

Efficient Non-interactive Proof Systems for Bilinear Groups

Jens Groth University College London

Amit Sahai University of California Los Angeles

Zero-knowledge: Bob learns **Non-interactive proof** nothing about witness Witness w $(x,w) \in R_1$ Why? Statement °O Proof Witness-indistinguishable: Yes dear, $x \in L$ Bob does not learn which witness Alice has in mind

A brief history of non-interactive zeroknowledge proofs

- Blum-Feldman-Micali 88
- Damgård 92
- Feige-Lapidot-Shamir 99
- Kilian-Petrank 98
- De Santis-Di Crescenzo-Persiano 02

Efficiency problems with non-interactive zero-knowledge proofs

- Non-interactive proofs for general NP-complete language such as Circuit SAT. Any practical statement such as "the ciphertext c contains a signature on m" must go through a size-increasing NP-reduction.
- Inefficient non-interactive proofs for Circuit SAT. Use the so-called "hidden random bits" method.

Our goal

- We want non-interactive proofs for statements arising in practice such as "the ciphertext c contains a signature on m". No NP-reduction!
- We want high efficiency. Practical non-interactive proofs!

A brief history of non-interactive zeroknowledge proofs continued

	Circuit SAT	Practical statements
Inefficient	Kilian-Petrank 98	Groth 06
Efficient	Groth-Ostrovsky- Sahai 06	This work

Bilinear group

Prime order or composite order

$$G_1 = G_2 \text{ or } G_1 \neq G_2$$

- G_1 , G_2 , G_T finite cyclic groups of order n
- P₁ generates G₁, P₂ generates G₂
- e: $G_1 \times G_2 \rightarrow G_T$
 - $e(P_1, P_2)$ generates G_T
 - $e(aP_1,bP_2) = e(P_1,P_2)^{ab}$
- Deciding membership, group operations, bilinear map efficiently computable

Many possible assumptions: Subgroup Decision, Symmetric External Diffie-Hellman, Decison Linear, ...

Constructions in bilinear groups

a, $b \in Z_n$, A, $C \in G_1$, B, $D \in G_2$

t = a+xb $T_1 = xY+xA+tC$ $T_2 = B+D+Z$ $t_T = e(T_1,B+bT_2)$

Non-interactive cryptographic proofs for correctness of constructions

Cryptographic constructions

- Constructions can be built from
 - public exponents and public group elements
 - secret exponents and secret group elements
- Using any of the bilinear group operations
 - Addition and multiplication of exponents
 - Point addition or scalar multiplication in G₁ or G₂
 - Bilinear map e
 - Multiplication in G_T
- Our result: Non-interactive cryptographic proofs for correctness of a set of bilinear group constructions

Examples of statements we can prove

- Here is a ciphertext c and a signature s. They have been constructed such that s is a signature on the secret plaintext.
- Here are three commitments A,B and C to secret exponents a,b and c. They have been constructed such that c=ab mod n.

Quadratic equations in a bilinear group

- Variables $X_i \ 2 \ G_1; Y_i \ 2 \ G_2; x_i; y_i \ 2 \ Z_n$
- Pairing product equations

$$t_{T} = \bigvee_{i=1}^{\gamma_{1}} e(A_{i}; Y_{i}) & \varphi_{1} e(X_{i}; B_{i}) & \varphi_{1} e(X_{i}; Y_{j})^{\circ_{ij}}$$

$$i = 1 \qquad i = 1 \qquad i = 1 \qquad i = 1 \qquad i = 1$$

• Multi-scalar multiplication equations in G₁ (or G₂)

$$T_{1} = \begin{array}{ccc} X^{n^{0}} & X^{n} & X^{n} & X^{n^{0}} \\ & y_{i}A_{i} + & b_{i}X_{i} + & & ^{o}_{ij}y_{j}X_{i} \\ & & i=1 & & i=1 \\ \end{array}$$

Quadratic equations in Z_n

$$t = X_{i}^{0} X_{i}^{0} X_{i}^{0} X_{i}^{0} X_{i}^{0}$$

$$t = a_{i}y_{i} + x_{i}b_{i} + a_{i}y_{i}^{0} X_{i}y_{j}$$

$$i = 1 \qquad i = 1 \qquad i = 1 \qquad i = 1$$

Our contribution

- Statement $S = (eq_1, ..., eq_N)$ bilinear group equations
- Efficient non-interactive witness-indistinguishable (NIWI) proofs for satisfiability of all equations in S
- Efficient non-interactive zero-knowledge (NIZK) proofs for satisfiability of all equations in S (all t_T=1)
- Many choices of bilinear groups and cryptographic assumptions Subgroup Decision, Symmetric External Diffie-Hellman, Decision Linear, etc.
- Common reference string O(1) group elements

Size of NIWI proofs		Each equation constant cost. Cost independent of number of public constants and secret variables. NIWI proofs can have sub-linear		
Cost of each variable/equation	Subgro Decisio	size c	ompared with s	statement!
Variable in G_1 , G_2 or Z_n	1			3
Pairing product	1		8	9
Multiscalar mult.	1		6	9
Quadratic in Z _n	1		4	6

Size of NIZK proofs

Cost of each variable/equation	Subgroup Decision	Symmetric External DH	Decision Linear
Variable in Z _n	1	2	3
Variable in G ₁ , G ₂	1 (+3)	2 (+10)	3 (+15)
Pairing product equation $(t_T=1)$	1	8	9
Multiscalar mult.	2	10	12
Quadratic in Z _n	1	4	6

Applications of efficient NIWI and NIZK proofs

- Constant size group signatures Boyen-Waters 07 (independently of our work) Groth 07
- Sub-linear size ring signatures Chandran-Groth-Sahai 07
- Non-interactive NIZK proof for correctness of shuffle Groth-Lu 07
- Non-interactive anonymous credentials Belienky-Chase-Kohlweiss-Lysyanskaya 08

Where does the generality come from?

- View bilinear groups as special cases of modules with a bilinear map
- Commutative ring R
- R-modules A₁, A₂, A_T
- Bilinear map f: $A_1 \times A_2 \rightarrow A_T$

Pairing product equations

- Use $R = Z_n$, $A_1 = G_1$, $A_2 = G_2$, $A_T = G_T$, f(X,Y)=e(X,Y)and write $A_T = G_T$ with additive notation to get

$$t_{T} = \sum_{i=1}^{X^{n}} f(A_{i}; Y_{i}) + \sum_{i=1}^{X^{n}} f(X_{i}; B_{i}) + \sum_{i=1}^{X^{n}} \sum_{j=1}^{X^{n}} f(X_{i}; Y_{j})$$

Multi-scalar multiplication in G₁

• Multi-scalar multiplication equations in G_1 $T_1 = \begin{array}{ccc} X^0 & X^n & X^n & X^0 \\ y_i A_i + & b_i X_i + & {}^\circ_{ij} y_j X_i \\ i = 1 & i = 1 \end{array}$

• Use $R = Z_n$, $A_1 = G_1$, $A_2 = Z_n$, $A_T = G_1$, f(X,y)=yX

$$T_{1} = X^{n^{0}} f(A_{i}; y_{i}) + Y^{n} f(X_{i}; b_{i}) + Y^{n^{0}} f(X_{i}; y_{j}) + I^{n^{0}} f(X_{i}; y_{j}) + I^{n^{0}} f(X_{i}; y_{j})$$

Quadratic equation in Z_n

- Quadratic equations in Z_n x^0 x^0 x^0 x^0 x^0 $t = a_i y_i + x_i b_i + b_{ij} x_i y_j$ i = 1 i = 1 i = 1 j = 1
- Use $R = Z_n$, $A_1 = Z_n$, $A_2 = Z_n$, $A_T = Z_n$, f(x,y)=xy

$$t = X^{0} (a_{i}; y_{i}) + f(x_{i}; b_{i}) + Y^{0} (x_{i}; y_{i}) + f(x_{i}; b_{i}) + f(x_{i}; y_{i}) + f(x_{i}; y_{i})$$

Generality continued

- All four types of bilinear group equations can be seen as example of quadratic equations over modules with bilinear map
- The assumptions Subgroup Decision, Symmetric External Diffie-Hellman, Decision Linear, etc., can be interpreted as assumption in (different) modules with bilinear map as well

Sketch of NIWI proofs

$$t = \begin{cases} \chi^{0} & \chi^{0} & \chi^{0} & \chi^{0} \\ & f(a_{i}; y_{i}) + & f(x_{i}; b_{i}) + & {}^{\circ} \chi^{0} \\ & i = 1 & i = 1 & i = 1 \end{cases}$$

- Commit to secret elements in A₁ and A₂
- Commitment scheme is homomorphic with respect to addition in A_1 , A_2 , A_T and with respect to bilinear map f
- Can therefore use homomorphic properties to get commitment c = commit_{A_T}(t; r)
- Reveal commitment randomizer r to verify that equation is satisfied
- To get witness-indistinguishability first rerandomize commitment c before opening with r

Final remarks

- Summary: Efficient non-interactive cryptographic proofs for use in bilinear groups
- Open problem: Construct cryptographically useful modules with bilinear map that are not based on bilinear groups
- Acknowledgment: Thanks to Brent Waters
- Questions?