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Abstract

In this paper, we develop an efficient non-
parametric Bayesian estimation of the kernel func-
tion of Hawkes processes. The non-parametric
Bayesian approach is important because it provides
flexible Hawkes kernels and quantifies their uncer-
tainty. Our method is based on the cluster rep-
resentation of Hawkes processes. Utilizing the
stationarity of the Hawkes process, we efficiently
sample random branching structures and thus, we
split the Hawkes process into clusters of Poisson
processes. We derive two algorithms — a block
Gibbs sampler and a maximum a posteriori esti-
mator based on expectation maximization — and
we show that our methods have a linear time com-
plexity, both theoretically and empirically. On syn-
thetic data, we show our methods to be able to infer
flexible Hawkes triggering kernels. On two large-
scale Twitter diffusion datasets, we show that our
methods outperform the current state-of-the-art in
goodness-of-fit and that the time complexity is lin-
ear in the size of the dataset. We also observe that
on diffusions related to online videos, the learned
kernels reflect the perceived longevity for different
content types such as music or pets videos.

1 Introduction

The Hawkes process [Hawkes, 1971] is a useful model of
self-exciting point data in which the occurrence of a point
increases the likelihood of arrival of new points. More specif-
ically, every point causes the conditional intensity function λ
— which modulates the arrival rate of new points — to in-
crease. An alternative representation of the Hawkes process
is a cluster of Poisson processes [Hawkes and Oakes, 1974],
which categorizes points into immigrants and offspring. Im-
migrant points are generated independently at a background
rate µ; offspring points are triggered by existing points at a
rate of φ. Points can therefore be structured into clusters,
where each cluster contains a point and the offspring it di-
rectly generated. This leads to a tree structure, also known as
the branching structure (an example is shown in Fig. 1).
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Figure 1: The cluster Representation of a Hawkes Process. (a) A
Hawkes process with decaying triggering kernel φp¨q has intensity
λptq which increases after each new point is generated. It can be
represented as a cluster of Poisson processes PP(φpt ´ tiq) associ-
ated with each ti. (b) The branching structure corresponding to the
triggering relationships shown in (a), where an edge ti Ñ tj means
that ti triggered tj with the probability pji (calculated as Eq. (9)).

Background & Motivations

φ is important as it is shared and decides the class of the
whole process and recently the Hawkes process with various
φ has been studied. Mishra et al. [2016] employ the branch-
ing factor of the Hawkes process with the power-law kernel to
predict popularity of tweets; Kurashima et al. [2018] predict
human actions using a Hawkes process equipped with expo-
nential, Weibull and Gaussian mixture kernels; online pop-
ularity unpredictability is explained using the Hawkes pro-
cess with a variant of the exponential kernel by Rizoiu et
al. [2018]. However, most work employes Hawkes process
with parametric kernels, which encodes strong assumptions,
and limits the expressivity of the model. Can we design a
practical approach to learn flexible representations of the op-
timal Hawkes kernel function φ from data?

A typical solution is the non-parametric estimation of the
kernel function [Lewis and Mohler, 2011; Zhou et al., 2013b;
Bacry and Muzy, 2014].These are all frequentist methods
which do not quantify the uncertainty of the learned ker-
nels. There exists work [Rasmussen, 2013; Linderman and
Adams, 2015] on the Bayesian inference for the Hawkes pro-
cess. To scale past toy-dataset sizes these methods require
either parametric triggering kernels or discretization of the
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Methods Time Complexity Bayesian Continuous Non-parametric

Zhou et al. [2013a] O(n3) ˆ X ˆ
Xu et al. [2016] O(n3) ˆ X ˆ
Lewis and Mohler [2011] O(n3) ˆ ˆ X

Zhou et al. [2013b] O(n3) ˆ ˆ X

Rasmussen [2013] O(n) X X ˆ
Linderman and Adams [2015] O(n) X interval-sensored ˆ
Donnet et al. [2018] unspecified X X X

Ours O(n) X X X

Table 1: Related Works in Non-parametric Hawkes Processes.

input domain, which in turn leads to poor scaling with the
dimension of the domain and sensitivity to the choice of dis-
cretization. The work closest to our own is that of Donnet
et al. [2018], however their main contributions are theoreti-
cal; on the practical side they resort to an unscalable Markov
chain Monte Carlo (MCMC) estimator. We comparatively
summarize related works in Table 1. To the best of our knowl-
edge, our work is the first work proposing a Bayesian non-
parametric Hawkes process estimation procedure, with a lin-
ear time complexity allowing it to be applied to real-world
datasets, and without requiring discretization of domains.

Contributions

In this paper, we propose a general framework for the efficient
non-parametric Bayesian inference of Hawkes processes.

(1) We exploit block Gibbs sampling [Ishwaran and James,
2001] to iteratively sample the latent branching structure, the
background intensity µ and the triggering kernel φ. In each it-
eration, the point data are decomposed as a cluster of Poisson
processes based on the sampled branching structure. This is
exemplified in Fig. 1, in which a Hawkes process (shown on
the top temporal axis of Fig. 1a) is decomposed into several
Poisson processes (the following temporal axes); the corre-
sponding branching structure is shown in Fig. 1b. The pos-
terior µ and φ are estimated using the resulting cluster pro-
cesses. Our framework is close to the stochastic Expectation-
Maximization (EM) algorithm [Celeux and Diebolt, 1985]

where posterior µ and φ are estimated [Lloyd et al., 2015;
Walder and Bishop, 2017] in the M-step and random samples
of µ and φ are drawn. We adapt the approach of the recent
non-parametric Bayesian estimation for Poisson process in-
tensities, termed Laplace Bayesian Poisson process (LBPP)
[Walder and Bishop, 2017], to estimate the posterior φ given
the sampled branching structure.

(2) We utilize the stationarity of the Hawkes Process to
speed up sampling and computing the probability of the
branching structure. We theoretically show our method to be
of linear time complexity. Furthermore, we explore the con-
nection with the EM algorithm [Dempster et al., 1977] and
develop a second variant of our method, as an approximate
EM algorithm.

(3) We empirically show our method enjoys linear time
complexity and can infer known analytical kernels, i.e., ex-
ponential and sinusoidal kernels. On two large-scale social
media datasets, our method outperforms the current state-of-
the-art non-parametric approaches and the learned kernels re-

flect the preceived longevity for different content types.

2 Preliminaries

In this section, we introduce the prerequisites of our work:
the Hawkes process and LBPP.

The Hawkes Process [Hawkes, 1971]

Introduced in Section 1, the Hawkes process can be specified
using the conditional intensity function λ which modulates
the arrival rate of points. Mathematically, conditioned on a
set of points ttiu

N
i“1

, the intensity λ is expressed as:

λptq “ µ `
ÿ

tiăt

φpt ´ tiq, (1)

where µ ą 0, considered as a constant, and φp¨q : R Ñ
r0,8q are the background immigrant intensity and the trig-
gering kernel. The log-likelihood of ttiu

N
i“1

given µ and φp¨q
is [Rubin, 1972]:

log ppttiu
N
i“1|µ, φp¨qq “

N
ÿ

i“1

log λptiq ´

ż

Ω

λptq dt, (2)

where Ω is the sampling domain of ttiu
N
i“1

.

Laplace Bayesian Poisson Process (LBPP)

LBPP [Walder and Bishop, 2017] has been proposed for the
non-parametric Bayesian estimation of the intensity of a Pois-
son process. To satisfy non-negativity of the intensity func-
tion, LBPP models the intensity function λ as a permanen-
tal process [Shirai and Takahashi, 2003], i.e., λ “ g ˝ f
where the link function gpzq “ z2{2 and fp¨q obeys a
Gaussian process (GP) prior. Alternative link functions in-
clude expp¨q [Møller et al., 1998; Diggle et al., 2013] and
gpzq “ λ˚p1 ` expp´zqq´1 [Adams et al., 2009] where λ˚

is constant.

The choice gpzq “ z2{2 has the analytical advantages;
for some covariances the log-likelihood can be computed in
closed form [Lloyd et al., 2015; Flaxman et al., 2017]. LBPP
exploits the Mercer expansion [Mercer, 1909] of the GP co-
variance function kpx, yq ” Covpfpxq, fpyqq,

kpx, yq “
K
ÿ

i“1

λieipxqeipyq, (3)

where for non-degenerate kernels, K “ 8. The eigenfunc-
tions teip¨qui are chosen to be orthonormal in L2pΩ,mq for
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some sample space Ω with measure m. fp¨q can be rep-
resented as a linear combination of eip¨q [Rasmussen and
Williams, 2005], fp¨q “ ω

T
ep¨q, and ω has a Gaussian prior,

i.e., ω „ N p0,Λq where Λ “ diagpλ1, λ2, ¨ ¨ ¨ , λKq is a di-
agonal covariance matrix and ep¨q “ re1p¨q, ¨ ¨ ¨ , eKp¨qsT is
a vector of basis functions. Computing the posterior distribu-
tion of the intensity function λp¨q is equivalent to estimating
the posterior distribution of ω which, in LBPP, is approxi-
mated by a normal distribution (a.k.a Laplace approximation
[Rasmussen and Williams, 2005]), i.e.,

log ppω|X,Ω, kq « logN pω|ω̂, Qq, (4)

where X” ttiu
N
i“1

is a set of point data, Ω the sample space
and k the Gaussian process kernel function. ω̂ is selected
as the mode of the true posterior and Q the negative inverse
Hessian of the true posterior at ŵ:

ω̂ “ argmax
ω

log ppω|X,Ω, kq, (5)

Q´1 “ ´B
ωω

T log ppω|X,Ω, kq|
ω“ω̂

. (6)

The approximate posterior distribution of fptq is a normal
distribution [Rasmussen and Williams, 2005]:

fptq „ N pω̂T
eptq, eptqTQeptqq ” N pν, σ2q. (7)

Furthermore, the posterior of λptq is a Gamma distribution:

Gammapx|α, βq ” βαxα´1e´βx{Γpαq, (8)

where α “ pν2 ` σ2q2{p4ν2σ2 ` 2σ4q and β “ pν2 `
σ2q{p2ν2σ2 ` σ4q.

3 Inference via Sampling

We now detail our efficient non-parametric Bayesian estima-
tion algorithm, which samples the posterior of µ (constant
background intensity) and φp¨q (the trigerring kernel). Our
method starts with random µ0, φ0p¨q and iterates by cycling
through the following four steps (k is the iteration index):

i Calculate ppB|X,φk´1, µk´1q, the distribution of the
branching structure B given the data X , triggering kernel
φk´1, and background intensity µk´1 (see Section 3).

ii Sample a Bk as per ppB|X,φk´1, µk´1q (see Section 3).

iii Estimate ppφ|Bk, Xq (Section 3) and ppµ|Bk, Xq (Sec-
tion 3).

iv Sample a φkp¨q and µk from ppφp¨q|Bk, Xq and
ppµ|Bk, Xq, respectively.

By standard Gibbs sampling arguments, the samples of φp¨q
and µ drawn in the step (iv) converge to the desired posterior,
modulo the Laplace approximation in (iii). As the method is
based on block Gibbs sampling [Ishwaran and James, 2001],
we term it Gibbs-Hawkes.

Distribution and Sampling of the Branching Structure

The branching structure B has a data structure of tree (as
Fig. 1(b)) and consists of independent triggering events.
Thus, the probability of the branching structure B is the
product of probabilities of triggering events, i.e., ppBq “
śN

i“1
pij where pij is the probability of tj triggering ti.

Given µ and φp¨q, pij is the ratio between φpti ´ tjq and λptiq
(see e.g. [Lewis and Mohler, 2011]):

pij ” φpti ´ tjq{λptiq, j ě 1. (9)

Similarly, the probability of point ti being from µ, say pi0, is:

pi0 ” µ{λptiq. (10)

Given these probabilities we may sample a branching struc-
ture by sampling a parent for each ti according to probabil-
ities tpijujě0. The sampled branching structure separates
a set of points into immigrants and offspring (introduced in
Section 1). Immigrants can be regarded as a sequence gener-
ated from PP(µ), where PPp¨q is a Poisson process which has
an intensity µ, and used to estimate the posterior µ.

The key property which we exploit in the subsequent Sec-

tion 3 and Section 3 is the following. Denote by tt
piq
k u

Nti

k“1

the Nti offspring generated by point ti. If such a sequence

is aligned to an origin at ti, yielding Sti ” tt
piq
k ´ tiu

Ni

k“1
,

then the aligned sequence is drawn from PP(φp¨q) over [0,
T-ti] where r0, T s is the sample domain of the Hawkes pro-
cess. The posterior distribution of φp¨q is estimated on all
such aligned sequences.

Posterior Distribution of µ

Continuing from the observations in Section 3, note that if
we are given a set of points ttiu

N
i“1

generated by PP(µ)

over Ω “ r0, T s, the likelihood for ttiu
N
i“1

is the Pois-

son likelihood, ppttiu
N
i“1

|µ,Ωq “ e´µT pµT qN{N !. For
simplicity, we place a conjugate (Gamma) prior on µT ,
µT „ Gammapα, βq; the Gamma-Poisson conjugate fam-
ily conveniently gives the posterior distribution of µT , i.e.,
ppµT |ttiu

N
i“1

, α, βq “ Gammapα ` N, β ` 1q. We choose
the scale α and the rate β in the Gamma prior by making the
mean of the Gamma posterior equal to N and the variance
N{2, which is easily shown to correspond to α = N and β =
1. Finally, due to conjugacy we obtain the posterior

ppµ|ttiu
N
i“1, α, βq “ Gammap2N, 2T q. (11)

Posterior Distribution of φp¨q
We handle the posterior distribution of the triggering kernel
φp¨q given the branching structure in an analogous manner to
the LBPP method of Walder and Bishop [2017]. That is, we
assume that φp¨q “ f2p¨q{2 where fp¨q is Gaussian process
distributed as described in Section 2. In line with [Walder and
Bishop, 2017], we consider the sample domain r0, πs and the
so-called cosine kernel,

kpx, yq “
ÿ

γě0

λγeγpxqeγpyq, (12)

λγ ” 1{papγ2qm ` bq, (13)

eγpxq ” p2{πq1{2
a

1{2
rγ“0s

cos pγxq. (14)

Here, γ is a multi-index with non-negative (integral) values,
r¨s is the indicator function, a and b are parameters control-
ling the prior smoothness, and we let m “ 2. This basis is
orthonormal w.r.t. the Lebesgue measure on Ω “ r0, πs. The
expansion Eq. (12) is an explicit kernel construction based on
the Mercer expansion as per Eq. (3), but other kernels may
be used, for example by Nyström approximation [Flaxman et
al., 2017] of the Mercer decomposition.

As mentioned at the end of Section 3, by conditioning on
the branching structure we may estimate φp¨q by considering
the aligned sequences. In particular, letting Sti denote the
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aligned sequence generated by ti, the joint distribution of ω
and tStiui is calculated as [Walder and Bishop, 2017]

logppω,tStiui|Ω,kq

“
ÿ

i

ÿ

∆tPSti

log
1

2

´

ω
T
ep∆tq

¯2

´
1

2
ω

T pA`Λ
´1qω`C, (15)

A”
ÿ

i

ż T´ti

0

eptqeptqT dt, C”´
1

2
log

”

p2πqK |Λ|
ı

.

Note that there is a subtle but important difference between
the integral term above and that of Walder and Bishop [2017],
namely the limit of integration; closed-form expressions for

the present case are provided in the online supplement1.
Putting the above equation into Eq. (5) and Eq. (6), and we
obtain the mean ω̂ and the covariance Q of the (Laplace) ap-
proximate log-posterior in ω:

ω̂“argmax
ω

logppω,tStiui|Ω,kq, (16)

Q
´1“´

ÿ

i

ÿ

∆tPSti

2ep∆tqep∆tqT {pω̂T
ep∆tqq2`A`Λ

´1
. (17)

Then, the posterior φ is achieved by Eqs. (7) and (8).

Computational Complexity

For LBPP, constructing Eq. (15) and Eq. (17) takes OpNoK
2q

where K is the number of basis functions and No is the num-
ber of offspring. Optimizing ω (Eq. (16)) is a concave prob-
lem, which can be solved efficiently. If L-BFGS is used,
OpCKq will be taken to calculate the gradient on each ω

where C is the number of steps stored in memory. Computing
Q requires inverting a K ˆ K matrix, which is OpK3q. As a
result, the complexity of estimating φ|B is OppNo `KqK2q.
In terms of estimating µ|B taking Op1q, the complexity of
estimating µ, φ|B is linear to the number of data. While
the naive complexity for pij is OpN2q, Halpin [2013] pro-
vides an optimized approach to reduce it to OpNq, which
relies on the stationary of Hawkes processes. In the step
of sampling branching structures, points with negligible im-
pacts on another point are not sampled as its parents. In-
terestingly, in comparison with LBPP, while our model is in
some sense more complex, it enjoys a more favorable com-
putational complexity. In summary, we have the following
complexities per iteration and in Section 5, we validate the
complexity on both synthetic and real data.

4 Maximum-A-Posterior Estimation

We explore a connection between the sampler of section 3 and
the EM algorithm, which allows us to introduce an analagous
approximate maximumum a posteriori (M.A.P.) scheme.

Operation Complexity

µ|B Op1q
pij OpNq
φ|B OppNo ` KqK2q

overall OppN ` KqK2q

Table 2: Time Complexity.

compute

!"#
posterior

Gibbs-Hawkes: sample

EM-Hawkes: M.A.P.

EM: M.A.P.

Gibbs-Hawkes: one

EM-Hawkes: multiple

EM: infinite

Gibbs-Hawkes: store all

sampled $, &

EM-Hawkes: store all

M.A.P. $, &

Figure 2: A visual summary of the Gibbs-Hawkes, EM-Hawkes and
the EM algorithms. The differences between them are (1) the num-
ber of sampled branching structures and (2) selected φ and µ for
pij . In contrast with with Gibbs-Hawkes, the EM-Hawkes method
draws multiple branching structures at once and calculates pij using
M.A.P. φ and µ. The EM algorithm is equivalent to sampling infinite
branching structures and exploiting M.A.P. or constrained M.L.E. φ
and µ to calculate pij (see Section 4).

Relationship to EM

In Section 1 we mentioned the connection between our
method and the stochastic EM algorithm [Celeux and Diebolt,
1985]. The difference is in the M-step; to perform EM
[Dempster et al., 1977] we need only modify our sampler
by: (a) sampling infinite branching structures at each itera-
tion, and (b) re-calculating the probability of the branching
structure with the M.A.P. µ and φp¨q, given the infinite set
of branching structures. More specifically, maximizing the
expected log posterior distribution to estimate M.A.P. µ and
φp¨q given infinite branching structures is equivalent to maxi-
mizing the EM objective in the M-step (see the online supple-
ment1 for the formal derivation). Finally, note that the above
step (b) is identical to the E-step of the EM algorithm.

EM-Hawkes

Following the discussion above, we propose EM-Hawkes,
an approximate EM algorithm variant of Gibbs-Hawkes pro-
posed in Section 3. Specifically, at each iteration EM-Hawkes
(a) samples a finite number of cluster assignments (to ap-
proximate the expected log posterior distribution), and (b)
finds the M.A.P. triggering kernels and background inten-
sities rather than sampling them as per block Gibbs sam-
pling (the M-step of the EM algorithm). An overview of the
Gibbs-Hawkes, EM-Hawkes and EM algorithm is illustrated
in Fig. 2.

Note that under our LBPP-like posterior, finding the most
likely triggering kernel φp¨q is intractable (see the online sup-
plement1) As an approximation we take the element-wise
mode of the marginals of the φptiq to approximate the mode
of the joint distribution of the φptiq.

5 Experiments

We now evaluate our proposed approaches — Gibbs-Hawkes
and EM-Hawkes — and compare them to three baseline mod-
els, on synthetic data and on two large Twitter online diffu-
sion datasets. The three baselines are: (1) A naive parametric

1 https://bit.ly/2JM6ge9
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Figure 4: Running time per iteration on ACTIVE and SEISMIC.

Hawkes equipped with a constant background intensity and
an exponential (Exp) triggering kernel φ “ a1a2 expp´a2tq,
a1, a2 ą 0, estimated by maximum likelihood. (2) Ordi-
nary differential equation (ODE)-based non-parametric non-
bayesian Hawkes [Zhou et al., 2013b]. (3) Wiener-Hopf
(WH) equation based non-parametric non-bayesian Hawkes
[Bacry and Muzy, 2014]. Codes of ODE based and WH based
methods are publicly available [Bacry et al., 2017].

5.1 Synthetic Data

We employ two toy Hawkes processes to generate data, both
having the same background intensity µ “ 10, and cosine
(Eq. (18)) and exponential (Eq. (19)) triggering kernels re-
spectively:

φcosptq“cosp3πtq`1, tPr0,1s; 0, otherwise; (18)

φexpptq“5expp´5tq, tą0. (19)

Prediction. For three baseline models and EM-Hawkes, the
predictions µpred and φpredp¨q are taken to be the M.A.P. val-
ues, while for Gibbs-Hawkes we use the posterior mean.

Evaluation. Each toy model generates 400 point sequences
over Ω “ r0, πs, which are evenly split into 40 groups, 20
for training and 20 for test. Each of the three methods fit on
each group, i.e., summing log-likelihoods for 10 sequences
(for the parametric Hawkes) or estimating the log posterior
probability of the Hawkes process given 10 sequences (for
Gibbs-Hawkes and EM-Hawkes) or fitting the superposition
of 10 sequences [Xu et al., 2018]. Since the true models
are known, we evaluate fitting results using the L2 distance
between predicted and true µ and φp¨q: dL2pgpred, gtrueq “

Data Exp ODE WH Gibbs EM

φcos 0.809 0.677 1.225 0.414 0.390
µcos 1.229 1.262 30.826 1.381 2.109
φexp 0.189 0.965 1.581 0.235 0.221
µexp 1.516 5.471 82.078 1.818 3.617

activeYT 2.369 2.370 1.315 2.580 2.592
SEISMIC 3.335 3.357 2.131 3.576 3.578

Table 3: Empirical performance comparison between algorithms
(columns) with different measures (rows). Top: L2 distance to
known φ and µ, bottom: mean predictive log likelihood on real data.

p
ş

Ω

`

gpredptq ´ gtrueptq
˘2
dtq1{2.

Experimental Details. For Gibbs-Hawkes and EM-
Hawkes, we must select parameters of the GP kernel
(Eqs. (12) to (14)). Having many basis functions leads to a
high fitting accuracy, but low speed. We found that using
32 basis functions provides a suitable balance. For kernel
parameters a, b of Eq. (13), we choose a, b “ 0.002. 5000
iterations are run to fit each group and first 1000 are ignored
(i.e. burned-in).

Results. The top of Table 3 shows the mean L2 distance be-
tween the learned and the true φp¨q and µ on toy data. Gibbs-
Hawkes and EM-Hawkes get closest triggering kernels to
φcos; naturally, the parametric Hawkes – which uses an expo-
nential kernel – fits φexp best. The parametric model retrieves
µ slightly better on both synthetic datasets. The learned trig-
gering kernels for φexp and φcos are shown in Fig. 5a and in

the online supplement1. The ODE-based method performs
well on pµcos, φcosq but badly on pµexp, φexpq. Notably, tuning
the hyper-parameters of the WH method is challenging, and
Table 3 shows the best result obtained after a rather exhaus-
tive experimentation. In summary, compared with state-of-
the-art methods, our approaches achieve better performances
for data generated by kernels from several parametric classes;
as expected the parametric models are only effective for data
generated from their own class.

Effect of Halpin’s Procedure. In Section 3 we show that
using Halpin’s procedure reduces the complexity of calculat-
ing pij from quadratic to linear. We now empirically validate
this speed up. To distinguish between quadratic and linear
complexity, we compute the ratio between running time and
data size, as shown in Fig. 3. The ratio when using Halpin’s
procedure remains roughly constant as data size increases
(the ratio increases linearly without the optimization), which
implies that Halpin’s procedure renders linear calculation of
pij and of branching structures. Later, we will show the linear
complexity of our method on real data.

5.2 Twitter Diffusion Data

We evaluate the performance of our two proposed approaches
(Gibbs-Hawkes and EM-Hawkes) on two Twitter datasets,
containing retweet cascades. A retweet cascade contains an
original tweet, together with its direct and indirect retweets.
Current state of the art diffusion modeling approaches [Zhao
et al., 2015; Mishra et al., 2016; Rizoiu et al., 2018] are based

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4303



0.0 0.2 0.4 0.6 0.8 1.0 1.2

Time Difference

0

1

2

3

4

5
K
e
rn
e
l
V
a
lu
e Gibbs-Hawkes

EM-Hawkes

True kernel

(a) Exponential synthetic data

0.0 0.5 1.0 1.5 2.0

Time Difference ×10
−1

0

5

10

15

K
e
rn
e
l
V
a
lu
e

ACTIVE

SEISMIC

(b) ACTIVE vs. SEISMIC

0.0 0.5 1.0 1.5 2.0

Time Difference ×10
−1

0

5

10

15

K
e
rn
e
l
V
a
lu
e

Music

Pets & Animals

(c) Categories Music vs. Pets

Figure 5: Learned Hawkes triggering kernels using our non-parametric Bayesian approaches. Each red or blue area shows the estimated
posterior distributions of φ, while the solid lines indicate the 10, 50 and 90 percentiles. (a) A synthetic dataset simulated using φexpptq
(Eq. (19), shown in gray), is fit using Gibbs-Hawkes (in red) and EM-Hawkes (in blue); (b) Twitter data in ACTIVE (in red) and SEISMIC
(in blue); (c) Twitter data associated with two categories in the ACTIVE set: Music (in red) and Pets & Animals (in blue).

on the self-exciting assumption: users get in contact with on-
line content, and then diffuse it to their friends, therefore gen-
erating a cascading effect. The two datasets we use have been
employed in prior work and they are publicly available:

• ACTIVE [Rizoiu et al., 2018] contains 41k retweet cas-
cades, each containing at least 20 (re)tweets with links
to Youtube videos. It was collected in 2014 and each
Youtube video (and therefore each cascade) is associated
with a Youtube category, e.g., Music or News.

• SEISMIC [Zhao et al., 2015] contains 166k randomly
sampled retweet cascades, collected in from Oct 7 to
Nov 7, 2011. Each cascade contains at least 50 tweets.

Setup. The temporal extent of each cascade is scaled to
r0, πs, and assigned to either training or test data with equal
probability. We bundle together groups of 30 cascades of
similar size, and we estimate one Hawkes process for each
bundle. Unlike for the synthetic dataset, for the retweet cas-
cades dataset there is no true Hawkes process to evaluate
against. Instead, we measure using log-likelihood how well
the learned model generalizes to the test set. We use the same
hyper-parameters values as for the synthetic data.

Fitting Performance. For each dataset, we calculate the
log-likelihood per event for each tweet cascade obtained by
three baselines and our approaches (Table 3). Visibly, our
proposed methods consistantly outperform baselines, with
EM-Hawkes performing slightly better than Gibbs-Hawkes
(by 0.6% for ACTIVE and 0.4% for SEISMIC). This seems to
indicate that online diffusion is influenced by factors not cap-
tured by the parametric kernel, therefore justifying the need to
learn the Hawkes kernels non-parametrically. As mentioned
in the synthetic data part, the WH-based method has a disad-
vantage of hard-to-tune hyper-parameters, which leads to the
worst performance among all methods.

Scalability. To validate the linear complexity of our
method, we record running time per iteration of Gibbs-
Hawkes on ACTIVE and SEISMIC in Fig. 4. The running
time rises linearly with the number of points increasing, in
line with the theoretical analysis. Linear complexity makes
our method scalable and applicable on large datasets.

Interpretation. We show in Fig. 5a the learned kernels for
information diffusions. We notice that the learned kernels
appear to be decaying and long-tailed, in accordance with
the prior literature. Fig. 5b shows that the kernel learned on
SEISMIC is decaying faster than the kernel learned on AC-
TIVE. This indicates that non-specific (i.e. random) cascades
have a faster decay than video-related cascades, presumably
due to the fact that Youtube videos stay longer in the human
attention. This connection between the type of content and
the speed of the decay seems further confirmed in Fig. 5c,
where we show the learned kernels for two categories in AC-
TIVE: Music and Pets & Animals. Cascades relating to Pets
& Animals have a faster decaying kernel than Music, most
likely because Music is an ever-green content.

6 Conclusions

In this paper, we provided the first non-parametric Bayesian
inference procedure for the Hawkes process which requires
no discretization of the input domain and enjoys a linear
time complexity. Our method iterates between two steps.
First, it samples the branching structure, effectively trans-
forming the Hawkes process into a cluster of Poisson pro-
cesses. Next, it estimates the Hawkes triggering kernel us-
ing a non-parametric Bayesian estimation of the intensity of
the cluster Poisson processes. We provide both a full poste-
rior sampler and an EM estimation algorithm based on our
ideas. We demonstrated our approach can infer flexible trig-
gering kernels on simulated data. On two large Twitter dif-
fusion datasets, our method outperforms the state-of-the-art
in held-out likelihood. Moreover, the learned non-parametric
kernel reflects the intuitive longevity of different types of con-
tent. The linear complexity of our approach is corroborated
on both the synthetic and real problems. The present frame-
work is limited to the univariate unmarked Hawkes process
and will be extended to marked multivariate Hawkes process.
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