelf graph clustering algorithms in Section 5
to generate clusters. We report the space/time performance
of Cluster-Seekers in Section 5.4.

4.2 Evaluating and Tuning Clusters
The Cluster-Seekers approach depends on finding good

clusterings, which in turn depends on being able to predict
the performance of a clustering. Clearly, we cannot test a
clustering on all keyword combinations for all users, and for
all values of k. We begin with a measure comparing the
orderings produced by the clustering with the exact order-
ings for a particular user; we will average this over users.
Although there are many metrics on lists considered in the
literature (see, e.g. [5]), we need one that is both corre-
lated with the performance of our algorithms and simple to
compute. We discuss here one such measure, a variant of
Normalized Discounted Cumulative Gain (NDCG, [12]).

Fix a tag t and seeker u, and let Lideal be the ranked list
of items for u and t, ranked by exact scores, with Mideal
being the length of Lideal. Let Lapprox be the ranked list
of items in a cluster, ranked by cluster upper-bounds. The
underlying domain of Lapprox is a superset of the domain of

Lideal. Let D(i) be the maximum over j ≤ i of the position

of the jth item in Lideal within Lapprox. The Gain Vector
for u, t is a vector of length Mideal such that G(i) = i/D(i).
That is, D(i) represents the delay in getting to the top i
items of Lideal, hence a low gain G(i) represents a high
delay for using this list, and vice versa. G(i) is at most one,
since we must wait at least i to reach i items.

Intuitively, G(i) represents the quality of the clustered
list if we are looking for the seeker’s top i items. For top-
k multi-keyword queries, the highest scoring item may be
significantly further down on an individual list than k, and
we do not know before query time how far down it may come.
We will thus sum the quantity G(i) over i, discounting higher
values of i, since it is less likely that the tail of the seeker’s
list will be relevant.

Given a “discount factor” b, let G′(i) = G(i)/logb(i) and
l′(i) = 1/ilogb(i) for i > b, and let G′(i) = G(i) and l′(i) =
1/i otherwise. (We use b = 2 in our experiments.) We define
the Normalized Discounted Cumulative Gain (NDCG) of the

clustered list with respect to u as
Σi<D(G′(i))

Σi<D l′(i))
. The denomi-

nator is an additional normalization factor that guarantees
that the entire quantity is at most one.

NDCG measures the quality of a clustered list for a given
seeker and keyword. A value of 1 is the optimum, which is
realized only by the ideal list, while values close to 0 indicate
a list that is far from ideal. The quality over all seekers can
be estimated by averaging over a randomly selected collec-
tion of seekers. We will see in Section 5 that the run-time
performance of Cluster-Seekers is correlated with NDCG.
The performance of a multi-keyword query Q is a function of
the “aggregate NDCG of Q”, with the aggregation ranging
over a sample of seekers and over the keywords in Q.

The NDCG can be used to compare two clusterings – for
example, those done via different clustering algorithms, or
different parameters within a clustering algorithm. It can
also be used to decide whether increasing the number of clus-
ters will significantly impact performance. Since the NDCG
is a per-keyword quantity, it can be calculated offline.

4.3 Clustering Taggers
Another clustering alternative is to organize taggers into

different groups which reflect overlap in their tagging behav-
ior. We refer to this strategy as Cluster-Taggers. That is,
for each tag t we partition the taggers into clusters. We
again form inverted lists on a per-cluster, per-tag basis,
where an item i in the inverted list for cluster C and tag
t gets the score:

maxu∈Seekers |Network(u) ∩ C ∩ {v | Tagged(v, i, t)}|,

i.e., the maximum number of taggers in cluster C who are
linked to u and tagged item i with tag t, over all seekers u.
To process a query Q = t1 . . . tn for seeker u, we find the set
of clusters of the taggers in Network (u), and then perform
an aggregation over the inverted lists associated with all
(tag,cluster) pairs. Members of a seeker’s network may fall
into multiple clusters for the same tag, thereby requiring us
to process more lists for each tag (as opposed to one list per
tag in the case of clustering seekers).

How do we cluster taggers? We instantiate a graph where
nodes are taggers and there exists an edge between two
nodes v and v′ iff: |Items(v, t)∩ Items(v′, t)| ≥ thres where
t is any tag. Again, thres depends on the application.



We now summarize the differences between clustering seek-
ers based on network overlap (Cluster-Seekers) and clus-
tering taggers based on overlap in tagging behavior (Cluster-
Taggers). At query time, Cluster-Seekers identifies one
inverted list per (tag,seeker) pair since a seeker always falls
into a single cluster for a tag. In Cluster-Taggers there
are potentially multiple inverted lists per (tag,seeker) pair,
given that a seeker will generally have multiple taggers in
his network which may fall into different clusters.

Unlike Cluster-Seekers, Cluster-Taggers does not repli-
cate tagging actions over multiple inverted lists. In fact,
we will show that there is no significant penalty in space
of Cluster-Taggers over Global Upper-Bound. Space con-
sumption of clustering is explored in Section 5.

As for processing time, while Cluster-Seekers benefits
all seekers, Cluster-Taggers does not. Indeed, we find
that Cluster-Taggers can hinder seekers that are associated
with many tagger clusters and hence many inverted lists.
Still, we show that there is a significant percentage of seek-
ers that can benefit from Cluster-Taggers and that this

population can be identified in advance. Cluster-Taggers

also has advantages for maintenance under updates; while
Cluster-Seekers requires multiple exact score computa-
tions and updates to maintain as new tagging events occur,
Cluster-Taggers requires only a single exact score com-
putation and a single update per tag. This is because in
Cluster-Taggers, items are not replicated across clusters.

5. EXPERIMENTAL EVALUATION

5.1 Implementation
We implement the gNRA and gTA algorithms in Java on top

of an Oracle 10g relational database. Our experiments are
executed on a MacBook Pro with a 2.16GHz Intel Core 2
Duo CPU and 1GB of RAM, running MacOS X v10.4. The
database server is running on a 64-bit dual processor Intel
Xeon 2.13GHz CPU with 4GB or RAM, running RedHat
Enterprise Linux AS4.

Our schema consists of the following relations:
TaggingActions(itemId,taggerId,tag) stores raw tagging
actions.
Link(tag,seekerId,taggerId) encodes the Link relation
between seekers and taggers, on a per-tag basis. The net-
work of a seeker is a union of all taggers associated to it.
InvertedList(tag,clusterId,itemId,ub) stores inverted
lists of items per tag, per cluster. A tree index is built on
(tag, ub) to support ordered access. This table also stores
per-tag inverted lists for Global Upper-Bound.
SeekerClusterMap(seekerId,clusterId,tag) stores the as-
signment of seekers to clusters.
TaggerClusterMap(taggerId,clusterId,tag) stores the re-
sult of clustering Taggers.

Given a seeker u, and a tag t, an SA is implemented as
moving a cursor over the result of the query:

Select IL.itemId, IL.ub, count(*) as ‘‘score’’

From InvertedList IL, TaggingAction T, Link L

Where L.seekerId = :u And T.tag = :t

And L.taggerId = T.taggerId And T.tag = L.tag

And T.tag = IL.tag And T.itemId = IL.itemId

Group by IL.itemId, IL.ub

Order by IL.ub descending

Appropriate indexes are built on the join columns to en-
sure efficient access. The role of aggregation in this query
is to compute partial exact scores of items with respect to
the current “inverted list”. An RA, i.e. a calculation of
computeExactScore on a single item i, is given as follows:

Select count(*) as ‘‘score’’

From TaggingAction T, Link L

Where L.seekerId= :u And T.tag= :t And T.itemId= :i

And L.taggerId = T.taggerId And L.tag = T.tag

Both queries are for Global Upper-Bound, and are aug-
mented by a join with SeekerClusterMap for Cluster-Seekers
and by a join with TaggerClusterMap for Cluster-Taggers.

We use a SQL-based implementation for convenience only.
The exact difference in cost between SAs and RAs, and
hence the overall performance time of the algorithms, may
vary significantly from a native implementation of the algo-
rithms using inverted lists. However, we will quantify the
query execution time of all our algorithms via the number of
SAs and RAs. This will thus suffice to give a picture of the
relative performance of our algorithms both in comparison
to Exact and to each other.

We found that, as is the case with traditional top-k al-
gorithms, the RAs in our implementation are significantly
more expensive than SAs. The relative cost varies slightly
depending on the tag, but a single RA is about 10 times
more expensive than a single SA.

We use Graclus [3], an efficient clustering implementation
over undirected weighted graphs. Graclus provides two clus-
tering methods. Ratio Association (ASC) maximizes edge
density within each cluster, while Normalized Cut (NCT)
minimizes the sum of weights on edges between clusters [3].
More formally, given two sets of nodes Vi and Vj , we denote
by links(Vi,Vj) the sum of edge weights between nodes in
Vi and nodes in Vj . We denote by degree(V) the sum of
weights on edges incident on the nodes in V. The objec-

tive of ASC is: maximize
Pn

i=1
|links(Vi,Vi)|

|Vi|
The objective of

NCT is: minimize
Pn

i=1
|links(Vi,V\Vi)|

degree(Vi)
.

5.2 Data and Evaluation Methods
We use del.icio.us datasets for our experimental evalua-

tion. del.icio.us is a collaborative tagging site where users
bookmark URLs (to which we refer as items) and option-
ally annotate them with tags. The dataset is very sparse
and follows a long tail distribution [13, 9]: most items are
tagged by only a handful of users, and many tags are only
used by a few users. We were given one month of data by the
del.icio.us team. In order to reduce the size of the dataset for
easier processing by Oracle 10g, a commercial RDBMS, we
removed all items that were tagged by fewer than 10 distinct
users. Additionally, we removed tagging actions that include
uncommon tags: only tags used by at least 4 distinct users
are included in our dataset. This dramatically reduced the
cardinality of the group by queries used to compute inverted
lists with upper bounds (see Subsection 5.1). The impact
on the run-time results of our top-k algorithms is limited,
since only items that were “unpopular” over all tags and all
users were removed. As a result, the dataset was reduced to
27% of its original size, and contains 116,177 distinct users
who tagged 175,691 distinct items using 903 distinct tags,
for a total of 2,322,458 tagging actions. For the purposes of
our evaluation we focus on users who contributed at least



tag |Net| avg|Net|(v) | max|Net|(v) |

Software 25545 8 607
Programming 21853 21 983
Tutorial 16895 23 1068
Reference 24697 34 1098

Table 1: Characteristics of Network for four tags.

one tagging action to the cleaned dataset.
We choose 4 tags (software, programming, tutorial, and

reference) from the 20 most popular. Popularity of a tag is
measured by the total number of tagging actions involving
it: the most popular tag has been used about 100,000 times,
while the 20th most popular was used about 34,000 times.
We evaluate the performance of our methods over 6 queries
of varying lengths, to which we refer by the first letters of
each tag (e.g. SP for software programming). We chose these
four tags because they are thematically related and may be
meaningfully combined in a query.

del.icio.us has an explicit notion of friendship, but users
may have various semantics for it. Since we were interested
in networks that reflect affinities in item preference, in our
experiments we use a network derived from the tagging data
via common interest. There is a link between a seeker and a
tagger if they tagged at least two items in common with the
same tag. Table 1 lists the number of users per tag (|Net|),
as well as the average and maximum cardinalities of Link,
i.e., the size of a seeker’s network.

We use the following sampling methodology to select users
for our performance evaluation. For each tag and for each
seeker we compute the total number of tagging actions that
are relevant to that seeker (i.e., the total number of tagging
actions by all taggers linked to the seeker), and rank seekers
on this value. We notice that the top 25% of the seekers
together correspond to 75%-80% of all tagging actions for
the four tags in our experiments. For each query we identify
three mutually exclusive groups of seekers: Seekers-25 are
in the top 25% of ranks for each query keyword, Seekers-50
are in the top 50% of ranks for each query keyword, but not
in the top 25%, Seekers-100 are the rest. For each query we
draw 10 seekers uniformly at random from each group, for
a total of 30 seekers per query. This methodology allows us
to capture the variation in performance for different types
of seekers: popular tags correspond to many more items for
Seekers-25 than for Seekers-100.

We evaluate the performance of our algorithms with re-
spect to two metrics. Space overhead is quantified by the
number of entries in the inverted lists. Query execution
time is expressed by the number of sequential and random
accesses (SAs and RAs). The raw number of accesses varies
significantly between seekers even when the query is fixed.
Hence, we focus on relative improvement obtained by gNRA

and gTA compared to Global Upper-Bound. Unless other-
wise stated, we report average percent improvement over
the baseline for 30 seekers per query, with separate averages
given for Seekers-25, Seekers-50 and Seekers-100. We use
truncated mean, and remove the minimum and maximum
values before computing the average.

5.3 Performance of Global UpperBound
We start with some general comments about how the num-

ber of SAs and RAs increases with k, for both gNRA and gTA.
The qualitative behavior depends on the characteristics of

Seekers-25 Seekers-50 Seekers-100
query GUB Exact GUB Exact GUB Exact

SP 1674 52 12920 134 18036 61
PR 479 13 3923 87 12982 61
TR 1262 14 4813 92 18476 121
SPT 938 78 4107 112 17985 195
SPR 1495 67 8972 194 14976 131
SPTR 907 119 2229 119 10986 189

Table 2: gNRA (SA) in Global Upper-Bound and Exact.

the seeker’s network. Consider the query software program-
ming for 3 selected users in Figure 4. For a fixed user, gNRA
and gTA exhibit the same trend in both SAs and RAs. How
the number of accesses increases with k is a function of the
distribution of exact scores. For example, the number of SAs
for gNRA for seeker u2 increases dramatically for k = 40.
When looking at the distribution of exact scores for this
seeker we notice that the items can be classified into 3 cat-
egories with respect to their score: the first 36 items score
higher than 3, followed by 60 items with a score of 2. The
remaining 405 items (79%), have a score of 1, and consti-
tute the tail of the distribution for seeker u2. The spike in
accesses occurs when k becomes high enough that the long
tail needs to be explored.

Space overhead of Global Upper-Bound is presented in
Figure 5; compared to Exact, Global Upper-Bound achieves
savings of over two orders of magnitude. However, as argued
in Section 3, the Global Upper-Bound strategy, while opti-
mal with respect to space overhead, may suffer from high
query execution time. Table 2 compares the number of SAs
for gNRA under Global Upper-Bound to the number of SAs
for Exact. We observe that Global Upper-Bound under-
performs Exact by up to two orders of magnitude, and that
users in Seekers-100 are at a particular disadvantage. gTA

under Global Upper-Bound shows a similar trend.

5.4 Clustering Seekers
We experiment with 3 clustering algorithms: ASC, NCT

(Section 5.1) and a random clustering for reference, RND,
which assigns seekers to random clusters. We cluster over
the common-interest network of seekers: there is an edge
between two nodes u1 and u2 if these users tagged at least
one item in common. This graph is undirected, and edges
are weighted by the number of items tagged in common.
Space. Figure 5 (left) summarizes the space overhead of clus-
tering as the cluster budget varies from 10 to 500 clusters.
Global Upper-Bound has lowest overhead, with 74,181 to-
tal inverted list entries, while Exact has 62,973,876 entries.
Space overhead of NCT ranges between 533,346 rows for
10 clusters and 4,284,854 rows for 500 clusters; ASC stores
between 472,401 and 6,794,890 rows; while RND stores be-
tween 643,994 and 14,543,547 rows. ASC and NCT both
achieve an order of magnitude improvement in space over-
head over Exact. At this stage, we discard RND due to
relatively poor space utilization, fix the number of clusters
at 200, and continue our experiments with ASC (4,448,717
rows) and NCT (2,984,377 rows).
Time. Tables 3 and 4 quantify the performance of gNRA and
gTA with Cluster-Seekers when NCT and ASC are used for
clustering. We list improvement in the number of sequential
accesses (# SA) and in the total number of accesses, which
is simply # SA + # RA. We observe that both gNRA and
gTA with Cluster-Seekers significantly outperform Global



Figure 4: Performance of gNRA and gTA as K varies.

Figure 5: Space overhead of Cluster-Seekers and Cluster-Taggers.

Upper-Bound with both types of clustering. Consider the av-
erage improvement in the total number of accesses achieved
by gNRA. With NCT, gNRA makes 38-72% fewer total accesses
compared to Global Upper-Bound, and with ASC the total
number of accesses is improved by 67-87%. We observe a
similar trend for gTA: NCT improves average total accesses
by 42-69%, while ASC improves by 72-83%. Further, we
observe that ASC outperforms NCT on both sequential and
total accesses in all cases for gTA, and in all cases except one
in gNRA, query TR for Seekers-50, where NCT is better by
2%. Finally, note that in most cases % improvement over
Global Upper-Bound is highest for Seekers-100, followed by
Seekers-50. However, this trend needs to be related to the
findings in Table 2: for Seekers-100 Global Upper-Bound

performs worst compared to Exact, and so there is signif-
icant room for improvement. Also note that improvement
in # SA is similar to improvement in the total number of
accesses. This is because performance of gNRA is heavily
dominated by sequential accesses, while in gTA, # RA is
bounded by # SA ∗(n − 1) for a query of length n.

In Section 4.2 we described a variant of NDCG, a cluster-
ing quality metric that is correlated with the run-time per-
formance of our algorithms. NDCG captures the run-time
degradation compared to Exact, and we now demonstrate
the correlation between NDCG and run-time performance of
gNRA. In Tables 5 and 7 we show that NDCG is predictive of
% degradation over Exact for Global Upper-Bound, NCT
and ASC, for all groups of users in our experiments. For
gNRA, SAs dominate the run time by a large margin so we
use SA to quantify run time in this experiment. Higher val-
ues of NDCG correlate with lower values of % degradation in

Seekers-25
NDCG % degr. over Exact

query GUB NCT ASC GUB NCT ASC

SP 0.0575 0.0841 0.2232 2594 1128 306
TR 0.1155 0.1653 0.2602 796 382 180
PR 0.0796 0.1215 0.1745 2034 737 354
SPT 0.0936 0.1366 0.2963 963 569 123
SPR 0.0737 0.1283 0.2170 1571 626 286
SPTR 0.1098 0.1674 0.2883 739 362 135

Table 5: Using NDCG to predict run-time perfor-
mance of clustering for Seekers-25.

# SAs compared to Exact. Global Upper-Bound has consis-
tently lower NDCG, leading to poor query-execution times,
while ASC has highest values of NDCG, and best run-time
performance compared to other methods. A similar trend
holds for gTA. It also holds when the total number of accesses
rather than the number of SAs is used to measure run-time.
Recall that NCT outperformed ASC for Seekers-50 for query
TR (see Table 4). NDCG captures this, assigning the high-
est value to NCT for this query and user sample. NDCG
does mis-predict the relative performance of ASC and NCT
in a single case, for the query TR on Seekers-100.

We conclude with a scatter-plot (Figure 6) that presents
the correlation between NDCG and the number of SAs for
Seekers-25, for all clustering methods and all queries.

5.5 Clustering Taggers
We cluster taggers using a variation of the underlying link

relation in our experimental network: there is an edge be-
tween two taggers if they tagged at least one item in common



NCT (% improvement over GUB) ASC (% improvement over GUB)
Seekers-25 Seekers-50 Seekers-100 Seekers-25 Seekers-50 Seekers-100

query SA Total SA Total SA Total SA Total SA Total SA Total

SP 35 34 76 75 78 77 83 79 85 84 89 89
TR 54 53 78 77 78 80 80 72 76 75 85 84
PR 37 35 75 74 70 70 63 59 82 81 82 82
SPT 31 28 41 38 73 71 74 66 80 76 85 83
SPR 52 46 58 55 73 71 73 67 81 78 89 87
SPTR 40 34 49 45 64 60 68 56 78 70 82 77

Average 42 38 63 61 73 72 74 67 80 77 85 84

Table 3: Performance of gNRA over Cluster-Seekers with 200 clusters.

NCT (% improvement over GUB) ASC (% improvement over GUB)
Seekers-25 Seekers-50 Seekers-100 Seekers-25 Seekers-50 Seekers-100

query SA Total SA Total SA Total SA Total SA Total SA Total

SP 36 34 66 65 73 73 80 80 82 81 87 87
TR 54 54 72 72 76 75 72 72 77 77 82 82
PR 38 37 74 74 68 67 64 64 81 81 79 78
SPT 34 35 46 45 74 73 72 73 81 80 84 84
SPR 53 52 57 56 67 66 74 74 78 77 85 85
SPTR 41 42 50 49 63 61 68 67 77 78 82 81

Average 43 42 61 60 70 69 72 72 79 79 83 83

Table 4: Performance of gTA over Cluster-Seekers with 200 clusters.

Clus. Seekers Clus. Taggers

query # SA Total # SA Total

SP 82 82 97 97
TR 78 78 94 94
PR 82 82 97 96
SPT 83 83 97 97
SPR 86 86 95 95
SPTR 83 83 96 96

Table 6: % improvement of Cluster-Seekers and
Cluster-Taggers over Global Upper-Bound.

Seekers-25: NDCG vs. degradation over EXACT
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Figure 6: Correlation between NDCG and #sequen-
tial accesses for Seekers-25.

with a given tag. Edges are weighted by the number of items
tagged in common.
Space. Figure 5(right) presents the space overhead of Cluster-
Taggers on a logarithmic scale. As expected, space overhead
of this method is significantly lower than that of Exact and
of Cluster-Seekers. Space overhead of NCT ranges from
115,168 rows for 10 clusters to 167,141 rows for 500 clus-
ters; the overhead of ASC is between 100,922 and 180,881
rows; RND consumes between 160,432 and 259,216 rows.
These numbers are all comparable to the optimal space con-
sumption of Global Upper-Bound: 74,181 entries, which is
explained by the lack of duplication of entries in the lists.

Time. In the best case, given a keyword, all taggers relevant
to a seeker will reside in a single cluster; then, only one in-
verted list will be processed at query time for that keyword.
In the worst case, all taggers in the seeker’s network will re-
side in separate clusters. For 200 clusters and tag reference,
there are 34 taggers per seeker, on average (Table 1).
Cluster-Taggers has low space overhead; here, query ex-

ecution time is the bottleneck. Since we found ASC to per-
form well in terms of time in other contexts (e.g. see Section
5.4), we now focus our attention on ASC with 200 clusters.

Even under the most effective clustering, a seeker may still
be mapped to many clusters. An extreme case in our dataset
is a seeker who mapped to 80 clusters for the two-keyword
query SP (this seeker has 323 taggers). As a result, the num-
ber of SAs of gNRA increased 26 times compared to Global

Upper-Bound, clearly an unacceptable performance. We ob-
served empirically that gNRA with Cluster-Taggers outper-
forms Global Upper-Bound when at most 3 ∗ queryLength
clusters are identified for the seeker. Therefore we propose
to use Cluster-Taggers for a subset of the seekers – those
who map to at most 3∗queryLength clusters. In our dataset
between 46-68% of seekers map to at most 3 clusters per tag.

Table 6 compares the run-time performance of Cluster-
Taggers and Cluster-Seekers to Global Upper-Bound. We
used ASC with 200 clusters for both Cluster-Taggers and
Cluster-Seekers. We used a different sampling methodol-
ogy for this experiment. For each query, we identified the
set of seekers who map to at most 3 clusters for each key-
word and sampled 10 seekers uniformly at random from that
set. Cluster-Taggers outperforms Cluster-Seekers for all
queries in our experiments, and achieves 94-97% improve-
ment over Global Upper-Bound for this class of seekers.

6. RELATED WORK
Top-K Processing: Top-k algorithms aim to reduce the
amount of processing required to compute the top-ranked
answers, and have been used in the relational [2], XML [15],
and other settings. The core ideas of these algorithms are
overviewed in [6, 4]. A common assumption is that scores
are pre-computed and used to maintain dynamic thresholds



Seekers-50 Seekers-100
NDCG % degr. over Exact NDCG % degr. over Exact

query GUB NCT ASC GUB NCT ASC GUB NCT ASC GUB NCT ASC

SP 0.0270 0.0735 0.1088 8605 1893 1229 0.0100 0.0802 0.1080 26238 5388 2707
TR 0.0435 0.1206 0.1084 3935 728 813 0.0176 0.0728 0.0895 31835 4198 3609
PR 0.0391 0.0894 0.1093 4268 945 753 0.0183 0.0933 0.0430 19179 5051 3562
SPT 0.0459 0.0766 0.1436 3221 1735 537 0.0261 0.0857 0.1023 7597 1664 977
SPR 0.0381 0.0846 0.1319 4039 1407 487 0.0277 0.0833 0.1034 9293 1927 892
SPTR 0.0670 0.1099 0.1847 1684 766 154 0.0421 0.0914 0.1236 4103 1376 606

Table 7: Using NDCG to predict run-time performance of clustering for Seekers-50 and Seekers-100.

during query processing, in order to efficiently prune low-
scoring answers. Even in work where the underlying query
model is distributed [16], or where the aggregation compu-
tation is expensive [10], this assumption of pre-computation
remains in place. In our work, we extend Fagin-style algo-
rithms to process score upper-bounds – since pre-computed
scores for each individual seeker are too expensive to store
(given that they depend on a seeker’s network) – and we ex-
plore clustering as a way to refine upper-bounds and reduce
the size of the inverted lists.
Socially Influenced Search: Although the potential of
using social ties to improve search has been recognized for
some time, this is still subject of ongoing work. Current re-
search has focused on judging the impact of various notions
of user affinity and socially-influenced scoring functions on
search quality [17, 18, 21, 14]. In contrast, our work devel-
ops indexing and query evaluation methods which apply to
a wide class of scoring functions and networks.
Collaborative Tagging Sites: Social graphs obey a “power-
law” distribution [19]. This applies to online tagging, where
a large number of items are tagged by a handful of users and
a large fraction of tags are used a small number of times [9,
13]. We believe that improving search results on tagging
sites is a good step towards encouraging user participation
and reducing data sparsity.

7. CONCLUSION
We presented network-aware search, a first attempt to

incorporate social behavior into searching content in collab-
orative tagging sites. These sites present a unique oppor-
tunity to account for explicit and implicit social ties when
scoring query answers. We defined a top-k processing model
which relies on a family of scoring functions that compute
item popularity among a network of users. We extended
traditional top-k algorithms, and explored clustering users
as a way to achieve a balance between processing time and
space consumption. Our solution improves on the current
state of the art in search in collaborative tagging sites, but
also reaches beyond social tagging sites, and constitutes a
first attempt at incorporating a social dimension into web
search. One immediate improvement is the verification of
our results on other collaborative tagging sites. Another is
to explore alternative user clusterings, e.g. a combination
of Cluster-Seekers and Cluster-Taggers.
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