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Abstract-This paper addresaea the problem of providing per-

connection end-to-end delay guarantees in a high-speed network.
We assume that the network is connection oriented and enforces

some admission control which ensurea that the source traffic

conforms to specitied traftic characteristics. We concentrate on

the class of rate-controlled service (RCS) disciplbw, in which

traffic from each connection is reshaped at every hop, and develop

end-to-end delay bounds for the general case where different

reshapers are used at each hop. In addition, we establish that

these bounds can also be achieved when the shapers at each hop

have the same “minimal” envelope.
The main disadvantage of this class of service discipline is that

the end-to-end delay guarantees are obtained as the sum of the
worst-case delays at each node, but we show that this problem

can be alleviated through “proper” reshaping of the t-c. We
illustrate the impact of this reshaping by demonstrating its use in

designing RCS disciplines that outperform service disciplines that

are baaed on generalized processor sharing (GPS). Furthermore,

we show that we can restrict the space of “good” shapers to a

family which is characterized by only one parameter. We also

describe extensions to the service discip~me that make it work

conserving and as a rasdt reduce the average end-to-end delays.

Zndex Terms-QoS provisioning, real-time tratYtc,traffic shap-

ing, ATM, scheduling, end-to-end delay guarantees.

I. INTRODUCTION

I
N this paper, we consider the problem of providing per

connection end-to-end delay (and throughput) guarantees

in high speed networks. Various scheduling policies have

been suggested in the literature for this purpose. Among

them, policies based on fair queueing, alternatively known

as generalized processor sharing (GPS) [7], [11 ]–[ 13], have

attracted special attention since they guarantee throughput to

individual connections and provide smaller end-to-end delay

bounds than other policies for connections that cross several

nodes. A key factor in obtaining these smaller delay bounds

is the ability to take into account (delay) dependencies in the
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successive nodes that a connection has to cross, which is in

general very difficult to do with other policies.

One notable attempt at addressing this general problem is

that of [6], which introduced the concept of service burstiness,

and used it to provide a framework to characterize service

disciplines and evaluate their end-to-end delay performance.

However, the generality of the framework in [6] did not

result in as tight end-to-end delay bounds as those obtained

by focusing on a specific policy. For example, the bounds

available based on the techniques of [6] are no better than the

looser bounds found in [12].

In this paper we concentrate on rate-controlled service

(RCS) dkciplines, which have also been proposed in the

literature [18] to provide performance guarantees to individual

connections. In this class of service disciplines, the traffic of

each connection is reshaped at every node to ensure that the

traffic offered to the scheduler arbitrating local packet trans-

missions conforms to specific characteristics. In particular, it

is typically used to enforce, at a node inside the network, the

same traffic parameter control as the one performed at the net-

work access point, which is based on the parameters negotiated

during connection establishment. Reshaping makes the traffic

at each node more predictable and, therefore, simplifies the

task of guaranteeing performance to individual connections;

when used with a particular scheduling policy, it allows the

specification of worst case delay bounds at each node [18].

End-to-end delay bounds can then be computed as the sum of

the worst case delay bounds at each node along the path.

The main advantages of an RCS discipline, especially when

compared to GPS, are flexibility, lower buffer requirements

at intermediate nodes, and typically simpler implementation

[17]. In addition, in the single node case the RCS discipline

that uses the non-preemptive earliest deadline first (NPEDF)

scheduling policy, is known to be optimal (the optimality

criterion is defined in Section IV) [8]. However, for the

more interesting case of general networks with many nodes,

optimality does not hold. Furthermore, in Section IV-A we

show with simple examples that when a connection has

to cross many nodes, GPS outperforms the “naive” rate-

controlled NPEDF discipline. As a result, it has been argued

that despite its potentially greater complexity, a GPS-based

service discipline should be the solution of choice to provide

performance guarantees to individual connections (see, for

example, [3]).

A key result of this paper is to establish that RCS disciplines

can be designed so as to outperform GPS-based ones, even in
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a network environment. This is achieved by proper selection

of the traffic reshaping performed at each node. Specifically,

any end-to-end delay bounds that can be guaranteed by the

GPS discipline can also be achieved by an RCS discipline

by using a simple algorithm to determine how to reshape

the traffic and then specify worst-case delay bounds at each

node. The sum of the worst-case delay bounds of this RCS

discipline is then no larger than the delay guarantees provided

by the GPS discipline. We also show that RCS disciplines have

the additional flexibility of providing end-to-end delay bounds

that cannot be guaranteed by the GPS discipline. Furthermore,

because of traffic reshaping, the network buffer requirements

of RCS disciplines are in general significantly smaller than

those of the GPS discipline (see [6] for related discussions).

Based on these advantages and their potential implementation

simplicity [17], we believe that RCS disciplines are very

effective candidates for providing end-to-end performance

guarantees to individual connections in integmted services

networks.

The paper is structured as follows. In Section II, we in-

troduce our traffic model, and in particular our assumptions

concerning properties of the envelope of the input traffic, and

the general structure of our shapers. Section 111is dedicated

to the description of RCS disciplines and to the derivation

of several results concerning the delay guarantees they can

provide given the traffic and shaper models of Section 11.

Section IV is devoted to a comparison with the GPS service

discipline. Section IV-A considers first the simpler version

of GPS, i.e., rate proportional processor sharing (RPPS), as

it is of greater practical significance. Section IV-B considers

the more complicated case of general GPS for which similar

results are established. Various properties of traffic shapers

are investigated in Section V and used to establish that the

reshaping needed for RCS disciplines to perform well can

be achieved using “simple” shapers. Finally, the important

extension demonstrating that the results of the paper hold

when reshaping is performed only in case of congestion is

the topic of Section W. A brief conclusion summarizes the

main findings of the paper. The Appendixes contain proofs of

the lemmas, as well as an extension to the more general case

of subadditive traffic envelopes.

11. SYSTEM MODEL AND DEFINITIONS

We consider a network comprised of store-and-forward

packet switches, in which a packet scheduler is available at

each output link. Traffic from a particular connection entering

the switch passes through a packetizer and a traffic shaper

before being delivered to the scheduler, as indicated in Fig. 1.

The traffic shaper regulates traffic, so that the output of the

shaper satisfies certain prespecified traffic characteristics.

In this paper, we use a deterministic approach to specify

the traffic characteristics of a connection. Modeling traffic as a

fluid, U[t, t + ~] is used to denote the amount of traffic arriving

at the network ingress in the interval [t, t + ~]. However, a

network element typically operates on packets and so there is

a packetizer (see Fig. 1) that reassembles the packets. These

packets are then regulated by the traffic shaper before reaching
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Fig. 1. Connection traffic flow
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the link scheduler which arbitrates the transmission of packets

on the link.

We assume that tf(~) := f~[O.r] is right-continuous and

that there is a nonnegative function ~(~) called envelope of

[~[f), t], such that

U[t. t+T] < CJ(T). f ~o.T~o.

The envelope function is not unique; without loss of gener-

ality (see [2]) we can assume that [7(T) is right-continuous,

nondecreasing, and subadditive.

The packetizer spits out packets of maximum length L,

which are instantaneously delivered to the shaper when the

last bit of the packet is received. We denote the traffic at the

output of the packetizer in the interval [t, t + ~] as 1 [i!.t + ~].

It is easy to see that, for any nonnegative t and ~

I[t, f +T] < U[t. t+ T]+ 1, < Tr(T)+L =: I(T). (1)

Thus ~(7) is an envelope of the traffic that is input to the

traffic shaper. The traffic shaper reshapes the incoming traffic

by delaying the packets according to the rules described next,

and then delivers them to the scheduler. The traffic shaper is

characterized by a traffic envelope, A(T), which provides an

upper bound on the amount of traffic that is output by the

shaper in any interval of length r. If A [t. t + T] denotes the

traffic that is output from the shaper in the interval [t, t + ~],

then the shaper ensures that .4 [t. t + r] < A(~).

More precisely, the traffic shaper outputs packets in order

with each packet being released at the earliest time, t, such that

.4[/ –T, t] < .Z(T). 0< T < t. (2)

The traffic shapers that we use in this paper can be con-

structed from the simple (a. p ) traffic regulators of [4] which

are described in terms of the backlog in a hypothetical queue

that is served at the rate p. Assume that traffic 1[0, t] is fed to

a queue that is served at the rate of p. l%en, the backlog in

this queue at time f, denoted by W(, (1) (t), is given by [4]

Wp(I)(t) := #::,{ 1[.9. t] – p(t – .?)}. (3)
— —

Note that the backlog WP (1) (t) differs from that defined in

[4] in that it includes the packet that may have arrived at time

t. The operation of the (o. p) traffic shaper, can be described

in terms of the backlog: The ith packet arriving at time .9, is

released at the earliest time j, z .sl such that the shaper output

traffic, A [0. f,], satisfies the condition

Jet’; < f7 = L + A. 6>0.

Note that the condition if > 0 is necessary in order to allow

packets of size L to pass through the shaper. This shaper
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corresponds to the operation of a leaky bucket in a store-and-

forward network [1], which differs from the (o, p)-regulator

defined in [4] in two minor respects:

1) packets are entering and exiting the shaper instanta-

neously and not at a constant rate C;

2) the length of the packet that exits the traffic shaper

at time f~ is taken into account in the calculation of

w,(A) (fl).

However, with di := fi – si denoting the delay that the ith

packet experiences in a shaper, the analysis in [4] can be

repeated with minor modifications to show that

d, = ~(WP(I)(si) – 0)+ and

A[t, t+ T]<c7+pT

where x+ ~ max(O, x). The (~, p) shaper has also been

described in the literature in terms of a token bucket (or leaky

bucket), with p being the rate of token accumulation and a

being the bucket depth.

A. Delay in the Traflic Shaper

In general, we will be using shapers whose output is a

concave, increasing (i.e., j(tl ) < ~(t2 ) whenever tl < tz),

piecewise linear function with finite number (say K) of slopes.

We are interested in these types of shapers because they are a

generalization of the shapers adopted by the the Internet [16]

and asynchronous transfer mode (ATM) standards [1]. These

shapers can be realized by passing the traffic through a series

of K (o~, pn)-shapers, m = 1,2, ~,., k [5]. Let A denote the

aforementioned series and for the input traffic model described

earlier, the delay of packet z through A is [5, Theorem 5.1]

‘i =~=y ~{ }
~(Wfl,m(I)(si) – a~n)+ . (4)

!,>

It can be readily verified that A is indeed a shaper with an

envelope [5], [14]

A(T) := min {a,,, + p,n~}.
7n=l,2,..., k

(5)

We can develop an upper bound on the delay encountered in

the shaper A by traffic that has an envelope ~(~). Taking into

account (3) we have that

di <
{-(

1
max {1(s, – s)

m=?27. K pm O~S<S,

+

–L%(% –s) –%} )}
{( {

nl= I(T) – 0., – pmT +
< max

})}
(6)

nt=l,2,..., K T~o pm

‘:?i{(mJ?r,K{1(T:;u7n} -T)+}. (7)

Equation (7) provides an upper bound on the delay encoun-

tered by traffic with envelope ~(~) through shaper A that has
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Fig. 2. Graphical illustration of D( ~11.1).

envelope A(T) and we denote this by

_ {(m=w%{r(r;:uD(rllA):= y$if

(8)

We can write 11(~11~) in another form that will be use~l

in the sequel. The range of A(-r) is [min~ cr~, m) and the

inverse of ~(r) is given by

Extending the definition of Af - 1)(y) by setting A(-l) (y) = O

whenever O ~ y < min~ am, it can be seen from (8) and

(9) that

ll(qpi) = yy~ {( A(-1)(T(7)) - T)+}. (lo)
—

Graphically, (10) represents the maximum horizontal distance

between the envelopes ~(~) and Z(T) as illustrated in Fig. 2.

A word about the notation used in this paper is probably

overdue. We use a bar on top to denote a traffic envelope

function, with the exception of Dm which denotes the end-

to-end delay guarantee that can be provided to connection

n. Traffic shapers are denoted by the calligraphic alphabet

and their envelopes are denoted by the corresponding regular

alphabet with a bar on top. When the tral%c entering shaper

A2 with envelope AZ(T) is the output of a shaper Al with

envelope Al (~), we denote the bound on the delay in shaper

A2, with a slight abuse of notation, by any of the following:

Notice that if the input txaffic envelope, ~(r) < ~(~), T ~ O,

then from (6) (or alternatively Fig. 2) we have that D(~llA) =

O which implies that no packet is delayed in the shaper A. In

particular, D(d[ld) = O.

Consider next two shapers Al, A2 in series. Equations (4)

and (5) imply that this arrangement is equivalent to a traffic
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... . . . . . . . . . . . . 1. . . . . . . . . . . . . . . . . . . . . . . . . . . .. .

~ d;z) ~

Fig. 3, The systems SI and SJ

shaper A3 with envelope

,43(T) = nlin{.4~(~). .42(T)}. (11)

Equivalence here means that for any input traffic pattern, the

delay of every packet from the time it enters Al to the time

it exits AZ is identical to the delay of the packet in A3.

Next, we state a useful lemma, that relates the packet

delays in the two systems SI and S2 of Fig. 3. System SI

consists of a traffic shaper, A. System S2 consists of a “delay”

subsystem and an identical shaper d connected in series. The

delay subsystem delays the ith arriving packet by an arbitrary

amount, @i ~ 0, before delivering it to d.

Lemma 1; Assume that packets arrive to systems SI and

s2 according to the same arrival process 1[0, 1]. If df 1) and

d(2) denote the delay experienced by packet i in the traffic

s~aper in systems S1 and Sz, respectively, then

that is, the delays of all packets in system S1 are smaller than

their corresponding delays in system S2.

Lemma I identifies the monotonicity property of the shaper

with respect to the arrival process and the proof can be found

in Appendix A. This is an important property of the traffic

shapers considered in this paper and is key to establishing the

general end-to-end delay bounds for RCS disciplines.

III. RATE-CONTROLLED SERVICE DISCIPLINES

We are interested in a generalized form of the class of RCS

disciplines introduced in [18]. In that work, it is assumed

that connections whose traffic satisfies certain burstiness con-

straints enter the network at various nodes. A node can have

several output links, each of which contains a scheduler that

decides the order in which packets are transmitted. At each

node along the path of a connection, traffic is reshaped to

conform to its original envelope before it enters the appropriate

scheduler. Based on the traffic envelope of the connection,

upper bounds on the scheduling delays at each node can be

guaranteed. It is also shown in [18] that for the traffic shapers

considered there, reshaping the traffic to its original envelope

does not introduce extra delays. Therefore, an upper bound

on the end-to-end packet delay is obtained as the sum of the

scheduling and propagation delays.

In this paper, we study the following general class of

service disciplines. The traffic of connection n entering the

network has an envelope function Lr,,(i-). At node m, the

traffic of connection n is shaped by a traffic shaper X;. Traffic

shapers d;;’ are of the general type considered in Section

II, and different traffic shapers can be used for the same

connection at different nodes. The connection traffic exiting

d;’ enters a scheduler at the appropriate output link at node

m, and is scheduled for transmission to the next node or to

its destination. We develop end-to-end delay bounds based on

the scheduling policies at each node as well as the form of

the traffic shapers d~~. These bounds are then used to provide

delay guarantees to each connection. In the rest of this paper,

we use the tem service discipline to denote the operation of the

system consisting of the traffic shaper as well as the scheduler.

We are interested in designing service disciplines of the type

described above, so that end-to-end delay guarantees can be

provided as efficiently as possible.

We assume that the nodes are output queueing switches,

and without loss of generality, that there is no delay inside the

switch. In other words, the only delay that a packet incurs at a

switch is due to queueing at the output link. Let Cm~ be the set

of connections passing through output link 1 of node m. Given

d:, n E (“”’”1,and the scheduling policy employed at link 1

of node m, we assume that a bound on the scheduling delay,
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I 1:
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I 1.
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I

Fig. 4. Original and modified system.

~;, is known for each connection n 6 Cmt. The scheduling

delay includes both the queueing delay and the transmission

time of a packet. For example, bounds of this form can be

developed for the general traffic shapers of this paper, when

the earliest deadline first (EDF) scheduling policy is employed,

by a straightforward extension of the method in [19], [8] (see

also Theorem 1 in Section IV in this paper). We also assume

that an upper bound on the propagation delay for link 1 is 1“~.

Knowledge of the bounds D? and T1 alone are not enough

to provide bounds on the end-to-end packet delays. We still

have to account for any additional delays incurred in the traffic

shapers and this is done based on the following proposition.

Proposition 1: Assume that the output of traffic shaper Al

enters a system S where it is known that the delay experienced

by these packets is bounded above by D.s. we output of

system S enters shaper AZ. The total delay, d~, that packet

z experiences from the time it exits Al to the time it exits Az

is bounded above by

di ~ Ds + D(A1[IA2).

Proof Letdibe the delay of packet i in system S, and

let d~l) be its delay in A2. By definition, di = di + d\l).

Consider next a modified system where a delay system that

delays the zth packet by 13i= D.s – di, is inserted between S

and Az (see Fig. 4). Now let d[z) denote the delay of packet z

in AZ under this new arrangement. Note that by the definition

of D5, r3~>0. Applying Lemma 1 we conclude that

d(l) < D~ _ di + d\2)
1—

and therefore

di s Ds + d~2).

Observe now that since the delay of every packet between

its entrance time to S and its exit from the delay system is

dz + @i = DS, the traffic entering shaper Az from the delay

I I

D~ +-- d
(2) + I

I

system, is a time-shifted version of the traffic exiting Al, and

‘2) < D(AIIIA2). •1therefore it has envelope Al(~). Hence, di

From the proof we see that any shaper that–has the property

described in Lemma 1 satisfies FroPosition 1 as well. In

particular, the shaper of [18] can easily be seen to satisfy

Lemma 1.

Let us now focus our attention on a single connection n

that passes through Al network nodes, numbered from one to

Al, with M + 1 denoting the destination and let lm denote the

link that it traverses in going from node m to node m + 1.

We then apply Proposition 1 with the system S consisting of

both the scheduler at node m and the link 1~ = (m, m + 1),

and replacing the shapers Al with d:, and A2 with d~+l.

We conclude that the delay that a packet from connection n

experiences between the time it exits shaper d; and the time

it exits A~+l is bounded above by

D(m,~+l) = Dm + T1~ + D(A~l[A~+l). (12)
n n

Taking (12) into account, we then have the following guaran-

teed upper bound on the end-to-end delay:

Af–1

D. = D(l.llA~) + ~ D~*’m+l) + D& + T1m

Wl=l

nl=l

+~D; +~T1m. (13)

Tn=l m=l

While the above framework does provide the tlexibllity of

specifying different shaper envelopes at different nodes along

the path of the connection, it is not clear that there is any

benefit in doing so. In the next proposition, we show that for

the same connection, it does not pay to have different shapers

at different nodes. First we introduce some notation to denote
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a partial ordering among shapers. We write A 1 < Az (or

Az ~ Al) whenever i41(~) ~ .~z(~), -r ~0. We then make

the following simple but important observation.

Lemma 2: If at node m we replace d; with a shaper ~’

such that By ~ A:, then the scheduler delay guarantee of

11~’ can still be provided for any connection k (including

connection n).

Pmojl Observe that since ~J:’ (~) < A: (~), ~ z 0,

.~;;’(~) is also an envelope for the traffic exiting By. By

definition, D~ remains an upper bound on the delay of any

connection k traffic as long as connection n still has envelope

‘J:(T) ❑

Another simple observation can be made with regard to a

series connection of traffic shapers. Let Al A A2 denote the

arrangement of Al followed by AZ in series. Since the output

of shaper Al has envelope .3 I (~ ), it follows that:

D(AIIA1 A A2) < D[dlld, ) + D(A111A2), (14)

Also, observe that by (II)

AI> A, AAQ. ;=1.2. (15)

Proposition 2: Consider connection n that traverses nodes

1,2, ., .lf. Given any RCS discipline ~ that uses shapers

A~’, and guarantees scheduler delay D;, at node 7n, 1 ~

m s .11, the RCS discipline T’ that uses the same scheduling

policy at all nodes as m, but with the shapers A~’ replaced

by the shapers

can provide the same end-to-end delay guarantees as T, to all

connections.

Proofi By ( 15), we have that A:: > B;:’ and, therefore,

by Lemma 2, m’ can guarantee the same scheduling delays to

all connections. Since for any connection k # n, the shapers

remain the same, it follows that for these connections policy

# guarantees the same end-to-end delays as m. Consider next

connection n. whose envelope at the first shaper is denoted by

f,, (~). Let the end-to-end delay guarantee provided by T and

T( to connection I) be denoted by D: and ~~’, respectively.

Taking into account the fttct that D( B;;’ IIB:;’t 1) = D(BIIB) =

(1, we conclude from ( 13) that

Finally. observe that by ( 14)

3-1

D(Ir,. f3) s D(Z,, IIA:, ) + ~ D(A; II A:+l).

111=1

Using (13) again we conclude that ~~’ ~ ~~. ❑

Note: According to Proposition 2 we can restrict our at-

tention to disciplines that use identical shapers at all nodes.

In the rest of this paper, we consider RCS disciplines that

for any given connection use identical shapers at each node,

i.e., A; = A,,. Then, the end-to-end delay guarantee for

connection n becomes

A word of caution is warranted, as one should not conclude

from (16) that the end-to-end delay guarantees are minimized

by choosing I,,(~) as the envelope for all the traffic shapers.

While this choice will result in D( jn 11A,,) = O, the scheduler

delay bounds, D;, may increase because they depend on the

choice of the traffic shapers X:. In fact, as we will see in the

next section, choosing the shaper envelopes to be identical to

the input traffic envelope may be quite inappropriate.

As in the policies proposed in [18], the delay boundsin(13)

are basically a sum of the worst case delays at each node along

the path of a connection. However, an individual packet may

not encounter the worst case delay at each node. Therefore, one

may suspect that these bounds are overly pessimistic and lead

to inefficient resource allocations when compared to bounds

for other disciplines that take into account delay dependencies

between nodes along the path. As mentioned earlier, the impact

of delay dependencies is in general difficult to evaluate but

can be accounted for in some instances. In particular, these

delay dependencies can be accounted for in the case of GPS

disciplines [7], [1 I ], [12], which is one of the reasons why tight

end-to-end bounds can be obtained. This argument about the

inefficiency of worst-case delay assignment relative to GPS

was also mentioned in [18].

In the next section, we address this issue by demonstrating

that with a suitable choice of shaper envelopes the RCS

discipline can provide the same end-to-end delay guarantees

that the best delay bounds for GPS can provide. More specif-

ically, we show that for a given set of connections, and their

associated paths, the RCS discipline can provide the same end-

to-end delay bounds as the GPS discipline. In addition, we

show that the RCS discipline can accept a set of connections

with associated delay requirements, that cannot be accepted

by GPS. This demonstrates the advantage of RCS over GPS

in providing efficient end-to-end delay guarantees.

IV. COMPARISON wrrt+GPS

In this section, we compare the performance of the GPS

service discipline with the performance of the RCS disciplines

introduced in the previous section. In order to compare two

service disciplines, we need to define the performance measure

which is of interest to us. The ability of a discipline to provide

efficient end-to-end delay guarantees to a given set of connec-

tions, is best quantified by the notion of schedulable region.

Assume that we have NT connections in a communication

network, with the same scheduling discipline, n, operating at

all the links in the network. The input traffic of connection

n has envelope function ~,,(~), and traverses path P,, of the

network, 1 s n s JVT. Under these assumptions, we require
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that the packets of connection n have an upper bound on their

end-to-end delay (delay guarantee), ~n, 1 S n S NT. The

vector D = (Dl, ..., ~N~ ) is schedulable under discipline

n if the delay bound ~n can be guaranteed under n for all

packets of connection n, 1 s n < NT. The schedulable

region of discipline m is the set of all vectors D that are

schedulable under x. Note that the schedulable region of a

service discipline depends on the envelope functions ~n (r)

and the paths P~, n = 1, 2, ..., NT. We say that service

discipline TI is at leasr as good as the discipline 7rz, if the

schedulable region of T1 is a superset of TZ, for any given

set of connections and paths. If, in addition, there is a set of

connections, paths and associated delay bounds that can be

guaranteed by xl, but not by 7r2, we say that ml is better than

7r2.

Note that the schedulable region is defined in terms of delay

bounds that can be guaranteed a priori. These bounds are

an integral part of the service discipline and may in fact be

significantly worse than the delays actually experienced by

packets. From the point of view of admission control, it is

irrelevant if in the actual operation of a policy smaller delays

are observed, since what is required at the time of connection

establishment, is to know whether the delay bounds can be

guaranteed or not.

Before we proceed with the comparison of RCS and GPS

disciplines, we need to recall some preliminary results re-

garding the NPEDF scheduling policy. This policy has the

largest schedulable region among the class of nonpreemptive

policies in the single-node case [8] and is therefore a natural

choice when considering RCS disciplines. The schedulable

region is defined here with respect to scheduler delays only.

The schedulable region for N connections that are entering

the scheduler through traffic shapers with envelopes An(T) =

L + 8. + p~r, 1< n < N, and contending for an output link

of speed r, is given by Theorem 4 in [8], which we repeat

here for convenience, slightly rephrased to conform to our

definitions and notation.

Theorem 1: The NPEDF policy is optimal among the class

of nonpreemptive scheduling policies when the connection n

traffic entering the scheduler has envelope A,, (T) = L + & +

P. ~, 1 s n S N. Under the stability condition ~~=1 p,, 5 r,

the schedulable region of NPEDF consists of the set of vectors

(Dl,. , D~ ) that satisfy the constraints

k

min{k + l,N}L + ~~in

whenever Dil < . . . < Di~.

We note that while the optimality, i.e., largest schedulable

region, of NPEDF was established in [8] for envelopes of the

form T.(T) = L+ tin+ pn~, it is straightforward to see that all

the arguments used in [8] to derive Theorem 1, go through by

simply replacing L + & + pmr with a general envelope &(T)

of the type considered here. For these general envelopes, the

appropriate analogue of Theorem 1 can be easily derived by

simply rephrasing Lemmas 1 and 2 in [8].

A. Achieving RPPS Delay Guarantees

In this and the next section, we assume for comparison

purposes that the traffic of connection n, entering the first

node packetizer has envelope U.(T) = 6. + P. T. ‘fherefore,

the envelope of the traffic that enters the first traffic shaper

is j.(~) = L + 8. + p.~. We also assume that connection

n traverses nodes 1,2, ~.. , A4 and that all the propagation

delays are zero. For definitions and notations relating to GPS

the reader is referred to [11] and [12]. Recall from Section

III, that Cm’l is the set of connections that pass through the

output link 1 of node m. Denoting the speed of this link as

rm{, we will assume throughout the rest of this section the

stability condition

The GPS policy operates by allocating weight qi$’ for

connection n whose traffic crosses node m. These weights are

used to determine the rate at which traffic from connection n

is served when a set B’” If of connections is backlogged at the

output link 1 of node m through which connection n passes.

Specifically, the service rate of connection n is given by

where for simplicity in notation, we denote r-~~ as rm and

Bm” as Bm when there is no possibility of confusion. PGPS

is a nonpreemptive policy that tracks GPS. In general the

procedure developed in [11] to obtain delay bounds given the

weights, 4:, is complicated and imposes certain restrictions

on the ~:. Moreover, the practically more important inverse

procedure of specifying appropriate weights, that satisfy prede-

termined delay bounds, is even more cumbersome. However,

a simple bound can be obtained in the special case of nonpre-

emptive RFPS, where ~: = pn at all nodes through which the

connection passes. Specifically, the end-to-end delay bound,

D:, obtained under nonpreemptive RPPS is given by [9], [12]

(18)

From (18), we can already see the weakness of the RCS dis-

ciplines relative to RPPS, if the traffic shapers for connection

n at every node have envelopes identical to the input envelope

~,, (T). In this case D(~,, 11A,,) = O. Since propagation delays

are assumed to be zero, from (16), we obtain

M

At node m, even if the entire link bandwidth of r“’ is somehow

dedicated to connection n, the scheduler delay bound, D~,

can at best be, (& + L) /r’”. Therefore, the end-to-end delay
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bound guaranteed by the RCS discipline satisfies the following

inequality:

r?l=l rn=l

Since ii,, can be much larger than L, the bounds provided by

the RCS discipline under the scenario considered here can be

much worse than those obtained under RPPS. For example,

assume that all the link speeds are the same, i.e., r’” = r,

1 ~ m < M. If 6,, = 50L and p,, = 0.8r, we have

40.8 x Al

%~50+l.8x M”r,

Therefore, when Al = 2 we already have ~,, /D~ > 1.52,

and for large .4!, D. /D~ ~ 22.67. As was mentioned in

Section III, this discrepancy is due to the fact that the bounds

for RPPS take into account delay dependencies at the various

nodes, while the bounds for the RCS disciplines are based on

independently summing the worst case bounds at each node.

The previous example notwithstanding, we show next that

we can design RCS disciplines that provide the same delay

guarantees as RPPS by employing traffic shapers with en-

velopes that are, in general, different from that of the input

traffic.

We design the RCS discipline T as follows. For each link

we use the NPEDF scheduling policy. We choose the same

traffic shaper A,, for connection n at each node along its path,

with its envelope being

An(~) = L+p,, ~.

Assume that connection n is routed through output link 1 at

node n~and let r’” denote the speed of this link. For connection

n, we specify the delay bounds for the NPEDF scheduling

policy, at node m as

~,),
Ft = L/p,, + I,/r’” (19)

Let us first show that these bounds can be guaranteed by the

NPEDF policy at every node. Consider output link 1 at node

JII. Denote by ,~r the total number of connections multiplexed

on this link, and index the connections by il, iz, . . . i.~r such

that l~p: < D:: < < D;:, . Based on Theorem 1, it is clear

that we only need to verify (17).

Using (19) we have

/ k-l \ k–l

where the last inequality follows from the stability condition,

~:=, p, < ?-r”. Since by design, the traffic shapers have

A;’ = O, (17) is verified.

We now proceed to derive the end-to-end delay bounds for

the connections. Recall that we have assumed zero propagation

delays, so from (16) we obtain

Dn = D(~nllA.) + $ D;.

m=l

For the delay D( ~n llAm ), using (6), we have

D(~,LllAn) = :1$;

{

in(T) – L – f2nT 6n

}

—_—.

— P. P.

Therefore, taking into account ( 19) we obtain

—— ‘“;nML+‘f -$
rn=l

(20)

Since (18) is identical to (20), we see that the proposed RCS

discipline x can guarantee the same end-to-end delays as

RPPS.

From the above argument we see that if the delay bounds

in (18) are required by the connections in the network, then

the RCS discipline r, proposed above can be used. It provides

the flexibility of easily specifying other delay bounds, whereas

the bounds in RPPS are tied to the rate P. of a comection.

In addition, since reshaping is performed at each node, buffer

requirements will typically be lower than those of RPPS, and

its implementation may also be simpler.

If the end-to-end delay requirements of connection n are

smaller than (18), a slightly more general version of RPPS

can be used. Rather than providing a rate of p~ to connection

n, better delay performance can be obtained by giving it a

rate of g. ~ p., at each node. The end-to-end delay bound

is then given by

(21)

The previous analysis still applies with very little modification

and can be used to specify an RCS discipline that guarantees

the bounds in (21). In this case, all traffic shapers have

envelopes ~:(~) = L + g. ~ and the delay guarantees at

the scheduler of node rn are

~Tn
n = L/,g. + L/r’n

The intuition behind choosing traffic shapers of this kind is

as follows. If the RPPS discipline guarantees a clearing rate

of g. to connection n, then somewhere along the path, say at

node rn, the connection n may only receive a service rate of

gn. This congested link behaves like a traffic shaper that has

an envelope of A;(~) = L + g.r. Based on Proposition 2,

we know that for an RCS discipline it is beneficial to choose

the “smallest” shaper at all the nodes, so that they can all

take advantage of the smaller traffic envelope. Since in RPPS

the smallest rate that a connection can be given at any node

is g., a natural choice for the shaper envelopes of the RCS

discipline is then L + g,, r.
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In addition to being able to provide the same bounds as

RPPS, the RCS discipline also has the advantage of allowing

additional connections to be accepted, albeit with looser de-

lay requirements. Specifically, observe that the schedulability

check for RPPS is now ~lcC~ gl < rm, m = 1,”””, ~,

where C: denotes the set of co~nections that are multiplexed

on the same link as connection n at node m. ‘Ilk implies

that some amount of bandwidth viz. rm – XICC: p~, c~not

be utilized by RPPS. This bandwidth can be used by an

RCS discipline to accept additional comections that require

relatively larger end-to-end delay guarantees. At the end of

this section we provide a specific example of this benefit of

RCS disciplines over the more general GPS disciplines.

B. Achieving GPS Delay Guarantees

In [12, Sec. VIII], tight bounds on per connection packet

delays are developed for GPS under a fairly general as-

signment of weights, ~~, called consistent relative session

treatment (CRST). These bounds are achieved in certain node

configurations, and even in the special case of RPPS they can

be much tighter than those provided by (18). However, the

calculation of the bounds is much more cumbersome as they

take into account the effect of all the other connections along

a connection’s path. We will show that even with these tight

bounds, an RCS discipline can be designed that guarantees

the same delay bounds.

To simplify the discussion and to avoid obscuring the main

idea of the argument, we assume a continuous flow model,

i.e., packetization is not taken into account. Therefore, we

consider the GPS policy (instead of PGPS) and assume that

the RCS discipline uses the EDF scheduling policy (instead of

NPEDF). As far as the design of traffic shapers is concerned,

this assumption basically amounts to setting L = O.

Before procedng with the design of the RCS discipline,

we need some preliminary results. Consider a single link

on which IV connections are multiplexed, and assume that

all of them are “greedy;’ i.e., the amount of connation v

traffic, I s v < N, arriving in the interval [0, t] is $. + pvt.

Then, the service function (see [11] for a precise definition) of

connection n, S.(t), is the amount of comection n traffic that

is served in the interval [0, t]. In [11, p. 355] Sri(t) is used to

derive delay bounds for comection n traffic whose envelope

is fn + pn~. The next lemma improves these delay bounds for

connection n, when it has a smaller envelope ~m(~) such that

I.(T) < Fn + pn’r, ‘?-20.

Lemma 3: Assume that the comection n traffic satisfies

ln[t, t+~] ~ Jm(r) ~ $. +pn7, t, T ~ O, for every connection

n that is multiplexed on a given link. If the system starts

empty, then an upper bound on comection n delay under

GPS is

{. 1D: = :>% nll:{t : s.(t) > I.(T)} – ‘7- .

—

The proof can be found in Appendix A. For our purposes,

the case where ~n(r) = min{k~, S. + p~r},% Z p~,

6. s ~. will be of interest. For convenience, we summarize

in the next corollary two specific cases of Lemma 3 that will

be useful in the rest of this section. As stated in [1 1], Sri(t) is
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a piecewise linear function, convex in the range [0, t~], where

tB is the end of the first busy period of connection n, when

all the N connections are greedy. In this range, S.(t) is

characterized by the pairs (sk, bk)~~ ~ where sk is the slope of

the kth segment, bk its duration, and k. is the number of line

segments in Sn (t). Because of the convexity of Sm(t) we have

s~~sp~...~skn.

Corollary 1: Assume that the conditions of Lemma 3 hold,

so that ~t(~) S it + p~r, ~ z O, 1 $ 1 S N, and furthermore

let Tn(T) = min{cn~, &+pnT} < 6n+pmT, cn 2 pn, T 20.

1) If S1 ~ Cn, then D; = O.

2) If Sk<cn, k=l, ... j-l, Sj ~cm, and

()
j–l

& ~bk < % := (&&)/(&I – /%)

k=l

then D; = ~~~~ bk – q, where q = s~(~~l~ bk)/c~.

The first part of the corollary follows by observing that

S1 ~ cm implies that I.(T) < Sn (T) and therefore

nl~n{t : Sn(o, t) > rn(’r)} = T.

—

A geometric interpretation of the second part is given in Fig. 5.

The development of GPS bounds for connection n is based

on the universal service curve (USC) for that connection

[12, Sec. VIII]. Just as Sn (t) characterizes the service that

connection n receives at a single node, the USC of a con-

nection characterizes the end to end service that it receives.

We summarize here the method by which the USC is obtained

when all the nodes use a GPS discipline [12].

1)

2)

3)

Under a CRST weight assignment, an algorithm is

developed by which an envelope function, 62 + pn~, is

guaranteed for every connection n traffic entering node

m [12, p. 142]. For our purposes, it is important to note

that

6~=6., 6~~6n, 2<m <M.— — (22)

Given envelope functions of the form 6; + puT, for any

connection v that is multiplexed with connection n at

node m (v and n are on the same output link at node

m), the service function for comection n, S;(T), is

calculated. Let (s~,b~), k = 1, ..., k: be the set of

slopes that characterize S:(T).

The USC, S.(~), for connection n is given by the

formula

Sin(r) = min {G:(T), I(T)}

where G:(T) is defined as cc for -r > ~~=1 ~~~1 b~,

and for T < ~~=1 ~~~1 b~ it is COrnpOsed of the

segments (s~, b~), m= 1,. ... M,k= 1,. ... k~of

ST (-r), arranged in a nondecreasing order of S1O s [12,
Ep. 144]. We denote by (iik,tk), k = 1,... ,~m=l k:

this nondecreasing order.
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Fig, 5. Oelays under GPS.

*

.’ik< /),, , k=l,..., kl–l. (23)

We are now ready to design an RCS discipline that is at least

as good as GPS. Consider first the design of traffic shapers.

Recall from the beginning of Section IV-A, that for the purpose

of comparison with GPS we assume that the envelope of

connection n traffic entering the first traffic shaper is of the

form Z,,(~) = A,, + p,,~ (L = O). For connection n, at each

node m on the path, we choose traffic shapers that have the

same envelope, i.e., .i~(~) = min{cn~. fin + pnT}. m =

1,2, ~ . . M. To specify how the parameter Cn is picked, we

need to distinguish between two classes of connections,

1) Class a): Connection n belongs to this class when

/k. -l \

(24)

where the USC, S,, is defined as above. In this case,

the delay bound for connection n traffic under GPS is

given by the solution of the equation [13, p. 136] [see

Fig. 6(a)],

D; : S(D:) = 6..

Let k* z kq, be the index of the slope of the USC at

time D;. If at time ~~ there is a change in slope, then

define k* as the index of the smaller of the two slopes

(in fact either slope would work). We set Cn = ~~..

2) Class b): Connection n belongs to this class when

/kq-l \

In this case, the delay bound for connection n traffic

under GPS is [13, p. 136] [see Fig. 7(a)]

kq–l

x

&k _ ‘n(~f”;l ‘k) – 6TID: =

k=l ~.

We then set c. = p..

For connection n, we assign the scheduler delay at node

m, D:, to be equal to the maximum delay that would be

experienced by the connection under the GPS scheduling

policy at that node, when the conditions of Corollag 1 are

satisfied. This amounts to the following assignment.

● If at node m, ST ~ c., then set D; = O.

● Ifatnodem, s~<c~, k=l, . . ..j”l. s~s~’ z~,

then assign

jm–l

( )/

jm–l

D: .
E

b~ – q. where q = S:
x

b~ Cn.

k=l k=l

We first establish that the specified delays can be guaranteed

by the EDF policy at each node. Instead of using the extension

of Theorem 1 to general shaper envelopes, it will be simpler

to argue indirectly as follows: We will show that the specified

delays are guaranteed when the RCS discipline uses GPS as
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End-to-End Delay
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(a)

Fig. 6. Delay decomposition of a class a) connection.

the scheduling policy at each node. Since EDF is better than

GPS in the single node case, it will follow that the same delay

guarantees can, at a minimum, be provided when the EDF

scheduling policy is employed.

Observe that according to (22), we have that XV(~) s

6T + pv~ for any connection v that is multiplexed with

comection n on the same output link of node m. It is also

true that ~ ~ p.. This follows by definition for a comection

in class b). For a connection in class a), observe that because

of (23) and the fact that iik, k = 1,2, ..., is nondecreasing we

have Cm = A&. ~ i&q > pm. Applying Corollary 1 (where

we replace ~. t 6:), we conclude that the delay bound

D: = O can be guaranteed under the GPS policy for any

node m for which ST ~ c~. For a node m, where ST < c~,

k=l,...,jm – 1, s~~ ~ c., we apply part 2) of Corollary

1 and, therefore, we first need to show that

()
jm–l

%’ ~ b~ < Cub” .—
Cn — pn

k=l

‘Ilk is trivially true for a connection in class b) since

%6n/(c. - ~n) = ~. If connection n belongs. to class

a), observe that from the definition of ~k., jm and S.(T), we

have (see Fig. 6)

‘(zb+sn(sbk)

Scheduler delay at node m

T

+--—– Dnm-

(b)

Thus, we have established that in both cases a) and b), the

specified delay bound can be guaranteed at node m.

Next, we need to establish that the end-to-end delay guar-

antee of the RCS discipline as given by (16), does not exceed

~~. Recall that the input traffic envelope for connection n,

l.(r) = b~ + p~r, and so from (8), the delay in the first

traffic shaper is

D(i.11 An) = $.

Therefore, it suffices to show that

(25)
,. T7t=l

Let M. be the set of nodes for which D; >0. Obviously then,

~:.~ ~: = Em,Mo D:. Assume first that connection n

belongs to class a). observe that the set of slopes ~k, k =

1,.. . , k* – 1, can be partitioned into subsets Fm, m E MO,

where

F~={&:&=s~, forsome k=l,..., jl} l}.

We denote by ~tc the index 1 for which S1 = s~, i.e.,

iimk = ST. For the rest of the discussion, it is best to use

geometric arguments. RefernngA to Fig. 6(a), draw lines with

slope {k. from all the points in S.(T) where the slope changes

and remains less than ~k.. These lines intersect segment

AB (which comesponds to the delay ~~) and divide it into

segments of length hk, O < k < k* – 1, where segment hk

corresponds to slope ~k, 1 < k ~ k“ – 1. Denote by hm~
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A
End-to-End Delay

2,,,
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(

‘ k(r)

(), ;F

1
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/

*

(a)

Fig. 7. Delq decon)posi(ion of ~ class b) connection.

the segment that cm-responds to ~m,. Since by

ho = 6,, /c,,, we have

ir e-l

T

construction

(26)
. ?/

7n E M. k= 1

Similarly, in Fig. 6(b), draw lines with slope ~k+ from all the

points in S;;(r) where the slope changes and remains less than

.iA.,. These lines intersect segment EF (which comesponds to

the delay D;’ ) and divide it into segments h~, 1 < k < jm – 1

(in the figure we have j,,, – 1 = 3). We can then write

)m–l

(27).,= ..
k=l

Using the facts that i,,,, = s~ and that 6,,,, = b~, it can be

easily seen that h,,,, = h~. Taking into account (26) and (27),

we conclude the correctness of (25).

Similar arguments can be made for a connection that belongs

to class b). The main difference is that we now draw lines with

slope pn. Fig. 7 illustrates the construction in this case.

Note I: The above derivations established that an RCS

discipline that provides the same delay bounds as GPS can be

constructed, but the arguments used were more involved than

for the simpler case of RPPS. As a result, it is much harder

to gain some intuition into why and how this is achieved. A

possible (and partial) explanation is that the reshaping peak

rate, c,,, for connection n, should be set to the service rate in

the USC of the GPS policy, that corresponds to the maximum

I

Scheduler delay at node m

-r

‘+ Dnm+

(b)

delay vahte. Using a larger value will not help since service,

and hence reshaping, at that rate will be encountered. Using a

smaller value will result in higher delays.

Note 2: In the course of the previous argument, we showed

that the delay guarantees provided by a pure GPS policy can

also be achieved by an RCS discipline working with worst case

delays at each node, where the scheduling policy at each node

is GPS. If we replace GPS with the (simpler) EDF scheduling

policy at each node, we are not only assured that we can still

guarantee the GPS end-to-end delay bounds, but we also create

a service discipline that is better than GPS. This is due to the

fact that in the single node case, EDF is better than GPS [8].

That is, there are delay vectors that can be guaranteed by EDF

but cannot be guaranteed by GPS no matter what weights are

chosen. For example, consider a link of capacit y r, where two

connections are multiplexed and ~n(T) = 6. + P.T, 72 = 1.2,

with pl + pz < r. Using Theorem 1 with L = 0, we can see

that the delays that can be guaranteed by the EDF policy are

For GPS on the other hand, it can be seen from the construction

in [11, Sec. VI-C], that in order to guarantee D? = 61/r we

need to specify 42 = O and then the minimum guaranteed

delay for connection 2 is

D;=~+~ (28)
r—pi r–pi”
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The difference between the GPS and EDF delay guarantees

for connection 2 is

which can be quite large. Similar examples can be given for

the packetized model when comparing PGPS to NPEDF. The

better bounds of EDF in this simple example, are essentially a

reflection of the fact that, in the single node case, EDF is the

optimal policy. This is in part due to EDF’s ability to, unlike

GPS (or its variants), decouple delay and rate guarantees.

In the above example, this difference is expressed in the

61/(r – pl ) term of (28). This term reflects the behavior of

GPS, which serves all new packets of connection 1 at rate r,

imespective of the fact that they may have just arrived and,

therefore, are in no danger of being excessively delayed. In

contrast, the EDF policy exploits this knowledge to improve

the delay guarantee it gives to connection 2. In the multiple

node case, the benefit of decoupling delay and rate guarantees

is still obtained, while the problem of summing up worst

case node delays has been alleviated by suitably reshaping

the connection traffic.

To summarize, in this section, we have shown how “proper”

selection of the traffic shapers allows us to construct an

RCS discipline that outperforms GPS. In the next section,

we provide results that can be used to narrow the search for

“good” shapers for RCS disciplines.

V. TRAFFIC SHAPER PROPERTIES

In this section, we discuss some interesting properties of

traffic shapers in the context of RCS disciplines. First, we

consider the problem of constructing the “smallest” shaper

that causes a specified maximum delay on the input traffic

~n (~). Specifically, given d z O, we want to construct a

shaper An(d) such that D(f~ Ildn (d) ) < d with the addhional

requirement that A(d) < A, for any shaper A that satisfies

D(I. 11A) s d. Recall that ~n(~) denotes the input traffic

envelope of connection n before the first packetizer in the

network (see Fig. 1). We further assume that the input traffic

envelope, 0.(T), is an increasing, concave, piecewise linear

function with a finite number of slopes. In Appendix B, we

show that these assumptions on the input traffic envelope do

not entail any essential 10ss of generality. We can write 0.(~)

in the form (see Fig. 8)

~n(T) = ~=~hlK{&,k + pn,k~}
,,

where pn,k > pn,k+~, fin,k < bn,k+~, and when K ~ 3

(29)

iin,k – ($n,k-l ~ bn,k+~– ($n,k
k=2,.., K-l.

pn,k–1 – pn,k pn,k – Pn,k+l ‘

Let T~,l = () and Tn,k = (dn,k – 6n,k_l)/(P@_l – P+),

2 ~ k ~ K. At the POint Pk = (Tn,k, 6@ + Pn,krn,k), the

slope of the envelope, Un (~), changes from pn,k_ 1 to p~,~.

According to (1), the envelope of the traffic entering the first

shaper is

fn(’T) = L + k=~i~K{~n,k + f%,k~}.,.,

Now, let A(7) = L + minj=l,...,~{c$j + PjT} be the

envelope of A. According to (8), D(~n 11A) = oc when

minj=~,...,~{pj} < Pn,K, While D(I~llA) < &, K/pn,~

whenever minj=l,. ..,J {pj } > pn,K. Therefore, it is sufficient

to restrict our attention to the range O < d <6., K /pn, K. For

the next proposition, it will be helpful to refer to Fig. 8.

proposition 3: Let O ~ d < 6.,K /p.,K and ]et k* be given

by

k* = k=~i:K{k : ~n(~mk) – pn,k(~n,k + d) > O}.
,!

Then, the envelope of the smallest shaper d.(d), such that

D(~nllAm(d)) < d is

&(d)(T) = L + iin(d)(T)

where denoting cl(d) := ~m(Tn,k. )/( T~,k. + d), we set

{

c:(d)7, ifo~T<Tn,k. +d
ti~(d)(T) = /7n(T —d), if ‘r z Tn, k. + ‘I

Proof From Fig. 8, it can be seen that k* is the smallest

index k such that the line with slope pn,k passing through the

point Qk = (~n,k + d, ~n(Tn,k ) ) has a nonnegative y-intercept.

Observe that the index k* always exists since

On(’fn,K) – pn,K(Tn,K + d)

= &,K + pn,K rn,K – pn,K(Tn,K + d)

= 6n,K – pn,K d >0.

Next, we show that Am(d)(~) corresponds to a shaper envelope

function. For this, it is sufficient to show that An(d)(r) is a

concave function, which will follow by construction, if we

show that c;(d) 2 pm,k.; but this is a consequence of the

definition of k*. To show that D(~~ lld~ (d)) < d, recall that

according to (10) we can write

‘(-l) (d)(~n(T)) – ~ ~ d, for alland that by construction, An

‘f ~ O. Finally, we need to show that An(d) < A, for any other

shaper A that satisfies D(ln 11A) < d. To see this, observe

that if An(d)(T) > Z(T) for some T 2 T.,k* + d, then

X(-lJ(An(d)(r)) > ~. Also, by construction, A.(d)(~) =

~n(~ – d), ‘r ~ Tn,k+ + d. From (10), for all ~ ~ Tn,k. + d

we have

D(7~,A) ~ fi(-l)(~n(T -d)) – (~ -d)

>T–(r–d)=d

a contradiction. Therefore, An(d)(~) < A(7) for all ~ z

TY,&. + d. Using the inequahties ~.(d)(0) = L ~ Z(O),

A.(d) (r.,k. + d) < A(T.,k* + d) and the concavity of

Z(T), we conclude that we also have A.(d)(r) < A(r) for

o<~<rn,k.+d. ❑

Using Lemma 2 and Proposition 3, we conclude that given

the input envelope function ~.(~), and a maximum shaper

delay d, it is sufficient to restrict our attention to RCS disci-

plines that use shapers with envelopes of the form Am(d)(T).

We state this as a Corollary.
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4 d *

Fig. 8. Construction of smallest envelop function.

Coro/la~ 2: Given an RCS discipline that for connection Denote by UT+ 1[t, t + T] the connection n traffic entering

n uses shaper A at all nodes, the RCS discipline that uses node m + 1 in the interval (t, t + T]. Then, since the output

the shaper with envelope .4,, (d) (~), where d = D(~n [Id), can link of node m has speed r“’

guarantee the same end-to-end delays to all connections.
U:+l[t, t + 7] ~ ‘rmT.

From the above discussion we see that given ~.(T), the

search for the appropriate shaper envelope, is reduced to tie Therefore, for the ~affic exiting the packetizer at node m + 1,

one-parameter family .4,, (d)( T). We can further constrain the we have [see (I)]

range of the parameter d by taking into account the link speeds
lm+l[t,t+~] ~ L+TmT =: ~m(~),along the path of connection n. In the next proposition, we n

shown that it is sufficient to restrict attention to envelopes

.L~,,(d) (~) whose maximum slope c;, (d) (peak rate) is not

larger than the minimum link speed along the path of the

connection.

Proposition 4: Consider connection n with input traffic

envelope ~J,,(~ ) that traverses nodes 1.. . ~.114 with corre-

sponding output link speeds r’”. Then, given an RCS discipline

that uses shaper envelope .~,, (d)(7), there is an RCS discipline

using shaper envelope .-~,,(d’) (T), d’ ~ d which guarantees

the same end-to-end delays to all connections and whose peak

rate c: (d’) is such that

PI].J( S r~,(~1’) S min{r’’””. ~~(d) } S min{rm’i”, % }

where r“’i” = min,,,=l,. .M {r’”} and rn is the peak rate of

~~rl(~), i.e., c?I = p?~,l if fi~l,l = 0 and Cn = sc Otlwrwise.

Proof Observe first that by the design of Am(d)(~), for

all d. () s d s hr,,I,-/pT,,K, we have p,,,~ s c;(d) and

f’:,(d) < c,! .

Therefore, we cart replace d.(d) with Z?m A An(d), without

altering the shaper delay or the scheduler delay at node m + 1,

m = 1, .,. , M – 1. Also, by introducing a shaper with

envelope llA1 (~) at the exit point of connection n, we do

not affect the end-to-end delay guarantees. Using Proposition

2, we conclude that the delay guarantees are not affected if

we employ the RCS discipline that uses the shaper

13n = ~ t3m Ad.(d)

*=]

in place of A(d) at each node along the path of connection

n. But then, for the peak rate c: of the envelope of shaper

B., we have

C: ~ min {rmin, cj(d)} < min {Tmin, Cn}.

Let d’ = D(T. llBn ). Using Corollary 2, we can replace B.

with shaper An (d’) without altering the delay guarantees for
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any connection. Since by design A (d’) ~ B., we must have

c: (d’) < C: and the proposition follows. •1

In the important special case of shapers used in the ATM

standards [1] and those proposed for the Internet as well [16],

we have

0.(7) = min{cn~, 6. + p.~}, c. > pn.

In this case, r~,z = 6~/(c~ – p~), k“ = 2

and the range of d is determined by the inequalities

Cnhn
pn <

6. + d(cn – P.)
< min{rmin, en}.

Therefore, to specify an RCS discipline, one has to determine

the single parameter d as well as the scheduler delays, D;

for each node m along the path of connection m The deter-

mination of these parameters is an interesting design problem,

which is the subject of ongoing research and is not addressed in

this paper. However, note that a simple and reasonable choice

is to use the parameters induced by the GPS (or RPPS) policy.

Such a choice gives reasonably good performance, i.e., as good

as GPS, and still allows an RCS discipline to accept some

additional calls.

The use of traffic shapers at each hop can introduce extra

delays for the traffic of connection n, even if there is no

congestion in the network. While this leads to a reduction

of jitter and buffer requirements at each node in the network,

there may be instances where the resulting increase in the

average delay is undesirable. In the next section we deseribe

some simple modifications to the RCS discipline that make it

work conserving, without compromising the end-to-end delay

guarantees that can be provided.

VI. WORK CONSERVINGSYSTEM

In the RCS disciplines considered in this paper and in [18],

the link schedulers by themselves are assumed to be work-

conserving. However, if we consider the traffic shaper and the

scheduler as a single system, it is evident that this system is

not work-conserving since there may be instants in time when

the link is idle even though there are packets waiting in the

system (actually the shaper). In what follows, we outline a

modification to the system that will make it work conserving,

and yet provide the same delay guarantees to all connections.

As a result, the output link will no longer be idle when there

are packets in the system, thus improving the average delay

seen by the packets. A similar approach and motivation can

be found in [10] for a system where reshaping is performed

based on timestamps carried in each packet, and in [6] for the

AIRPORT policy proposed in that paper.

To clarify the exposition, we use the model of [10] to

represent both the shaper and the scheduler at an output link

of node m. Instead of holdlng up the packets in the shaper, we

maintain two queues in the system: Q~ is a queue of packets

that are eligible for scheduling, i.e., have been reshaped, and

Q? is a queue of not yet eligible packets. Eligibility is

determined by the shaper which stamps an eligibility time on

the packets and enqueues them in QT. The eligibility time

is the earliest time the packet could have left the shaper,

for the output of the shaper to be in conformance with the

pre-specified traffic envelope. The delay of the packet in the

scheduler is calculated with respect to its eligibility time.

When a packet in Q? becomes eligible for scheduling, viz. its

eligibility time equals the current time, it is promoted to Q~.

The scheduler in the nonwork conserving discipline, ~Nw7,

only selects packets in Q~ for transmission on the output link.

Once a packet has completed its transmission, it is removed

from Q~ and the scheduler repeats the above process.

Packets from each of the connections at node m enter Q~ in

conformance with their respective traffic envelopes. The call

admission criteria ensure that packets in Q~ can be scheduled

without violating their deadlines. Note that ~N~ is nonwork

conserving since there can be packets queued in Q~, that are

not considered for transmission by the scheduler, even though

the link may be idle.

We now develop a work-conserving discipline Klv, by

modifying the scheduler in ~Nw as follows: There is a

nonpreemptive priority mechanism that arbitrates the service

of queues Q~ and Q~, with Q~ being the higher priority.

Ineligible packets from Q; are selected for transmission (in

any order) only when Q ~ is empty. When there are packets

in Q~, the same scheduling discipline as that used in TNW is

used to select packets for transmission.

We can specify the operation of the scheduler in mtv during

periods when Q~ is nonempty in a more precise manner.

If Q~ is nonempty at time t, define a Q~-busy period at

t to be the largest closed interval containing t, during which

Q~ is nonempty. Let to denote the start of one such busy

period. Note that at time to it is possible that an ineligible

packet is being served, in which case let t, denote the time

that the ineligible packet begins transmission; otherwise define

t. := to. Let g be the packet that begins transmission at

time t,. Consider the sequence of packet arrivals consisting of

packet q, whose arrival time is set to t., along with the other

packets that arrive to Q~ during the corresponding Q~-busy

period. Assume that this sequence is fed to the scheduler in

~NW with packet q being the first packet to ever arrive at that

scheduler. The scheduler in Tw then schedules this sequence

of packets in the same manner as the scheduler in ~Nvv.

Note that if the scheduler in TN-W is NPEDF (FCFS, POPS,

fixed-priority scheduler, etc.), then during a Q~-busy period

the corresponding scheduler in TW is again NPEDF (FCFS,

PGPS, fixed-priority scheduler, etc.). The next proposition

shows that the end-to-end delay guarantees are not affected

when the service discipline at each node is modified to be

work-conserving, as defined above.

Proposition 5: Let the nodes traversed by connection n be

numbered 1, . . . , M. The above modification to the service

discipline does not increase the guaranteed upper bound on

the end-to-end delays. If D. is the end-to-end delay guarantee

for connection n, we still have

‘w–l

m=l

M Af

rn=l m=]
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Work Conserving System (nw )

--’El ‘s”‘ “-‘;+’”“ ‘“+’“

‘-”- ~- ---t —~’—~-—”--

t;’m t:” t:” (’m+’ t:”+’

Modif3ed System

+0 ‘m ‘+ - “+’ “ ‘m+’. “

Delay ~.

Fig 9. Original (work Conserving) system and the modified system.

Proof Assume for clarity in the exposition that the

propagation delays, T?, 1 ~ m < M, are zero. We first

establish that with the above modification to the service

discipline, the scheduler delays at node m, 1 s m s A4,

are still bounded above by D;.

Lemma 4: Under discipline mv, packets of any connection

n, are not delayed by more than D; at the scheduler in node

‘m, 1 < m < Al.

The proof of the above lemma can be found in Appendix A.

We denote by t~“”,the timestamp with which the ith packet

is enqueued in Q?; t~”” is the time that the ith packet would

leave shaper A;~’ in conformance with the traffic envelope

.~;’ (~). The time at which the packet leaves Q; (to be

transmitted on the link or promoted to Q~) is denoted by

(“’”.If the link is idle, the packet may be transmitted before

it becomes eligible, i.e., t~”” ~ t~’”’. ‘l’he departure time of

the ith packet from the scheduler is denoted as tf’m. Similarly,

let r,,,, be the arrival time of the ith packet of connection n

to the first traffic shaper, and let ‘r,,d be the time it arrives at

< trn’.1 < m < M, we can writeits destination. Since t~,”i_ ~ _ _

T,,(/– ‘r,,,,< t:;’”– T,,,,+ ‘r~,(~– ty

m=1

Since by definition, t~l – ~,,a ~ D(~n [[d:), and according to

~mma 4, ~, ,{ —t~,~f < D:’, it suffices to show that—

1,,)1+1
t, – t:’’”< D: + D(X: I]A:+l),

lsm~M–1.

Let S’” be the system consisting of the scheduler at

m. Consider the modified system which is same as the

(30)

node

work

conserving system operating under TIV except for a delay

system inserted between Sm and shaper d:+ 1 as shown in

Fig. 9. The delay system delays packet i by Oi = D: +

t;’m – tf’m; therefore, packet i departs the delay system at

time ~~’m = D; + t~’m. First we verify that di ~ O.

0, = D: + t:’m – t:’m’

~ D: + t:’m – t:’m (31)

>0. (32)

Inequality (31 ) follows because packets never depart the

shaper later than they are supposed to, i.e., t~’m ~ t~’m,and

(32) follows from Lemma 4. Let ~~’~+1 be the timestamp with

which packet i is enqueued in Q~+l in the modified system.

From Lemma 1, we conclude that

I,m+l _ ~d, m
t, < iy+l – t:’m.‘1 (33)

Adding tf’m– t~’mto both sides of (33) we have

tl,, m+l
- t:’m< i:’m+l- t;’m2

= J,m+l _ ~d, m + ~d,m

t z 1
– t:’’”.

Since for all i, ~~’m = ~~’m+ D:, the traffic exiting the delay

system has envelope A;(~). Therefore

‘1m+l _ ~d,rn
t,’ , < D(A~[lA~+l).

It follows that

~t,,m+l – #m < D(A:[[A:+l) + D:
1 z—

as desired. When T~m > 0, the same reasoning applies,

provided that system Sm consists of the scheduler at node
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m, and the MC Im, i.e., the bound on the delay at Sm is now

D: + T:m ❑

We have described a generat procedure for making the

RCS disciplines work conserving that applies regardless of the

scheduling discipline that is used-of course, the scheduling

discipline, by itself needs to be work conserving. In keeping

with this generality, we have not specified the exact order

in which packets from the ineligible queue can be serviced.

Based on the scheduling discipline that is used, as well

as the behavior that is desired for the flows in general,

some specific order may be appropriate. This is another topic

and is the subject of ongoing and future work. Note that

while the modification introduced in this section to make

the RCS disciplines work-conserving does not affect delay

bounds, it will affect both jitter and buffer requirements and

this may be undesirable in some cases. For example, jitter

sensitive applications may be better served using the nonwork-

conserving version.

VII. CONCLUSION

In this paper, we have established that RCS disciplines

offer a powerful solution to provide end-to-end delay and

throughput guarantees in high speed networks. We showed

that the main disadvantage of these service disciplines, namely

that of summing worst case delays at each node to determine

end-to-end delay bounds, can be overcome through “proper”

reshaping of the source traffic. In particular, we have shown

that controlling the peak rate of a connection as a function of

its delay requirements is critical to efficient network quality-of-

service (QoS) provisioning. How to perform this reshaping was

also investigated in the paper, and illustrated by designing RCS

chciplines that outperform GPS. This is significant since the

bounds available for these policies take dependencies between

nodes into account.

In addition to their efficiency, RCS disciplines are also

relatively simple to implement, and offer the flexibility to

accommodate a wide range of implementation constraints. For

example, it is possible to use different schedulers and shapers

at different nodes depending on the capabilities available

locally. Furthermore, because we also showed that delay guar-

antees are not affected when operating in a work conserving

manner, i.e., reshaping traffic only in case of congestion, RCS

disciplines also enable us to offer low average delays when

the network is not congested. Fkudly, note that the greater

flexibility of RCS disciplines introduces new and interesting

problems, e.g., how to best split a given end-to-end delay

budget into iocal

topic of ongoing

delay bounds, and addressing them is the

work.

APPENDIX A

LEMMA PROOFS

Proof of Zzmma 1: Let ~(~) denote the envelope of the

shaper with A(0) ~ L. Also, let s~l), S\z) denote the arrival

times, and .f~l), .f~2) denote the departure times of the ith

packet at the shapers of system S1 and S2, respectively (see

Fig. 3). By definition, S\2) = s~l) + 8i, with Oi z O, and

lEEWACM TRANSA~IONS ON NETWORKING, VOL. 4, NO. 4, AUGUST 1996

therefore it suffices to show that

$( ’)<$(2). 2= 1,2,....
t—%

Since fi(0) z L, the first packet leaves the shaper instanta-
(1) _ (1) ad ff2) = /).neously in both the systems, i.e., /l – SI

(1) < f[2)Therefore, we have ~1

Let li denote the length-of the ith packet, and assume that

~!lJ<j(2), i=l,2,, m.z—z (34)

From (2) we can compute the departure time for the (m+ l)th

packet in system S1 as

(35)

k=i

(/6)

> s~~l, and (36) follows ~om

~e the shaper envelope, A(7),

(34). •1

Sn [tl, t2] denote the amount of

where (35) is because s~~l

the nondecreasing nature of

and the induction hypothesis

Proof of Lemma 3: Let

connection n traffic served under GPS in the interval [tl, tz].

Assuming that the system starts empty, the backlog of connec-

tion n traffic at time t is defined as the difference 1~[0, t] –

Sn [0, t]. Now, the busy period containing t is defined as the

largest closed interval containing t, during which the backlog

of connection n is positive. Note that only traffic arriving

during a busy period can have positive delays and, therefore,

we only need to consider the delays of such traffic (since by

definition D; ~ O).

Assume that connection n traffic arrives at time tbwhich

is within a busy period of connection n that starts at time to.

Then, since packets from the same connection are served in

order, the delay of the connection n traffic arriving at time

tb is given by

d(tb)= mimi{t’ : Sn[O,t’]~ In [0, t~]} – tb
—

= *rnrn:{t’:Sn[o, to) + Sn [to,t’] ~
—

]n[(), t())+ ~~[to,t~]}– tb

= mi~ {t’ : Sn[to, t’] > In[to,t b]} – to– (tb– to).
—

The last equality follows from the fact that since to is the start

of a connection n busy period, S. [0, to ) = In [0, to ). Setting

t = t’ – tO and r = & – to, and observing that

min {t’ : Sn [to, t’] > In[to, tb]}
t’>t~

= ~j:{t : %[~O,t + tO] ~ ~n[to, tb]} + to
—
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we get

d(tb) = yiil{t : s,, [to. t + tlJ] > l,, [t~, tb]} – 7-.
—

Now, since the connection n traffic satisfies ~[t, t + ~] <

A,, + ~~,,~, t, ~ >0, from Lemma 10 in [1 1], we conclude that

S,l[f”, t + to] > Sri(t).

Since by definition we also have

Z,,[t”, tb] < ln(tb – to)

it follows that

{t : S,, [to. t + t,,] > l,j[to. f,]} g {t: Sri(t) > rn(t~ -to)}

and therefore

t;y:l{t : s,, [flj, t + to] >1,, [t~, tb]}
—

< tgi;l{t : s,,(t) 2 I,l(t/, – to)}.

—

Recalling that r = t}, – to, we finally get

d(fl)) < y;:l{t : s,,(t) > m(T)} –7-. ❑
—

Proof of Lemma 4: We concentrate on the system oper-

ating according to mII as defined in Section VI and repeat

some notation for the sake of clarity. We denote by t~’m,the

timestamp with which the ith packet is enqueued in Q~; recall

that t:’’” is the time that the ith packet would leave shaper d:

in conformance with the traffic envelope .4:(~) . The time at

which the packet leaves Q;’ (to be transmitted on the link

or promoted to Q~r’) is denoted as t: ““ and we say that the

packet arrives af the scheduler at time t: ‘n’. If the link is idle,

the packet may be transmitted before it becomes eligible, i.e.,

!;’’” ~ t:’’”.The departure time of the ith packet from the

scheduler is denoted as t~”r’.We need to show that for any

packet i

~~.rr,_ ~;.nl ~ D~,

D~~’ has to be larger than the time it takes to transmit a

complete packet, and so packets that are scheduled before they

become eligible can never miss their deadline. All the eligible

packets are scheduled in Q“ -busy periods, and so it suffices

to show that packets that enter Q: are never delayed by more

than D~:’.

Let [t..tf]be a Q~ -busy period. At time to a packet either

starts transmission or is in the process of being transmitted

and recall that t,, s to is the time that this packet starts

transmission, If t,. = to (in this case a packet from Q~

starts transmission at to), then the traffic of all connections

arriving to the scheduler in [t,.. tf ] is in conformance with the

respective traffic shapers. In addition, in the interval [t., t ~]

the operation of the scheduler in Ttl, is identical to the one

in n~ly if t,, were the start of the first busy period. Thus, for

t,, = to the result is true by the definition of D:.

Now assume that t. < to, i.e., an ineligible packet from

connection j starts transmission at t..Observe that in a busy

period [t., t ~], the scheduler in Tlt only schedules packets

that are in Q~, except for the packet that is being transmitted

at the start of the busy period. We will show next that the

packets of all connections that have been transmitted in the

internal [t,, tf] have arrived to the scheduler in conformance

with their respective traffic envelopes. The truth of the lemma

will then follow as before.

Recall that A: [t1, tz] denotes the traffic from connection n

that is promoted to Q~ in the interval [t ~, tz]. Let A: [t,, t2]

denote the connection n traffic that arrives at the scheduler in

the interval [tl,t2].We need to show that

Ay[tl, t2] < A:(t2 –tI), t. < tl < tz < t,.

Since we are only concerned with node m here, we drop the

superscript m for the sake of clarity. By the definition of to,

we have that for any connection n

An[tl. t2] s An(tz –tl). to s tl s t2 < t,.

For a connection n # j, we have in addition, An [t,,. to ) = 0,

and therefore

An[tl, t2] < An(t2 – tl), f,, < tl < tz < tf, n #j. (37)

Note also that by definition ~~[tl, tz] = An [tl, tz], t,, < tl S

t2 ~ tf, holds for n # j since connection j is the only

connection which transmits an ineligible packet in [t,,, tf].

Consider next connection j, and let pj be the packet that

starts transmission at t,,. Let r, denote the eligibility time

of packet pj. If ~, z tf,then clearly A, [tl. ~2] < L S

Aj(0), t, < tl < t2 < tf, since no more packets from

connection j will be transmitted in [t,,, t ~]. Now suppose

t, < T, < tf.Then, all other packets of connection j

will arrive after ~e. For the case when t,, < t 1 < T. and

r, < t2 < tf, we have

Aj[t~, t2] < Aj(t2 ‘TJ < Aj(t2 – t~,).

The other cases can be similarly checked. ❑

APPENDIX B

SUBADDITIVE TRAFFIC ENVELOPES

Proof of Lemma 1: In Proposition 3, we presented a

method to obtain the minimal shaper envelope, for a given

input traffic envelope and a shaper delay bound. There, we

made the assumption that the input traffic envelope ~n (T) is

a concave, increasing, piecewise linear function with finite

number of slopes. Using such functions, we can approximate

arbitrarily closely any concave increasing envelope. This

means that by using the construction in Proposition 2 we

can construct shapers that, for given concave increasing input

envelope and shaper delay, are arbitrarily close to optimal.

However, a general input envelope satisfies a weaker property

than concavity, namely subadditivity [2]. In this appendix we

outline how the method of Proposition 2 can be applied to

subadditive input envelopes as well.

Consider a nondecreasing, piecewise linear function,

~.(T), with finite number of slopes (say K’) and such that

limT+m In (T)/T >0. Such functions can approximate arbi-

trarily closely any nondecreasing function in an appropriate
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sense (using the Skorohod metric [15, Chapter VI]). Let ~n (~)

be the minimal concave ~nction such that ~.(~) s 1.(~),

~ ~ O. It can be seen that In(T) is increasing, piecewise linear

with finite number of slopes and, therefore, can be written

in the form of (29)

Given d such that O < d < $n,K/~n,K, we construct the

minimal envelope A.(d) (T) corresponding to ~.(~) using

Proposition 3. We claim that A.(d)(~) is also the envelope

of the minimal shaper An(d) that provides delay bound, d, to

input traffic with envelope ~n (~).

To see this, consider another shaper A such that D(~n 11A)

< d, and assume that there exists some T’ ~ O, such that

A(7’) < Ars(d)(/). (38)

Interpreting the inequality D(~n 11A) < d using (10) (altern-

atively, see Fig. 2), we know that

~n(T) < A(T + d), T ~ O.

By assumption, ~(’r) is a concave function; however, ~n (T)

is the minimal concave function such that ~n(T) < In(T).

Therefore

~n(~) < ~(~+ d), T >0.

Using (10) again, we conclude that ll(~n [[d) < d. Now, using

(8) we have

D(~nllAn(d) A A) = max{ll(inlld~(d)), D(i~llA)}

< d.

But the shaper An(d) A A has envelope

B(T) = min{&(d)(T), A(T)}, T >0. (39)

From (39) andA(38) we know that envelope D(T) is strictly

smaller than An(d) (T), which contradicts the optimality of

An(d).
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