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Abstract

Sequential models achieve state-of-the-art results

in audio, visual and textual domains with respect

to both estimating the data distribution and gener-

ating high-quality samples. Efficient sampling for

this class of models has however remained an elu-

sive problem. With a focus on text-to-speech syn-

thesis, we describe a set of general techniques for

reducing sampling time while maintaining high

output quality. We first describe a single-layer

recurrent neural network, the WaveRNN, with a

dual softmax layer that matches the quality of

the state-of-the-art WaveNet model. The compact

form of the network makes it possible to gener-

ate 24 kHz 16-bit audio 4× faster than real time

on a GPU. Second, we apply a weight pruning

technique to reduce the number of weights in the

WaveRNN. We find that, for a constant number of

parameters, large sparse networks perform better

than small dense networks and this relationship

holds for sparsity levels beyond 96%. The small

number of weights in a Sparse WaveRNN makes

it possible to sample high-fidelity audio on a mo-

bile CPU in real time. Finally, we propose a new

generation scheme based on subscaling that folds

a long sequence into a batch of shorter sequences

and allows one to generate multiple samples at

once. The Subscale WaveRNN produces 16 sam-

ples per step without loss of quality and offers

an orthogonal method for increasing sampling

efficiency.

1. Introduction

Sequential generative models achieve state-of-the-art per-

formance in a variety of domains including natural lan-

guage (Wu et al., 2016; Vaswani et al., 2017), natural im-
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ages (van den Oord et al., 2016b; Reed et al., 2017) and

videos (Kalchbrenner et al., 2017) and speech and mu-

sic (van den Oord et al., 2016a; Mehri et al., 2016; Simon

& Oore, 2017; Engel et al., 2017). The models learn the

joint probability of the data by factorizing the distribution

into a product of conditional probabilities over each sample.

This structure lets the models allot significant capacity to

estimate each conditional factor, makes them robust dur-

ing training and easy to evaluate. The ordering encoded

in the structure also makes the sampling process strictly

serial: a sample can be generated only after samples on

which it depends have been produced in accordance with

the ordering. The serial aspect of the sampling process can

make it slow and impractical to use these models to generate

high-dimensional data like speech and video.

Our goal is to increase the efficiency of sampling from

sequential models without compromising their quality. The

time T (u) that the sampling process takes is the product of

the number of samples in the target u (e.g. the number of

audio samples in a spoken utterance or the number of pixels

in an image) and the time required to produce each sample.

The latter can be decomposed into computation time c(opi)
and overhead d(opi) for each of the N layers (operations)

of the model:

T (u) = |u|

N
∑

i=1

(c(opi) + d(opi)) (1)

The value of T (u) can grow prohibitively large under any

of the following conditions: if |u| is large as in the case

of high-fidelity audio composed of 24,000 16-bit samples

per second; if N is large due to the use of a very deep

architecture such as WaveNet (van den Oord et al., 2016a);

if c(opi) is large due to e.g. especially wide layers or a large

number of parameters; or if the overhead d(opi) is high due

to the cost of launching each individual operation.

With a focus on text-to-speech synthesis, we propose a set of

methods to make sampling orders of magnitude faster. We

reduce the contributions from each of the factors N , d(opi),
c(opi), and |u| with minimal loss to the quality of the gener-

ated output. We benchmark all models on a single-speaker

North-American English text-to-speech dataset where the

input is composed of predicted linguistic feature vectors and
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the output is the raw 24 kHz, 16-bit waveform (Section 5).

We report the Negative Log-Likelihood (NLL) reached by a

model on held-out data, the results of A/B comparison tests

between a pair of models as rated by human listeners and

Mean Opinion Scores (MOS) for the samples of a model.

We begin by designing a sequence model that requires a

low number N of operations per sample. We make use of

the core property of recurrent neural networks (RNN) that

a single recurrent layer applied to the previous state can

deliver a highly non-linear transformation of the context.

The WaveRNN model is a single-layer RNN with a dual

softmax layer that is designed to efficiently predict 16-bit

raw audio samples. We see that the WaveRNN with 896

units achieves NLL scores comparable to those of the largest

WaveNet model, there is no significant difference in audio

fidelity according to a A/B comparison test (Table 1), and

the MOS is similarly high. The WaveRNN achieves this per-

formance by requiring just N = 5 matrix-vector products in

sequence for each 16-bit sample; for simplicity we exclude

non-linearities and other minor operations from the count N .

This is in contrast with WaveNet that has 30 residual blocks

of two layers each requiring a series of N = 30 ∗ 2 = 60
matrix-vector products.

Even with the low N , the overhead d(opi) can still repre-

sent a significant bottleneck in a regular implementation of

sampling from the WaveRNN. We sidestep the overhead by

implementing custom GPU operations (Diamos et al., 2016)

for the sampling process. This allows the WaveRNN to gen-

erate 96,000 16-bit samples per second on a Nvidia P100

GPU, which corresponds to 4× real time of high-fidelity

24kHz 16-bit audio. As a comparison, our best GPU kernel

for the WaveNet model runs at roughly 0.3× real time on

the same platform. Throughput increases with a batch of 4

where the kernels achieve 39,0000 samples per second (a

total throughput of 156,000 samples/sec.)

Reducing the number of parameters in the network de-

creases the amount of computation c(opi) required for sam-

pling. With that in mind, we aim at maximizing the per-

formance we can get from a given amount of parameters.

(Gordon et al., 2017) also consider the problem of maximiz-

ing performance under a given compute budget and solve

it with an approach based on neuron pruning. We sparsify

the weights in the WaveRNN using the weight pruning tech-

niques of (Narang et al., 2017a; Zhu & Gupta, 2017). For

a fixed parameter count, we discover that large sparse Wa-

veRNNs significantly outperform small dense WaveRNNs

and that this relationship holds up to high levels of sparsity

greater than 96% (Figure 2).

The combination of Sparse WaveRNN’s high quality output,

its small number of parameters and the low requirements

on memory bandwidth makes the model well-suited for

efficient implementations on low-power mobile platforms

ct

ft−1

ct−1

P (ct)

P (ft)

h

2

h

2

R

O1

O2

O3

O4

I

Figure 1. The architecture of the WaveRNN with the dual softmax

layer. c represents the coarse (high 8-bits) of the sample and f

represents the fine (low 8-bits) of the sample. The multiplication

by R happens for both the coarse and fine bits simultaneously,

then output of the gates is evaluated for the coarse bits only and ct

is sampled. Once ct has been sampled from P (ct), the gates are

evaluated for the fine bits and ft is sampled.

(such as those found in mobile phones). We implement

and benchmark the sparse matrix-vector products and non-

linearities used in the WaveRNN on a mobile CPU (Table 2).

Even though the amounts of computation and memory band-

width are, respectively, three and two orders of magnitude

smaller on a mobile CPU than on a GPU, our benchmarks

on off-the-shelf mobile CPUs indicate that the resources

are sufficient for real-time on-device audio synthesis with a

high-quality Sparse WaveRNN. To our knowledge, this is

the first sequential neural model capable of real-time audio

synthesis on a broad set of computing platforms including

off-the-shelf mobile CPUs.

Finally, we tackle the contribution from the component |u|
in Equation 1. Multiple recent approaches have the goal

of making sampling from sequential models more parallel

(Reed et al., 2017; Gu et al., 2017; van den Oord et al.,

2017). However, these models either make local indepen-

dence assumptions between generated samples undermining

the backbone of sequential models, or they require training

multiple domain-specific networks with specialized losses

that restrict the overall usability of the models.

We propose a generation process based on subscaling. A

tensor of scale L is folded into B sub-tensors of scale L/B.

The B sub-tensors are generated in order, each conditioned

on the previous sub-tensors. Subscaling lets us generate

multiple samples at once in a batch. Since the conditioning

of the generation of each sub-tensor on previous sub-tensors

requires in practice only a relatively small future horizon,

the generation of the next sub-tensor may start soon after

the start of the generation for the previous sub-tensor. It is

possible in principle – although not necessary in practice –

to recover distant future and past dependencies beyond the

horizon; the precise cost of batched sampling is then just the
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MODEL (VS WAVERNN-896) BETTER NEUTRAL WORSE OVERALL SIGNIFICANT

WAVENET 512 (60) 145 529 126 0.02± 0.08 NO

SPARSE WR 384 (2048/96.4%) 139 441 220 −0.14± 0.08 YES

SPARSE WR MOBILE 71 456 273 −0.40± 0.09 YES

SUBSCALE WR 1024 (16×) 113 558 129 −0.03± 0.05 NO

Table 1. Results of A/B comparison tests between a given model and the WaveRNN-896. Each test includes 800 human ratings with grades

between -3 (Much Worse Than) and 3 (Much Better Than). We collapse the counts for the different positive and negative categories.

B distant dependencies between the samples in the current

batch. The Subscale WaveRNN is able to produce B = 16
samples per step without loss in audio fidelity as evidenced

by A/B comparison tests (Table 1). Batched sampling for

the Subscale WaveRNN opens many orthogonal ways of

increasing sampling efficiency. Even our regular Tensorflow

implementation of the model achieves real-time sampling

speed on a Nvidia V100 GPU. A Fused variant of Subscale

WaveRNN also gives a sampling speed of 10× real time on

a Nvidia P100 GPU using a slight modification of the GPU

kernel for WaveRNN-896.

2. Wave Recurrent Neural Networks

Convolutional sequence models (Kalchbrenner et al., 2016)

achieve excellent performance in speech synthesis (Wang

et al., 2017), yet their architecture tends to be deep and nar-

row requiring a long chain of layers to be executed for each

sample. We seek an architecture that provides an equally

expressive and non-linear transformation of the context, but

requires a small number of operations at each step. By hav-

ing a hidden state that maintains an already compressed

representation of the context, an RNN is especially suitable

for this purpose as it is able to combine the context with

the input within a single transformation. The overall com-

putation in the WaveRNN is as follows (we omit biases for

brevity):

xt = [ct−1, ft−1, ct]

ut = σ(Ruht−1 + I⋆uxt)

rt = σ(Rrht−1 + I⋆rxt)

et = τ(rt ◦ (Reht−1) + I⋆ext)

ht = ut ◦ ht−1 + (1− ut) ◦ et (2)

yc,yf = split(ht)

P (ct) = softmax(O2 relu(O1yc))

P (ft) = softmax(O4 relu(O3yf ))

where the ⋆ indicates a masked matrix whereby the last

coarse input ct is only connected to the fine part of the states

ut, rt, et and ht and thus only affects the fine output yf .

The coarse and fine parts ct and ft are encoded as scalars

in [0, 255] and scaled to the interval [−1, 1]. The matrix

R formed from the matrices Ru,Rr,Re is computed as a

single matrix-vector product to produce the contributions to

all three gates ut, rt and et (a variant of the GRU cell as in

(Chung et al., 2014; Engel, 2016).) σ and τ are the standard

sigmoid and tanh non-linearities. A possible architectural

variant is to have ht depend only on xt−1 and use a fully

connected layer followed by summation or concatenation to

condition ft on ct; we found that this version required 20%
more parameters and also performed 1-2 centi-nats worse.

We split the state of the RNN in two parts that predict re-

spectively the 8 coarse (or more significant) bits ct and the

8 fine (or least significant) bits ft of the 16-bit audio sample

(Figure 1). Each part feeds into a softmax layer over the

corresponding 8 bits and the prediction of the 8 fine bits is

conditioned on the 8 coarse bits. The resulting Dual Soft-

max layer allows for efficient prediction of 16-bit samples

using two small output spaces (28 values each) instead of a

single large output space (with 216 values). Figure 1 shows

this visually. We note that it is possible to train with one

softmax over all 216 values, but that in addition to requir-

ing significantly more parameters, memory and compute, it

consistently performs 1-2 centi-nats worse.

2.1. WaveRNN Sampling on GPU

The above architecture reduces the number of operations N
that are needed for each step from N = 60 for WaveNet

with the 16-bit Discretized Logistic Mixture (DLM) output

(Salimans et al., 2017) to N = 5 for the proposed Wav-

eRNN with the dual softmax. Despite the reduced number

of operations N , a regular implementation of WaveRNN

sampling does not directly yield a real-time or faster syn-

thesis. On a GPU the primary hindrance is not the raw

FLOPs required for sampling; rather, the difficulties are

twofold: limits on the memory bandwidth and the time that

it takes to launch each of the N operations. Regarding the

former, a WaveRNN with a state of 896 units (WaveRNN-

896) has about 3M parameters. A regular implementation

of sampling that calls each WaveRNN operation separately

in sequence for each of the 24,000 samples loads all of the

WaveRNN parameters from memory into the GPU registers

during each step, totalling about 3e6 × 24e3 × 4 = 288
GBytes of required memory bandwidth. This is already

more than a third of the memory bandwidth available in an

Nvidia P100 GPU, giving by itself an upper bound of 3×
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SIZE SPARSITY % TYPE PLATFORM SAMPLES/SEC

512 95% 4×4 SD 835 29,100
512 95% 4×4 SD 808 19,800
512 95% 16×1 SD 835 31,400
512 95% 16×1 SD 808 21,600

Table 2. Benchmarks for Sparse WaveRNN Mobile sampling per-

formance executed on the widely available Snapdragon 808 and

835 mobile CPUs. The model has 1024 hidden units, 95% sparsity

and 4× 4 structure sparsity. The benchmarks are based on running

an equivalent computation on the mobile CPU including layers

and softsign non-linearities (Section 5.2).
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Figure 2. The Sparse WaveRNNs on each curve have the same

number of parameters. The Sparse WaveRNNs with structured

sparsity 16× 1 and 4× 4 hit a point of maximum performance at

a high degree of sparsity. The points of maximum performance for

the unstructured Sparse WaveRNNs fall beyond the tested range.

real time for a regular implementation of sampling.

The overhead of launching each operation separately on the

GPU is even larger. While launching an operation on the

GPU has a constant overhead of 5 microseconds, each step

requires N = 5 such operations, which means the launch

overhead alone induces an upper bound of 40,000 samples

per second. For the WaveNet architecture, which requires (at

least) N = 60 operations per sample, the launch overhead

induces an upper bound of 3,300 samples per second. This is

without considering the time spent on the actual computation

of the operations. In practice a regular implementation of

sampling in e.g. Tensorflow yields, respectively, about 1600

and 170 samples per second for WaveRNN-896 and for

WaveNet.

We reduce both of these factors by implementing the sam-

pling procedure directly as a single persistent GPU opera-

tion. The memory bandwidth bottleneck is avoided since

the parameters are loaded only once into the GPU registers

at the start of sampling and persist in the registers through-

out the process. This is possible because the P100 GPU

has 3.67M full-precision registers that suffice to store more

than 7 million half-precision parameters, i.e. more than

twice as many as needed in the WaveRNN-896. The op-

eration launch bottleneck is also avoided, since the entire

sampling process for an utterance is executed as a single

GPU operation.

A state size of 896 is chosen specifically to fit the P100 GPU

which has 56 multi-processors. The minimum numbers

of warps that must be assigned to each multi-processor to

access the full register file of the GPU is 8. If we assign

each warp to a state calculation, then the state size must be

a multiple of 56 ∗ 8 = 448 and the largest multiple that fits

in the available register space is 896.

The resulting GPU kernel for WaveRNN sampling is two

orders of magnitude more efficient than the regular sampling

implementation, reaching 96,000 samples/second for the

WaveRNN-896. The corresponding operation for WaveNet

reaches 8,000 samples/second. The new overhead d(op)
is now given by the synchronization of the thousands of

cores in the GPU (Xiao & c. Feng, 2010), which takes

just 500 nanoseconds per synchronization, instead of the 5

microseconds needed for each operation launch.

3. Sparse WaveRNN

The WaveRNN architecture dramatically reduces the num-

ber of required operations N and implementing sampling

as a single GPU operation eliminates much of the original

computation c(opi) and overhead d(opi) bottlenecks. We

next present a technique for reducing directly the amount

of computation c(opi) required by each operation. Decreas-

ing the number of hidden units will reduce the amount of

computation, but this comes with a significant loss in qual-

ity (Table 3). Instead, we reduce the number of non-zero

weights in the network by sparsifying the weight matrices

while retaining a large state size and respective represen-

tation capacity. This reduces c(opi) since the number of

non-zero weights is directly proportional to c(opi) (Table 4).

3.1. Weight Sparsification Method

We use a pruning scheme based on the weight magnitude

that increases sparsity as training proceeds (Narang et al.,

2017a; Zhu & Gupta, 2017). We maintain a binary mask

specifying the sparsity pattern of weight matrices. At the

beginning of training, the weight matrices are dense. Every

500 steps, the weights within each sparsified layer are sorted

by their magnitude and the mask is updated by zeroing out

k weights with the smallest magnitude. The number k is

computed as a fraction z of the total number of weights,

which is gradually increased from 0 to the target sparsity Z
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Figure 3. The dependency scheme of Subscale WaveRNN. Each box corresponds to one 16-bit sample. Subscaling first reshapes the

tensor into B sub-tensors of interleaving samples. Then each sub-tensor is generated conditioned on past and future samples of previously

generated sub-tensors; the past horizon is unbounded, whereas the future horizon of size F is tied to the receptive field of the conditioning

network. Batched sampling can then be applied. The final tensor in the original scale is reconstituted from the generated sub-tensors.

as a function of the training step t:

z = Z

(

1−

(

1−
t− t0
S

)3
)

where t0 is the step at which weight pruning begins and S
is the total number of pruning steps. We use t0 = 1000,

S = 200k and train for a total of 500k steps for all models.

Such a scheme is practical, easy to integrate into existing

models, and does not increase the training time. We sparsify

the three gate matrices within the GRU cell separately.

3.2. Structured Sparsity

We need to encode the sparsity mask in a manner that al-

lows for efficient computation. The standard Compressed

Sparse Row format uses about the same amount of storage

for encoding the sparsity mask as it does for storing the

parameters. Unlike hardware-oriented approaches such as

Viterbi pruning (Lee et al., 2018), we explore structured

sparsity as a means for reducing memory overhead. The

structure in the sparsity mask that we consider is in the form

of non-overlapping blocks of weights which are pruned or

retained together based on the average magnitude of the

weights within the block. We find that blocks of m = 16
weights lose little performance over unstructured sparsity

while reducing the amount of memory needed for storing

the sparsity pattern to 1

m of that required by an unstructured

mask. Besides rectangular 4 × 4 blocks that we found to

work well (Gray et al., 2017; Narang et al., 2017b), we also

adopt blocks of shape m × 1 that induce an even lower

memory bandwidth overhead. In the case of m× 1 blocks

one only needs to retrieve a single activation value from the

hidden state to perform the dot product. This is in contrast

with the square blocks where for each block one needs to

retrieve 4 activation values from the hidden state. We report

results for both 16× 1 and 4× 4 blocks. The benchmarks

confirm the greater speed of the 16× 1 blocks (Table 4).

3.3. Sparse WaveRNN Sampling on Mobile CPU

We take advantage of the low computation and memory

bandwidth required by Sparse WaveRNN to implement

matrix-vector operations necessary for sampling on mo-

bile CPU. To maximize memory utilization, weights are

stored in 16-bit floating point and converted to 32-bit float-

ing point before being used in the computation. The activa-

tions and the calculations are kept in 32-bit floating point.

The low memory overhead afforded by small blocks allows

the sparse matrix-vector products to match the performance

of dense matrix-vector products with the same parameter

count. The number of sequential matrix-vector products per

second is thus determined almost entirely by the number of

parameters in the network.

4. Subscale WaveRNN

We have described two ways of reducing sampling time in

high-fidelity audio generation: the WaveRNN that reduces

N and d(op) and the Sparse WaveRNN that reduces N and

c(op). Lastly we reduce the contribution from the factor

|u| in Equation 1. This factor depends on the size of the

utterance u and a direct reduction of the size of u itself (such

as going from 16 to 8 bits per sample) would negatively

affect audio quality. Instead, we propose a method for

generating a batch of B samples per step, instead of just
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MODEL NLL MOS

WAVENET 5.29 4.51 ± 0.08

WAVERNN 224 5.67 3.73 ± 0.09
WAVERNN 384 5.56 4.23 ± 0.09
WAVERNN 896 5.42 4.37 ± 0.07
WAVERNN 2048 5.33 4.46 ± 0.07

SPARSE WR MOBILE 5.52 4.33 ± 0.08
SPARSE WR 224 / 1536@97.8% 5.48 4.39 ± 0.07
SPARSE WR 384 / 2048@96.4% 5.42 4.48 ± 0.07

SUBSCALE WR 1024 (16×) 5.52 4.30 ± 0.08
SUBSCALE WR 1024 (8×) 5.46 4.39 ± 0.06
FUSED SUBSCALE WR 896 (2×) 5.45 4.31 ± 0.08

Table 3. WaveRNN NLL and MOS results on the text-to-speech

benchmark. The Sparse WaveRNN Mobile model has 1024 hidden

units with a 95.2% sparsity ratio and 4×4 blocks.

one:

T (u) =
|u|

B

N
∑

i=1

(c(opBi ) + d(opBi )) (3)

In many cases, the computation time for a batch of B exam-

ples, c(opBi ), grows sublinearly in the computation time of a

single example c(opi) because weights are reused and spare

computational capacity is available. The ability to batch

samples also makes it possible to generate across multiple

processors and have a reduction in total sampling time that

is linear in the number of processors.

Previous work on producing more than one sample per step

in sequential models has required breaking local dependen-

cies (Reed et al., 2017): two nearby samples that strongly

depend on each other are produced independently, possi-

bly conditioned on other samples. We introduce a general

method that allows us to trade a small constant number

of distant past and future dependencies for the ability to

generate batches of B samples per step.

4.1. Subscale Dependency Scheme

From the tensor u one first extracts a set of B sub-tensors

that have a frequency or scale that is B times smaller. Each

sub-tensor corresponds to a subscale slice of u (see Fig-

ure 3). If u is a 24kHz audio utterance and B is 16, then

each sub-tensor corresponds to a 24/16=1.5 kHz utterance.

This is in contrast with a multi-scale scheme where the dif-

ferent subtensors extracted from u have increasing scales.

Subscaling induces the following ordering on the dependen-

cies of the variables in u, which is equivalent to the standard

factorization of the joint:

P (u) =

B
∏

s=0

|u|/B
∏

i=0

P
(

uBi+s

∣

∣

∣
uBj+s for j < i,

uBk+z for z < s and k ≥ 0
)

(4)

The sample uBi+s for a given (i, s) depends on all samples

uBk+z for z < s and k ≥ 0. Generation of u proceeds

as follows: one first generates the first sub-tensor, then the

second sub-tensor conditioned on the first one, then the

third sub-tensor conditioned on the previous two, etc. The

Subscale WaveRNN that generates a given sub-tensor is

conditioned on the future context of previous sub-tensors

using a masked dilated CNN with relus and the mask applied

over past connections instead of future ones. Like the multi-

scale scheme, subscale schemes are equally applicable to

multi-dimensional tensors.

4.2. Batched Sampling

In contrast to the multi-scale scheme, subscaling makes it

possible to generate B samples in a single step. In Equa-

tion 4, for values of k > i + F for some future horizon

F , the dependencies of uBi+s on future samples uBk+z

with z < s become overwhelmingly weak (Figure 3). The

conditioning network itself in the Subscale WaveRNN only

sees a finite and usually small number of future samples

from the previous sub-tensors. The sampling of a sub-tensor

can begin immediately after the first F samples of the previ-

ous sub-tensor have been generated. Because the Subscale

WaveRNN is shared across all sub-tensors, it is possible

to batch inputs and after B ∗ F steps the total batch of the

Subscale WaveRNN is B. Since the value of F (usually

64 or 128) is relatively small compared to the scale and

length of u, even for relatively large values of B such as

16, the total lag of B ∗ F steps remains negligible for the

total sampling latency. Although the conditioning network

needs to be executed for each batch of samples, computing

the conditioning network doesn’t affect the factor N of the

Subscale WaveRNN because the network can be executed

in parallel for a chosen number L of future samples. This

increases the total sampling lag by B ∗ L steps, which even

for values of L = 100 remains negligible. Due to batched

sampling even our regular implementation in Tensorflow

achieves just about real-time speed (24,000 samples/second)

for a Subscale WaveRNN 16× with 1024 hidden state units.

4.3. Recovering Future and Past Dependencies

Dropping distant future dependencies for k > i+ F allows

us in principle also to recover an almost equal number of

distant past dependencies. A sub-tensor z that succeeds

the current sub-tensor s is (z − s)(F + 1) steps behind s,

but leaves a trace of distant past samples. During training

and sampling these distant past samples can be accessed to

condition the generation of the current pass s. Analogously,

a constant number of future distant samples beyond i+ F
from sub-tensors previous to s are also available for addi-

tional conditioning. The exact dependency scheme of using

subscaling and batched sampling includes these distant de-

pendencies; in practice, however, choosing a larger value F
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appears simpler than embedding the distant dependencies.

4.4. Fused Subscale WaveRNN

We use the scheme behind the Subscale WaveRNN to di-

rectly generate more than 16 bits per step in the WaveRNN

itself. We take a Subscale WaveRNN 2× model and instead

of batching the 2 sub-tensors we split the hidden state of

the WaveRNN in two parts. We then use 8 softmaxes of

4 bits each and an F value of just two. The samples from

the sub-tensors are given directly to the WaveRNN as input

without using a conditioning network. The resulting Fused

Subscale WaveRNN 2× achieves only a small drop in the

quality of the output (Table 3), but maps well onto the Wa-

veRNN GPU custom operation. Compared to WaveRNN

which runs at 4× real time, this model generates 32 bits per

step and requires fewer synchronizations, resulting in a sam-

pling speed of 10× real time. We note that in contrast to the

Subscale WaveRNN, because fusion requires splitting the

hidden state, audio quality drops quickly for factors beyond

2× in the Fused Subscale WaveRNN.

5. Experiments

We perform experiments on the text-to-speech synthesis

task and report the quality evaluation results as well as the

sampling speed of our benchmarks on the corresponding

platforms.

Text-to-speech models were trained on a dataset of 44 hours

of North American English speech recorded by a profes-

sional speaker (van den Oord et al., 2017). The generation

is conditioned on conventional linguistic features and pre-

dicted pitch information. All compared models synthesize

raw audio at 24 kHz in 16-bit format. The evaluation is

carried out on a held-out test set where we consider three

performance measures: Negative Log-Likelihood of ground-

truth audio; MOS between 1 (Bad) and 5 (Excellent) of gen-

erated speech utterances according to the subjective quality

evaluation by human raters; and the results of direct A/B

comparison tests between pairs of models as rated subjec-

tively by humans on a scale between -3 (Much Worse Than)

and +3 (Much Better Than).

5.1. WaveRNN Quality Evaluation & Speed

The WaveRNN models are trained on sequences of 960

audio samples of 16-bit each and full back-propagation-

through-time is applied to the models. Table 3 reports

the results for various sizes of WaveRNN. The larger Wa-

veRNNs approach the NLL performance of the 60-layer

WaveNet model. A human rated A/B comparison test be-

tween WaveRNN-896 and WaveNet indicates no significant

difference in the quality of the speech produced (Table 1).

An additional A/B comparison test between WaveNet and

SIZE SPARSE TYPE SD 808 SD 835
% GF MVM GF MVM

×103 ×103

224 0 - 9.6 95.4 11.0 95.4
384 0 - 9.6 32.6 11.0 32.6
1024 0 - 3.8 1.8 8.0 3.8

512 80.0 1X1 2.1 20.1 3.8 36.5
1024 95.0 1X1 1.8 17.2 3.4 32.2
2048 96.4 1X1 2.0 6.5 3.7 12.1

512 80.0 4X4 8.9 85.2 14.3 136.6
1024 95.0 4X4 8.0 75.6 12.4 118.2
2048 96.4 4X4 8.5 28.1 12.8 42.2

512 80.0 16X1 9.8 94.0 14.5 138.1
1024 95.0 16X1 9.0 85.5 13.4 127.4
2048 96.4 16X1 9.0 30.0 12.6 41.8

Table 4. Performance of ARM matrix-vector multiplies (MVM)

and respectively Gflops (GF) per second, using two big cores of

each of the processors Snapdragon 808 and 835. For the dense 224

and 384 kernels, higher performance is possible (11.7 Gflops/sec

and 16.3 Gflops/sec respectively) with custom layouts of the dense

matrix, but this is best performance we could achieve with the

standard row major layout.

WaveRNN-2048 also shows no significant differences.

The persistent GPU operations that we implement are most

efficient for the WaveRNN-896 model, which achieves a

NLL of 5.42 and a MOS value of 4.37 ± 0.073. Samples

are generated at 96,000 samples per second for a batch size

of 1 and 39,000 samples per second for a batch size of 4.

5.2. Sparse WaveRNN Quality Evaluation & Speed

Figure 2 illustrates a core point about our investigation into

sparse models. We use a dense WaveRNN model with a state

size of 224 as a starting point because it is the largest that

could be run on many current off the shelf mobile processors.

As a second baseline we use a model with a state size of 384

that we estimate to still be out of reach for even the fastest

mobile platforms, as the model would require 30 GB/sec

of memory bandwidth and no current mobile platform can

provide this amount.

Figure 2 shows that if we fix the total parameter count –

and keep the corresponding sampling time also the same –

then as we increase the degree of sparsity and the resulting

size of layers, the fidelity of the models improves. This

holds up to high degrees of sparsity > 98%, where the

state size h of the models reaches 2048 hidden units. Higher

sparsity monotonically implies lower NLL and in fact higher

sparsity levels have larger slopes. This suggests that for a

given computational budget at inference time, it is much

more efficient to use those parameters to sparsely connect a

larger number of neurons in each layer.

In Table 4 and Figure 2 we examine the impact of using
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block sparsity on NLL and speed, and find that 4× 4 blocks

generally yield the best NLL, but 16 × 1 blocks have a

speed advantage. Surprisingly, both have better NLL than

unstructured sparsity at low sparsity levels, but improve

more slowly and eventually hit a minimum around 95%

while unstructured sparsity continues to improve. We did

not explore even higher levels of unstructured sparsity only

because investigating extremely high levels of sparsity re-

quires starting with extremely large dense layers making

training computationally intensive. Unstructured sparsity is

unsurprisingly slower during inference, but depending on

the quality trade offs involved in using blocks (which will

likely vary from model to model), it might still be preferred.

To obtain an estimate of Sparse WaveRNN sampling

speed, we benchmarked all computationally heavy oper-

ations (sparse matrix-vector multiplication and softsign non-

linearity evaluations) required for producing each audio

sample, and used these measurements to derive an estimate

of the sampling speed. For example, a sample from a 1024

model requires 3 multiplications of 1024×1024 for the GRU

gates, two multiplications of 512×512 for the projection,

two multiplications of 512×256 for the logits and evalu-

ating 3072 non-linearities. We add up the time for all of

these operations to estimate the upper bound on sampling

performance.

We perform our benchmarks on the Snapdragon 808 (SD

808) and Snapdragon 835 (SD 835) mobile CPUs, which

are widely available in mobile phones. The two big cores

of the SD 808 at 1.8GHz can do 28.8 Gflops/sec and the

bandwidth out of the shared L2 cache is 14.4 GB/sec. The

SD 835 is faster at 2.35GHz, with 2 cores able to do 37.6

Gflops/sec and pull 18.8 GB/sec from the cache. In practice,

the achievable flops are often much lower (geekbench, a;b)

and around 14.4 Gflops/sec and 28.2 Gflops/sec for SD 808

and 835 respectively. These numbers suggest that both our

dense and sparse implementations are close to the maximum

possible performance of the processor (the limiting factor

for all kernels is bandwidth and not flops). For comparison,

a modern Intel desktop CPU with AVX2 can do over 200

Gflops/sec and get over 200 GB/sec of bandwidth out of the

L2 cache with only two cores.

5.3. Subscale WaveRNN Quality Evaluation

The conditioning network of the Subscale WaveRNN is a

masked dilated 1D CNN and has ten layers, convolutional

kernels of size 3, 384 convolutional channels, and 768 resid-

ual channels. The conditioning CNN has 5 stages of increas-

ing dilation, for a total future horizon of F = 128 blocks

of 8 or 16 samples each. The Subscale WaveRNNs that we

evaluate have 1024 units in their hidden state. We do not

use recoverable distant dependencies.

We evaluate the model for two values of B, 8 and 16. The

Subscale WaveRNN with B = 8 generates 8 16-bit samples

at once at each step, which corresponds to a 3 kHz signal.

As shown in Table 3, the Subscale WaveRNN 8× achieves a

MOS of 4.39. This is equivalent to the MOS of the baseline

WaveRNN-896 and it shows the ability of the Subscale

WaveRNN 8× to accurately learn the distribution under the

modified dependency scheme. We also evaluate a Subscale

WaveRNN with B = 16, which generates an interleaving

signal at 1.5 kHz. As shown in Table 1, the audio fidelity of

the Subscale WaveRNN 16× is not significantly different

from that of the WaveRNN-896 and, by transitivity, that of

Wavenet 512 (60). This is remarkable as audio generation

with sequential models can be extremely sensitive to lost

dependencies, especially local ones, and this quality result

demonstrates the effectiveness of the subscale dependency

scheme to preserve all the local dependencies that are the

key to the high performance of sequential models.

The ability to batch computation by a factor of 8 or 16

yields a large amount of flexibility. Batching can increase

throughput from a single GPU device increasing the overall

sampling speed. In addition, it makes it possible to gen-

erate from multiple devices at once, where the generated

bits are sent one-way and online from each device to the

next. Such a setup gives in principle a linear speed-up over

the sampling speed of a single device. If a single pass of

Subscale WaveRNN with B = 16 runs at 4× real time on

a GPU, then on a connected rack of 16 GPUs the Subscale

WaveRNN 16× can in principle gain an equivalent linear

speed-up for a total sampling speed of 4 ∗ B = 64 times

real time. Subscale WaveRNN can also be combined with

Sparse WaveRNN and executed on a multi-core CPU gain-

ing a speed-up proportional to the number of cores available.

6. Conclusion

We introduced the WaveRNN, a simple and powerful recur-

rent network for the sequential modeling of high fidelity

audio, and we have demonstrated a high performance im-

plementation of this model on GPUs. We have shown that

large sparse models have much better quality than small

dense models with the same number of parameters and we

have written high performance block-sparse matrix-vector

product operations to demonstrate that sampling time is pro-

portional to parameter count. We then showed that high

fidelity audio generation is now achievable on widely avail-

able low-power mobile CPUs. Finally, we introduced the

subscale dependency scheme that lets sequential models

generate many samples per step while preserving the output

quality of the original model. The underlying ideas of the

methods we introduce are not specific to audio, and the re-

sults of sparse models have implications for inference in all

types of neural networks.
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