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Abstract
We describe an algorithm for computing nonbonded interactions with cutoffs on a graphics
processing unit (GPU). We have incorporated it into OpenMM, a library for performing molecular
simulations on high performance computer architectures. We benchmark it on a variety of systems
including boxes of water molecules, proteins in explicit solvent, a lipid bilayer, and proteins with
implicit solvent. The results demonstrate that its performance scales linearly with the number of
atoms over a wide range of system sizes, while being significantly faster than other published
algorithms.

Introduction
Significant work has been done recently to implement molecular dynamics algorithms on
graphics processing units (GPUs).1–3 Given the very large computing power of GPUs when
compared to CPUs, this has the potential to greatly extend the time scale accessible to
molecular simulations.

In typical MD simulations, the calculation of nonbonded interactions account for most of the
processing time. This is therefore the most important part of the calculation to optimize.
Several different approaches have been tried for implementing nonbonded interactions on
GPUs, but none have been entirely satisfactory. All of them have either scaled poorly to
large system sizes, or else have achieved only a small fraction of the maximum theoretically
possible performance.

In this paper we present a new method for implementing nonbonded interactions on a GPU.
It displays linear scaling over a wide range of system sizes while having significantly higher
performance for a complete MD simulation (not just non-bonded interactions) than
previously published O(N) methods.

Background
In principle, finding all interactions between a set of N atoms requires O(N2) time. In
practice, it is usually acceptable to ignore interactions beyond a cutoff distance, or to treat
them with an approximation such as reaction field, particle mesh Ewald, or fast multipole
method.4 This reduces the complexity to O(N), since the number of atoms within the cutoff
distance of a given atom is independent of system size. It is typically implemented using a
voxel based method.5 Each atom is assigned to a voxel, and then interactions are calculated
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only between atoms in nearby voxels. This is often combined with a neighbor list to avoid
performing the voxel calculation on every time step.

Unfortunately, these algorithms adapt poorly to GPUs due to the different memory
architecture. CPUs include large amounts of fast cache memory to optimize random memory
access. In contrast, GPUs have very little cache memory, and instead are optimized for in-
order memory access.6 For example, performing a computation on a series of atoms can be
very fast:

for i = 1 to (# of atoms)

perform computation on atom i

In contrast, using a neighbor list involves accessing atoms out of order:

for i = 1 to (# of neighbor list entries)

perform computation on the two atoms in entry i

In practice, this usually means that indirect memory access (of the form array[index[i]]) is
slow, while direct memory access (of the form array[i]) is fast.

To implement nonbonded interactions efficiently on a GPU, it is therefore essential to avoid
indirect memory access whenever possible. Several approaches have been tried to this
problem.

Friedrichs et al.1 recently reported a GPU based MD code that provided up to 700 times
speedup for Generalized Born implicit solvent simulations in comparison to a widely used
CPU based code. Indirect memory access was avoided through the simple expedient of
using an O(N2) algorithm for the nonbonded interactions. Unfortunately, this means that
their method scales poorly with system size. That makes it suitable for small or medium
sized proteins with implicit solvent, but not for larger systems including explicit solvent.

Anderson et al.2 implemented a Lennard-Jones force using a voxel based algorithm to
generate neighbor lists. They relied on the GPU's small texture cache to reduce memory
access times, sorting the atoms spatially to increase the number of cache hits. The resulting
algorithm gave excellent linear scaling, but achieved a much smaller speedup relative to a
CPU than the method of Friedrichs et al., reflecting the poor match of this method to the
GPU architecture. They reported performance for a simple polymer model as being similar
to a CPU cluster with 32 cores, indicating a speedup of something less than 32 times relative
to a single core. Also, their benchmark simulations were much simpler than typical MD
simulations: there were no Coulomb interactions, and identical Lennard-Jones parameters
were used for all atoms. This avoided the need to look up per-atom force field parameters
during the force calculations. As discussed above, accessing per-atom data is the primary
bottleneck for algorithms of this type, so real molecular simulations using this algorithm
would likely be much slower than suggested by the benchmark simulations. Their polymer
model also lacked many of the bonded interactions found in most molecular force fields, and
including these would likely further decrease the performance.

Stone et al.3 implemented Coulomb and Lennard-Jones forces using a voxel based method
directly, rather than first generating a neighbor list. Compared to Anderson et al., Stone et al.
reported a smaller speedup relative to CPUs: approximately 9 times speedup for the
nonbonded force calculation, and 5 times speedup for the whole simulation.
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Algorithm
Basic algorithm

We used the O(N2) algorithm of Friedrichs et al. as the starting point for our method. Rather
than starting from an O(N) algorithm designed for CPUs and attempting to port it to GPUs,
we instead decided to begin with an algorithm that was already optimized for GPUs and
look for ways to reduce its computational complexity.

This algorithm begins by dividing atoms into blocks of 32. This block size is chosen to
match the size of a warp on Nvidia GPUs, allowing maximum use of shared memory while
avoiding the need for explicit thread synchronization. The N2 interactions between atoms
then divide into (N/32)2 tiles, with each tile involving 322 interactions (Figure 1). Due to
symmetry, only half of the tiles actually need to be calculated. A group of threads is
assigned to evaluate the interactions within each tile. Since a tile involves interactions
between 64 atoms (32 atoms for tiles along the diagonal which calculate the interactions
within a single block), the positions and force field parameters for those atoms are first
loaded into shared memory, where the threads can then access them very quickly. This
greatly decreases the amount of data transferred from main memory: only one atom for each
16 interactions evaluated, compared to two atoms for each interaction when using a
neighbor list.

Identification of interacting blocks
A problem with this algorithm is that it evaluates all interactions, even for atoms that are far
apart. We therefore make the following modification: instead of calculating forces for all
tiles, we first identify tiles for which all atoms are sufficiently far apart to guarantee there
are no interactions. We then perform the detailed force calculation only for those tiles that
might have interactions, omitting those which can be easily excluded. In essence, this is
exactly equivalent to a neighbor list; but instead of listing atoms that might interact, it lists
blocks of 32 atoms that might interact.

The identification of interacting blocks involves two steps:

1. Calculate an axis aligned bounding box for the 32 atoms in each block.

2. Calculate the distance between bounding boxes for each pair of blocks. If this is
above the cutoff distance, the corresponding tile is guaranteed to have no
interactions and can be skipped.

Step 1 is a trivial O(N) operation. Step 2 can be done using a variety of algorithms similar to
those used for building ordinary neighbor lists. For the work described in this paper, we
simply compared every bounding box to every other. This means that, strictly speaking, the
computational complexity is O(N2), but in practice the computation is still dominated by the
force calculations which scale as O(N). For very large systems, step 2 could be replaced
with a different algorithm whose computational complexity was lower, such as a voxel
based method or a sort and sweep algorithm.7 As with standard neighbor lists, the
identification of interacting blocks may be performed each time step, or only once every
several time steps. The latter choice reduces the cost of building the neighbor list, but
requires some padding to be added to the cutoff so that blocks will be included even if they
do not currently interact, but might interact within the next few time steps.

Reordering of atoms to optimize coherence
If the above algorithm is to be efficient, it is essential that atoms be ordered in a spatially
coherent way. That is, all the atoms in a block must be close to each other. Otherwise, the
bounding boxes will be very large and few tiles will be excluded from the force calculation.
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For proteins and other biological macromolecules, this is easily achieved. Atoms are simply
assigned to blocks in order along the polymer chain, so sequential atoms will always remain
spatially close to each other. For water molecules, it is more of a problem. A single block of
32 atoms will span many molecules, and each of those molecules is free to move
independently of the others. To solve this, we periodically reorder water molecules to ensure
spatial coherency. This is done as follows:

1. Divide space into square voxels of width w, where w should be similar to (or
possibly smaller than) the cutoff distance.

2. Calculate the centroid of each water molecule, and assign it to the corresponding
voxel.

3. Trace through the voxels in a spatially contiguous order8 to generate a new order
for the water molecules. That is, we first take all of the molecules from the first
voxel, then all the molecules from the second voxel, etc.

The method described above is found to give linear scaling over a large range of system
sizes, but it still has room for improvement. If a tile contains even a single pair of interacting
atoms, all 1024 interactions in that tile must be computed. There are even some tiles that
contain no interactions at all, yet still get computed because the bounding boxes are within
the cutoff distance. The efficiency can be improved with the following change.

For each tile that has been identified as interacting, we compute the distance of the bounding
box of the first block from each atom in the second block. If it is greater than the cutoff
distance, we set a flag indicating that no interactions need be calculated for that atom. We
have effectively increased the granularity of the neighbor list: each element corresponds to
32 interactions instead of 1024.

When a thread is computing interactions for this tile, it checks the flags:

for i = 1 to 32

if atom i has interactions

compute interaction

There are 32 such threads for each tile, each one computing the interactions of one atom in
the first block with all atoms in the second block. To avoid thread divergence, all 32 threads
must loop over atoms in the same order, in contrast to the original algorithm where each
thread loops over atoms in a different order. This means that all threads compute forces on
the same atom at the same time, and a reduction is needed to sum those forces. As a result,
the cost of computing each interaction is increased. When only a few atoms in a block have
interactions, this is still much faster than computing the full set of 1024 interactions, but
when many atoms have interactions, it is better to ignore the flags and use the standard
method, even though this involves computing more interactions.

In practice, we find that when 12 or fewer out of the 32 atoms in a block have interactions, it
is best to use the flags and compute interactions for only those atoms. When more than 12
atoms have interactions, it is best to ignore the flags and compute all interactions.

Performance
To measure the performance of our algorithm, we incorporated it into OpenMM1 and
performed a series of simulations of different sized systems. All simulations were run on a 3
GHz Intel Core 2 Duo CPU and an Nvidia GeForce GTX280 GPU. Nonbonded interactions
were cut off at 1 nm, and interactions beyond the cutoff were approximated with the reaction
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field method, which is similar in form to a shifting function. The integration time step was
set to 2 fs. Covalent bonds involving hydrogen atoms were constrained with the SHAKE
algorithm9 at a tolerance of 10−5, while water molecules were kept fully rigid with the
SETTLE algorithm.10 A Langevin integrator was used to maintain the temperature at 300K.
11 All parts of the computation other than nonbonded interactions (bonded interactions,
integration, etc.) were done as described by Friedrichs et al. Except when otherwise stated,
all simulations were 100 ps (50,000 time steps) long.

Water molecules were reordered every 100 time steps as described above to maintain spatial
coherency. The reordering was done on the CPU rather than the GPU. There is no reason it
could not be done on the GPU, but because it only happens every 100 time steps, it makes a
negligible contribution to the total processing time, and we therefore saw no need to further
accelerate it.

We first simulated cubic boxes of SPC water molecules12 of various sizes. This provides a
simple test of how performance scales with the number of atoms, independent of all other
factors. The results are shown in Table 1 and Figure 2. The performance is almost perfectly
linear over the whole range of system sizes.

We next simulated a set of proteins of widely varying sizes in explicit water: the villin
headpiece subdomain,13 the D14A variant of the lambda repressor monomer,14,15 and one
chain of the α-spectrin subunits R15, R16, and R17 from chicken brain.16 We also
simulated a trimer of influenza virus fusion peptide embedded in a lipid bilayer.17 This last
simulation was significant in that it contained several different classes of small,
interchangeable molecules: 16,812 waters, 500 POPC lipids, 56 Cl− ions, and 46 Na+ ions.
The reordering procedure described above was applied independently to each of these
classes of molecules every 100 time steps.

The results are shown in Table 2. For the three solvated proteins, the performance is again
linear in the total number of atoms. The membrane system, on the other hand, runs about
18% slower than would be expected for a box of water with the same number of atoms. This
is because the long, flexible lipid molecules are not bounded as tightly by axis aligned
bounding boxes, leading to slightly larger boxes and more interactions that must be
calculated.

Our algorithm can also be used for simulations with implicit solvent. Table 3 shows the
performance of simulating villin, lambda repressor, and α-spectrin with the Onufriev-
Bashford-Case (OBC) generalized Born model for implicit solvent.18 These simulations
were 400 ps (200,000 time steps) long. For villin and lambda repressor, the performance is
actually worse with cutoffs than when using the simple O(N2) algorithm.1 For such small
systems, the cost of constructing a neighbor list outweighs the small gain from calculating
fewer interactions. For α-spectrin, on the other hand, using a cutoff speeds up the
computation by more than a factor of 3. The break-even point at which a cutoff becomes
beneficial appears to be approximately 1500 atoms.

To compare the performance of our GPU code to an optimized CPU implementation, we
repeated the simulation of lambda repressor in explicit solvent with three different widely
used molecular dynamics packages: NAMD 2.6,19 AMBER 9,20 and Gromacs 4.21 As far
as possible, we tried to make the simulations identical to the GPU simulation described
above. NAMD and AMBER do not support the reaction field approximation for long range
interactions, so they used a switching function and a simple cutoff, respectively. To reduce
the cost of neighbor list generation in NAMD and Gromacs, the neighbor list was only
regenerated once every 8 time steps, but it was constructed based on a cutoff of 1.1 nm to
ensure that most interactions within 1 nm would still be found. All simulations were run on a
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single CPU core. All three packages were compiled from source using the GCC 4.3
compiler and the default compilation options selected by their respective configuration
scripts.

The results are shown in Table 4. On the hardware tested, Gromacs was the fastest, taking
19 times as long as the GPU implementation, while AMBER was the slowest, taking 59
times as long as the GPU. Stated differently, a single GPU is as fast as a 19 core cluster
running Gromacs or a 59 core cluster running AMBER, assuming negligible communication
overhead and linear scaling of performance with cluster size. In practice, neither of those
assumptions is likely to be valid, which means the single GPU is as fast as an even larger
cluster. For example, when simulating a large membrane/protein system, Gromacs is
reported to be only about 12 times as fast running on a 64 core cluster as when running on 4
cores of a single node, not 16 times as fast as would be the case if performance scaled
linearly.21 Similarly, a large collection of benchmarks for AMBER show that its
performance typically increases by a factor of between 6 and 10 when scaling from 4 cores
to 64 cores.22

Our GPU code was 28 times faster than NAMD, in contrast to the method of Stone et al.
which was reported to be 5 times faster than NAMD. One must be conservative in
comparing these numbers, since they were produced by simulating different systems on
different hardware. Also, they implemented only the nonbonded forces on the GPU, while
calculating bonded forces and doing integration on the CPU. Even so, it is clear that our
method is significantly faster than theirs.

It is more difficult to compare our performance to the method of Anderson et al., since they
only reported cluster performance rather than single core performance, but it appears to be at
least similar to what they reported. Furthermore, their implementation did not support
standard molecular force fields, only a highly simplified polymer model, and their method's
performance would likely be much slower with any realistic molecular force field.

For any system larger than a few thousand atoms, our method is dramatically faster than the
O(N2) algorithm used by Friedrichs et al. Its performance scales linearly over a wide range
of system sizes, making it suitable for simulating large molecules in explicit solvent.

Conclusions
We have developed a new algorithm for computing nonbonded interactions with cutoffs on a
GPU. Its performance scales linearly with the number of atoms over a wide range of system
sizes, while being significantly faster than previously published algorithms for computing
accurate molecular force fields on GPUs.

With this method, a single GPU can now deliver performance comparable to that of a small
to medium sized CPU cluster with high speed interconnects. An obvious next step is to
parallelize the algorithm so that computations can be split between multiple GPUs. A small
GPU cluster could potentially offer performance rivaling that of the largest CPU clusters
currently available, bringing very long simulation time scales within the reach of a much
larger set of researchers.
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Figure 1.
Atoms are divided into blocks of 32, which divides the full set of N2 interactions into (N/
32)2 tiles, each containing 322 interactions. Tiles below the diagonal do not need to be
calculated, since they can be determined from symmetry.
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Figure 2.
Computation time for a 100 ps simulation of a cubic box of water as a function of the
number of atoms in the system.
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Table 1

Performance of simulating cubic boxes of water of varying sizes. All simulations were 100 ps (50,000 time
steps) long.

Box Size (nm) Atoms Computation Time (sec) ns/day

4 6540 127 68

5 12426 285 30

6 21483 510 17

7 34251 808 11

8 51393 1154 7.5

9 72768 1642 5.3
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Table 2

Performance of simulating proteins in explicit solvent. All simulations were 100 ps (50,000 time steps) long.
See the text for descriptions of the systems.

Protein Total Atoms Protein Atoms Computation Time (sec) ns/day

villin 8867 582 216 40

lambda 16437 1254 418 21

α-spectrin 73886 5078 1733 5.0

peptide in membrane 77373 834 (+26000 lipid atoms) 2145 4.0
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Table 3

Performance of simulating proteins with OBC implicit solvent.

Protein Atoms Computation Time (sec) ns/day

villin 582 86 402

lambda 1254 176 196

α-spectrin 5078 617 56
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Table 4

Performance of simulating lambda repressor with explicit solvent using three different CPU based molecular
simulation packages.

Program Computation Time (sec) ns/day GPU Speed Advantage

NAMD 2.6 11682 0.74 28

AMBER 9 24653 0.35 59

Gromacs 4 8058 1.07 19
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