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Abstract— To guarantee network availability and se-

curity, operators must ensure that their reachability poli-

cies (e.g., A can or cannot talk to B) are correctly im-

plemented. This is a difficult task due to the complexity

of network configuration and the constant churn in a net-

work’s environment, e.g., new route announcements ar-

rive and links fail. Current network reachability analysis

techniques are limited as they can only reason about the

current “incarnation” of the network, cannot analyze all

configuration features, or are too slow to enable explo-

ration of many environments. We build ERA, a tool for

efficient reasoning about network reachability. Instead of

reasoning about individual incarnations of the network,

ERA directly reasons about the network “control plane”

that generates these incarnations. We address key expres-

siveness and scalability challenges by building (i) a suc-

cinct model for the network control plane (i.e., various

routing protocols and their interactions), and (ii) a reper-

toire of techniques for scalable (taking a few seconds for

a network with > 1000 routers) exploration of this model.

We have used ERA to successfully find both known and

new violations of a range of common intended polices.

1 Introduction
Network operators need to ensure the correct behavior of

their networks. Violations of intended reachability poli-

cies (e.g., “Can A talk to B?”) can compromise availabil-

ity, security, and performance of the network. This risk

has inspired the field of network verification, which aims

to enable operators to systematically reason about their

networks [39].

Reasoning about a network is hard, as a real network

is in a perpetual churn: route advertisements arrive, links

fail, and routers need to be taken offline for maintenance.

Nonetheless, an operator needs assurances on the network

behaviors because a policy violation may be latent and

occur only in a certain future incarnation (e.g., a specific

route advertisement from a peering network may cause

disconnection between A and B [6, 11]). Unfortunately,

today operators do not have proper tools for efficient rea-

soning about the network in different environments.
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Figure 1: Reachability behavior of a network (e.g., A

can talk to B) is determined by its data plane, which,

in turn, is the current incarnation of the control plane.

To highlight this challenge, it is useful to consider prior

work on network verification. A network is composed

of a control plane, which configures the behavior of the

data plane, which in turn, is in charge of forwarding ac-

tual packets (see Figure 1). The control plane, therefore,

can be thought of as a program that takes configuration

files and the current network environment (i.e., route ad-

vertisements) and generates a data plane. The data plane

is conceptually a program that takes a packet and its loca-

tion (i.e., a router port) as input and outputs a packet at a

different location. As a result, if we rest our analysis on

the data plane (e.g., Veriflow [29], HSA [28], NOD [36])

and verify its behavior over its inputs (i.e., packets), we

are inherently able to reason about only the current incar-

nation of the control plane (i.e., the current data plane),

and cannot say anything about the network behavior un-

der a different environment.

While there is prior work on bug-finding and verifica-

tion for the control plane, it suffers from critical limita-

tions. Some tools focus on a single routing protocol (e.g.,

BGP for Bagpipe [41] and rcc [18]) or a limited set of

routing protocol features (e.g., ARC [21]). They can thus

not capture the behavior of the entire control plane that of-

ten uses multiple routing protocols and sophisticated fea-

tures [22,31,38]. On the other hand, Batfish [19] analyzes

the entire control plane in the context of a given environ-



ment, but it does so by simulating the behavior of individ-

ual routing protocols to compute the resulting data plane.

This simulation is expensive (see §9.2), which makes it

prohibitive to iteratively use Batfish to analyze the impact

of many environments.

What is critically missing today is the ability to ef-

ficiently find network reachability bugs across multiple

possible environments. (§3 motivates this need using real-

world examples.) Doing so requires reasoning about net-

work reachability directly at the control plane level, with-

out explicitly computing the data plane that manifests in

each environment. Such reasoning is challenging due to

the complexity of the control plane, which involves vari-

ous routing protocols (e.g., BGP, OSPF, RIP) each with its

own intricacies (e.g., selecting best route to a destination

prefix is different for BGP and OSPF) and cross-protocol

interactions (e.g., route redistribution [32]).

We address these challenges in a tool called ERA (ef-

ficient reachability analysis) by employing several syn-

ergistic ideas. First, we design a unified control plane

model that succinctly captures the key behaviors of vari-

ous routing protocols. In this model, a router is viewed as

a function that accepts a route announcement as input and

produces a set of route announcements for its neighbors.

Second, we use binary decision diagrams (BDDs) [30] to

compactly represent the route announcements that consti-

tute a user-specified environment. Third, we shrink the

BDD representation of route announcements by identify-

ing equivalence classes of announcements that are treated

identically by the given network [42]. Each equivalence

class is given an integer index, and the reachability analy-

sis is transformed to arithmetic operations directly on sets

of these indices. Consequently, we take advantage of vec-

torized instruction sets on commodity CPUs for fast com-

putation of these set operations (§6).

ERA can be used to identify bugs in reachability poli-

cies of the form “A can talk to B” as well as a wide

range of common policies that are expressible in terms

of reachability relationships, such as valley-free routing

and blackhole-freeness (§7). Our implementation of ERA

is available as an open source and extensible toolkit to

which new kinds of analysis can be added (§8).

We evaluate the utility of ERA in a range of real and

synthetic scenarios (§9.1). Across all scenarios, it suc-

cessfully finds both new and known reachability viola-

tions, which were otherwise hard to find using the state

of the art techniques. We also evaluate the scalability of

ERA and find that it can handle a network with over 1,600

routers in 6 seconds. Our evaluations show that our con-

trol plane modeling and exploration techniques yield sig-

nificant speedup.

2 Related Work

There are several strands of related prior work.

Data plane analysis: Verifying the reachability be-

havior of the data plane has been widely studied (e.g.,

Anteater [37], Veriflow [29], HSA [28], NOD [36]). The

result from such verification, however, is valid only for the

specific data plane being analyzed. There has also been

extensive work on testing the data plane (e.g., ATPG [43],

Pingmesh [26]). Data plane verification and testing is fun-

damentally limited, as a network is in a constant churn,

which manifests itself as different data planes. For exam-

ple, a single route advertisement can dramatically change

the network behavior (e.g., see [11]).

Control plane analysis: Moving from the data plane to

the control plane potentially enables more powerful anal-

ysis, as the former is generated by the latter. However,

prior work is limited due to supporting only a single rout-

ing protocol (e.g., BGP in Bagpipe [41] and rcc [18]) or a

limited set of routing protocol features (e.g., ARC [21]).

Batfish [19] can reason about the entire control plane but

its analysis is expensive because it simulates the individ-

ual steps of each routing protocol. In contrast, ERA en-

ables fast exploration using a succinct encoding of control

plane behavior.

Clean-slate control plane design: Metarouting [24],

glue logic [33], and Propane [16] aim to build a correct-

by-design control plane. While worthwhile in the long

term, these efforts cannot reason about existing networks.

To summarize, what is critically missing today is the

ability to efficiently explore the control plane involving

various routing protocols. We illustrate this need below.

3 Motivation: Reachability Bugs

We motivate reasoning about multiple network incarna-

tions using real reachability bugs encountered in a large

cloud provider’s network. These bugs were latent and

manifested only under certain environments.

Maintenance-triggered: Some bugs stem from unex-

pected interactions of different routing protocols and con-

figuration directives. In this example (Figure 2), the in-

teractions are between static routing and BGP. For redun-

dancy, the operator’s goal was to have two paths between

the DCN (datacenter network) and the WAN (wide area

network), one through R1 and the other through R2. One

day, the operator decided to temporarily bring down R2

for maintenance, which she thought was safe because of

the assumed redundancy. However, as soon as R2 was

brought down, the entire DCN was disconnected from the

WAN (and the rest of the Internet).
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Figure 2: A bug triggered by maintenance.

Manual investigation revealed that

R1 contained a static default route

ip route 0.0.0.0/0 1.2.3.4 (here 1.2.3.4

is the next-hop of the static route, which is the address

of the management network). Static routes to a prefix

supersede dynamic routes [5, 8]. Thus R1 preferred the

static route over the default BGP route advertised by the

WAN (shown in red). Since static routes are typically not

propagated to neighbors, R1 did not advertise the default

route to the DCN. Thus, the DCN was entirely dependent

on R2 for external connectivity.

The bug in R1’s configuration was that the operator had

forgotten to type keywords to indicate that the static route

belonged to the management network, not data network.

(These keywords were present in R2’s configuration.) The

bug was latent as long as R2 was up, but was triggered

when R2 was brought down.

Announcement-triggered: In Figure 3, DCA had sev-

eral services hosted inside the subprefixes of 10.10.0.0/16.

Instead of announcing the individual subprefixes, R1 was

announcing this aggregate prefix. DCB could reach the

services inside DCA through the WAN. As soon as a new

service with prefix 10.10.1.160/28 was launched inside

DCA, all other services inside the /16 prefix became un-

reachable from DCB .
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Figure 3: A bug triggered by a BGP announcement.

Investigation revealed two latent configuration bugs

that combined to create this outage: (1) R1 was not con-

figured to filter 10.10.1.160/28 in its announcements to

the WAN; and (2) R2 was configured with an aggregate

route to 10.10.0.0/16 with DCB as the next hop. The re-

sult of the first bug was that the /28 announcement reached

R2 through the WAN. Then, as a result of the second bug,

the /16 aggregate route was activated at R2. This aggre-

gate route, as a local route to router R2, took precedence

over the /16 being announced through the WAN. When

the aggregate route was activated, R2 started dropping all

traffic to the /16 except for traffic to the /28. These drops

are due to the sinkhole semantics of route aggregation—

Figure 4: A bug triggered by link failure.

the aggregating router drops packets for subprefixes for

which it does not have an active route to prevent routing

loops [34].1 Proper connectivity existed prior to the /28

announcement because the /16 announcement from the

WAN did not activate the aggregate route at R2.

Failure-triggered: In Figure 4, R1 and R2 were config-

ured to announce prefix 10.10.0.0/16 that aggregated the

subprefixes announced by leaf routers (A1, A2, A3). After

link A2—B2 failed, WAN traffic destined to A2’s prefix

(10.10.2.0/24) started getting blackholed (i.e., dropped) at

R1 even though A2 had connectivity via B3 and R2.

This blackhole was created because R1 continued to

make the aggregate announcement after the failure of link

A2–B2, as it was still hearing announcements for the other

two subprefixes corresponding to A1 and A3 (aggregate

routes are announced as long as there is at least one sub-

prefix present). As a result, the WAN sent (some) traffic

for 10.10.2.0/24 toward R1. But R1 dropped those pack-

ets per the sinkhole semantics (see above).

4 ERA Overview

In this section, we present our approach and discuss the

challenges in realizing it. Our target is a (datacenter, en-

terprise, or ISP) network of a realistic size (e.g., a few to

hundreds of routers). As shown in Figure 5, our user is a

network operator responsible for configuring routers. The

operator has a set of intended reachability policies of the

form “Router port A can talk to router port B” (as we will

discuss in §7, several other practical policies are deriva-

tives of “A can talk to B”). ERA allows operators to input

their assumptions on what the network’s environment will

send (e.g., based on relationship with peers/providers).

It then analyzes the network’s behavior under these as-

sumptions and checks whether the behavior satisfies the

intended reachability policies. This process can then be

iterated with other environmental assumptions, in order to

cover a range of possible environments.

1For instance, if W announced the default route to R2, R2 would

forward traffic for 10.10.2.2 to W, which may then forward them to R2

(because R2 announces the aggregate /16 to W), and so on.
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Figure 5: High-level vision of ERA.

4.1 Our Approach

Here we give the intuition behind our approach to control

plane analysis.

Relationship between data and control planes: The

data plane takes as input a packet on a router port

and moves the (possibly modified) packet to another

port (on the same or a neighboring router). Thus, we

can think of the data plane as a function of the form

DP : (pkt , port) → (pkt , port). The data plane itself is

generated by the control plane function given routers’

configuration files, the network topology (i.e., which

router ports are inter-connected), and the current envi-

ronment (which captures the route advertisements sent

to the network by the “outside world”) of the network:

CP : (env ,Topo,Configs) → DP(.).

Reachability policies via control plane analysis: Since

packets are forwarded by the data plane, it is natural to

think of an intended reachability policy φA→B as a pred-

icate that indicates whether a given packet should be able

to reach from router port A to router port B. We say data

plane DP is policy-compliant if φA→B (pkt ,DP) evalu-

ates to true for all A-to-B packets.

A seemingly natural approach for finding latent bugs is

to produce the data plane associated with a given environ-

ment and then check reachability on that data plane [19].

However, this approach makes it prohibitively expensive

to iteratively check multiple environments (§9.2). This

is because for each possible environment (of which there

are many), to compute the resulting data plane, we need

to account for all low-level message passings and nuances

of routing protocols. Instead, we want to be able to reason

about the network directly at the level of the control plane

and without explicitly computing the data plane.

To this end, our insight is as follows. Rather than pro-

ducing the data plane that results from a given environ-

ment, we can analyze the control plane under that en-

vironment to determine i) the routes that each router in

the network learns via its neighbors (e.g., a BGP adver-

tisement) or its configuration file (e.g., static routes); and

ii) the best route when multiple routes to the same prefix

are learned. We can then use this information to directly
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Figure 6: X-to-Y reachability depends on routers con-

figurations and the environment.

check reachability.

An illustrative example: To visualize what it means to

reason about reachability using control plane analysis,

consider the example shown in Figure 6. Here we want

to see what traffic reaches from port X to port Y so that

we can check whether it is policy-compliant. From the

figure we can see that to find the above traffic, we can

try to find the routes that traverse the opposite direction

on each of the two paths. Let T
i→j
Router (route) show the

output of the configured router Router on its port j given

the input route on its port i. (Intuitively, route can be

thought of as an abstraction for a route advertisement.

The following section will elaborate on this abstraction.)

If we knew T (.), the answer would be:

T2→1
R1

(T5→4
R2

(T10→8
R4

(env))) ∪ T3→1
R1

(T7→6
R3

(T10→9
R4

(env))).

The argument env here represents the assumptions that

the user makes about the environment.

4.2 Challenges

Control plane-based reachability analysis requires us to

address two key challenges:

• An expressive and tractable control plane model: To

be expressive, this model needs to capture key behav-

iors of diverse protocols (e.g., BGP, OSPF route adver-

tisements). A naive model (e.g., capturing protocol-

specific behaviors verbatim), while expressive, is im-

practical because it will be too complex to explore. On

the other extreme, a very high-level model (e.g., ig-

noring protocol-specific behaviors altogether) may be

tractable to explore, but not expressive (e.g., BGP and

OSPF have different ways of preferring routes).

• Scalable control plane exploration: Once we have a

control plane model, we need the ability to efficiently

explore the model with respect to the environment,

in order to identify violations of intended reachability

policies.

We tackle these challenges in §5 and §6, respectively.

4.3 Scope and Limitations

ERA’s analysis requires the user to provide assumptions

on the environment (or defaults to assuming that the en-

vironment makes all possible route announcements). If

these assumptions are incorrect or overly permissive, then

ERA can produce false positives, identifying purported

errors that in fact will never arise in practice; e.g., a rep-



utable ISP is not likely to hijack its peer’s traffic. ERA is

designed to have no other source of false positives (i.e., its

control plane model is accurate). Though we have not for-

mally proven this yet, empirically speaking, all the bugs

that ERA has identified were real bugs.

ERA also has several sources of false negatives. First,

ERA will only find bugs under environments specified as

inputs and cannot guarantee the absence of bugs under all

environments (unless exhaustively iterated on all possible

environments). Second, certain classes of errors cannot be

found by ERA by design. Specifically, ERA assumes that

routing will converge and only analyzes this convergent

state, which is key to efficient exploration of the control

plane. Therefore convergence errors as well as reacha-

bility errors in transient states of the network will not be

found (e.g., [23, 25]).

Finally, while ERA supports most of the common con-

figuration directives, our current implementation does not

support certain directives such as regular expressions in

routing filters. Keeping up with configuration directives

is a software engineering challenge due to their large and

growing universe. Such limitations, however, are not fun-

damental to the design of ERA (unlike ARC [21], where

the design itself cannot handle certain routing features).

As we will see in §9, ERA can find a large class of real-

world bugs despite these limitations.

5 Modeling the Control Plane
We now describe our model for the network control plane.

It i) captures all routing protocols using a common ab-

straction; ii) is expressive with respect to routing behav-

iors of individual protocols; and iii) lends itself to scal-

able exploration. At a high level, we identify key behav-

iors of the control plane (e.g., route selection, route aggre-

gation) and compactly encode them using binary decision

diagrams (BDDs) [30].

Since the network control plane is a composition of the

control planes of individual routers, we break down the

problem of modeling the network control plane into mod-

eling (i) the I/O unit of a router’s control plane (§5.1), and

(ii) the processing logic of a router’s control plane (§5.2).

5.1 Route as the Model of Control Plane I/O

A naive way of modeling the I/O unit of the control plane

of a router is to use the actual specification of route ad-

vertisements of different routing protocols, including their

low-level details (e.g., keep-alive messages, sequence

numbers [3,9]). While expressive, such an I/O unit makes

the control plane model too cumbersome. Conversely, if

we completely ignore differences across protocols to sim-

plify our I/O unit model, such a model may not be expres-

sive; e.g., it cannot capture the fact that if a router learns

Administra,ve	
distance	(4	bits)	

Protocol	
a7ributes	(87	bits)	

Dst	IP	
(32	bits)	

Dst	mask		
(5	bits)	

Figure 7: route as the model of control plane I/O.

two routes to the same destination prefix from two dif-

ferent routing protocols, the one offered by the protocol

that has a smaller administrative distance (AD) will be se-

lected [5,8]. (We will see an example bug scenario due to

this effect in §9.1.2, Figure 15b.)

To strike a balance between expressiveness and

tractability, we introduce the notion of an abstract route

as a succinct yet expressive I/O unit for the control plane

model. Conceptually, a route mimics a route advertise-

ment. It is a succinct bit-vector conveying key informa-

tion in route advertisements that affects routing decisions

of a router (see Figure 7). While not fundamental to our

design, we have chosen a 128-bit vector to encode a route

to enable fast CPU operations as we will discuss in §6.2.

To accommodate diverse routing protocols, a route unifies

key attributes of various protocols that affect a router’s be-

haviors (i.e., administrative distance and protocol-specific

route attributes).2 To improve scalability, a route abstracts

away the low-level nuances of actual protocols (e.g., seq.

numbers, acknowledgements).

The fields of our route abstraction are:

• Destination IP and mask: Together, they represent the

destination prefix that the route advertises. To make

a route compact, we store the mask in 5 bits (instead

of its naive storage in 32 bits). For completeness, Ap-

pendix A shows the details of how we do this.

• Administrative distance (AD): This is a numerical rep-

resentation of the routing protocol (e.g., BGP, OSPF)

of the route such that ADA < ADB denotes routing

protocol A is preferred to protocol B.

• Protocol attributes: This captures protocol-specific at-

tributes of the routing protocol represented by AD.

For example, if the value of AD corresponds to BGP,

the protocol attributes field encodes the BGP attributes

(i.e., weight, local preference). To enable fast imple-

mentation of route selection in our router model (that

we will discuss in §5.2), we carefully encode the at-

tributes so that preferring a route between two routes

route1 and route2 simply becomes a matter of choos-

ing the smaller of two bit-vectors AD1 .attrs1 and

AD2 .attrs2 when interpreted as unsigned integers (the

symbol . denotes concatenation of the AD and proto-

col attributes fields of a route). For example, since

route selection in BGP involves checking a prioritized

list of BGP attributes (e.g., first checking the weight,

2Since our route model resembles routing messages in distance-

vector protocols, we accommodate link state protocols (e.g., OSPF) by

letting the attributes refer to the routes output by the Dijkstra algorithm.
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Figure 8: High-level router model processing boolean

representation of input routes.

then local preference, etc.) [4], for a BGP route, the

highest order bits of the protocol attributes field of the

route encode the complement of the BGP weight at-

tribute, followed by the complement of the local pref-

erence, and so forth. Note that the designated 87 bits

for succinctly capturing protocol attributes have been

sufficient in a range of realistic scenarios we have con-

sidered (§9), but there might be scenarios where more

bits are needed to encode many distinct attributes.

5.2 Control Plane as a Visibility Function

Given the I/O unit of the control plane, next we need to

model the processing logic that a router applies to input

routes. Intuitively the router model is a function that given

a route as its input, computes the corresponding output

route(s). We identify 5 key operations of the router control

plane: (i) Input filtering, which modifies/drops incoming

route advertisements to the router; (ii) Route redistribu-

tion, which is necessary to capture cross-protocol interac-

tions [31,33]; (iii) Route aggregation, which is a common

mechanism to shrink forwarding tables, yet its improper

use can lead to reachability violations [34]; (iv) Route se-

lection, which is in charge of selecting the best route to

a given destination prefix; and (v) Output filtering, which

modifies/drops outgoing route advertisements.

Unfortunately, reasoning about the control plane one

routing announcement at a time is not scalable. In-

stead, we lift our router model to work simultaneously

on a set of route announcements. We refer to our router

model as the visibility function because it captures how

the router control plane processes the routing informa-

tion made visible (i.e., given as input) to it. The input

to the router visibility function, V in, is the set of input

routes sent by its neighbors and configured static routes;

and its output, V out, is the set of corresponding output

routes that are sent downstream by the router. The no-

tation V out
Router = TRouter (V

in
Router ) denotes the control

plane visibility function of Router .

For fast exploration, we use BDDs to symbolically en-

code the set of I/O routes in a router model. A BDD is a

compressed representation of a boolean function that en-

ables fast implementation of operations such as conjunc-

tion, disjunction, and negation [30]. Our BDD encoding

enables fast router operations by transforming operations
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Figure 9: Example router model as a BDD. Dashed

and solid lines represent the values 0 and 1 of the cor-

responding binary variable, respectively.

on sets to quick operations on BDDs. For example, tak-

ing the complement of a set simply requires flipping the

true/false leaves of the corresponding BDD.

Figure 8 shows the high-level procedure for processing

a boolean representation of sets of routes. (For complete-

ness, the pseudocode for this is presented in Appendix B.)

The steps to turn V in into V out are as follows:

1. Supported protocols: First, the routing protocols

present in the configuration file are accounted for.

2. Input filtering: Then, the input filters are applied.

3. Originated routes: In addition to the input route, there

are routes that directly stem from the configuration

files, which are conceptually ORed with the input.

4. Route redistribution: A route redistribution command

propagates routing information from a routing protocol

(e.g., BGP) into another protocol (e.g., OSPF).

5. Route aggregation: If the router receives any input

route that is more specific than any configured aggre-

gate route, the aggregate route gets activated.

6. Static routes: A static route is a route locally known to

the router (i.e., not shared with its neighbors). Further,

by default, static routes take precedence over dynamic

routes (e.g., OSPF, BGP, RIP, IS-IS) due to having a

lower AD value. This behavior is captured by ANDing

the negation of static routes with all other routes.

7. Route selection: Selecting the best of multiple routes to

a destination prefix works as follows: (i) if the routes

belong to different routing protocols, the one with the

lowest AD value is selected, (ii) if the routes belong

to the same routing protocol, the protocol-specific at-

tributes determine the winner.

8. Output filtering: The router applies its output filters.

An illustrative example: We illustrate the procedure of

Figure 8 using a small example. For ease of presentation,

a route here has only 4 bits x3x2x1x0, with two bits x3x2

representing IP prefix, the bit x1 representing AD, and

the bit x0 representing protocol attributes. A bar over a

binary variable denotes its negation. In this example, the

network operator assumes the router accepts all routes as

input, which is captured by setting V in = 1 (i.e., true).



Suppose a router is configured with a static route and

RIP, with AD values of 0 and 1, respectively. Figure 9

shows the BDD representation of the router that has the

following four (simplified) configuration commands:

• RIP, denoting the presence of RIP on the router, is cap-

tured by 1 ∧ x1 = x1, as shown in Figure 9a.

• static 10/2: Since this static route overrides the

RIP routes with the same prefix, the resulting predicate

is (x3 x2 )x1=x3 x1 ∨ x2 x1 . This is shown in Figure 9b.

• output filter: if RIP attribute is 0,

make it 1: The effect of the filter is to replace all

occurrences of x1 by x1 x0 . The resulting predicate is

x3 x1 x0 ∨ x2 x1 x0 . This is captured in Figure 9c.

Intuitively, the output V out = x3 x1 x0 ∨ x2 x1 x0 , sim-

plified to V out = (x3 ∨ x2 ) ∧ x1 x0 , represents the fact

that given every environment as the input, the router out-

puts RIP (noted by x1 ) with attribute 1 (noted by x0 ) and

the dest. prefix can be 00, 01, or 11 (noted by x3 ∨ x2 ).

In the following section, we will discuss how to reason

about the reachability behaviors of the network by explor-

ing the router model we developed in this section.

6 Exploring the Model
Our reachability analysis is based on an exploration of the

control plane model above. We first describe this explo-

ration, and then describe how we leverage our BDD-based

encoding to devise a set of scalable exploration mech-

anisms that use (i) the Karnaugh map, (ii) equivalence

classes, and (iii) vectorized CPU instructions.

6.1 Exploration Method

We present our approach to finding traffic reachable from

port A to port B using a representative example. Consider

the scenario shown in Figure 10. The red path is an A-to-

B path involving routers RA, . . . ,Ri ,Ri+1 , . . . ,RB . For

ease of presentation, in this example, there is only one

path from A to B; the general pseudocode presented in

Appendix C accounts for all A-to-B paths.

To see the effect of the environment, consider router Ri ,

which has three paths to router ports that face the outside

world (namely, outside facing ports of routers R1, R3, and

R5). Unless the operator makes a more specific assump-

tion on an environment input (i.e., what route advertise-

ments the outside world will send to the network), ERA

starts analysis using the boolean value true (represented

by a BDD with only one leaf with the value true), which

represents the fact that every possible route are provided

by the environment. On the other hand, if the operator

is able to make a more scoped assumption about the en-

vironment (e.g., based on expected routes from a neigh-

bor), the starting environment will reflect the assumption.
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Figure 10: Computing A to B reachability.

Such assumptions can be encoded as a BDD that explic-

itly includes the relevant variables on the assumed prefix,

administrative distance, or attributes values of incoming

routes from the environment.

Computing traffic reachable from A to B involves the

following steps:

1. Applying the effect of the environment: Every router on

a A-to-B path that has a topology path to the environ-

ment, is affected by it. For router Ri in our examples,

it means Ri receives the environment input Ein
i , where

Ein
i = T1(env1) ∨ T2(T3(env2)) ∨ T4(T5(env3))

2. Computing routes reachable from B to A: As we saw

in §4.1, the key to computing traffic prefixes that reach

from A to B using control plane analysis is to compute

what route prefixes are made visible from B back to A.

Let assumedB show the input the operator assumes

about what port B receives from the environment. For

the red path, this is captured by
reachA B =

TA(Ein

A
∨ . . . (Ti+1(E

in
i+1 ∨ . . . TN (Ein

B
∨ assumedB) . . . )))

3. Extracting prefixes reachable from A to B: Since we

are interested in route prefixes reachable from B to A,

we eliminate binary variables in the route fields that

do not correspond to prefix (i.e., AD and protocol at-

tributes) in all boolean terms of reachA B .

4. Accounting for on-path static routes: In addition to the

routes that reach from B to A, which cause traffic to

reach from A to B, there is potentially other traffic that

can reach from A to B due to static routes configured

on on-path routers. This is because while a router does

not advertise its static routes, activated static routes end

up in its forwarding table. We account for such prefixes

and OR them with the answer from step 3.

5. Applying ACL rules affecting A-to-B traffic: While a

router configuration file primarily includes directives

to configure the router control plane, it may include ac-

cess control lists (ACLs) that restrict the actual traffic

that can pass through the data plane of the router. We,

therefore, account for ACLs by taking the result of step

4 and applying the ACLs of the on-path routers.
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Figure 11: Visualization of predicates X, Y, and Z in

terms of members of equivalence classes a1, . . . , a7.

Once traffic prefixes reachable from A to B are com-

puted, the network is policy-compliant if the prefixes

are equal to φA→B from §4.1. If φ is violated, ERA

applies the Karnaugh map [27] to the DNF representa-

tion of the violating routes to provide the human oper-

ator with fewer distinct items to investigate (§4.1); e.g.,

instead of reporting distinct prefixes 10.20.0.0/17 and

10.20.128.0/17 as violations, ERA summarizes and out-

puts them as 10.20.0.0/16.

The process above finds policy violations in the con-

text of a single set of environmental assumptions. The

user can iterate multiple times with different assumptions

in order to expose more errors. Conceptually, each itera-

tion of ERA over a BDD input analyzes a set of concrete

environments for which the network has an identical be-

havior. The analysis implicitly identifies this set during

exploration, by accumulating constraints from the visibil-

ity function of each router in the network. Thus, the num-

ber of iterations needed for exhaustive exploration using

ERA is far less than those needed with data plane based

analysis tools such as Batfish.

6.2 Scalability Optimizations

To build an interactive tool for network operators, we want

ERA to be able to compute A− to−B reachability in no

more than a few seconds. Even with the tractable control

plane model that we developed in §5, a naive implementa-

tion of the exploration mechanism outlined in §6.1 fails to

satisfy our goal. This is because of the very large range of

possible environments. Here we present three techniques

to scale control plane exploration.

Minimizing collection of routes with the K-map: As

a first step, to minimize the binary representation of the

router I/O, we apply the Karnaugh map (K-map), which

is a common technique in circuit design [27].

Finding equivalence classes: Performing computations

(e.g., conjunction and disjunction) on boolean representa-

tion of a real control plane is cumbersome. For example,

the same or similar destination prefixes may appear on

multiple routers. As such, if we encode prefixes naively,

this may slow down control plane exploration.

Given this observation, before performing reachability

analysis, ERA gets rid of redundant data by finding equiv-

alence classes of routes which are treated identically by

{0,1,4}		 1	 0	 0	 1 1	

{1,3}	 0	 1	 0	 1	 0	

OR	 1	 1	 0	 1	 1	 {0,1,3,4}	∪	

(a) Set union using OR.

1	 0	 0	 1 1	

0	 1	 0	 1	 0	

AND	 0	 0	 0	 1	 0	 {1}		

{0,1,4}		

{1,3}	

∩	

(b) Set intersection using AND.

Figure 12: Fast ∪ and ∩ of two sets of integers.

the network, using which the data can be rebuilt [42].

The advantage of doing so is that now performing dis-

junction and conjunction on boolean terms boils down to

doing union and intersection on sets of integers (known as

atomic predicates [42]). These integers are the indices of

the equivalence classes. We illustrate this technique using

an example. Suppose we need to compute the conjunction

of the boolean terms X , Y , and Z (e.g., representing three

routes). Instead of naively computing the conjunction on

the raw boolean form of these terms, we do the following:

1. Express each term in terms of equivalence classes as

depicted in Figure 11; e.g., X = a2 ∨ a5 ∨ a6 ∨ a7.

2. Represent each term using the indices of members of

equivalence classes, e.g., X is the union of members

2, 5, 6, and 7. (This way, irrespective of how bulky

the raw form of term ai might be, it is represented by

integer value i.)

3. To compute X ∧ Y ∧ Z, intersect the sets of their

corresponding indices: {1, 5, 6, 7} ∩ {1, 4, 5, 7} ∩
{3, 4, 6, 7} = {7}, which indicates the answer to

X ∧ Y ∧ Z is a7.

Implementing fast set operations: As we saw above,

using equivalence classes, reachability analysis involves

computing union and intersection of sets of integers. We

leverage vectorized instructions on recent processors to

perform fast set union and intersection of two sets of in-

tegers (i.e., the indices of the equivalence classes). The

intuition is simple: if a set of integers is represented as a

bit vector where each bit represents the presence/absence

of the corresponding value, then the union (intersection)

of two sets of integers is the bit-wise OR (AND) of the

two bit vectors.

Figure 12 shows this approach using an example. In our

implementation, we use instructions on 256-bit vectors in

our Intel AVX2 implementation [13].

7 Going beyond Reachability

Building on basic A-to-B reachability, ERA can be used

to check a wider range of policies. In §9, we will discuss

scenarios involving these policies.

Valley-free routing: Operators often want to implement

“valley-free” routing [20], which means that traffic from a

neighboring peer or provider must not reach another such

neighbor. This condition is a form of reachability policy

that ERA can easily check.



Equivalence of two routers: Operators often use multi-

ple routers to provide identical connectivity for fault toler-

ance. Checking if they are identically configured (e.g., us-

ing configuration syntax) is hard because the routers may

be from different vendors and many aspects of the con-

figuration (e.g., interface IP addresses) can legitimately

differ across routers of even the same vendor. To check

semantic equivalence of two routers’ policies, we use the

following property of BDDs: if two boolean functions de-

fined over n boolean variables are equivalent (i.e., they

generate the same output for the same input), their Re-

duced Ordered BDDs (ROBDDs) are identical [17]. In

our implementation, we check the equality of the ad-

jacency matrix representations of the BDDs of the two

functions, which takes O(n2 ). In contrast, a brute force

method will take O(2n).

Blackhole-freeness: A blackhole is a situation where a

router unintentionally drops traffic. The blackholed traffic

from A to B is the complement of the reachable traffic:

blackholeA B = reachabilityA B . Note that computing

blackholes by ERA having computed reachability takes

O(1), as the negation of a BDD is the same BDD with its

two leaves (corresponding to true and false) flipped.

Waypointing: Operators may want traffic from A to B
to go through an intended sequence of routers (e.g., to

enforce advanced service chaining policies [15,35]). ERA

checks waypointing by explicitly checking whether traffic

reachable from A to B goes through the intended routers.

Loop-freeness: ERA can find permanent forward-

ing loops (e.g., created by static or aggregate routes—

see Figure13c in §9.1) by checking whether the same

router port appears twice in the reachability result.

8 Implementation

Our implementation of ERA [1] supports several config-

uration languages (e.g., Cisco IOS, JunOS, Arista). It

uses Batfish’s configuration parser, which normalizes a

vendor-specific configurations to vendor-agnostic format.

ERA, then, uses this vendor-agnostic format as input.

We implement the control plane model, the K-map, and

atomic predicates in Java. To operate on BDDs, we use

the JDD library [7]. We implement our fast set intersec-

tion and union algorithms in C using Intel AVX2, which

expands traditional integer instructions to 256 bits [13].

A natural question might be how much effort it takes to

add support for various routing protocols to ERA. In our

experience, this effort is minimal. It took two of the au-

thors a few hours to model the common routing protocols

because of two reasons. First, there are fewer than 10

common routing protocols (e.g., BGP, OSPF, RIP, IS-IS).

Second, for each protocol, the key insight for creating the
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Figure 13: Finding known bugs in synthetic scenarios.

model is to know how the protocol prefers a route over

another in the steady state, which is concisely defined in

protocol specifications.

9 Evaluation

In this section, we evaluate ERA and find that:

• It can help find both known and new reachability vio-

lations (§9.1).

• It can scale to large networks (e.g., it can analyze a

network with over 1,600 routes in 6 seconds), and our

design choices are key to its scalability (§9.2);

9.1 Finding Reachability Bugs with ERA

We show the utility of ERA in finding reachability viola-

tions in scenarios involving known bugs as well as new

bugs across both real and synthetic scenarios. These sce-

narios illustrate violations that are latent and get triggered

only in certain environments (i.e., a certain router adver-

tisement sent to the network by the routers located int

the outside world). Even for scenarios involving only

a small number of routers, existing network verification

techniques lack the ability to find latent bugs (§2), and

trying to extend these tools to enumerate different envi-

ronments poses a serious scalability challenge (e.g., we

will quantify this for Batfish, a recent network verifica-

tion tool, in §9.2). Further, as we will discuss in §9.2,

ERA scales to large networks (e.g., over 1,600 routers).

All experiments below were done under the assumption

that the environment sends all possible route announce-

ments, i.e. the BDD of each environmental input is simply

the predicate true. Though this environmental assump-

tion is not guaranteed to cover all possible environments,

in practice it is effective at rooting out latent bugs due

to its “maximal” nature, as we show below. This points

out an important advantage of ERA over Batfish [19].

While both tools require an environment as input, Bat-

fish’s low-level simulation of routing protocols makes it

prohibitively expensive to run with such a maximal envi-

ronment, so in practice Batfish users must craft specific

environments that are suspected to cause problems.

9.1.1 Finding Known Bugs in Synthetic Scenarios

• Violation of waypointing due to route redistribu-

tion: In this scenario borrowed from [32] and shown



in Figure 13a, the customer wants to waypoint its traf-

fic through X − A− C and use X − B − C as the

backup path. However, static routes configured on

routers A and B are redistributed into BGP, and the

ISP advertises them into the rest of the Internet. As a

result, B − X acts as a primary link. (One way to pre-

vent this would be for the customer to adjust the default

AD values of BGP and static routes on B.)

• Blackhole due to route aggregation: In this scenario

borrowed from [34] and shown in Figure 13b, both

routers B and C are configured to announce aggregate

route 10.1.2.0/23 to router A. After the marked inter-

face of B fails, B continues to announce the aggre-

gate route, which causes A to send packets destined to

10.1.2.0/24 to B. B will drop this traffic, as the its link

to the 10.1.2.0/24 subnetwork is down.

• Permanent loop due to route aggregation: In this

scenario borrowed from [34] and shown in Figure 13c,

the ISP router X advertises the default route 0.0.0.0/0

to router Y . Even though Y has connectivity to only

10.2.1.0/24 and 10.2.2.0/24, it has been configured to

advertise to the ISP the aggregate route for the entire

10.2.0.0/16 prefix. Now since 10.3.0.0/24 is as sub-

prefix of 10.2.0.0/16, the ISP may send traffic to des-

tination prefix 10.3.0.0/24 to Y . Consequently, since

Y does not know how to reach 10.3.0.0/24, this traffic

will match its default route entry and be bounced back

to the ISP. This traffic, therefore, will trap in a perma-

nent loop between X and Y .

To further evaluate the effectiveness of ERA, we did

a red team-blue team exercise. In each scenario, the red

team introduced misconfigurations that cause a reachabil-

ity violation unbeknownst to the blue team. Then the blue

team uses ERA to check whether the intended policy is

violated. Across all scenarios, the blue team successfully

found the violation. Here is a summary of the scenarios:

• Violation of waypointing: In Figure 14a, the intended

policy is to ensure traffic originating from network E

destined to network C goes through path E − B − C

(so that it is scrubbed by the firewall). However, this

policy is violated because router E receives the pre-

fix of network C from both routers B and D, which

means NetE → NetC traffic may go through path

E −D − C skipping the firewall. The root cause of

the problem was the fact that none of routers C, D, or

E filtered the route advertisement for the 10.1.1.0/24

prefix on the E −D − C path.

• Violation of valley-free routing: In Figure 14b, B and

E are providers for C, which in turn, is a provider

for D. A missing export filter on C caused C to ad-

vertise the prefix for NetE to B. This is a violation
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Figure 14: Finding known bugs in synthetic scenarios

using the red-blue teams exercise.

of the valley-free routing property, specifically, due to

customer C providing connectivity between two of its

providers, namely, B and E.

• Violation of intended isolation: In Figure 14c, we

want the traffic from segments {A,B} (running BGP)

and {C ,D} (running OSPF) to remain isolated from

each other. However, this policy is violated due to a

misconfiguration on C whereby OSPF is redistributed

into BGP, that will allow traffic from {A,B} to reach

{C ,D}.

• Misconfigured backup path: In Figure 14d, the client

has two /16 networks connected to A and intends to

maintain two paths to the provider to ensure reachabil-

ity in case of failure on one of them. This policy is vio-

lated because of an incorrect filter configured on B that

drops the advertisement for the 10.20.0.0/16 network.

As a result, if path D − C − A fails, the 10.20.0.0/16

network will be unreachable from the provider.

9.1.2 Finding New Bugs in Synthetic Scenarios

Finding reachability bugs in hybrid networks: Oper-

ators may prefer to opt for a hybrid network, which in-

volves deploying SDN alongside traditional network rout-

ing infrastructure for scalability and fault tolerance [40].

Next we show how ERA can find policy violations arising

in such hybrid deployments.

Fibbing [40] is a recent method to allow an operator

to use an SDN controller to flexibly enforce way-pointing

policies in a network running vanilla OSPF. The key prim-

itive is “fibbing” whereby the SDN controller pretends to

be a neighboring router and makes fake route advertise-

ments with carefully crafted costs. For example, con-

sider the network of Figure 15a, where links are anno-

tated with their OSPF weights. If we run OSPF, both
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Figure 15: New bugs in a synthetic scenario involving

hybrid (i.e., SDN-traditional) networks.

source to destination flows will take the cheaper path

R1 − R2 − R4 − R5 . Now, for load balancing purposes,

the operator wants to make S1 → D1 traffic take the

path R1 − R2 − R3 − R5 without fiddling with OSPF

wights. Fibbing will let her accomplish this by using a

fake router F that claims to be able to reach D1 at a cost

of 2. As a result, now R2 will start sending traffic destined

to D1 through F , as the new cost 1+2=3 is better than the

cost 2+2=4 of going through R4.

A hybrid network is particularly error-prone due to in-

tricate interactions between SDN and traditional proto-

cols. To show the utility of ERA in reasoning about such

networks, we describe two scenarios:

• Interaction between fibbing and aggregate routes:

In Figure 15a, the goal is to use fibbing to enforce the

waypointing denoted by green and orange paths. We

used ERA to find a violation of this policy. The root

cause was an aggregate route configured on R2 to des-

tination prefix D1 ∪D2 pointing to R4 as its next hop.

As a result, both S1 → D1 and S2 → D2 traversed the

orange path, which violated the policy.

• Cross-protocol effects: In Figure 15b, the goal

is to use fibbing to waypoint traffic to D through

R1 − R2 − R4 . We used ERA to find a violation of

this in a red team-blue team exercise. Each router in the

figure is annotated with the routing protocol(s) it runs.

Router R4 had a static route to D that is redistributed

into BGP and OSPF. As a result, router R1 received

route advertisements for D from both OSPF (from R2

and R3) and BGP (from R5). Now since BGP, by de-

fault, has a lower AD value than OSPF, R1 chose the

advertisement offered by R5! Therefore, fibbing here

fails to enforce the waypointing policy.

Fibbing is proven to be correct [40], but only if the net-

work merely runs OSPF. The takeaway from the above

scenarios is that for hybrid networks to be practical, we

need to account for realistic router configurations (e.g.,

route aggregation by R2 in Figure 15a) and cross-protocol

interactions (e.g., BGP/OSPF in Figure 15b).

Note that finding arbitrary SDN bugs is beyond the scope

of ERA. ERA handles SDN only if its behavior can be

abstracted in our control plane model, in a manner similar
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to what we do for conventional routing protocols.

9.1.3 Finding Known Bugs in Real Scenarios

Bugs reported in a cloud provider: The motivating sce-

narios we saw in §3 are based on bugs in a production

network that we successfully reproduced using ERA.

Finding BGP route leaks: Roughly speaking, a route

leak scenario involves: (i) a router incorrectly advertis-

ing the destination prefix of a service, and (ii) another

router incorrectly accepting it. The combination of these

results in absorbing traffic destined to the service on the

wrong path, which can cause high-impact disruptions.

Route leak is not a new problem (e.g., see AS 7007 in-

cident [2]), but continues to plague the Internet to date

(e.g., Google [6] and Amazon AWS [11] outages in 2015).

To demonstrate the utility of ERA in proactive finding of

route leak-prone configurations, we use a representative

scenario shown in Figure 16. The intended path from the

client to the service is through R2; however, the client’s

traffic ends up taking the wrong path C → R1 because

(i) R1 incorrectly advertises the service prefix, and (ii) C
prefers the route advertisement made by R1 over the one

made by R2. ERA can proactively find route leaks, as a

route leak is essentially a violation of waypointing. In this

example, the traffic from client to server needs to be ex-

clusively waypointed through R2 . We have synthesized

a few route leak scenarios and used ERA to successfully

find violations.

9.1.4 Finding New Bugs in Real Scenarios
Next we show the utility of ERA in finding new bugs in a

campus (CampusNet) and a large cloud (CloudNet).

Finding new bugs in CampusNet: Figure 17 shows a

simplified topology of the core of a large campus network,

with a global footprint and over 10K users. The two core

routers are in charge of interconnecting the three ISPs and

the departments. There are two intended policies involv-

ing these four routers, both of which are violated:

• Equivalence of core routers: Core2 is meant to be

Core1’s backup. ERA revealed that Core1 has OSPF



configured on one of its interfaces, which is missing on

Core2. As a result, if Core1 fails, the departments that

rely on OSPF will be disconnected from the Internet.

• Equivalence of pod routers: Pod1 and Pod2, con-

necting the campus to the Internet, are both connected

to ISP2 with the intention that link Pod1 − ISP2 is

active and Pod2 − ISP2 is its backup. ERA revealed

that the ACLs on Pod1 and Pod2 affecting their re-

spective links with ISP2 are different. Specifically,

Pod2 has more restrictive ACLs than Pod1. This

means if link Pod1 − ISP2 fails, a subset of campus-

to-ISP2 traffic will be mistakenly dropped by Pod2.

Finding new bugs in CloudNet: We used ERA to check

equivalence of same-tier routers (analogous to routers R1

and R2 in Figure 2) on configurations of seven production

datacenters of a large cloud provider. ERA revealed that

seven routers in two datacenters had a total of 19 static

routes responsible for violations of equivalence policies.

The operators later removed all of these violating routes.

9.2 Scalability of ERA

Testbed: We run our scalability evaluation experiments

on a desktop machine (4-core 3.50GHz, 16GB RAM).

Why not existing tools? The closest tool to ERA is Bat-

fish [19], which (1) takes a concrete network environment;

(2) runs a high-fidelity model of the control plane (e.g.,

low-level models of various routing protocols) to generate

the data plane (i.e., routers forwarding tables); and (3) per-

forms data plane reachability analysis. To put this in per-

spective, in an example scenario involving a chain topol-

ogy with two routers, Batfish took about 4 seconds. In

contrast, ERA took 0.17 seconds to analyze the same net-

work (a 23X speedup over Batfish). Further, as mentioned

earlier, Batfish’s performance will degrade as the size of

the environment increases, while ERA’s BDD-based ap-

proach allows it to naturally handle even the “maximal”

environment, represented by the BDD true.

Effect of optimizations: Table 1 shows the effect of our

optimizations from §6.2, namely, the K-map, equivalence

classes (EC), and fast set operations compared to a base-

line involving use of BDDs without these optimizations.

The tables shows the average values from 100 runs, each

involving A-to-B reachability analysis between two ran-

domly selected ports. Stanford [12] and Purdue [10] are

campus networks, OTEGlobe [14] is an ISP, and FatTree

is a synthetic datacenter topology. The takeaway here is

that our optimizations yield a speedup of 2.5× to 17×,

making ERA sufficiently fast to be interactively usable.

To see the effect of the type of policy on the analysis

latency, we measured the analysis latency for all proper-

ties from §7 on the Purdue and OTEGlobe topology, none

Topo. #routers/ave

path len.

Reachability analysis latency (sec)

baseline kmap kmap+EC ERA

Stanford 16/2 5 1.8 0.30 0.29

OTEglb 92/3.3 7.8 3.5 1.97 1.84

FatTree 1,024/5.89 13.8 7.01 6.1 5.4

Purdue 1,646/6.8 15 8 6.5 6

Table 1: Effect of our optimizations.

of which took more than 6.1 seconds. This is expected, as

these policies are derivatives of reachability analysis.

10 Conclusions
Since networks are constantly changing (e.g., new route

advertisements, link failures), operators want the ability

to reason about reachability policies across many possible

changes. In contrast to prior work, which either focuses

on a subset of the network’s control plane or focuses on

one incarnation of the network as represented by a sin-

gle data plane, ERA models the entire control plane and

checks network reachability directly in that model. Our

design addresses key expressiveness and scalability chal-

lenges via a unified protocol-invariant routing abstraction,

a compact binary decision diagram based encoding of

the routers’ control plane, and a scalable application of

boolean operations (e.g., vector arithmetic).

We showed that ERA provides near-real-time analysis

capabilities that can scale to datacenter and enterprise net-

works with hundreds of nodes and uncover a range of la-

tent reachability bugs. While ERA does not automatically

reason about all possible of environments, it helps find la-

tent reachability bugs by allowing the users to specify a

rich set environments using BDDs and quickly analyzing

each such set. For instance, a particularly challenging en-

vironment, of all possible routing announcements from a

neighbor, can be captured simply using BDD true.

In future work, we will identify conditions under which

a single run of ERA is guaranteed to cover all possible en-

vironments and extend ERA to automatically explore all

possible environments. Another natural direction for fu-

ture work is to prioritize bug fixing based on the likelihood

of occurrence and severity of aftermath, and to bring the

human operator into the debugging and repair loop.
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Appendix
The goal of the following appendices is to provide details

of our control plane modeling and exploration approach

that we presented in §5 and §6.

A Computing Destination Prefix
To make our route abstraction compact, we store the desti-

nation mask field in 5 bits (instead naively storing it in 32

bits) as we saw in §5.1. Here we concretely describe how

we do this. Let dstIP and dstMask denote a 32-bit desti-

nation IP address and our 5-bit encoding of the destination

mask. To compute the destination prefix that the destina-

tion IP and mask represent, we first transform the mask

to its customary 32-bit representation (e.g., 255.255.0.0),

and then AND it with the IP address:

dstPrefix ← dstIP&((2 32
− 1 ) << (32 − dstMask))

where <<denotes the shift left operator.

B Route Visibility Function
For completeness, the pseudocode of Figure 18 shows the

details of the router control plane model from §5.2. The

pseudocode describes how a configured router turns the

boolean representation of its input routes to output routes.

Note that we account for per-port (i.e., router interface)

behaviors because, in general, a router can have distinct

routing behaviors configured on its different ports.)

1. The input to the router is the disjunctive normal form

(DNF) boolean representation of input routes. This

represents the input route(s) the environment of the

router (i.e., its neighbors) sends to it (line 1). The out-

put of the pseudocode is the DNF boolean representa-

tion of the output routes (line 2).

2. First, the routing protocols present in the configuration

file are accounted for (lines 6-7).

3. Then, the input filters are applied to the input route

(Lines 8-12).

4. In addition to the input route, there are route adver-

tisements that directly stem from the configuration

files (e.g., the network bgp configuration command).

These are unioned with the input route in lines 13-14.

5. A route redistribution command propagates routing

information from a routing protocol, denoted by

fromProto (e.g., BGP) into another, denoted by

toProto, (e.g., OSPF). This is captured in lines 15-22.

6. A route aggregation (a.k.a. route summarization) com-

mand works as follows: if the router receives any input

route that is more specific than an aggregate route, the

aggregate route is activated (lines 23-28).3

3In line 21 (line 27) of Figure 18, if there are explicit attributes con-

figured for route redistribution (route aggregation), we use those values

instead of default attributes.

1 ✄ Inputs: (1) Configuration information pertaining to router output port

Routerport including: static routes sr[.], route redistribution rr [.], route

aggregation ra[.], supported routing protocols proto[.], input filters if [.],
output filters of [.]
(2) Input to the router is a boolean function in DNF form:

V in = X in
1 ∨ · · · ∨ X in

N

2 ✄ Output: Boolean representation of Routerport in DNF

3 ✄ Route bit vector from Figure 7, denoted by X , is concatenation of 3 fields:

X = Xprefix .Xproto .Xattr

4 ✄ We show the length of an array array by size(array[.])
5 V out = V in

✄ Initializing the output

6 ✄ Applying supported routing protocols

7 V out = V out ∧ {
∨

i Xproto[i]}

8 ✄ Applying input filters

9 for i = 1 to size(if [.])
10 for each disjunctive term of V out, denoted by V out

j

11 if V out
j matches if [i].condition

12 apply action if [i].action

13 ✄ Accounting for routes that Router originates, denoted by V local

14 V out = V out ∨ V local

15 ✄ Applying route redistribution

16 for i = 1 to size(rr [.])
17 for each disjunctive term of V out, denoted by V out

j

18 if V out
j .Xproto == rr [i].fromProto

19 newTerm = V out
j

20 newTerm.Xproto = rr [i].toProto
21 newTerm.Xattr = defaultAttr [proto]
22 V out = V out ∨ newTerm

23 ✄ Applying route aggregation

24 for i = 1 to size(ra[.])
25 newTerm.Xprefix = ra[i].prefix
26 newTerm.Xproto = ra[i].proto
27 newTerm.Xattr = defaultAttr [proto]
28 V out = V out ∨ newTerm

29 ✄ Applying static routes

30 for i = 1 to size(sr [.])
31 for each disjunctive term of V out , denoted by V out

j

32 if AD(V out
j .Xproto) > AD(static)

33 V out
j = V out

j ∧ (sr [i].prefix)

34 ✄ Applying route selection

35 for each prefix prfx present in V out

36 precedence = +∞
37 for each disjunctive term of V out , denoted by V out

j

38 if (V out
j .prefix == prfx)&&(V out

j .AD.attr < precedence)

39 precedence = V out
j .AD.attr ✄ Finding best route

40 for each disjunctive term of V out , denoted by V out
j

41 if (V out
j .prefix == prfx)&&(V out

j .AD.attr > precedence)

42 Eliminate V out
j from V out

✄ Eliminating others

43 V out
j = V out

j ∨ prfx .precedence

44 ✄ Applying output filters

45 for i = 1 to size(of [.])
46 for each disjunctive term of V out, denoted by V out

j

47 if V out
j matches of [i].condition

48 apply action of [i].action

49 return V out

Figure 18: Route control plane visibility function.

7. A static route, if present in the configuration file, is a

route locally known to the router (i.e., not shared with

its neighbors). Further, by default, static routes have a



1 ✄ Inputs: (1) router-level topology of network

(2) Set of router ports facing environment Env
(3) routers configurations

2 ✄ Output: Prefix(es) of traffic reaching from router port A to router

port B

3 Parse router configurations into boolean functions (using Figure 18)

4 Initialize assumede on port e (by default, true)

5 initialize assumedB on port B (by default, true)

6 ✄ Accounting for effect of environment on routers on an A-to-B
path

7 for each router routeri on an A − to − B path

8 for each environment-facing port e ∈ Env
9 for each path p from port e to routeri

10 ✄ routerj is the jth router on e i,
where 1 ≤ j ≤ M (j )

11 E in
e→i,p = E in

e→i,p ∨ TM(j)(. . . (T1 (assumede)) . . . )

12 E in
e→i = E in

e→i ∨ V in
e→i,p

13 E in
i = E in

i ∨ E in
e→i

14 ✄ Compute per-path reachability

15 Find all paths from B to A in G:

PathB A = {path1
B A, . . . , path

N
B A}

16 ✄ router
j
i is the jth router on pathi

B A,

where 1 ≤ j ≤ M (j )

17 reachability
pathi

B A
B A

=
TM(j)(. . . (T2 (E

in
2 ∨ (T1 (E

in
1 ∨ assumedB ))))

18 Eliminate binary variables in reachabilityA B except those

corresponding to Xprefix

19 ✄ Accounting for static routes

20 staticA B =
∨

i

(
∧

k

(StaticPrefix
Routerk

i
))

21 reachabilityA B = reachabilityA B ∨ staticA B

22 ✄ Accounting for on-path ACLs. Routerki is the kth router on

pathi
A B

23 reachability
pathi

B A
B A

=

reachability
pathi

B A
B A

∧ (
∨

k

ACLs
Routerk

i
)

24 ✄ Compute all paths reachability

25 reachabilityA B =
∨

i

reachability
pathi

B A
A B

26 return reachabilityA B

Figure 19: Computing A-to-B reachability.

lower AD value than dynamic routing protocols (e.g.,

OSPF, BGP, RIP, IS-IS), which makes them take prece-

dence over these protocols. These behaviors are cap-

tures in lines 29-33.

8. Route selection is in charge of selecting the best route

out of multiple routes to the same destination prefix: (i)

if the routes belong to different routing protocols, the

routing protocol with the lowest AD value is selected,

(ii) if the routes belong to the same routing protocol,

the protocol-specific attributes determine which one is

selected. We have encoded protocol-specific attributes

in such a way that a smaller value denotes a more pre-

ferred route. Route selection is shown in lines 34-43.

9. As lines 44-48 denote, the last operation of the router

is applying the output filters.

C Computing Traffic Reachable

from A to B
We saw the high-level procedure to compute the traffic

reachable from port A to port B in the network in §6.1.

For concreteness, here we present the pseudocode for do-

ing so (Figure 19).

1. First, we account for the effect of the environment on

the routers that are located on a path from A to B
(lines 6-13).

2. The pseudocode then computes the routes that can

reach from B to A over all paths between the two ports.

For each path, we sequentially use the visibility func-

tions of the on-path routers (lines 16-17). At this point,

we have computed all route advertisement prefixes that

reach from B to A, which is the traffic prefixes that

reach from A to B.

3. Then, since we are interested in route prefixes reach-

able from B to A, we ignore route fields that do not

correspond to prefix (i.e., AD and attributes) in line 18.

4. In addition to these prefixes, there is potentially other

traffic that can reach from A to B to static routes con-

figured on on-path routers. This is because while a

router does not advertise its static routes, proper static

routes end up in its forwarding table. By a proper static

route we mean a static route that points to the next on-

path router as its next hop. We account for static routes

in lines 19-20.

5. Since routers ACL rules restrict what traffic prefixes

will actually be forwarded, we then account for them

in lines 22-23.

Finally, the computed per-path reachability results are

unioned (lines 24-25).
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