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Abstract

Modeling the color distribution of a homogeneousregion
is used extensively for object tracking and recognition ap-
plications. The color distribution of an object represents a
featurethat isrobust to partial occlusion, scaling and object
deformation. A variety of parametric and non-parametric
statistical techniques have been used to model color distri-
butions. In this paper we present a hon-parametric color
modeling approach based on kernel density estimation as
well as a computational framework for efficient density es-
timation. Theoretically, our approach is general since ker-
nel density estimators can converge to any density shape
with sufficient samples. Therefore, this approach is suit-
able to model the color distribution of regionswith patterns
and mixture of colors. Since kernel density estimation tech-
niques are computational ly expensive, the paper introduces
the use of the Fast Gauss Transform for efficient computa-
tion of the color densities. We show that this approach can
be used successfully for color-based segmentation of body
parts as well as segmentation of multiple people under oc-
clusion.

1 Introduction

Modeling the color distribution of a homogeneous re-
gion has a variety of applications for object tracking and
recognition. The color distribution of an object repre-
sents a feature that is robust to partial occlusion, scaling
and object deformation. It is also relatively stable un-
der rotation in depth in certain applications. Therefore
color distributions have been used successfully to track non-
rigid bodies [17, 2, 14, 6] with applications like tracking
heads [1, 6, 13, 14], hands [11] and other body parts against
cluttered backgrounds from stationary or moving platforms.
Color distributions have also been used for object recogni-
tion.

A variety of parametric and non-parametric statistical
techniques have been used to model the color distribution
of a homogeneous colored regions. In [17] the color distri-

bution of a region (blob) was modeled using a single Gaus-
sian in the three dimensional YUV space. The use of a
single Gaussian to model the color of a blob restricts it to
be of a single color which is not a general enough assump-
tion to model regions with mixtures of colors. For example,
people’s clothing and surfaces with texture usually contain
patterns and mixture of colors. Fitting a mixture of Gaus-
sians using the EM algorithm provides a way to model color
blobs with a mixture of colors. This technique was used
in [13, 14] for color based tracking of a single blob and was
applied to tracking faces. The mixture of Gaussians tech-
nique faces the problem of choosing the right number of
Gaussians for the assumed model (model selection). Non-
parametric techniques using histograms have been widely
used for modeling the color of object for different applica-
tions to overcome the previously mentioned problems with
parametric models. Color histograms have been used in
[12] for people tracking. This work used 3-dimensional
adaptive histograms in RGB space to model the color of
the whole person. Color histograms have also been used in
[11] for tracking hands, in [2] for color region tracking and
in [10] for skin detection. The major drawback with color
histograms is the lack of convergence to the right density
function if the data set is small. Another major drawback
with histograms, in general, is that they are not suitable for
higher dimensional features.

A particular nonparametric technique that estimates the
underlying density, avoids having to store the complete
data, and is quite general is the kernel density estimation
technique. In this technique the underlying probability den-
sity function is estimated as
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where K is a “kernel function” (typically a Gaussian) cen-
tered at the data points, z;,7 = 1..n and «; are weight-
ing coefficients (typically uniform weights are used, i.e.,
a; = 1/n). Note that choosing the Gaussian as a kernel
function is different from fitting the distribution to a Gaus-
sian model. Here, the Gaussian is only used as a function



that is weighted around the data points. Theoretically, ker-
nel density estimators can converge to any density function
with enough samples [15, 3].

The major drawback of kernel density estimation tech-
niques is their computational cost. The use of such an ap-
proach requires a way to efficiently evaluate the estimate
f(m) at any new target point z. In general, given N orig-
inal data samples and M target points at which the den-
sity need to be evaluated, the complexity is O(N M) evalu-
ations of the kernel function, multiplications and additions.
For many applications in computer vision, where both real-
time operation and generality of the classifier are desired,
this complexity can be a significant barrier to use of these
density estimation techniques. In this paper we present the
application of the kernel density estimation technique to
the problem of modeling the color distribution of homoge-
neous regions. The paper introduces the application of the
Fast Gauss Transform (FGT) algorithm [8, 9] for efficient
estimation of color densities. The algorithm improves the
complexity to O(N + M) operations instead of O(NM).
We use this approach to segment foreground regions corre-
sponding to people into major body parts, and also to seg-
ment foreground regions corresponding to multiple people
into individuals.

The outline of the paper is as follows: Section 2 presents
the use of kernel density estimation for color modeling.
Section 3 describes the fast Gauss algorithm. Application
of the approach to body part segmentation is presented in
section 4. Evaluations of the performance of the algorithm
are presented in section 5.

2 Color Density Estimation

Given asample S = {z;};—1..~ from a distribution with
density function p(z), an estimate p(z) of the density at =
can be calculated using

where K, is a kernel function with a bandwidth (scale) o
such that K, (t) = %K(ﬁ). The kernel function K should
satisfy K(t) > 0 and [ K(t)dt = 1. A variety of ker-
nel functions with different properties have been used in
the literature. Typically the Gaussian kernel is used for its
continuity, differentiability and locality properties. A good
discussion of kernel estimation techniques can be found in
[15].

Given a sample S = {z;} taken from an image region,
where i = 1...N, and z; is a d-dimensional vector repre-
senting the color, we can estimate the density function at
any point y of the color space directly from S using the

product of one dimensional kernels [15] as

P(y) = ZHK(’” ) @
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where the same kernel function is used in each dimension
with a different bandwidth o; for each dimension of the
color space. Usually in color modeling two or three dimen-
sional color spaces are used. Two dimensional chromatic-
ity spaces, e.g., r = R+§+B,g = R+g+B and a, b from
the Lab color space, are used when it is desired to make
the model invariant to illumination geometry. Three dimen-
sional color spaces are widely used because of their bet-
ter discrimination since the brightness information is pre-
served.

Using kernel density estimation for color modeling has
many motivations. Unlike histograms, even with a small
number of samples, kernel density estimation leads to
a smooth, continuous and differentiable density estimate.
Kernel density estimation does not assume any specific un-
derlying distribution and, theoretically, the estimate can
converge to any density shape with enough samples [15, 3].
Therefore, this approach is suitable to model the color dis-
tribution of regions with patterns and mixture of colors. If
the underlying distribution is a mixture of Gaussians, ker-
nel density estimation converges to the right density with
a small number of samples. Unlike parametric fitting of a
mixture of Gaussians, kernel density estimation is a more
general approach that does not require the selection of the
number of Gaussians to be fitted. One other important ad-
vantage of using kernel density estimation is that the adap-
tation of the model is trivial and can be achieved by adding
new samples.

Let us assume that we are using a three dimensional color
space and that the color space variables are a,b,c. Us-
ing Gaussian kernels, i.e., K, (t) = ( 27m)_1 e~ 1/2(t/0)
with different bandwidth in each dimension, the density es-
timation can be evaluated as a sum of Gaussians as

p(a,b,c) Ze 3(5)? 72(1);:”267%(%)2 3)

A weighted version is practically useful where more weight
is given to samples inside the region and less weight for
samples from the boundary since they are expected to be
noisy.

N
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i=1

p(a,b,c)

where ) . w; = 1. The use of different bandwidths for ker-
nels in different color dimensions is desirable since the vari-
ances are different in each color dimension. For example,



the luminance variable usually has more variance than the
chromaticity variables and therefore wider kernels should
be used in the luminance dimension.

Typically, it is required to evaluate this estimate of the
density function at many different points (a ;, b;,c;) in the
color space corresponding to the color at many different lo-
cations in the image. For color-based tracking applications,
the process of density estimation is repeated at each new
frame for a different set of values, which is a very expensive
computational task. The complexity of evaluating the sum-
mation in Equation(3) at M different locations in O(N M)
with N and M typically very large. The application of the
fast Gauss transform, as described in the next section, to this
problem reduces the complexity to O(N + M) and allows
a very efficient framework for this computation.

3 Fast Gauss Transform (FGT)

The FGT was introduced by Greengard and Strain [8, 9]
for the rapid evaluation of sums of the form
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Here {s;}j=1..n are d-dimensional centers of the Gaussians
and are called “sources”. Each ¢; is a location where the
effect of these Gaussians need to be calculated. These lo-
cations are called “targets” while ¢ is a scalar and f; are
source strengths. They showed that using their fast algo-
rithm this sum could be computed in O(N + M) operations.
They also showed results from 1-D and 2-D tests of the al-
gorithm. It was extended by Strain [16] to sums where o
in equation 4 varied with the position of the target or the
source, i.e., for the case where o depends on the source lo-
cation the sum is

i=1,...,M. (4
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The first application of the FGT algorithm to problems in
computer vision was made in [?].

A generalization of the original algorithm is needed to
handle the case where ¢ is different in each dimension, i.e.,
summations of the form,

i=1,...,M. (5)
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where the subscript & indicates the component along the
kth coordinate axis, i.e., the covariance matrix is diago-
nal. Color density estimation, as introduced in section 2

uses Gaussian sums of this form since it is always desired
to use different bandwidth for kernels in each color dimen-
sion since the variation in each color dimension is different.

3.1 Overview of the Algorithm

The shifting identity that is central to the algorithm is a
re-expansion of the exponential in terms of a Hermite series
by using the identity

ef(t;S)z :e_(t7307"(3750)> (7)
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where H,, are the Hermite polynomials. This formula tells
us how to evaluate the Gaussian field exp (— (ths)z) at
the target ¢ due to the source at s, as an Hermite expansion
centered at any given point so. Thus a Gaussian centered at
s can be shifted to a sum of Hermite polynomials times a
Gaussian, all centered at sy. The series converges rapidly
and for a given precision, only p terms need be retained.
The quantities ¢ and s can be interchanged to obtain a Taylor
series around the target location as

ef(t;s)z :e_(t*toir(S*to))z
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where the Hermite functions h,, (¢)are defined by

b (t) = e H, (t). 9)

Thus, the Gaussian centered at s evaluated at ¢ can be ex-
pressed as a Taylor series about a nearby target, ¢,, where
the coefficient of that series is the Hermite function evalu-
ated at ¢,

The algorithm achieves its gain in complexity by avoid-
ing evaluating every Gaussian at every target (which leads
to O(N M) operations). Rather, equivalent p term series are
constructed about a small number of source cluster-centers
using Equation 7 (for O(Np?) operations). These series are
then shifted to target cluster-centers, and evaluated at the M
targets in O(Mp?) operations. Here the number of terms in
the series evaluations, p, is related to the desired level of
precision ¢, and is typically small as these series converge
quickly. Generally, in computer vision applications there is
no need for very precise evaluation.

The process is illustrated in Figure 1. The sources and
targets are divided into clusters by dividing the space into
uniform boxes. This permits the division of the Gaussians
according to their locations. The domain is scaled to be of
0O(1), and the box size at dimension & is chosen to be of size

rﬁak.
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Small Large
. -- Transform sources into
T s I Direct Hermit expansion
a mal Evaluation -- Evaluate the expansion
at all targets.
r
9
. -- Transform sources into
e -- Convert sources into . .
a local Taylor series Hermit expansion,
t Large _ Evaluate the series | = Convert the expansion
S at each target to a local Taylor series.
get. -- Evaluate at each target

Table 1. The four different algorithms used
in the computation based on the number of
sources and targets in each pair of boxes

Since Gaussians decay rapidly, sources in a given box
will have no effect (in terms of the desired accuracy) to tar-
gets relatively far from there sources (in terms of distance
scaled by the standard deviation o). Therefore, the effect of
sources in a given box need to be computed only for target
in close-by boxes. Given the sources in one box and the
targets in a neighboring box, the computation is performed
using one of the following four methods depending on the
number of sources and targets in these boxes. Direct evalu-
ation is used if the number of sources and targets are small.
If the sources are clustered in a box then they can be trans-
formed into Hermite expansion about the center of the box
using equation 7. This expansion is directly evaluated at
each target in the target box if the number of the targetsis
small. If the targets are clustered then the sources or their
expansion are convertedto alocal Taylor series (eguation 8)
which isthen evaluated at each target in the box. Thesefour
methods are shown in table 1. The break-even point when
using the expansion is more efficient than direct evaluation
(small/large break point) is O(p9~1). The number of terms
to be retained in the series, p, depends on the required pre-
cision, the box size scale parameter » and the standard de-
viation . Further details may be obtained from [9]. The
clustering operation is aided by the use of appropriate data
structures.

4 Color-based Body Part Segmentation

We use the color modeling approach described in sec-
tion 2 as well as the FGT computation to segment fore-
ground regions corresponding to tracked people in upright
pose into major body parts. The foreground regions are
detected using background subtraction [5]. People can
be dressed in many different ways, but generally they are
dressed in a way that leads to a set of mgjor color regions
aligned vertically (shirt, T-shirt, jacket etc., on the top and
pants, shorts, skirtsetc., onthe bottom) for peoplein upright
pose. We consider the case where people are dressed in a
top-bottom manner which yields a segmentation of the per-
son into ahead, torso and bottom. Generally, apersonin an
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Figure 1. a) space subdivision. b) Clustered
sources are converted into a Hermit expan-
sion that is evaluated at each target. «c)
sources are converted to a Taylor series near
atarget cluster. d) Clustered sources are con-
verted to a Hermit expansion and transformed
into a Taylor series near a target cluster. (a
plus represents a source, a circle represents
a target)

upright pose is modeled as a set of vertically aligned blobs
M = {A;} where ablob A; models a major color region
along the vertical axis of the person representing a major
part of the body as the torso, bottom or head. Each blob is
represented by its color distribution as well asits spatial lo-
cation with respect to the whole body. Since each blob has
the same color distribution everywhere inside the blob, and
since the vertical location of the blob is independent of the
horizontal axis, the joint distribution of pixel (z,y, c) (the
probability of observing color ¢ at location (z, y) givenblob
A) isamultiplication of three density functions

PA(l',ya C) = fA(m)gA(y)hA(C);

where h 4 (¢) isthe color density of blob A and the densities
ga(y),fa(x) represents the vertical and horizontal location
of the blob respectively.

Estimates for the color density h 4(c) can be calculated
using kernel density estimation as in (2). We represent the
color of each pixel as a 3-dimensional vector X = (r, g, s)
where r = & g = -2 are two chromaticity
variablesand s = (R + G + B)/3 is alightness variable
and the three variables are scaled to be on the range 0 to 1.
Given a sample of pixels S4 = {X; = (ri, gi,s:)} from




blob A, an estimate /.4 (-) for the color density /.4 (-)can be
calculated as

1 N

ha(r,g,s) = N Z Ko, (r—ri)Ks, (9 — 9i) Ko, (s — si),
i=1

Using Gaussian kernels with different bandwidth in each

dimension, the density estimation can be evaluated asasum

of Gaussians as

e = 3 O

Givenaset of samples S = {S 4, } correspondingto each
blob and initial estimates for the position of each blob y 4,,
each pixel is classified into one of the three blobs based on
maximum likelihood classification assuming that all blobs
have the same prior probabilities

X € Ap st. k =arg, max P(X | Ag)
=arg, maxga,(y)ha,(c)  (10)

where the vertical density g4, (y) is assumed to have a
Gaussian distribution g4, (y) = N(ya,,04,). Sincethe
blobs are assumed to be vertically above each other, the hor-
izontal density f4(z) isirrelevant to the classification.

At each new frame, it is desired to estimate the color
density h 4, (r, g, s) corresponding to each blob, A, at each
pixel in the foreground. The FGT agorithm is used to effi-
ciently computethese probabilities. Herethe sourcesarethe
sample S 4 while the targets are the vectors (r, g, s) a each
evaluation location. Since both the sources and the targets
are clustered in the color space, the FGT agorithm gives
a significant speedup. The estimation of the bandwidth for
each dimension is done offline by considering batches of re-
gions with a single color distribution taken from images of
people’s clothing and estimating the variance in each color
dimension.

A horizontal blob separator is detected between each two
consecutive blobs by finding the horizontal line that mini-
mizes the classification error. Given the detected blob sep-
arators, the color model is recaptured by sampling pixels
from each blob. Blob segmentation is performed, and blob
separators are detected in each new frame aslong asthe tar-
get isisolated and tracked. Adaptation of the color model is
achieved by updating the sample (adding new samples and
ignoring old samples) for each blob model.

Model initialization is done automatically by taking
threesamples S = { Sy, S, Sp} of pixelsfrom three con-
fidence bands corresponding to the head, torso and bottom.
The locations of these confidence bands are learned offline
asfollows: A set of training data® is used to learn the loca-

1The training data consists of 90 samples of different people in upright
pose from both genders in different orientations.

tion of blob separators (head-torso, torso-bottom) with re-
spect to the body for a set of people in upright pose where
these separators are manually marked. Based on these sep-
arator location estimates, we can determine the confidence
bands proportional to the height where we are confident that
they belong to head, torso and bottom and use them to cap-
tureinitial sasmples S = {Sy, S, SB}.

Figure 2. Example results for blob segmenta-
tion

Figure 2illustrates some blob segmentation examplesfor
various people. Notice that the segmentation and separator
detection is robust even under partial occlusion of the target
asin the rightmost result. Also, in some of these examples
the clothes are not of a uniform color. In [4] we showed
how this representation can be used to segment foreground
regions corresponding to multiple peoplein occlusion. The
segmentation is achieved by searching for the best arrange-
ment for the people, in terms of 2D translation, that maxi-
mizes the likelihood of the foreground. In this application
the computation of color probabilities corresponding to dif-
ferent blobs is performed once each frame for each fore-
ground pixel. The search for the best arrangement does not
involve re-computation of these probabilities. For more de-
tailsrefer to [4].

5 Experimental Results

In this section we present some experimental results that
show the speed up that can be achieved using the FGT algo-
rithm for both color modeling applications and for general
kernel density estimation. The first experiment compares
the performance of the FGT with different choices of there-
quired precision e with direct evaluation for a 2D problem.
Table 2 shows the CPU time using direct evaluation versus
that using FGT for different precisions, e = 104,107,
and 108 for sources with ¢ = 0.05. The box size scale
parameter r was set to 0.5. 2 The sources and targets were

2The software was written in Visual C++ and the results were obtained
on a700MHz Intel Pentium 111 PC with 512 MB RAM.



uniformly distributed in the range [0,1] and the strength of
the sources were random between 0 and 1. Table 3 shows
the division of work between the different components of
the FGT agorithm for the e = 10~ case. From the divi-
sion of work we notice that for relatively small numbers of
sources and targets only direct evaluations are performed.
Although, in this case, the algorithm performs only direct
evaluations, it isfiveto ten timesfaster when compared with
direct evaluation because of the way the agorithm divides
the space into boxes and the locality of the direct evalu-
ation based on the desired precision. i.e, the FGT ago-
rithm does a smart direct evaluation. Thisis comparable to
the speed-upsreported in [ 7] where heuristic truncation was
performed. As the number of sources and targets increases
and they become more clustered, other evaluation decisions
are made by the algorithm, and the algorithm starts to show
the linear (O(N + M)) performance. For very large num-
bers of sources and targets, the computations are performed
through Hermite expansions of sources transformed into
Taylor expansions as described above, and thisyields asig-
nificant speedup. For example, for N = M = 107, the
algorithm gives more than 800 times speedup over direct
evaluation for 10—* precision.

From the figures we also note that the FGT starts to out-
performdirect evaluation for numbers of sourcesand targets
aslow as 60-80, based on the desired accuracy. This break-
even point can be pushed further down and more speedup
can be achieved by increasing the box size scale parameter,
r. This will enhance the performance of the algorithm for
small N, M but will worsen the asymptotic performance.

Direct [ Fast Gauss
‘ N=M ‘ Evaluation | e=10"" [ e=10"° [ e=10""° |
50 0.7 03 0.9 1
100 2.7 1.3 17 2.0
200 10.8 2.9 37 46
400 43 8.2 10.8 14
800 174 27 36 46
1600 689 9 130 163
3200 2754 319 493 640
6400 11917 660 1281 1935
12800 58500 942 2022 3277
25600 234x 103 1429 3210 5113
51200 936x 10> 2405 5602 8781
102400 | 3744x 10® 4382 10410 16181
204800 14976x 10° | 8428 20191 31106
1024000 | 374x 10° 43843 100263 153791
Table 2. Run time in milliseconds for direct

evaluation vs. FGT with different precision

Since for the color modeling application the sources
and/or thetargetsare usually clustered in the space, we need
to study the performance of the algorithm for these config-

urations. Figure 3 shows the performance of the algorithm
for different configurations of sources and targets. The di-
rect evaluation is compared with the FGT for three config-
urations of sources and targets:. in the first case, the sources
and targets are uniformly distributed between 0 and 1. In
the second case the sources are clustered inside a circle of

[ Division of work (%) - Uniform sources and targets |

Direct Taylor Hermit Hermit + Taylor

N=M ‘ Evaluation ‘ Expansion ‘ Expansion ‘ Expansion

< 800 100 0 0 0

1600 96.6 16 18 0

3200 65.7 156 15 3.7

6400 53 183 16.9 59.5

12800 0 0.3 0.3 99.4

>25600 | O 0 0 100

Table 3. Division of work between differ-
ent computational methods for uniformly dis-
tributed random sources and targets

radius 0.1 and the targets are uniformly distributed between
0 and 1. Inthe third case, both the sources and the targets
areclustered inside acircleof radius0.1. For all three cases
the desired precision was set to 109, the sources have a
scale 0 = 0.05 and a random strength between 0 and 1.
The division of work for the three cases are shown in Ta-
bles 3, 4, and 5. From the figures we note that for the cases
where sources and/or targets are clustered the computation
shows linear time behavior for number of sources and tar-
gets as low as 100, which yields a significant speedup. For
a very large number of sources and targets, the computa-
tions are performed through Hermite expansions of sources
transformed into Taylor expansions.

6

10

Direct evaluation
—— FGT: uniform sources & targets
— — FGT: Clustered sources
a — - FGT: Clustered sources & targets

seconds

Figure 3. Run time for FGT with different con-
figuration of sources and targets layout

[ Division of work (%) - Clustered sources, Uniform targets |

Direct Taylor Hermit Hermit + Taylor
‘ N=M ‘ Evaluation | Expansion ‘ Expansion ‘ Expansion
100 837 0 16.3 0
200 65.2 0 34.8 0
400 32.7 0 67.3 0
800 213 0 78.7 0
1600 171 0.3 814 12
3200 9.2 2.7 69.2 189
6400 18 5.6 225 70.1
12800 0 26 04 97
> 25600 | O 0 0 100

Table 4. Division of work between different
computational methods for clustered sources
and uniformly distributed targets

Figure 4 shows the same experiment with the three con-



[ Division of work (%) - Clustered sources and targets |

Direct Taylor Hermit Hermit + Taylor
‘ N=M ‘ Evaluation ‘ Expansion ‘ Expansion ‘ Expansion
100 69.4 13.9 139 2.8
200 36.9 28.7 19.3 15.1
400 12.7 216 24.4 413
800 4.8 16.8 17.4 61.0
1600 28 15.1 13.0 69.1
3200 22 10.3 153 72.2
6400 0.8 6.8 9.3 83.1
12800 0.1 24 24 95.1
> 25600 | O 0 24 97.6

Table 5. Division of work between different
computational methods for clustered sources
and targets

g

10

Direct evaluation
—— FGT: uniform sources & targets
10" F| — - FGT: clustered sources, uniform
— - FGT:clustered sources & targets

Figure 4. Run time for 3D - FGT with different
configuration of sources and targets layout

figurations of sources and targetsfor the 3D case with preci-
sionset to 108 and r = 0.5. Note that the algorithm starts
to utilize computations using Hermite and/or Taylor expan-
sion only when the number of sources and/or targetsin a
box exceeds a break point of order p?—", whichis higher in
the 3D case. This causes the algorithm to do mostly direct
evaluation for the uniform sources and targets case while
Hermite and Taylor expansion computationsare utilized for
large number of clustered sources and/or targets.

Figure 5 shows effect of the source scale on the run time
of the FGT algorithm. The figure shows the run time for
three cases where sources have scae ¢ = 0.1,0.05,0.01.
Typically, for color modeling applications, a suitable band-
width is between 0.01 and 0.05. For al the cases, the
sources and targets were uniformly distributed between 0
and 1. The box size scale parameter was set tor = 0.5
for al the cases. The run time in al the cases converges
asymptotically to the linear behavior.

To show the speedup that can be achieved in the color-
based body part segmentation application, we used the FGT
computation framework to segment foreground regions cor-
responding to the two people shown in figure 7. In this ex-
periment, there are six different color blobs corresponding
to the head, torso, and bottom of each of the two people
being tracked. The number of samples for each blob is re-

T T
Direct Evaluation
— FGT:scale=0.1
— - FGT: scale = 0.05
4 || . —— FGT: scale = 0.01

seconds

Figure 5. Run time for 2D - FGT with uniformly
distributed sources and targets with different
scales.
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Figure 6. Top: Number of unique foreground

pixels per frame. Bottom: Run time for eval-
uating each of six different blobs

stricted to 200 samples. At each new frame, the color of
each pixel in theforegroundis evaluated using the six blobs’
color models and the segmentation is achieved as explained
in section 4. There were about 7000-10000 pixels in the
foreground at each frame containing about 1000 different
color values each frame. Therefore, at each new frame we
have six different computations, each involving 200 Gaus-
sian sources and about 1000 targets. Figure 6 shows the
run-time in milliseconds for each of color models. On the
same hardware, the direct evaluation required about 65 mil-
liseconds for each blob. On average, the speedup achieved
is between 3 to 17 times per color model. Notice that al-
though the six color models have the same number of sam-
ples, the run time is different since it depends on the way
the sources and targets are clustered in the space. Figure 7
shows some of the segmentation results.



Figure 7. Example results: Top: Original im-
age. Bottom: Blob segmentation.

6 Discussion

In this paper we presented an efficient non-parametric
approach based on kernel density estimation for modeling
the color distribution of a region. Kernel density estima-
tion results in a smooth, continuous and differentiable es-
timate of the color density even with a small number of
sample. Unlike fitting mixture of Gaussian, this approach
does not assume a specific underlying distribution. We uti-
lized the fast Gauss transform agorithm for efficient com-
putation of color densities. The algorithm achieves a sig-
nificant speedup because, typically, the color samples are
clustered in the color space as well as the evaluation points
(color of image pixels). This nature of the problem is the
main motivation behind the use of the fast Gauss transform
for computation. To adapt the algorithm to color modeling
applications, a generalization of the original algorithm was
developed and used to handle the case where the bandwidth
isdifferent in each color dimension.

An important reason for the lack of use of the FGT al-
gorithm in applicationsis probably the fact that it is incon-
venient to do so. Firgt, it is not immediately clear what
the cross-over point is when the algorithm begins to mani-
fest its superior asymptotic complexity and offsets the pre-
processing overhead. While the nominal complexity of
the algorithm is O(M + N), the constant multiplying it is
O(p?), wherep is the number of retained termsin apolyno-
mial approximation. This makes it unclear if the algorithm
is useful for higher dimension applications seen in statis-
tical pattern recognition. The fact that there is no readily
available implementation to test these issues acts as a fur-
ther barrier to its wide adoption.
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