## 甶

## Efficient Non-interactive Proof Systems for Bilinear Groups

Jens Groth
University College London

Amit Sahai
University of California Los Angeles

## Non-interactive proof

Zero-knowledge: Bob learns nothing about witness


Witness-indistinguishable: Bob does not learn which witness Alice has in mind

## A brief history of non-interactive zeroknowledge proofs

- Blum-Feldman-Micali 88
- Damgård 92
- Feige-Lapidot-Shamir 99
- Kilian-Petrank 98
- De Santis-Di Crescenzo-Persiano 02


## Efficiency problems with non-interactive zero-knowledge proofs

- Non-interactive proofs for general NP-complete language such as Circuit SAT. Any practical statement such as "the ciphertext c contains a signature on m" must go through a size-increasing NP-reduction.
- Inefficient non-interactive proofs for Circuit SAT. Use the so-called "hidden random bits" method.


## Our goal

- We want non-interactive proofs for statements arising in practice such as "the ciphertext c contains a signature on m". No NP-reduction!
- We want high efficiency. Practical non-interactive proofs!


## A brief history of non-interactive zeroknowledge proofs continued

|  | Circuit SAT | Practical <br> statements |
| :--- | :--- | :--- |
| Inefficient | Kilian-Petrank 98 | Groth 06 |
| Efficient | Groth-Ostrovsky- <br> Sahai 06 | This work |

## Bilinear group

$$
\mathrm{G}_{1}=\mathrm{G}_{2} \text { or } \mathrm{G}_{1} \neq \mathrm{G}_{2}
$$

Prime order or composite order

- $G_{1}, G_{2}, G_{T}$ finite cyclic groups of order $n$
- $P_{1}$ generates $G_{1}, P_{2}$ generates $G_{2}$
- $\mathrm{e}: \mathrm{G}_{1} \times \mathrm{G}_{2} \rightarrow \mathrm{G}_{\mathrm{T}}$
- e( $\left.P_{1}, P_{2}\right)$ generates $G_{T}$
$-e\left(\mathrm{aP}_{1}, \mathrm{bP}_{2}\right)=e\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)^{\mathrm{ab}}$
- Deciding membership, group operations, bilinear map efficiently computable
Many possible assumptions: Subgroup Decision, Symmetric External Diffie-Hellman, Decison Linear, ...


## Constructions in bilinear groups

$$
a, b \in Z_{n}, A, C \in G_{1}, B, D \in G_{2}
$$



$$
\begin{aligned}
& t=a+x b \\
& T_{1}=x Y+x A+t C \\
& T_{2}=B+D+Z \\
& t_{T}=e\left(T_{1}, B+b T_{2}\right)
\end{aligned}
$$

## Non-interactive cryptographic proofs for correctness of constructions

Yes, here is a proof.


$$
\begin{aligned}
& t=a+x b \\
& T_{1}=x Y+x A+t C \\
& T_{2}=B+D+Z \\
& t_{T}=e\left(T_{1}, B+b T_{2}\right)
\end{aligned}
$$


$\longrightarrow$ Proof

## Cryptographic constructions

- Constructions can be built from
- public exponents and public group elements
- secret exponents and secret group elements
- Using any of the bilinear group operations
- Addition and multiplication of exponents
- Point addition or scalar multiplication in $G_{1}$ or $G_{2}$
- Bilinear map e
- Multiplication in $\mathrm{G}_{\mathrm{T}}$
- Our result: Non-interactive cryptographic proofs for correctness of a set of bilinear group constructions


## Examples of statements we can prove

- Here is a ciphertext c and a signature s. They have been constructed such that $s$ is a signature on the secret plaintext.
- Here are three commitments $A, B$ and $C$ to secret exponents $a, b$ and $c$. They have been constructed such that $\mathrm{c}=\mathrm{ab} \bmod \mathrm{n}$.


## Quadratic equations in a bilinear group

- Variables $X_{i} 2 \mathrm{G}_{1} ; \mathrm{Y}_{\mathrm{i}} 2 \mathrm{G}_{2} ; \mathrm{x}_{\mathrm{i}} ; \mathrm{y}_{\mathrm{i}} 2 \mathrm{Z}_{\mathrm{n}}$
- Pairing product equations

$$
t_{T}=\sum_{i=1}^{Y^{n}} e\left(A_{i} ; Y_{i}\right) C_{i=1}^{Y^{n}} e\left(X_{i} ; B_{i}\right) \varphi_{i=1 j=1}^{Y n} Y^{n} e\left(X_{i} ; Y_{j}\right)^{o_{i j}}
$$

- Multi-scalar multiplication equations in $\mathrm{G}_{1}\left(\right.$ or $\left.\mathrm{G}_{2}\right)$

$$
T_{1}={ }_{i=1}^{x^{0}} y_{i} A_{i}+{ }_{i=1}^{x^{m}} b X_{i}+{ }_{i=1 j=1}^{x^{m} x^{0}} o_{i j} y_{j} x_{i}
$$

- Quadratic equations in $\mathbf{Z}_{\mathrm{n}}$

$$
t=x_{i=1}^{x^{0}} a_{i} y_{i}+{ }_{i=1}^{x^{0}} x_{i} b+x_{i=1 j=1}^{x^{0}} x^{0}{ }_{i j} x_{i} y_{j}
$$

## Our contribution

- Statement $S=\left(\mathrm{eq}_{1}, \ldots, \mathrm{eq}_{N}\right)$ bilinear group equations
- Efficient non-interactive witness-indistinguishable (NIWI) proofs for satisfiability of all equations in S
- Efficient non-interactive zero-knowledge (NIZK) proofs for satisfiability of all equations in $S$ (all $t_{T}=1$ )
- Many choices of bilinear groups and cryptographic assumptions Subgroup Decision, Symmetric External Diffie-Hellman, Decision Linear, etc.
- Common reference string $O(1)$ group elements


## Size of NIWI proofs

| Cost of each <br> variable/equation | Subgr <br> Decision <br> Nize compared with statement! |  |  |
| :--- | :--- | :--- | :--- |
| Variable in $\mathrm{G}_{1}, \mathrm{G}_{2}$ <br> or $\mathbf{Z}_{\mathrm{n}}$ | 1 |  | 3 |
| Pairing product | 1 | 8 | 9 |
| Multiscalar mult. | 1 | 6 | 9 |
| Quadratic in $\mathbf{Z}_{\mathrm{n}}$ | 1 | 4 | 6 | Cost independent of number of public constants and secret variables.

NIWI proofs can have sub-linear size compared with statement!


## Size of NIZK proofs

| Cost of each <br> variable/equation | Subgroup <br> Decision | Symmetric <br> External DH | Decision <br> Linear |
| :--- | :--- | :--- | :--- |
| Variable in $\mathbf{Z}_{\mathrm{n}}$ | 1 | 2 | 3 |
| Variable in $\mathrm{G}_{1}, \mathrm{G}_{2}$ | $1(+3)$ | $2(+10)$ | $3(+15)$ |
| Pairing product <br> equation $\left(\mathrm{t}_{\mathrm{T}}=1\right)$ | 1 | 8 | 9 |
| Multiscalar mult. | 2 | 10 | 12 |
| Quadratic in $\mathbf{Z}_{\mathrm{n}}$ | 1 | 4 | 6 |

## Applications of efficient NIWI and NIZK proofs

- Constant size group signatures

Boyen-Waters 07 (independently of our work) Groth 07

- Sub-linear size ring signatures

Chandran-Groth-Sahai 07

- Non-interactive NIZK proof for correctness of shuffle Groth-Lu 07
- Non-interactive anonymous credentials Belienky-Chase-Kohlweiss-Lysyanskaya 08


## Where does the generality come from?

- View bilinear groups as special cases of modules with a bilinear map
- Commutative ring $R$
- R-modules $A_{1}, A_{2}, A_{T}$
- Bilinear map f: $A_{1} \times A_{2} \rightarrow A_{T}$


## Pairing product equations

- Pairing product equations

$$
t_{T}={ }_{i=1} e\left(A_{i} ; Y_{i}\right) ¢_{i=1} e\left(X_{i} ; B_{i}\right) \oint_{i=1 j=1} e\left(X_{i} ; Y_{j}\right)^{{ }^{i j}}
$$

- Use $R=Z_{n}, A_{1}=G_{1}, A_{2}=G_{2}, A_{T}=G_{T}, f(X, Y)=e(X, Y)$ and write $A_{T}=G_{T}$ with additive notation to get

$$
t_{T}={ }_{i=1}^{X} f\left(A_{i} ; Y_{i}\right)+X_{i=1}^{X^{m}} f\left(X_{i} ; B_{i}\right)+{ }_{i=1 j=1}^{X^{m}} \delta_{i j} f\left(X_{i} ; Y_{j}\right)
$$

## Multi-scalar multiplication in $\mathrm{G}_{1}$

- Multi-scalar multiplication equations in $\mathrm{G}_{1}$

$$
T_{1}=x_{i=1}^{x^{0}} y_{i} A_{i}+\underbrace{x^{m}}_{i=1} b X_{i}+X_{i=1 j=1}^{m} x^{0} o_{i j} y_{j} x_{i}
$$

- Use R = $\mathbf{Z}_{n}, A_{1}=G_{1}, A_{2}=Z_{n}, A_{T}=G_{1}, f(X, y)=y X$

$$
T_{1}={ }_{i=1}^{x^{0}} f\left(A_{i} ; y_{i}\right)+{ }_{i=1}^{X^{m}} f\left(X_{i} ; b\right)+{ }_{i=1}^{x_{j=1}^{m}} x_{i j}^{0}{ }_{o} f\left(X_{i} ; y_{j}\right)
$$

## Quadratic equation in $\mathbf{Z}_{\mathrm{n}}$

- Quadratic equations in $\mathbf{Z}_{\mathrm{n}}$

$$
t=\sum_{i=1}^{x^{0}} a_{i} y_{i}+x_{i=1}^{x x^{0}} x_{i} b^{1}+x_{i=1 j=1}^{x x^{0}} x_{i j}^{0} o_{i} x_{i} y_{j}
$$

- Use $R=Z_{n}, A_{1}=Z_{n}, A_{2}=Z_{n}, A_{T}=Z_{n}, f(x, y)=x y$

$$
t=X_{i=1}^{X X^{0}} f\left(a_{i} ; y_{i}\right)+X_{i=1}^{X 0^{0}} f\left(x_{i} ; b_{1}\right)+X_{i=1 j=1}^{X 0^{0} X X^{0}} o_{i j} f\left(x_{i} ; y_{j}\right)
$$

## Generality continued

- All four types of bilinear group equations can be seen as example of quadratic equations over modules with bilinear map
- The assumptions Subgroup Decision, Symmetric External Diffie-Hellman, Decision Linear, etc., can be interpreted as assumption in (different) modules with bilinear map as well


## Sketch of NIWI proofs

- Commit to secret elements in $A_{1}$ and $A_{2}$
- Commitment scheme is homomorphic with respect to addition in $A_{1}, A_{2}, A_{T}$ and with respect to bilinear map $f$
- Can therefore use homomorphic properties to get commitment $\mathrm{C}=$ commit $_{\mathrm{A}_{\mathrm{T}}}(\mathrm{t} ; \mathrm{r})$
- Reveal commitment randomizer $r$ to verify that equation is satisfied
- To get witness-indistinguishability first rerandomize commitment c before opening with $r^{\prime}$


## Final remarks

- Summary: Efficient non-interactive cryptographic proofs for use in bilinear groups
- Open problem: Construct cryptographically useful modules with bilinear map that are not based on bilinear groups
- Acknowledgment: Thanks to Brent Waters
- Questions?

