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Abstract

Despite the substantial progress made in deep learning

in recent years, advanced approaches remain computation-

ally intensive. The trade-off between accuracy and compu-

tation time and energy limits their use in real-time appli-

cations on low power and other resource-constrained sys-

tems. In this paper, we tackle this fundamental challenge

by introducing a hybrid optical-digital implementation of a

convolutional neural network (CNN) based on engineering

of the point spread function (PSF) of an optical imaging

system. This is done by coding an imaging aperture such

that its PSF replicates a large convolution kernel of the first

layer of a pre-trained CNN. As the convolution takes place

in the optical domain, it has zero cost in terms of energy

consumption and has zero latency independent of the ker-

nel size. Experimental results on two datasets demonstrate

that our approach yields more than two orders of magnitude

reduction in the computational cost while achieving near-

state-of-the-art accuracy, or equivalently, better accuracy

at the same computational cost.

1. Introduction

In recent years, convolutional neural networks (CNNs)

have proven to be very powerful for various vision appli-

cations such as image classification and object detection,

among many others [30, 13]. However, practical imple-

mentations still remain in the order of giga multiplication-

addition operations (MAdds) [32, 36] despite the signifi-

cant effort that has been put into lowering their computa-

tional cost [15]. This poses a major barrier in many embed-

ded intelligence applications with ultra-low power, small

form factor or low-cost requirements which impose strong

constraints on the available computational resources to run

them in real-time. Such constraints are present in an in-

creasing number of application domains such as internet

of things (IoT), smart sensors and quality control systems,

which creates a strong incentive to develop new approaches

that can deliver high accuracy at a low power budget and

with limited computational resources.

Optical systems provide efficient computing capabili-

ties thanks to their inherent parallelism and extremely high

speed while effectively consuming no power [37]. Imaging

an object through an optical system can be modelled as its

convolution with its PSF which is shift invariant under cer-

tain assumptions. Engineering this function has recently be-

come a widespread practice in numerous applications such

as monocular depth estimation [14], de-blurring [21], tem-

plate matching [18], and privacy preservation through ran-

dom coded apertures in human video sequences [38]. This

approach has also been proposed as a way to efficiently run

neural networks in the optical domain [4]. However, this

work is purely a conceptual design of an optical system to

perform matrix multiplication and no physical implemen-

tation of it in practice has been proposed. Recently, new

practical ideas have been proposed to partially or fully out-

source the neural network computations from the process-

ing unit to the optical frontend [22, 6, 10]. These techniques

rely on phase masks, and hence, their systems require a co-

herent monochromatic light source to function. This is a se-

rious drawback as natural scenes emit incoherent and poly-

chromatic light. In such systems this produces a consider-

able amount of chromatic aberration that dramatically de-

grades their performance. As a result, these approaches are

not readily applicable to general-purpose computer vision

tasks in practical applications. For the sake of complete-

ness, it should be mentioned that there have been efforts to

perform some basic image processing on the sensor pixel

before photon-to-electron conversion which are out of the

scope of this work [8].

In this work, we propose a generic approach for optical

convolutions based on amplitude-varying masks to address

the challenge of processing incoherent and broadband light

that exists in natural scenes. More specifically, we design

a compact optical system, made up of an amplitude-only

transmittance mask and double lenses. The physical mask
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is obtained by transcribing the pre-trained weights of a dig-

ital convolutional layer onto it such that the PSF function

of the optical system as a whole closely approximates the

convolution kernel. The resulting image acquired by an im-

age sensor is then given as an input to the remaining layers

of the network, which are designed to be low-complexity

to keep the computational resources required to run it at a

minimum. Our hybrid optical-digital approach is therefore

particularly suitable for real-time embedded inference ap-

plications, where low-power consumption and low-latency

are of great importance.

In order to get the most out of the optical frontend, we

propose a shallow neural network architecture comprised of

a large first convolution layer (in terms of kernel size) for a

high modelling capacity, followed by a small number of lay-

ers to be executed in the digital domain. In contrast to most

CNN architectures that use many small kernels (e.g., 3×3

and 5×5), our optical convolution layer design allows scal-

ing kernels to be even larger than the input in size. In fact,

optimizing the integration of the kernel onto the transmit-

tance mask leads us to choose a single kernel that is several

times larger than the input. This single kernel is expected to

have the capacity to learn a high number of distinct and in-

formative features that would otherwise be achieved only by

using many smaller ones. Our proposed setup remains easy-

to-fabricate using current printing technologies and does not

bare significant cost to the production of cameras.

Filtering out irrelevant information early on in the opti-

cal domain leads to extremely light-weight digital architec-

tures and is akin to the mammalian vision systems, whose

retinal ganglion cells extract the features natural scenes with

their receptive field [24]. Retinal cells also capture scene in-

formation in a transformation domain (Gabor-like wavelets

[20]) instead of recording a grid of pixel intensities, which

have large redundancy and less information [28, 26].

In the following Section, we first explain the general

concept of performing a spatial convolution in the opti-

cal domain and then present key details about our spe-

cific implementation. Section 3 describes the details of

our prof-of-concept implementation. We discuss our tech-

niques for end-to-end training of the parameters of our net-

work in Section 4. In Section 5, we show the performance

of our proposed approach for optical character and hand-

gesture recognition tasks and show competitiveness com-

pared to other state-of-the-art methods. Our hybrid ap-

proach requires only a fraction of the memory and com-

putational resources required by state-of-the-art algorithms

while achieving similar accuracy. We provide additional

technical details for our optical setup in Appendix I.

2. Spatial convolution in optical domain

In this section, we propose an optical system which per-

forms the convolution of the scene with an arbitrary prede-

Figure 1: Double lens optical setup for spatial convolution.

fined kernel. The optical basis for geometrical transforma-

tion of light through a system of lenses and how the pre-

sented setup works is presented in Appendix I for the sake

of readability of the paper.

Assume that our scene is defined by function J(x) from

R
2 to R

+ (R+ is the set of non-negative real numbers which

are the luminosity of light at position x)1. Also, assume that

K(x) from R
2 to [0, 1] is a spatially coded transmission

mask which means that of the light that arrives at position

x on the mask, K(x) is the portion of it that passes through

the aperture mask and the rest is absorbed or reflected. Now,

having the optical setup depicted in Figure 1, we have the

following relationship between what we receive on the sen-

sor plane and the scene:

I(x) = (J(α ·) ∗ γK(γ ·)T (γ ·)) (−x) (1)

where ∗ indicates the standard 2-dimensional convolution,

T (u) = 1
2π (1 + ‖u‖22)

− 3

2 in which ‖·‖2 is the Euclidean

L2-norm and
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where f1 and f2 are focal lengths of the lenses L1 and L2,

respectively. Due to physical constraints, ‖u‖2 is usually

small so that T (u) is nearly a constant function.

This setup can be used to make the convolution in the

optical domain. This convolution consumes effectively zero

time and energy irrespective of size. Based on this scheme,

we perform the first layer of our CNN in the optical domain

by realizing the trained filters of the first layer as a spatially

coded mask. Thus the first layer of the CNN, which is usu-

ally the most computationally expensive layer, is no longer

carried out in the digital domain and can take advantage of

the optical domain. Moreover, this idea can be used in other

image processing applications like compression and denois-

ing [7, 27, 25, 3] since they start with filtering the images to

make them faster and more energy efficient. Notice that the

wavelet transform can also be performed using this setup

by printing different wavelet filters on different locations of

1Please refer to Equation 7 in Appendix I for more explanation
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the mask plane. In general, K(x) can be the concatenation

of several finite impulse response (FIR) filters with proper

spacing between them. Also, it can yield more accurate re-

sults in processing systems with high round-off error.

Figure 2(a) shows an experimental setup implementing

the proposed imaging system described above (correspond-

ing to the schematic drawing in Figure 1). The mask, lens

and the image sensor are mounted in optical baffle tubes,

placed in a cage system to ensure alignment and reduced

light pollution. The output signal is captured by an off-the-

shelf camera interfaced with a computer. Here, we used

a spatial light modulator (SLM), which is a programable

transmission mask, to create the mask K(x) containing 9
kernels of size 3×3 trained for the MNIST application[19].

The spacing between the kernels are designed such that the

outcome of the 9 convolutions do not overlap with each

other. The target scene, the kernel mask and the recorded

signal on the image sensor are shown in Figures 2(b), 2(c)

and 2(d), respectively.

We can include a layer at the beginning of our network

with many parameters using the optical convolution, which

comes with effectively zero cost (in terms of time and en-

ergy) irrespective of its kernel size (number of parameters).

The outcome of this convolution is then the first feature

map input to the rest of the neural network. This scheme

leads to a more general, and potentially richer, feature map

encodings given that the conventional convolutional layer

(i.e. having several small kernels with zero spacing between

them) is a special case of this big kernel. A sample of such

a kernel and its corresponding output for the input image of

Figure 2(e) is demonstrated in Figures 2(f) and 2(g), respec-

tively. Due to these attractive properties, we use the optical

convolutional layer in our neural networks and demonstrate

near-state-of-the-art performance in our experiments.

3. Design and implementation

In this section, we present the pipeline of designing and

implementing a system based on the optical convolution

module along with the specifications of our setup. First,

we design the neural network architecture in which the first

layer is a single huge kernel (instead of a series of for ex-

ample 3 × 3 or 5 × 5 kernels which are commonly used).

The kernel size depends on the physical size of the optical

system and the mask fabrication resolution. The activation

function after the first big convolution depends on the im-

age sensor measurement strategy. Often the image sensors

read the pixel values in a linear scale which is equivalent

to a linear activation function in our case. However, there

are image sensors (such as ERGO [29]) in which the sen-

sor reads the logarithm of the pixel values directly. Thus,

using this type of image sensors, we gain an additional non-

linearity and potentially more capacity without any compu-

tational cost.

(a)

(b) (c) (d)

(e) (f) (g)

Figure 2: (a) Photograph of the complete experimental

setup, (b) Sample image from the MNIST dataset displayed

on a LCD screen in front of the camera. (c) Physical mask

created from 9 trained 3 × 3 kernels tiled side by side. (d)

Convolution between the input image and the patterns on

the mask captured at the image sensor. (e) Sample image

from the MNIST dataset displayed on a LCD screen in front

of the camera. (f) Physical mask created from 1 trained

240× 240 kernel. (g) Convolution between the input image

and the patterns on the mask captured at the image sensor.

In our case, we used a 240 × 240 kernel (the resolution

of dots on the mask is 36 µm, which results in a total side

length of 8.64mm). For the rest of the network, we used a

4-layer fully connected perceptron with 256 neurons in each

layer (the number of output neurons depends on the applica-

tion). We chose this network since it is implemented as an

application specific integrated system (ASIC) by Syntiant

company in a very efficient manner [1] giving a power con-

sumption of 150 µW. The input to this network has 1600
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dimensions. Thus, we down-sample the result of the opti-

cal convolution into a 40 × 40 image in order to feed it to

the network. For the image sensor, both linear and logarith-

mic ones are implemented. After designing the network in

digital domain, we train it for a given task. It is important

to consider that as this system works with incoherent light

(which has only a well-defined amplitude and not phase),

the kernel entries can take values between 0 and 1; 0 means

complete blocking of light and 1 means complete transmis-

sion of light. In our case we trained them for three datasets

of optical character recognition (OCR) application which

are explained in the next section.

Once the mask and the network are trained, we produce

the mask as an optical element and load the rest of the net-

work to our processing unit (see Figure 3a). There are sev-

eral ways to produce the mask such as aerosol-jet printing

on glass [39], high-resolution inkjet printing [33] and using

a spatial light modulator (SLM) [12]. We used the SLM

since its electronically programable mask and suitable for

experimental tasks. However, in a final system an indus-

trial low cost fixed mask can be used. The concept of SLM

functionality is the same as a liquid crystal display (LCD) in

which the amount of light that can be passed through each

pixel is controlled by changing the polarization of the in-

coming light by passing it through an electromagnetic field.

In our case, the mask pixel size is 36 µm, as mentioned

above. However, with aerosol-jet printing it can be reduced

down to 10 µm which means substantially more parameters

to train (more capacity for the network) or much smaller

optical setup for the same capacity. It should be noted that

based on Equation 1, we derive the right values for f1, f2,

e, d and d′ for which the input image size, input image pixel

size, kernel size, kernel pixel size, total sensor size and sen-

sor pixel pitch match together.

It should be further noted that optical distortions can

be implemented as data augmentation methods during the

training phase in order to increase the robustness. Never-

theless, after implementing the system, one can fine-tune it

by collecting more practical data. Notice that having the

recorded data on the sensor is enough for fine-tuning the

part of the network which is performed by the processing

unit. However, fine-tuning the mask is also possible by hav-

ing a programable mask (e.g. SLM) and knowing the exact

scene in front of the camera. This can be done through dis-

playing known data in front of the camera (see Figure 3b).

This method can be used from the beginning to train the

mask and the network (evolution from random mask and

weights to the ones that perform a meaningful task).

4. Neural network architecture and training

In this section, we describe our proposed system, and the

training strategies for our networks.

(a)

(b)

Figure 3: (a) The proposed vision system with

a computation-free convolution in optical domain, a

computation-free activation function in the image sensor

and the processing unit containing a standard neural net-

work. (b) The setup for training or fine-tuning the weights

of the network (and the coded mask) after implementing the

system in hardware.

4.1. System architecture

Our goal was to design an ultra-efficient classification

system for the OCR application. Therefore, we selected

the ultra-low power Syntiant NDP101 Neural Decision

ProcessorTM[1] as the processing unit in combination with

the ultra-low power image sensor ERGO [29]. The NDP101

contains a neural processing engine consisting of a percep-

tron neural network with 1600 input vector, 3 fully con-

nected layers each with 256 neurons with rectified linear

unit (ReLu) activation function and one fully connected

layer with linear activation for the output units. Beside be-

ing ultra-low power, the ERGO image sensor enables us to

switch between the linear or logarithmic quantification of

the pixel values.

Based on the physical characteristics of our setup, the

size of our optical convolution kernel is 240 × 240. In or-

der to have 1600-dimensional input vector to feed into the

perceptron network, we read a grid of 40 × 40 pixels on

the sensor. This is implemented by sub-sampling the im-

age in our hardware, and using strided-convolutions in our

training.

In order to assess the effect of our system’s components
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(a)

(b)

Figure 4: (a) Baseline architecture (Syntiant perceptron): A

fully-connected network with 3 hidden layers of 256 neu-

rons. (b) Architecture in which a big optical convolution

with linear activation (OptConv+Perc) or logarithmic acti-

vation (OptConv+Log+Perc) is placed before the percep-

tron network.

independently, we start with a baseline model which is only

the aforementioned perceptron neural network (Figure 4a).

After that, we study the performance of the system after

adding the optical convolution. For the quantization strat-

egy of the image sensor, we first consider the standard linear

quantization and then the logarithmic quantization (Figure

4b).

4.2. Training

The models were trained on some subsets of the

EMNIST dataset [9], namely EMNIST-Digits, EMNIST-

Letters and EMNIST-Balanced. We performed data aug-

mentation using random rotations between −10◦ and 10◦

for input images. Additionally, we added Gaussian noise

with a standard deviation of 1.5 with the probability of 30%.

With the same probability, we also blurred the images using

a Gaussian kernel, where we selected its bandwidth ran-

domly between 1 and 4. Each model was trained with the

Adam optimizer with initial learning rate of 10−5 for 1000
epochs. During the training, 5% of the training set was sep-

arated as the validation set and the network with the best

validation accuracy was selected for testing.

4.2.1 Training with logarithmic activation

Since the network (including the optical convolution) is rel-

atively shallow, training the network with logarithmic acti-

vation after the convolution often ends in a non-performant

local minima. To avoid this problem, we first train a model

with linear activation. After convergence, we switch the lin-

ear activation to the logarithmic one. This sudden change of

activation can cause an imbalance in training, therefore we

use scaling transformation to reduce this effect.

According to the Taylor expansion theorem, for x being

in a vicinity of 0, we have

log (1 + x) ≈ x. (3)

Thus, buy scaling the input values with a large number a,

we have

a log
(

1 +
x

a

)

≈ x. (4)

Therefore, after switching the activation from linear to log-

arithmic, we divide the weights of the convolution layer by

a large factor and multiply the weights of the first layer of

the perceptron network by the same factor. In practice, we

found a = 1000 to be large enough to obtain a stable tran-

sition. The additive constant 1 inside the logarithm is set as

the bias of the convolution layer. After this re-configuration,

we can train the network using conventional techniques.

Light throughput regularization term. Having a mask

with weight values closer to 1 results in more throughput

of light and therefore higher signal to noise ratio on the

image sensor. In order to come up with such kernels, we

can add the term ǫ
‖K(x)‖1

, where ǫ is a positive scalar and

‖ · ‖1 is the standard L1-norm, to the cost function used

for training of the network. Thus, during training the ker-

nels are more favorable that have higher L1-norms (sum of

entries). Experiments showed that this term can result in

kernels with 10 times higher light throughput without any

significant change of accuracy.

5. Performance results

In this section, we report and analyze the performance

of our system with different configurations and compare it

with other methods in the literature.

5.1. Extended­MNIST dataset

The first dataset which is used to train the system is

EMNIST-Digits [9]. This dataset is about digit recognition

and has the same attributes as MNIST [19] but with almost

5 times the number of samples. Table 1 contains the results

of the three architectures mentioned in Section 4.1 along

with other existing top-rank methods. Figure 5 visualizes

the same table. By adding the optical convolution layer to
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Table 1: Accuracy, size and number of MAdds operations for the best performing models on EMNIST dataset.

Method Accuracy on Digits Accuracy on Letters Accuracy on Balanced # Parameters MAdds

A Syntiant (4 Dense) 95.16% 76.54% 70.21% 0.55M 0.55M

B OPIUM[9] 95.90% 85.15% 78.02% 8.32M 8.32M1

C Autoencoder[40] - 91.27% - 0.35M 2.3M

- HM2-BP[17] - - 85.57% 0.67M NA

D CNN (2 Conv, 2 Dense)[5] 99.46% 93.63% 87.18% 1.2M 13.95M

E Parallelized CNN[34] 99.62% - - 0.21M 6.13M

F NeuroEvolved CNN[2] 99.73% 95.19% - 2.03M 100.19M

- EDEN[11] 99.30% - 88.30% 1.69M NA

G TextCaps[16] 99.79% 95.36% 90.46% 5.87M 253.48M1

H CNN (6 Conv, 2 Dense)[31] 99.79% - 90.59% 1.36M 131.31M

I OptConv+Perc (ours) 98.29% 91.92% 84.68% 0.55M 0.55M

J OptConv+Log+Perc (ours) 99.43% 93.65% 87.69% 0.55M 0.55M

1Number of MAdds operations computed only for the linear and convolutional part of the method. Extra steps (external classifiers, network capsules,

etc.) are not taken into account.

Figure 5: Best viewed on color screen. We show a comparison of accuracy versus number of operations between different

methods on the EMNIST-Digits, EMNIST-Letters and EMNIST-Balanced datasets. The alphabetic and color-coding to each

method is described in Table 1.

the perceptron network, we can increase the accuracy from

95.16% to 98.29% which is equivalent to decreasing the er-

ror rate by 65%. Afterwards, as explained in Section 4.2.1,

by continuing the training while replacing the linear image

sensor quantizer by a logarithmic one, the accuracy further

increases to 99.43%. This results in 42% decrease of the

error rate. It is interesting to note that the computational

cost (number of multiplication-addition operations) is re-

duced by a factor of 250 while the accuracy is decreased

only by 0.36%. Also, the number of network parameters

in the processing unit (the amount of memory required to

keep the network) decreases by a factor of 2.5. It should

also be noted that having the big convolution in the optical

domain has saved 1.25M multiplication-addition operations

and 57K parameters.

We then repeated the same experiments for the EMNIST-

Letters dataset which contains the hand-written samples of

the 26 letters of English alphabet. The accuracy, number of

parameters and computational cost of the proposed methods

along with approaches are also reported in Table 1. Figure 5

visualizes these methods and shows the global trend and the

trade off between accuracy and computation effort (we are

unable to report the performance of HM2-BP and EDEN

since their computational costs are not reported). We can

see that adding the optical convolution layer increases the

accuracy from 76.54% to 91.92%, and replacing the linear

activation function with the logarithmic one improves it to

93.65%. Overall, while decreasing the computational cost

by a factor of 460 and the number of parameters by a factor

of 10.6, we only lose 1.71% of the accuracy compared to

other state-of-the-art methods.

The EMNIST-Balanced dataset includes the digits and

letters in 47 classes (in fact, for some letters like ‘O’, the

capital and small cases are considered as a single class).

Table 1 and Figure 5 present the results of different tech-

niques on this dataset. In this experiment, we see that the
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Figure 6: Sample images from the 7 classes of the In-

AirGestures dataset.

performance of the perceptron network alone, the optical

convolution plus the perceptron network, and the optical

convolution with logarithmic activation added to the per-

ceptron network achieve the accuracy of 70.21%, 84.68%
and 87.69%, respectively. Similar to the previous experi-

ments, while we reduce the computational cost by a factor

of 240 and the number of parameters by a factor of 2.5, we

only lose 2.9% of accuracy compared to the state-of-the art.

5.2. InAirGestures dataset

We performed additional experiments on the InAirGes-

tures dataset [35] which contains 7 different static gestures

(6 meaningful gestures and 1 no gesture class). Some sam-

ple images are depicted in Figure 6. The training and testing

sets contain between 2000 and 2500 samples for each ges-

ture. To process the data, each image was cropped in the

center, resulting in 240× 240 images. The images were re-

sized to 80× 80 and converted to grayscale. For the optical

convolution kernel size we used again 240× 240 and stride

6 (to obtain a 40 × 40 input for the perceptron network).

For the baseline model, we resize the images to 40×40 and

use that as the input to the perceptron network. After train-

ing both networks, the baseline model reached 97.16% ac-

curacy on test set while the model with optical convolution

reached 99.94% accuracy, which again shows the advantage

of using the large kernel.

6. Summary and future works

In this paper, we proposed a novel realization of perform-

ing convolutional operations in the optical domain before

acquiring the image, as a first layer of a convolutional neu-

ral network. The proposed optical front-end uses a high

resolution coded aperture, which includes tens of thousands

of parameters. As this convolution happens in the optical

domain, it has zero cost in terms of energy consumption

and also effective zero latency (computational operations).

Additionally, there is no limit on the size of the kernel of

convolution (in terms of the number of parameters) as long

as the pixel size of the kernel is large enough compared to

the maximum wavelength of the visible light (0.7 µm).

Based on this idea, we proposed a vision system with

less than a milli-watt power consumption (below 800 µW
for image sensing and data transfer, and 150 µW for data

processing) for low-power and real-time OCR application.

We demonstrated the effect of the big optical convolutional

layer (kernel size of 240× 240) in three variations of OCR

applications. We observed that we obtain almost state-of-

the-art performance with two orders of magnitude less com-

putational cost. Moreover, having an image sensor which

enables reading a non-linear transformation of the pixel val-

ues, such as ERGO image sensor [29] that outputs the log-

arithm of the pixel values, results in gaining better perfor-

mance without adding any computational load.

The similarity of the proposed approach with the ex-

tremely efficient mammalian visual system suggests that

there is a strong merit in this approach. Both of these meth-

ods record the image in a transformed domain rather than

taking raw intensity values [24]. In fact, the idea of record-

ing the scene as a spatial grid of luminosity values, which is

how the conventional cameras work, is inefficient in several

aspects. That is why in most image processing and com-

puter vision applications the images undergo some trans-

formation (Fourier, wavelets and etc.) for efficient process-

ing. Therefore, the ability to capture the scene in optimal

(for each task) transformation domain using optical convo-

lutions, can result in more efficiency of software computa-

tion.

Possible extensions to this work include: a) finding the

optimal neural network architecture after the large opti-

cal convolution layer, b) finding a universal optical kernel

which is suitable for different applications, and c) learning

binary (0 and 1) optical kernels which result in dramatic

simplification of the physical implementation of the mask.

Furthermore, using this method to construct efficient vision

systems for applications such as image compression, and

extracting more information from the scene (e.g. depth esti-

mation) open up other interesting future works. Eventually,

studying the possibility of stacking a series of convolutional

layers with optical non-linearities in between can result in

the full implementation of a convolutional neural network

in the optical domain.

Appendix I: Preliminaries on the light-field

transformations in an optical system

In this section, we propose an optical system containing

one or two lenses and a spatially coded transmission mask

whose output is the convolution of the image plane with the

mask. We use the light-field model in order to explain how

the system is designed and works [23].

A light-field is a real-valued function L(x,u) on a 3-

dimensional vector field that gives the luminosity of light

for any position x in the space and for any direction u.

Since the luminosity of light is constant over each ray, this

function can have a lower dimensional representation. For

a given plane P , we characterize the light field on this plane

with L(x,u) from R
2×R

2 to R
+. Here, x = (x1, x2) ∈ R

2

indicates the location on this plane, u = (u1, u2) ∈ R
2 is

such that the 3-dimensional vector (u1, u2, 1) ∈ R
3 indi-
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cates the ray direction and R
+ is the set of non-negative

real numbers. In fact, L(x,u) is the luminosity of light at

position x in the direction of (u1, u2, 1). Notice that since

luminosity of each ray is constant over the whole direction,

the function L(x,u) describes the light-field in the whole

3-dimensional space. Since we are going to study a camera,

the planes of interest for us are the ones that are orthogonal

to the optical axis. We assume that our optical axis is along

Z-axis and the origin of coordinates in the planes of interest

is at their intersection with the optical axis.

Having L(x,u) over the plane P , the light-field at plane

P ′ parallel to P with distance d is

L′(x,u) = L(x− du,u). (5)

Also, due to the rules of lenses, the light-field after a lens

with focal length f is

L′(x,u) = L

((

1−
d

f

)

x− dd′
(

1

d
+

1

d′
−

1

f

)

u,

1

f
x+

(

1−
d′

f

)

u

)

(6)

where d and d′ are the distances of the planes P and P ′

from the lens, respectively. Moreover, if P is the object

plane, then we have

L(x,u) = J(x) (7)

which means that the light-field is only a function of the

location.

On the other hand, the imaging process (measuring the

pixel values) at the sensor plane P ′ can be formulated as

I(x) =

∫

L′(x,u)T (u)du (8)

in which I(x) is the measured value at position x (pixel

value), L′(x,u) is the light-field at plane P ′ and T (u) is

the absorbance of the incident ray with direction u. Here we

focus on the simplified case of T (u) = 1
2π (1 + ‖u‖22)

− 3

2 .

The last component that we need to define is a spatially

coded transmission mask. A spatially coded transmission

mask can be described by K(x) : R2 → [0, 1]. It attenu-

ates the luminosity of the rays that arrive at position x by a

factor of K(x) which is a value between 0 and 1 (the rest is

absorbed by the masking material).

Appendix I­A: Proposed architecture to perform
convolution in optical domain

Assume the optical setup depicted in Figure 7. Using

Equations 5-8, we obtain the following relation between the

recorded value on the sensor and the object:

I(x) =

∫

J(−αx− u)K(−γu)T (γu) du (9)

Figure 7: Single lens optical setup for spatial convolution.

in which the I(x) is the recorded value on the sensor at

position x, J(·) is the light-field on object plane (which is

only a function of location), K(·) is the transmission mask,

α = d
f

, and γ = (1 + α (1− β))
−1

where β = d′

f
. Refor-

mulating this equation, we can write

I(x) = (J(α ·) ∗ γK(γ ·)T (γ ·)) (−x) (10)

which is a scaled convolution between J(·) and K(·)T (·).
Notice that by changing the parameters f , d and d′, we can

change the scaling factors of the object and the mask.

We can also put a second objective lens to have more

control on the parameters of the system. The optical con-

figuration of such system along with the corresponding pa-

rameters are in Figure 1 and Equation 2, respectively.

Remark 1 There are two special cases:

1. If

e = f2 − f1

(

1−
d′

f1

)−1

, (11)

then the kernel mask magnification is

γ =

(

f2

f1

(

1−
d′

f1

))−1

(12)

that is independent of the object distance d.

2. If e = f2, then the object magnification is α = f2
f1

that

is independent of the object distance d.
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