
Efficient Nonblocking Software Transactional Memory

Virendra J. Marathe

Department of Computer Science,

University of Rochester

vmarathe@cs.rochester.edu

Mark Moir

Sun Microsystems Labs

mark.moir@sun.com

Technical Report #932

Department of Computer Science, University of Rochester

March 2008

Abstract

The current state of the art seems to favour blocking software transactional memory (STM)
implementations over nonblocking ones, and a common belief is that nonblocking STMs fun-
damentally cannot be made to perform as well as blocking ones. But this belief is based on
experience, intuition, and anecdote, not on rigorous analysis.

We believe there is still plenty of room for improvement in the performance of nonblocking
STMs and that, regardless of performance, blocking is unacceptable in some contexts. It is
therefore important to continue improving nonblocking STMs, both as a goal in its own right,
as well as to inform research aimed at determining whether a fundamental gap exists between
blocking and nonblocking STMs.

We describe a novel nonblocking copyback mechanism for a word-based software transac-
tional memory (STM), which closely follows simple and efficient blocking mechanisms in the
common case. Previous nonblocking copyback mechanisms impose significant overhead on the
common case. Our performance experiments show that this approach yields significant perfor-
mance improvement over the previous best nonblocking word-based STM. Our design approach
can be applied to some other blocking STMs to achieve nonblocking counterparts that perform
similarly in the common case.

Keywords: Software Transactional Memory, Nonblocking Progress, Performance, WSTM

1 Introduction

There has been a recent flurry of interest in transactional memory, and in techniques for impement-
ing it in hardware, in software, or in a combination of the two. In this paper, we focus on software
transactional memory (STM). Foundational research into transactional memory grew out of re-
search into nonblocking concurrent data structures, which aim to overcome the many well-known
software engineering, performance, and robustness problems associated with lock-based implemen-
tations. Thus, for a long time most transactional memory researchers considered it mandatory for
transactional memory implementations to be nonblocking.

Recently, many researchers have developed blocking STMs, recognising that they are much easier
to design and that the software engineering benefits of STM can be delivered even by a blocking
STM. Nonetheless, hiding blocking from the application programmer does not eliminate all of its
disadvantages. For example, a blocking implementation may cause a transaction to wait until a
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preempted thread is rescheduled, resulting in serious performance degradation in some cases. In
other cases, blocking is more than just a performance problem: it is unacceptable. For one example,
consider using an STM to coordinate access to a data structure that is shared between a thread and
an interrupt handler. In this case, the thread must not block the interrupt handler, because the
thread will not run again until the interrupt handler completes. The design of interrupt handlers
is often significantly complicated by this restriction.

A common belief is emerging that blocking STMs are fundamentally faster than nonblocking
ones [3, 4, 5, 24], based largely on an argument made by Ennals [5]. However, this is an informal
argument based only on intuition, and not a formal lower bound proof. In particular, it misses
the possibility of storing the logical values of transactional data in place in the common case,
while displacing it to metadata located elsewhere when necessary to avoid blocking, which is the
technique we use in the nonblocking STM we present here.

Research on improving nonblocking STMs may bear fruit by delivering performance improve-
ments, or by informing efforts to prove a fundamental gap between blocking and nonblocking STMs,
or both.

In this paper, we present a new nonblocking STM, which we designed by modifying a simple
blocking STM to be nonblocking, while keeping its common-case behaviour (and thus performance)
almost unchanged. Previous nonblocking STMs impose significant overhead on the common case
in order to be nonblocking. We show that our design performs significantly better than the best
previous comparable nonblocking STM, and comparably with and sometimes better than the simple
blocking STM on which it is based.

1.1 Motivation and background

The industry is quickly moving towards multicore computing, rather than continuing to focus on
improving single-core performance. Applications will thus increasingly need to exploit concurrency
in order to benefit from advances in technology. In today’s programming practice, sections of code
are made to appear atomic using locks and condition variables. These blocking constructs have
numerous well-known disadvantages related to software engineering, performance, and robustness,
making concurrent programming a delicate art that is difficult even for experts. This situation
is unworkable as the multicore paradigm increasingly compels everyday programmers to become
concurrent programmers.

Transactional Memory (TM) allows programmers to express what should be executed atomically,
leaving the system to determine how this atomicity should be achieved. Herlihy and Moss [14]
proposed hardware transactional memory (HTM) and Shavit and Touitou [25] proposed software
transactional memory (STM). While early proposals for both HTM and STM had some significant
drawbacks, a recent flurry of activity in both HTM (e.g., [1, 7, 22, 23]) and STM (e.g., [4, 8, 9,
10, 13, 18, 24]) has yielded substantial progress towards practicality. Recently, hybrid transactional

memory (HyTM) [2, 21] has been proposed, in which transactions can be attempted using HTM
(if HTM is available) or using a compatible STM. While we do not focus on HyTM in this paper,
all of the techniques we present are compatible with this approach.

Transactional memory largely eliminates the software engineering problems associated with
locks. However, the extent to which it also eliminates problems related to performance, scalability,
and robustness depends on the system support for transactions. Numerous research groups are
working on STM implementations for a variety of execution contexts, and this work has shed light
on a rich design space, and a number of issues and tradeoffs.

STMs can be characterised as either word-based or object-based. Word-based STMs designs are
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more constrained than object based ones, because they cannot depend on aspects of an existing
object infrastructure, such as existing object metadata, type safety for pointers, etc. However, this
means they can be used in programming languages such as C and C++, which are frequently used
to implement the object infrastructure upon which object-based STMs (such as DSTM [13]) are
built. Thus, word-based STMs have the potential to benefit a much wider range of applications than
object-based ones do. In this paper we focus on word-based STMs, though our general approach
is also applicable to the design of object-based ones.

A key issue for any STM design is the extent to which it avoids blocking. Generally, implementa-
tions providing strong nonblocking progress properties such as wait-freedom [11] entail significantly
more overhead and are less practical than implementations providing weaker properties such as
lock-freedom [11]. Recently, Herlihy et al. [12] identified an even weaker progress property, which
they called obstruction-freedom. The weaker property admits simpler synchronization algorithms
that are faster in the common uncontended case because the mechanisms that must be integrated
directly into the algorithms in order to provide a stronger property such as lock-freedom or wait-
freedom are unnecessary. Exploiting this advantage, Herlihy et al. [13] presented an obstruction-free
dynamic form of STM (DSTM), achieving an STM system that is significantly more practical than
previous ones. This work has lead a number of research groups to experiment with variatons on
DSTM [6, 16, 17, 18, 20].

An STM implementation is obstruction-free if it guarantees that, if a transaction is repeatedly
retried and eventually encounters no conflicts with other active transactions, then eventually the
transaction commits successfully. Obstruction-freedom makes no progress guarantees in case of
repeated interference between two or more transactions, and Herlihy et al. [13] observed that
resulting “livelock” scenarios are not merely a theoretical concern: livelock occurs in practice if
nothing is done to prevent it. Herlihy et al. also showed that, by augmenting an obstruction-free
STM with a modular contention manager, such livelocks can be eliminated in practice. This is the
approach we have taken in designing our nonblocking STM.

1.2 Overview of our design approach and STM

We present a new technique for implementing an obstruction-free STM that closely tracks the
behaviour and performance of a simple blocking scheme until the contention manager decides that
a transaction should not wait for another to complete. In a blocking implementation, there is no
choice in such circumstances: the mechanism dictates the policy.

To demonstrate our idea, we have implemented two word-based STMs, one blocking and one
nonblocking. The only other nonblocking word-based STM of which we are aware is Harris and
Fraser’s WSTM [8, 6]. We found their nonblocking copyback mechanism ingenious, and in fact, our
work was inspired in part by theirs. However, we also felt that it imposed too much overhead on
the common case in preparation for avoiding blocking. We later explain several sources of overhead
in WSTM that we have eliminated, and present performance experiments verifying that this indeed
translates to significantly improved performance.

In our blocking STM implementation, as a transaction executes it acquires exclusive owner-
ship of locations it intends to modify, and copies new values back to modified locations upon
successful commit, before releasing ownership. Because transactions maintain exclusive ownership
of these locations throughout the copyback, no other transaction can access the locations until the
copying is complete. Therefore the copying can be performed with simple store instructions, and
no transaction will ever detect the difference between the logical value stored to a location by a
recently-committed transaction, and the physical value that remains in the location because the
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committed transaction has not yet copied its new value to it. However, this simplicity comes at a
price: a transaction that needs to access a location that is owned by a committed transaction has
no choice but to wait.

Our blocking STM includes some novel optimizations. In modifying this STM to achieve our
nonblocking STM, we were able to retain all of these optimizations, resulting in a nonblocking STM
that largely eliminates a number of sources of overhead in WSTM.

Our nonblocking STM is structured similarly to the blocking one, and in the common case, a
transaction behaves almost identically to the blocking STM. However, it overcomes the blocking
nature of our first STM by allowing a transaction to determine the logical value of a memory
location that is owned by a committing transaction, and even to “steal” ownership of the memory
location from the committing transaction while preserving this logical value. This way, committing
transactions do not prevent progress by others.

Committing transactions usually copy their values to the affected locations using ordinary
stores with no additional synchronization, just as in the blocking STM. A stealing transaction
cannot control when its victim will perform its store to a stolen location. Therefore, when a
location is stolen, its logical value is subsequently determined by separate transactional metadata
associated with the location, making the timing of the victim’s stores to the affected memory
locations irrelevant. The ownership data associated with the location is marked as “stolen” until it
can be determined that the original owner is no longer copying values back to the affected memory
locations, at which time normal operation can resume.

Managing stolen locations and their logical values accounts for most of the complexity in our
nonblocking STM. However, until such time as we decide to steal a location, the STM closely
mimics the simple blocking STM, and performs very similarly. Thus, we show that it is possible
to have the ability to make progress despite a conflict with a delayed transaction, while incurring
very little overhead until this option is exercised.

1.3 Roadmap

The remainder of this paper is structured as follows. We describe our simple blocking STM in Sec-
tion 2 and the modifications we made to it to achieve the nonblocking STM in Section 3. Section 4
compares our nonblocking STM to the closest previous work, namely WSTM [8]. In Section 5, we
present some performance experiments showing that the simple blocking STM substantially out-
performs WSTM, and that our nonblocking STM performs comparably with the simple blocking
one in most cases, and alwats outperforms WSTM significantly. We conclude in Section 6.

2 A Simple Blocking STM System

In this section, we describe a simple STM that uses well-known techniques to avoid blocking in
most cases, but does not attempt to avoid blocking during commit, which is significantly more
complicated. This STM is derived from the one used in the hybrid transactional memory prototype
described in [2], but includes some differences and some novel optimisations, as described below.
Our main contribution is in the next section, where we show how to extend the blocking STM to
make it nonblocking; the nonblocking STM preserves these optimisations.

In a nutshell, our simple blocking STM is a word-based STM that employs eager ownership

acquisition and buffers modifications in a write set to be copied back to the affected memory
locations upon commit. In contrast to the STM in [2], we used invisible read sharing to allow a
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more direct comparison to Harris and Fraser’s WSTM [6]. Different read sharing techniques perform
better for different workloads, and we did not want this factor to complicate our comparison.

Our STMs all provide the following interface:

stm begin(my txn) Begins transaction my txn.
stm read(my txn, addr) my txn reads from memory location addr.
stm write(my txn, addr, value) my txn writes value to addr.
stm commit(my txn) Commits my txn.
stm abort(my txn) Aborts my txn.

Mapping higher-level language notation for atomic blocks onto this interface, for example using
a compiler, is beyond the scope of our description here.

2.1 Overview of blocking STM

Each transaction has a status, which is ACTIVE, ABORTED, or COMMITTED. A transaction starts with
an ACTIVE status, and it commits by atomically (for example using the compare-and-swap (CAS)
instruction) changing its status from ACTIVE to COMMITTED; another transaction that wishes to
abort the transaction can attempt to do so by using CAS to change its status from ACTIVE to
ABORTED.

As a transaction executes, it acquires exclusive ownership of each location it accesses, and
maintains a write set (set of address-value pairs) to record what values it intends to write to which
memory locations.

Transactional read operations look up the write set to determine if the transaction has previously
stored a value to the accessed location, returning the most recent such value if so. Otherwise, they
determine the logical value of the location based on the definition given below, aborting the owning
transaction if it is active to avoid the transaction committing and thus changing the value of the
location read. The transaction also records information about the location being read in a read set

for later validation. Read validation ensures that a transaction commits only if none of the values
it has read have changed since they were read, and also ensures that user transaction code does
not run having read inconsistent values from different locations, which could result in arbitrary
behaviour even though the transaction is doomed to fail.

Correct behaviour of an STM is defined using the standard linearisability [15] condition. Formal
details would only obscure our description here, but a brief intuitive discussion is necessary to
understand our algorithms. Because STM must provide the illusion of multiple memory locations
changing atomically, while in reality the memory locations are updated at different times using
separate machine instructions, we assign a logical value to each memory location at any point in
time, and ensure that each transaction appears to execute instantaneously at its commit point,
reading the logical values of memory locations it reads and changing the logical values of memory
locations it writes.

In our simple blocking STM, the logical value of a memory location with address a is defined
to be the contents of location a, unless a is owned by a transaction that has committed and has a
pair (a, v) in its writeset, in which case its logical value is v. Thus, when a transaction successfully
commits, the logical values of all locations written by the transaction instantaneously change to
the last values written to them by the transaction. Thus the transaction “takes effect” at its
commit point, even though the values it writes are not yet stored in the target locations. After
committing, the transaction copies the values from its write set to the indicated locations before
releasing ownership of them.
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Because a transaction maintains exclusive ownership of each location it modifies until after it
copies back the new value from the writeset to it, no other transaction can modify these locations
while the copyback is being performed, making it simple to determine the logical values of the
locations by examining the transaction’s write set. However, this also makes the simple STM
blocking: a transaction that wishes to access such a location must simply wait. If a transaction
requires ownership of a location that is owned by another transaction that is active (i.e., has not
yet committed or been aborted), it can abort the active transaction, thus ensuring that it will not
commit successfully. It can then directly acquire ownership of the location because there is no risk
that the active transaction will commit. Decisions about whether to abort a conflicting transaction
are made by a separate contention manager [13], which guarantees that any deadlock that arises
is eventually resolved by aborting one or more transactions.

2.2 Details of blocking STM

2.2.1 Data structures

Figure 1 illustrates the primary data structures in our implementation, as described below. Com-
ponents in bold are not present in the blocking implementation.

The primary data structures in our STMs are transaction descriptors, which are used to repre-
sent transactions, and a table of ownership records (orecs), which are used to represent ownership
by transactions of memory locations. Each location in memory is covered by one orec in the ta-
ble, determined by a simple hash on the location’s address. Thus, ownership of multiple memory
locations is represented by a single orec.1

Each transaction descriptor consists of a transaction ID (tid), a version number (version), a
status indicator as described above, and read and write sets (rs and ws). Transaction descriptors
can be reused. The tid and version fields together uniquely identify a transaction.

The read and write sets are organised into per-orec rows. Each read set row contains an orec
identifier and a snapshot of the orec. Each write set row contains an orec identifier and an array
of entries, each of which is an address-value pair for some address covered by the indicated orec.
Each time a transaction writes to an address corresponding to an orec it has not yet acquired, it
uses the next available row in its write set and creates in it an entry to record the address of the
location and the value written. Subsequent writes to locations covered by the same address either
update the value stored in the existing entry for the location written, or create a new entry in the
row if none exists.

In our implementations, we preallocate rows for the read and write sets. If a transaction exceeds
the number of preallocated rows, we abort it, allocate a larger set and retry. It is not hard to refine
this implementation to allocate new rows dynamically, without aborting the transaction. If a
transaction exceeds the preallocated array of write set entries for a given row, further entries are
allocated dynamically and stored in a linked list.

Each orec is stored in one 64-bit word; all modifications to orecs are done using a CAS instruction
or similar synchronization primitive to ensure that an orec does not change between a transaction

1As Ennals [5] and others point out, colocating transactional metadata in the same cache lines as the data it
controls can result in significant performance improvements. This can be done in object-based STMs for garbage
collected systems. However, the blocking STM on which we based our implementation is intended for use in general
C/C++ programs in which no such object infrastructure exists, and the compiler lays out data according to existing
standards. In this context, it is not acceptable to modify the layout of data to improve performance. If it were
acceptable, we could easily do so, both with our blocking STM and the nonblocking ones based on it; this issue is
orthogonal to the blocking vs. nonblocking debate, despite Ennals’s suggestions that this is an optimisation that can
be used with blocking STMs and not with nonblocking ones.
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examining and updating the orec. Each orec consists of: tid and version fields, used to identify
the transaction that most recently acquired ownership of the orec; a mode field indicating that the
orec is UNOWNED or OWNED; and a row field, used to identify the write set row in which the owning
transaction stores entries for locations mapping to this orec. This allows a transaction to quickly
look up the write set entry for a particular memory location when it already owns the associated
orec.

2.2.2 Upgrading

To ensure correct behaviour if a transaction reads a location covered by an orec and subsequently
writes a location covered by the same orec, when a transaction acquires an orec, it records a
copy of the orec as it was immediately before the acquisition. When validating the read set, if
a transaction observes that it owns an orec it is validating, it checks to make sure that the orec
snapshot recorded in the read set matches the snapshot from immediately before the acquisition;
if not, the transaction is aborted. This ensures that the transaction does not commit if another
transaction writes a location between the read and the subsequent orec acquisition.

2.2.3 Fast release

Because a transaction that acquires ownership of an orec stores both its tid and version in the
orec, it can logically release ownership of all locations it has acquired by simply incrementing the
version field of its transaction descriptor. This avoids the need to release orecs individually, a
significant optimisation. In some cases, the profit from this fast release optimisation is lost because
it creates additional work for a transaction that subsequently wishes to acquire a released orec:
this transaction must inspect the version field of the previous owner’s transaction descriptor to
determine that it has been released. However, by removing the cost of releasing ownerships from the
critical path of transactions, we enable a number of flexible alternatives, such as resetting locations
to UNOWNED mode incrementally, in the background, or using idle processors. Furthermore, because a
transaction will generally have its own transaction descriptor cached, this checking comes essentially
for free when a transaction encounters an orec owned by a previous transaction that used the same
descriptor. Because threads generally retain and reuse transaction descriptors, this is especially
important for single-threaded applications and those that exhibit a high degree of locality.

3 The Nonblocking STM

3.1 Overview of nonblocking STM

In the nonblocking STM, a transaction can “steal” an orec from a committed transaction, rather
than waiting for it to complete. Until a transaction decides to steal an orec from a committed
transaction, the nonblocking STM behaves very similarly to the blocking version. Specifically, a
transaction only needs to keep new values for addresses it modifies, and copy them back using
ordinary store instructions, without additional synchronization.

When a transaction steals an orec and subsequently commits, it cannot simply copy its values
back to locations covered by the stolen orec as usual, because the “victim” transaction from which
it stole the orec might still be copying back its values, and may therefore overwrite newer values
written by the “stealer”. Therefore, while the victim may still be performing its copyback, the
logical values of locations covered by the stolen orec must be maintained in the transaction row
associated with the orec.
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 readset     writeset

Ownership Record (ORec)
version status, stealers

Transaction Descriptor

          Table
orec_ID: 16

size: 32

stolen_row: 1

txn_committed: 1
          row0

orec_snapshot: 64

released_stolen_row: 1

tid: 10
version: 32
mode: 1
stolen_orec: 1
copier_exists: 1
row_offset: 11

ORec contents

          Shared Heap

          value0
          value1
          value2
          value3

          orec (n−1)

          orec (n−2)

          orec (2)

          a1

          a3
          a2

          hash (addr)

          a0

          orec (0)

          orec (1)

          row3

addr: 32
old_value: 32

orec_snapshot: 64

orec_ID: 16

size: 32

Writeset Txn Row Header

Readset Txn Row Header

Writeset Txn Entry

Readset Txn Entry

addr: 32
old_value: 32
new_value: 32
stolen_entry :1

Figure 1: Illustration of main data structures in blocking and nonblocking STMs. Bold components
only in nonblocking STM.

It is more expensive to access locations covered by stolen orecs, so it is desirable to eventually
reset a stolen row to its normal, unstolen state. Before doing so, we must first ensure that the
memory locations covered by the orec contain their logical values, and that no transaction is still
copying back values to these locations. To keep our algorithm simple and efficient, we maintain the
invariant that only one transaction at a time can be copying back values to memory for a particular
orec. When an orec is first stolen, the transaction from which it was stolen is the one transaction
copying back values to locations covered by that orec. After it has finished, another transaction
can assume this role, copy back values stored in the transaction row associated with the orec, and
then reset the orec to unstolen. We explain how this is achieved in more detail later.

3.2 Details of nonblocking STM

3.2.1 Data structures

The data structures used for the nonblocking STM are similar to those used for the blocking
STM described in the previous section, with the following additions. Orecs contain two additional
flags stolen orec and copier exists. Each write set row contains an indication OrecID of the
orec that was most recently associated with the row, a stolen row flag, a released flag, and a
txn committed flag. Each transaction entry, in addition to the addr and newval fields used in
the blocking STM, has an oldval field and a stolen entry flag. Finally, transaction descriptors
have an additional stealer note field, which is the head of a linked list of pointers to orecs. The
stealer note and version fields are colocated so that they can be accessed atomically using CAS.

3.2.2 Stealing, restealing, and resetting orecs

When an orec’s stolen orec flag is false, the logical value of a memory location covered by this orec
is defined as before, and transactional execution is essentially as before. When the stolen orec

flag is true, the logical values of locations covered by the orec are determined by the contents of
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the transaction row indicated by the orec, and the status of the transaction that last acquired
ownership of it. The details of the logical value definition are significantly more complicated in this
case. Below we explain how orecs are stolen, restolen, and reset to unstolen, ignoring for now the
logical value of memory locations covered by stolen orecs.

The copier exists flag is used to ensure that the orec is not reset to unstolen while some
transaction may be copying back values to locations covered by that orec. When a transaction
steals an unstolen orec, it sets both the stolen orec flag and the copier exists flag to reflect
that the victim transaction is potentially copying back values. When the victim transaction has
completed copying back its values, it indicates this by clearing the copier exists flag.

Careful coordination is required so that a transaction that has completed its copyback knows
the set of orecs for which it should reset the copier exists flag (if any). To inform the victim
that it should reset the copier exists flag in the stolen orec, a stealer attempts to insert a stealer
note in the victim’s stealer note list. The head of this list is modified using a CAS that also checks
that the victim’s version number has not changed. When the victim increments its version number
after completing its copyback, it also takes a snapshot of the head of its stealer list, and sets it to
NULL. The victim then proceeds to clear the copier exists bit of each orec indicated by a note
in the stealer note list. This paves the way for a subsequent stealer to reset the orec to unstolen.

A stealer either succeeds in inserting a stealer note in its victim’s stealer note list, and therefore
knows that the victim will get the note and clear the bit, or it fails to insert the note because the
version number has changed. In the latter case, the stealer can infer that the victim has completed
its copyback, so in fact there is no transaction copying back values to locations associated with this
orec. In this case, we can consider that the orec was not really stolen, and the stealer can simply
reset the stolen orec and copier exists bits in the orec and reestablish normal conditions for
the orec, provided the orec has not been restolen in the meantime. If it has been restolen, then the
failed stealer cannot simply reset the orec to normal conditions, because the logical values of some
locations may now be stored in the transaction row of the owning transaction. Therefore, in this
case, the failed stealer simply resets the copier exists flag, thereby indicating that no transaction
is currently copying back values to locations covered by this orec. Again, this allows a subsequent
stealer to reset the orec to unstolen.

If a transaction wishes to acquire an orec that has its stolen orec flag set, but its copier exists

bit clear, then because there is no transaction copying back values to locations covered by this orec,
it can resteal the orec, setting the copier exists flag. If this succeeds, then this stealer can copy
back all values in the transaction row indicated by the orec, and then reset the orec to unstolen,
again provided it has not since been restolen. Otherwise, if the transaction cannot reset the orec
to unstolen, it proceeds as usual, but refrains from copying back values from transaction rows
associated with stolen orecs upon successful commit. These values remain in the transaction row
associated with the orec until some transaction successfully sets the copier exists flag and copies
back the values, as described above.

If an orec is repeatedly restolen before a transaction can reset it to normal, then the orec remains
stolen, with an associated performance cost. For this reason, a decision to steal should not be taken
lightly: a transaction should usually wait for at least a short amount of time before stealing an
orec, in the hopes that the owning transaction will soon relinquish it. Similarly, a transaction
should pause before restealing an already stolen orec, in the hopes that the orec will soon be reset
to normal.
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3.2.3 Preserving logical values when stealing orecs

When a transaction steals an unstolen orec, it must preserve the logical values of each location
modified by the victim (which is committed). Thus, for each entry in the victim’s write set row,
the stealer creates an entry in its new transaction row for the same memory address, taking the
value from the victim’s newval field, and marking each created entry as stolen by setting its
stolen entry flag. The stealer copies the value to both the oldval and newval fields of the write
set entry. This way, the stealer transaction can add new (unstolen) entries for locations it modifies
after stealing the orec, and can update the newval fields of stolen and unstolen entries in the same
way. If the stealer subsequently commits, then the newval fields of all entries in the row become
the logical values of the specified locations; if it aborts, then the oldval fields of the stolen entries
continue to represent the logical values of the specified locations, while the new unstolen entries
become irrelevant.

Creating the new transaction row when stealing a stolen orec is similar, except that the stealer
must also copy stolen entries in the victim’s transaction row (as well as the victim’s new entries
if necessary, as before). Which field contains the value to be copied is determined by the owning
transaction’s status as explained above.

3.2.4 Managing stolen transaction rows

A transaction row cannot be reused while it is associated with a stolen orec because it contains the
logical values of some locations. This restriction seemingly precludes immediate reuse of transaction
descriptors and requires each transaction to allocate a new descriptor, as well as a scheme for
reclaiming them.

To avoid this expense and complication, we have incorporated a mechanism that allows a
descriptor to be immediately reused, even if one or more of its rows are associated with stolen
orecs. This is achieved by marking transaction rows as stolen before associating a stolen orec with
them, and having transactions that steal a stolen row then mark the row as having been released
for reuse. In the meantime, a transaction reusing the descriptor simply skips rows that have been
stolen and not yet replaced. If a pathological situation arises such that many or all of the rows
for a particular descriptor are marked as stolen and cannot be reused, a thread can allocate a new
transaction descriptor, but we avoid this expense in all but these uncommon scenarios.

Another issue that arises from the desire to reuse a transaction descriptor while one or more of
its rows is associated with a stolen orec is determining the fate of the transaction that last stole
the orec. Recall that this is necessary in order to determine which of the oldval and newval fields
contains the logical value of locations covered by the row. But because the transaction descriptor
may have been reused, its status field no longer records the status of the transaction that created
the stolen row. Therefore, a transaction records its fate in the txn committed flag of each stolen
row in its write set before reusing the descriptor.

A slightly subtle mechanism is required to correctly handle races between a stealer and a
transaction preparing to reuse its descriptor. Before restealing a stolen orec, the stealer examines
the status field of the transaction descriptor indicated by the orec, and then checks the version

field of the descriptor. If the version still matches the one in the orec, then the value read from the
status field was accurate. Otherwise, the original transaction has already recorded its fate in the
txn committed flag of the row, so the new transaction uses that value.
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Contents of orec 1 Relevant write set row changes M[3] LV[3]

tid ver U/O off stln cp ex tid/off orec stln rel tc entries

a) - - U - - - (addr,oldval,newval,stln) 40 40

b) 0 0 O 0 F F 0/0 1 F - - (3,-,41,F) 40 41

c) 1 0 O 0 T T 1/0 1 T F - (3,41,41,T),(1,-,21,F) 40 41

d) 1 0 O 0 T T 1/0 1 T F - (3,41,42,T),(1,-,21,F) 40 41

e) 2 0 O 0 T T 1/0 1 T T - (3,41,42,T),(1,-,21,F)

2/0 1 T F - (3,41,43,T) 40 41

f) 3 0 O 0 T T 2/0 1 T T - (3,41,43,T)

3/0 1 T F T (3,41,44,T) 40 44

g) 3 0 O 0 T F 41 44

h) 0 1 O 0 T T 0/1 1 T F - (3,44,44,T) 41 44

i) 0 1 O 0 F F 0/1 1 F - - (1,-,22,F) 44 44

Figure 2: Changes to orec 1, relevant write set rows, and physical and logical values of location
0x3 during example. Abbreviations: ver means version, off means row offset, stln means
stolen orec in orecs and stolen entry in write set entries, cp ex means copier exists, rel

means released stolen row, tc means txn committed.

3.2.5 Example

The following simple example partially illustrates stealing, restealing, and resetting orecs. We
assume a small memory with four locations; we use notation 0x2 to denote the location with
address 2. Memory location i is covered by orec i mod 2. We use M [i] to denote the contents of
memory location i, and LV[i] to denote the logical value of location i. Initially, all orecs are in
unowned (U) mode, so all other fields in the orecs are irrelvant. Initially, M [0] = 10, M [1] = 20,
M [2] = 30, and M [3] = 40. Because all orecs are unowned, LV[i] = M [i] for all i.

We have the following five transactions executed by threads 0 through 3, where thread i uses
transaction descriptor i. We denote transactions by thread/version number.

Transaction 0/0: stm write(3,41)

Transaction 1/0: stm write(1,21); stm write(3,42)

Transaction 2/0: stm write(3,43)

Transaction 3/0: stm write(3,44)

Transaction 0/1: stm write(1,22)

Observe that all locations written by these transactions map to orec 1. Figure 2 shows the contents
of this orec, as well as the contents of relevant write set rows and the physical and logical values
of location 0x3 after each step in our example execution. In this table, “-” denotes an irrelevant
value, which might not have been initialised.

Initially (step a), orec 1 is unowned, so the contents of all other fields are irrelevant.
In step b), transaction 0/0 calls stm write(3,41), and therefore acquires orec 1 and adds an

entry to its write set for writing 41 to location 0x3. Transaction 0/0 then commits (changing its
status to COMMITTED) and then stops (without copying back its values).

In step c), transaction 1/0 calls stm write(1,21) and therefore needs to acquire orec 1. Because
the orec is owned by transaction 0/0, which has status COMMITTED, transaction 1/0 decides to steal
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the orec. It sets up a stolen row in its write set and creates a stolen entry for location 0x3 in
order to preserve the logical value of this location, namely 41, from transaction 0/0’s write set row.
It then adds an unstolen entry for its store of 21 to location 0x1 and steals the orec, setting the
stolen orec and copier exists flags to true.

In step d), transaction 1/0 calls stm write(3,42) and therefore updates the new value for
location 0x3 to 42 in its write set. At this point, if transaction 1/0 were to commit, LV [3] would
become 42 and LV [1] would become 21. On the other hand, if it aborts, the oldval field of its
write set entry for 0x3 preserves the value 41 previously committed by victim transaction 0/0. At
that time, however, since location 0x1 was not stolen originally, the logical value of 0x1 (LV[1]) is
the same as its physical value M[1].

In step e), transaction 2/0 calls stm write(3,43). Because orec 1 is owned by active transaction
1/0, transaction 2/0 first aborts it (changing its status to ABORTED). It then creates a stolen entry
for 0x3 in its write set row, copying the oldval field (41) of 1/0’s entry into both its oldval and
newval fields. It resteals the orec, and updates the newval field of its write set entry for 0x3 to
43. Finally, it sets the released bit of 1/0’s write set row, so that the row can be reused by a
subsequent transaction executed by thread 1.

In step f), transaction 3/0 calls stm write(3,44). It first aborts transaction 2/0, then creates
a stolen transaction row containing a stolen write set entry for 0x3, preserving the logical value 41
in both its oldval and newval fields. It then steals the orec, updates the newval field to 44 to
reflect its own store, and then commits. Because this is a stolen row and a copier (transaction 0/0)
still exists for this orec, transaction 3/0 does not copy back 44 to location 0x3. It then writes true
to the txn committed of its write set row. This is to allow subsequent transactions to determine
that 44 is the correct logical value for locaton 0x3, even if transaction descriptor 3 is reused (note
that the row will not be reused until its released field is set to true). Finally it atomically changes
its version number to 1 and observes that it has no stealer notes. Transaction 3/0 is thus complete.

In step g), transaction 0/0 completes its copyback, storing 41 to location 0x3. Note that this is
not the correct logical value of this location, because transaction 3/0 has committed since transac-
tion 0/0 did, making 44 the logical value at location 0x3. The correct logical value is indicated by
the entry in write set row 0 of transaction descriptor 3. Because the version number of transaction
descriptor 3 no longer matches the version number stored in the orec, the txn committed field
indicates that transaction 3/0 committed successfully, so the logical value (44) is in the newval

field. Now transaction 0/0 atomically increments its version number and takes a snapshot of the
head of its stealer note list, which contains one stealer note informing transaction 0/0 that it should
clear the copier exists flag of orec 1. It does so, keeping the rest of the orec unchanged.

In step h), transaction 0/1 (reusing tranaction descriptor 0, with version number 1) calls
stm write(1,22). It resteals the orec as before, having created a stolen write set row contain-
ing a stolen entry for location 0x3 with the logical value 44 (determined as described above) in its
oldval and newval fields. However, in this case, because the copier exists flag was clear before
the restealing, tranaction 0/1 knows that it has the right to copy values back to locations covered
by this orec. So transaction 0/1 sets the orec’s copier exists bit while restealing the orec.

Thereafter, in step i), transaction 0/1 stores 44 to location 0x3, and then resets the orec to
unstolen. Finally, it creates an unstolen entry in its writeset row reflecting its own write of 22 to
location 0x1. Now normal treatment of this orec can resume, with the simple lightweight copyback
of the blocking mechanism.
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3.2.6 Read sharing

Read sharing is as described previously for the blocking STM, except when a transaction reads from
a location that is covered by a stolen row. In this case, as before stm read takes a snapshot of the
relevant orec and stores it in the read set, if it has not done so already. However, determining the
logical value is more complicated when the orec is stolen, as explained above. In our implementation,
the first time a transaction reads from a stolen orec, it creates a read set entry in its read set row
for each stolen location in the write set row indicated by the orec, similarly to the way a stealing
transaction does. Subsequent reads to locations covered by this orec search for an entry in the row
for the specified address, supplying the value from that entry if one is found, and otherwise reading
it from the location itself. A variety of alternatives to this strategy exist, with different tradeoffs
with different expected workload characteristics. We have not explored alternatives, or adapting
between them in any detail so far.

3.2.7 Undo set approach

We have presented our technique in terms of a write-set-based STM implementation, in which
transactions maintain to-be-written values in their write sets, and copy these back to the memory
locations upon successful commit. An alternative approach is to store new values directly in the
affected memory location and maintain an “undo set”, which records old values to be restored
in case the transaction fails. The undo set approach has some significant advantages, because it
obviates the need for reads to look up the write set (they can go straight to the affected memory
location), and also it makes committing a transaction cheaper at the cost of more overhead for
aborting, which is generally expected to be rarer [22].

The undo set approach also has a significant disadvantage when implemented in a blocking
manner. In the simple blocking scheme based on write sets that we described earlier, a transaction
that owns an orec while it is committing blocks other transactions. In contrast, in a blocking undo-
set-based STM, transactions that require access to an orec that is owned by an active transaction
must block. Because active transactions can be executing user code, while committing transactions
are only executing STM implementation code, this leaves us much less control over the blocking,
to an extent that we find unacceptable. If we can eliminate such blocking, then we can harness the
significant advantages of an undo-set-based approach. It is straightforward to adapt our approach
to implement a nonblocking undo-set-based STM.

4 Related work

Ensuring nonblocking progress in STMs without using specialized hardware or operating system
support is a hard problem. Existing proposals for nonblocking STMs [6, 8, 13, 19] incur significant
common case costs. For reasons explained earlier, we focus in this paper on word-based STMs;
to our knowledge, the only previous nonblocking word-based STM is Harris and Fraser’s WSTM
[6, 8]. Below we describe WSTM, and explain the sources of overhead in it that we have eliminated.
In the next section, we show that these improvements indeed translate to significantly improved
performance.

Like the STMs described in this paper and in [2, 21], WSTM uses a hash table of ownership
records (orecs). Each location in the shared memory hashes to one orec. An orec contains
either a version number or a pointer to the transaction descriptor of the transaction that most
recently acquired ownership of that orec. A transaction optimistically accesses locations and their
corresponding orecs, without acquiring the orecs, while recording which locations are accessed (and
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their orecs). Before committing, a transaction uses CAS to acquire the orecs for the locations it has
optimistically accessed. Then the transaction verifies its consistency and atomically commits. After
committing, the transaction copies back new values from its transaction entries to the corresponding
locations, and releases each orec individually, again using CAS. Thus, a transaction that accesses
N orecs incurs at least the cost of 2N + 1 CAS’s.

As in our STMS, a transaction in WSTM can simply abort a conflicting active transaction,
but a more sophisticated mechanism is required to ensure nonblocking execution if a transaction
conflicts with a committed transaction. Such conflicts are resolved using a stealing mechanism,
which is superficially similar to the one we have presented, but the details are quite different.

In the WSTM stealing scheme, a stealer steals the orec from a victim transaction, copies
the victim’s transaction entries corresponding to the orec into its own write set, and increments
a “reference count” in that orec. Each transaction that needs to release an orec does so by
decrementing the orec’s reference count. If the reference count falls to 0, the last stealer writes
back an incremented version number to the orec, thus releasing ownership of the orec. Before
releasing a previously acquired orec, a transaction that finds that the orec was stolen by some
other transaction follows the transaction pointer in the orec and redoes all the updates that the
new stealer may have committed. This strategy ensures that if a victim transaction performs a
“late” write to a location, then this value will be overwritten with the most up-to-date value before
the ownership of the orec is released.

Our stealing scheme eliminates or reduces several sources of common-case overhead in WSTM:

- In our STM the number of CAS’s required for a transaction that acquires N orecs and does
not encounter any conflicts is just N +1, whereas WSTM transactions always require at least
2N + 1 CAS’s.

- WSTM allocates a new transaction descriptor for every transaction attempt. Allocation
and reclamation of these descriptors introduces significant complication and common-case
overhead. By reusing transaction descriptors, we eliminate this overhead.

- In WSTM, if a transaction T1 that intends to access an orec O1 notices that O1 is already
acquired by another transaction T2 that has aborted, T1 has no means of knowing whether
T2 stole O1 from some other transaction in the first place. Thus T1 must conservatively copy
the transaction entries in T2’s descriptor to its own descriptor. In our STM, the stolen orec

bit eliminates such unnecessary copying.

- In WSTM, during heavy contention (particularly on contention hotspots), multiple transac-
tions may engage in copybacks to the same set of memory locations repeatedly, resulting in
significant bus traffic. By maintaining the invariant that at most one transaction copies back
updates to locations corresponding to a given orec at a time, we eliminate this redundant
work.

- WSTM transactions maintain old and new values of locations as well as their orec’s old and
new version numbers. When there is no stealing, our STM stores just the old value (for
locations read) or the new value (for locations updated) and does not store copies of the orec
at all.
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5 Performance evaluation

We have compared our blocking STM, our nonblocking STM, and the best previous nonblocking
word-based STM, namely WSTM [6, 8], using some simple microbenchmarks on two multiproces-
sors:

• a 16-processor Sun Fire 6800, a cache-coherent multiprocessor with 1.2GHz UltraSPARC R©

III processors

• a 144-processor Sun Fire E15K, a cache-coherent multiprocessor with 1.5GHz UltraSPARC R©

IV+ processors (72 dual-core chips)

We observed quantitatively similar results on both machines; here we present only the results
from the larger machine to demonstrate the scalability of our implementations. All code was
compiled using the gcc compiler, version v3.4.4, with optimization level -O3. In each test, we vary
the number of threads from 1 to 64, and measure the time taken to for all threads to perform
100,000 operations each. We report throughput as the total number of operations completed per
second; each point is the average over three runs.

All of our STMs use a simple capped exponential backoff scheme to decide whether to abort
conflicting active transactions. For decisions about whether to steal from a conflicting committed
transaction in our nonblocking STM, we tested two configurations. The first, called NoStealing,
is the nonblocking STM configured to always decide not to steal. This configuration evaluates the
common-case cost of having the ability to make progress despite the preemption of a conflicting
transactions, even if this option is never exercised. The second, ImmediateStealing, steals imme-
diately as soon as it encounters a conflict. Experience with earlier versions of our STM showed that
the best performance is achieved by more dynamic policies that wait a while to allow the conflicting
transaction a chance to complete, but will steal from the transaction if there is a long delay, for
example because it has been preempted. We have not yet experimented with such policies with the
latest version used to produce the results presented here.

5.1 Benchmarks

We have conducted experiments using four benchmarks. The first pair (BST and HashTable) repre-
sent somewhat realistic scenarios, accessing meaningful data structures in a way that can reasonably
be expected to perform well. The second pair (Counter and ArrayCounter) are intended as “torture
tests”, to evaluate how the STMs perform in high contention scenarios.

In the BST benchmark, each operation chooses to insert, delete, or lookup a random element
in a concurrent set implemented using a binary search tree. Operations are chosen according to a
10%/10%/80% distribution for insert/delete/lookup, and the element is a value between 0 and 255
chosen randomly.

The HashTable benchmark is the same as BST, except that we use a hash table arranged as a
fixed number of buckets, each of which contains a linked-list of of elements hashing to that bucket.

In the Counter benchmark, each operation increments a single counter. This benchmark eval-
uates the STMs in face of a heavily contended hotspot. In the ArrayCounter benchmark, there
are 16 counters and each operation increments all 16 counters in order. This benchmark examines
another scenario in which all transactions conflict with each other, but modify a larger number of
locations.
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5.2 Results

Figure 3 shows our results, which support the following observations.

• For BST (Figure 3(a),(b)), all STMs scale reasonably well, as they should in a benchmark with
relatively few conflicts, up to a point. The blocking STM significantly outperforms WSTM,
the previous best nonblocking word-based STM, as most people would expect. However,
our nonblocking STM performs comparably with the blocking one, with the stealing policy
making relatively little difference, as would be expected with few conflicts. This supports our
belief that nonblocking STMs can be made to perform comparably with blocking ones in the
common case.

As the number of threads increases, all implementations begin to degrade because the number
of conflicts increases. The WSTM implementation has some limitation so that we could not
test it beyond 64 threads (probably not fundamental, but we have not investigated yet).
While the performance of our STMs degrades with more threads, it maintains reasonable
throughput up to 256 threads (Figure 3(b)). The sudden increase in throughput at 256
threads is probably due to a lucky cache mapping due to having 256 threads; we have not
investigated yet.

• For HashTable with 16 buckets (Figure 3(c)), we see qualitatively similar results to BST except
that the margin by which WSTM is outperformed by the others is not as dramatic. (For this
and subsequent experiments, we focus only on the results up to 64 threads, as this is of
most interest in comparing to WSTM. In all cases, our STMs maintain throughput up to 256
threads; see the appendix.)

Using 256 buckets largely eliminates conflicts, allowing all STMs to perform significantly
better. However, WSTM fails to scale as the others do. We believe this confirms our intu-
ition that the overhead of allocating and reclaiming transaction descriptors limits WSTM’s
performance.

• For Counter, the blocking STM performs more than twice as well as WSTM, while the
nonblocking variants perform noticably better than WSTM. The results for the nonblocking
variants clearly show the cost of stealing too readily, as discussed above. There is also a
noticable margin between the nonblocking STM with no stealing and the blocking STM. This
probably implicates the small amount of additional per-transaction bookkeeping required by
the nonblocking STM, given that the transactions are very small in this benchmark. We have
some ideas for further optimisation in this regard.

• The results for ArrayCounter are qualitatively similar to those for Counter, except that
the nonblocking STM variants perform closer to the blocking one, suggesting that the larger
transaction size makes the per-transaction bookkeeping mentioned above less relevant. We
note that the blocking STM outperforms WSTM by a factor of almost 6 in the single-threaded
case, and our new nonblocking STMs very nearly match it.

5.3 Discussion

Our results unambiguously support our claim that there is ample room for improvement over
the best previous nonblocking word-based STMs. We have forgone a number of optimisation
opportunities and ideas in our work to date, so we believe that there is room for further improvement
still.
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Our results show that it is possible to significantly close the existing gap between blocking
and nonblocking STMs in the common case. Thus, our results and further improvements on them
contribute to an understanding of the price to be paid for choosing a nonblocking STM over a
blocking one in practice, even before the question of a fundamental gap is settled.

Experimental results cannot settle the question of whether a fundamental gap exists between
nonblocking and blocking STMs any more than anecdotes and intuition can; such questions can only
be answered by formal proofs. However, our techniques and results can help to provide guidance for
researchers interested in determining whether a fundamental gap exists, and in determining what
measures are and are not promising for pursuing such a gap.

6 Concluding Remarks

We have presented a new mechanism for implementing nonblocking word-based STM without using
hardware or other system support beyond what is available in today’s systems. Our STM closely
follows a simple blocking STM as long as transactions never decide to steal ownership of memory
locations from a committed transaction (an option that is not available in the simple blocking
STM). We thus demonstrate that the benefits of nonblocking execution need not come at the cost
of significant overhead in the common case, as it does for previous nonblocking STMs.

In addition to the direct benefits of our contribution, it also serves to narrow the gap between
the best known blocking and nonblocking word-based STMs, thus providing valuable input to
researchers interested in determining whether a fundamental gap exists between blocking and non-
blocking STMs. We conjecture that indeed some such gap does exist, but that it will not imply a
significant performance difference in the common case. We further conjecture that the gap narrows
or disappears given stronger hardware support for synchronization, such as transactional memory.

We emphasise that the advantages of being nonblocking are not only related to performance
concerns. For example, the design of an interrupt handler can be severely complicated if the
handler shares data with the interrupted thread via a blocking mechanism. STM has the potential
to substantially simplify this task, but only if the implementation is nonblocking.

We have presented our ideas in the context of a very simple blocking STM that does not reflect
the many optimizations and different design points emerging in the literature. Nonetheless, we
believe that the ideas we have demonstrated can be adapted to a wide variety of blocking STMs,
including recent optimized STMs, to provide an alternative to waiting for a delayed thread while
not significantly impacting common-case performance. Future work includes adapting our ideas
to more sophisticated STM designs, improving our stealing heuristics, and more comprehensive
evaluation of our STM using more benchmarks and comparing against a wider variety of blocking
STMs.

Future architectures can dramatically simplify the task of designing a nonblocking STM through
simple hardware support. For example, it is easy to implement a nonblocking copyback mechanism
in a system that provides hardware support for atomically confirming the version number of a
transaction while copying back a value to memory from its write set.
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Figure 3: (a) Binary search tree (b) binary search tree up to 256 threads (c) hash table, 16 buckets
(d) hash table 256 buckets (e) counters (f) array of 16 counters.
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A Additional performance graphs
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Figure 4: (a) Hash table, 16 buckets (b) hash table, 256 buckets (c) counter (d) array of 16 counters.
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