
 Open access Journal Article DOI:10.1109/TCYB.2016.2621008

Efficient Nondomination Level Update Method for Steady-State Evolutionary
Multiobjective Optimization — Source link

Ke Li, Kalyanmoy Deb, Qingfu Zhang, Qiang Zhang

Institutions: University of Birmingham, Michigan State University, City University of Hong Kong,
Sapienza University of Rome

Published on: 01 Sep 2017 - IEEE Transactions on Systems, Man, and Cybernetics (Institute of Electrical and Electronics
Engineers (IEEE))

Topics: Population and Multi-objective optimization

Related papers:

 A fast and elitist multiobjective genetic algorithm: NSGA-II

 MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition

 An Evolutionary Many-Objective Optimization Algorithm Based on Dominance and Decomposition

An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems With Box Constraints

 Indicator-Based Selection in Multiobjective Search

Share this paper:

View more about this paper here: https://typeset.io/papers/efficient-nondomination-level-update-method-for-steady-state-
3h24x0sms2

https://typeset.io/
https://www.doi.org/10.1109/TCYB.2016.2621008
https://typeset.io/papers/efficient-nondomination-level-update-method-for-steady-state-3h24x0sms2
https://typeset.io/authors/ke-li-1scgxxfxes
https://typeset.io/authors/kalyanmoy-deb-t77j253la0
https://typeset.io/authors/qingfu-zhang-4x417by7b4
https://typeset.io/authors/qiang-zhang-yxjfn0z67n
https://typeset.io/institutions/university-of-birmingham-3r0e0n04
https://typeset.io/institutions/michigan-state-university-3fx9utvx
https://typeset.io/institutions/city-university-of-hong-kong-115c6egt
https://typeset.io/institutions/sapienza-university-of-rome-1cpc8o4e
https://typeset.io/journals/ieee-transactions-on-systems-man-and-cybernetics-1dxw65pg
https://typeset.io/topics/population-3rqw3kx3
https://typeset.io/topics/multi-objective-optimization-2bm9mfif
https://typeset.io/papers/a-fast-and-elitist-multiobjective-genetic-algorithm-nsga-ii-1zk92kwqxo
https://typeset.io/papers/moea-d-a-multiobjective-evolutionary-algorithm-based-on-1ocq44zhaf
https://typeset.io/papers/an-evolutionary-many-objective-optimization-algorithm-based-1nbb5wook3
https://typeset.io/papers/an-evolutionary-many-objective-optimization-algorithm-using-2bj8j4euce
https://typeset.io/papers/indicator-based-selection-in-multiobjective-search-19tzr2yuo8
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/efficient-nondomination-level-update-method-for-steady-state-3h24x0sms2
https://twitter.com/intent/tweet?text=Efficient%20Nondomination%20Level%20Update%20Method%20for%20Steady-State%20Evolutionary%20Multiobjective%20Optimization&url=https://typeset.io/papers/efficient-nondomination-level-update-method-for-steady-state-3h24x0sms2
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/efficient-nondomination-level-update-method-for-steady-state-3h24x0sms2
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/efficient-nondomination-level-update-method-for-steady-state-3h24x0sms2
https://typeset.io/papers/efficient-nondomination-level-update-method-for-steady-state-3h24x0sms2

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CYBERNETICS 1

Efficient Nondomination Level Update

Method for Steady-State Evolutionary

Multiobjective Optimization
Ke Li, Kalyanmoy Deb, Fellow, IEEE, Qingfu Zhang, Senior Member, IEEE, and Qiang Zhang

Abstract—Nondominated sorting (NDS), which divides a
population into several nondomination levels (NDLs), is a basic
step in many evolutionary multiobjective optimization (EMO)
algorithms. It has been widely studied in a generational evo-
lution model, where the environmental selection is performed
after generating a whole population of offspring. However, in
a steady-state evolution model, where a population is updated
right after the generation of a new candidate, the NDS can be
extremely time consuming. This is especially severe when the
number of objectives and population size become large. In this
paper, we propose an efficient NDL update method to reduce the
cost for maintaining the NDL structure in steady-state EMO.
Instead of performing the NDS from scratch, our method only
updates the NDLs of a limited number of solutions by extract-
ing the knowledge from the current NDL structure. Notice that
our NDL update method is performed twice at each iteration.
One is after the reproduction, the other is after the environ-
mental selection. Extensive experiments fully demonstrate that,
comparing to the other five state-of-the-art NDS methods, our
proposed method avoids a significant amount of unnecessary
comparisons, not only in the synthetic data sets, but also in
some real optimization scenarios. Last but not least, we find
that our proposed method is also useful for the generational
evolution model.

Index Terms—Computational complexity, nondominated sort-
ing (NDS), nondomination level (NDL), Pareto dominance,
steady-state evolutionary multiobjective optimization (EMO).

Manuscript received February 28, 2016; revised June 24, 2016 and
September 18, 2016; accepted October 12, 2016. This work was
supported by the National Natural Science Foundation of China under
Grant 61473241. This paper was recommended by Associate Editor
K.-C. Tan.

K. Li was with the CERCIA, School of Computer Science, University of
Birmingham, Birmingham, B15 2TT, U.K. He is now with the College of
Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter,
EX4 4QF, U.K. (e-mail: keli.genius@gmail.com).

K. Deb is with the Department of Electrical and Computer Engineering,
Michigan State University, East Lansing, MI 48824 USA (e-mail:
kdeb@egr.msu.edu).

Q. Zhang is with the Department of Computer Science, City University of
Hong Kong, Hong Kong (e-mail: qingfu.zhang@cityu.edu.hk).

Q. Zhang is with the Sapienza University of Rome, 00185 Rome, Italy
(e-mail: csqzhang@gmail.com).

This paper has supplementary downloadable multimedia material available
at http://ieeexplore.ieee.org provided by the authors.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCYB.2016.2621008

I. INTRODUCTION

A
MULTIOBJECTIVE optimization problem can be stated

as follows:

minimize F(x) = (f1(x), . . . , fm(x))T

subject to x ∈ � (1)

where � =
∏n

i=1 [ai, bi] ⊆ Rn is the decision (variable) space,

x = (x1, . . . , xn)
T ∈ � is a candidate solution. F : � → Rm

constitutes m conflicting objective functions, and Rm is called

the objective space. A solution x1 is said to Pareto dominate

another one x2 (denoted as x1 � x2) if it has at least one better

objective while not being worse in any other objective.

Nondominated sorting (NDS) is a procedure that divides

a population of solutions into several nondomination lev-

els (NDLs) according to their dominance relationships. It gives

a relative quality of solutions, belonging to a specific NDL,

with respect to the others. The NDS is a basic step in the

evolutionary multiobjective optimization (EMO), it becomes

time-consuming with the increase of the number of objectives

and population size. The first NDS algorithm was proposed

in [1]. Its computational complexity is O(mN3), where N is

the population size. Later, the time-consuming problem of the

NDS was recognized and addressed by Deb et al. [2]. They

developed the fast NDS (FNDS) method which avoids some

unnecessary dominance comparisons by taking advantages of

the existing comparison results. Its computational complex-

ity is reduced to O(mN2). Inspired by the divide-and-conquer

idea suggested in [3], Jensen [4] proposed an NDS method

with a computational complexity of O(N logm−1 N), a signif-

icant speedup and reduction. However, this method fails to

deal with the situation when two solutions share the same

value for a certain objective. By inferring dominance relation-

ship based on the transitivity property of Pareto dominance

and previous comparisons, McClymont and Keedwell [5]

suggested two methods, called climbing sort and deductive

sort (DS), to reduce the computational cost of the NDS.

Although these two methods hold the same worst-case com-

plexity of O(mN2) as the FNDS, empirical studies showed

that both of them outperform the FNDS in terms of CPU time

and number of dominance comparisons. However, these two

methods are designed specifically for populations, where the

dominance relationships between solutions are relatively com-

mon, which unfortunately does not hold for many-objective

problems with more than three objectives. In order to save the

2168-2267 c© 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

mailto:keli.genius@gmail.com
mailto:kdeb@egr.msu.edu
mailto:qingfu.zhang@cityu.edu.hk
mailto:csqzhang@gmail.com
http://ieeexplore.ieee.org
http://ieeexplore.ieee.org
http://www.ieee.org/publications_standards/publications/rights/index.html

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CYBERNETICS

number of objective comparisons in many-objective scenar-

ios, Wang and Yao [6] proposed a corner sort (CS) method.

Its basic idea is to use the nondominated solutions to ignore

the solutions that they dominate. Recently, Zhang et al. [7]

developed a computationally efficient NDS method, where a

solution only needs to compare with those sorted ones when

it is going to be added to an NDL.

According to the selection scheme, the existing EMO has

two evolution models: one is the generational evolution model

and the other is the steady-state evolution model [8]. The

major difference between them is the moment to perform

the environmental selection. In the prior case, a population

of offspring solutions are generated before competing with

their parents; while in the latter case, the parent population

is updated once a new candidate solution has been generated.

Since the population can be updated immediately before gener-

ating a whole population of offspring, the elite information can

be timely utilized. This characteristic can make a steady-state

EMO algorithm be computationally faster for approaching the

Pareto-optimal front than its generational counterpart on some

problems. However, this “first come first serve” mechanism

also has the risk of being trapped in local optima. In the EMO

literature, there exists many algorithms based on the steady-

state evolution model (e.g., [9]–[16]). In some recent studies

(e.g., [8], [17], and [18]), the steady-state EMO algorithm has

shown better performance, in terms of convergence and diver-

sity, than its generational counterparts on some problems. To

our best knowledge, most, if not all, studies on the NDS are

discussed in the context of a generational evolution model,

whereas few have considered the situation for a steady-state

evolution model yet. Buzdalov et al. [19] presented an incre-

mental NDS for the steady-state EMO. But unfortunately, this

method can only work for the 2-D case.

In fact, the NDL structure of the parent population is already

known before generating a new candidate solution. The incor-

poration of a new solution usually does not shake the entire

NDL structure. On the contrary, only a limited number of

solutions in the parent population need to change their NDLs.

Therefore, it is unnecessary to perform the NDS from scratch

each time. Moreover, the solution, which has to change its

NDL, only need to move forward or backward one NDL.

Bearing these properties in mind, this paper proposes an effi-

cient NDL update (ENLU) method to reduce the cost for

maintaining the NDL structure in the steady-state EMO. By

using the ENLU method, a steady-state EMO algorithm only

needs to perform the NDS once at the beginning, and it just

updates the NDL structure thereafter. More specifically, after

the reproduction, the ENLU method locates the NDL to which

the new candidate belongs. Afterwards, it recursively finds the

solutions that need to change their NDLs and move them back-

ward to their next NDLs. Analogously, after the environmental

selection, the ENLU method recursively finds those solutions

that need to change their NDLs and move them forward to

their prior NDLs. The time complexity of ENLU method is

O(m) in the best case and O(mN2) in the worst case. Although

the ENLU method holds the same worst-case complexity as

the FNDS method, extensive experiments demonstrate that

it avoids a significant amount of unnecessary comparisons

Algorithm 1: Steady-State NSGA-II

Input: algorithm parameters

Output: population P

1 Initialize a population P ← {x1, · · · , xN};

2 while termination criterion is not met do

3 Mating selection and generate an offspring xc;

4 Use NDS to divide P′ ← P
⋃

{xc} into several NDLs,

i.e., F1, · · · , Fl;

5 Identify the worst solution x′ ∈ Fl and set

P ← P′ \ {x′};

6 return P;

in practice. Furthermore, we find that the ENLU method is

also useful for the generational evolution model.

In the rest of this paper, we first discuss the motivations

of this paper in Section II. Then, the implementation details

of our proposed ENLU method are described step by step

in Section III. Afterwards, its computational complexity is

theoretically analyzed in Section IV. Next, Section V empiri-

cally investigates the performance of ENLU method on several

synthetic data sets and real optimization scenarios. Finally,

Section VI concludes this paper and provides some future

directions.

II. MOTIVATIONS

In order to understand the basic principles of the steady-

state evolution model, Algorithm 1 presents the pseudo-code

of a steady-state version of the classic elitist NDS genetic

algorithm (NSGA-II) [8]. At the beginning, a population P

is initialized via a uniform sampling over the decision space

(line 1 in Algorithm 1). During the main while loop, P is

updated as soon as the generation of a new candidate solu-

tion xc. The environmental selection involves two steps. One

is using the NDS to divide the hybrid population P′, a combi-

nation of P and xc, into l (1 ≤ l ≤ |P′|) NDLs, i.e., F1, . . . , Fl

(line 4 in Algorithm 1). More specifically, all nondominated

solutions are at first assigned to F1. Afterwards, solutions

assigned to F1 are temporarily removed from P′ and the non-

dominated solutions in P′\F1 are assigned to F2, so on and

so forth. Note that each solution in Fi is either nondominated

with or dominated by at least one solution in Fj, where i > j

and i, j ∈ {1, . . . , l}. After the NDS, we eliminate the worst

solution x′ at the last NDL Fl from P′ to form a new P for

the next iteration (line 5 in Algorithm 1).

Since the NDS requires pair-wise dominance comparisons

among solutions, it can be a very time-consuming part in an

EMO algorithm. To illustrate this problem, we perform two

simple experiments by using the steady-state NSGA-II on sev-

eral DTLZ2 test instances [20]. In the first experiment, the

population size is set to 100 as a constant, while the number

of objectives grows from 2 to 20 with a step size 1. For the sec-

ond experiment, the number of objectives is fixed to 5, while

the population size increases from 100 to 2000 with a step size

100. The number of generations is set as 1000 for all cases.

From Fig. 1, we clearly see that the NDS indeed consumes a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: ENLU METHOD FOR STEADY-STATE EMO 3

Fig. 1. Comparisons of CPU time (millisecond) cost by the NDS and the
steady-state NSGA-II.

Fig. 2. NDL structure keeps unchanged when xc is added and eliminated.

dominating amount of CPU time in the steady-state NSGA-II.

Furthermore, the CPU time cost by the NDS increase with

the number of objectives and the population size. One may

argue that this ratio will changes in a computationally expen-

sive optimization scenario, where the function evaluation is

very time-consuming. Nevertheless, it is of significant impor-

tance in practice to reduce the cost of the NDS (or in other

words, maintaining the NDL structure), especially for a large

number of objectives and population size.

To this end, an idea naturally comes out: is it really neces-

sary to perform the NDS from scratch, each time, during the

environmental selection of the steady-state evolution model?

Let us consider a simple example presented in Fig. 2, where

there are three NDLs, i.e., F1 = {x1}, F2 = {x2, x3, x4}, and

F3 = {x5, x6, x7}. If a new candidate solution, say xc, comes

in, none of these seven solutions need to change their NDLs

and we only need to insert xc into F1. As for the other exam-

ple shown in Fig. 3, x4, x6, and x7 need to move themselves

backward to their next NDLs if the new candidate solution xc

comes in. Analogously, the NDL structure might also change

after eliminating a solution by the environmental selection. Let

us consider the same examples shown in Figs. 2 and 3 in an

opposite direction. For simplicity, we assume that just xc is

eliminated after the environmental selection. For the example

presented in Fig. 2, none of the remaining solutions need to

change their NDLs, while for the example shown in Fig. 3,

x4, x6, and x7 need to move themselves forward to their prior

NDLs.

Based on the above discussions, we notice that the addition

and elimination of a solution usually does not shake the entire

NDL structure of the current population. On the contrary, only

Fig. 3. x4, x6, and x7 need to change their NDLs when xc is added and
eliminated.

a limited number of solutions need to update their NDLs.

Therefore, it is unnecessary to perform the NDS from scratch

at each iteration of a steady state EMO algorithm. Instead, we

only need to figure out the following three questions when a

new candidate solution xc comes in.

1) Which NDL does xc belong to.

2) Is there any solution in P that needs to change its NDL.

3) If yes, what is the new NDL such solution belongs to.

Analogously, after eliminating an inferior solution by the

environmental selection, we need to figure out the following

two questions to update the NDL structure of the newly formed

population.

1) Is there any solution in the newly formed P that needs

to change its NDL.

2) If yes, what is the new NDL such solution belongs to.

In the next section, we will illustrate our ENLU method for

addressing the above mentioned considerations.

III. EFFICIENT NONDOMINATION

LEVEL UPDATE METHOD

Instead of performing the NDS from scratch, the ENLU

method takes advantages of the existing knowledge of the

current population to update the NDL structure. As discussed

in Section II, the NDL structure might be changed both when

we add a new candidate solution after reproduction and elim-

inate an inferior one after environmental selection. Bearing

these two scenarios in mind, we will illustrate the technical

details of the ENLU method step by step in the following

paragraphs.

A. ENLU Method After Reproduction

According to the discussions in Section II, we have to figure

out the following three issues.

1) Which NDL Does xc Belong to: Here, we suggest a top-

down approach to identify the NDL to which xc belongs. More

specifically, starting from F1, we perform a pair-wise domi-

nance comparison between xc and all solutions in F1. If xc is

nondominated with all solutions in F1 or it dominates some

ones therein, xc is added to F1. On the flip side, xc does not

belong to F1 in case it is dominated by at least one solution in

F1. As long as such dominating solution is found, we do not

compare the dominance relationship with the remaining solu-

tions in F1 any longer and turn to investigate the solutions

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

Algorithm 2: ENLU Method After Reproduction

Input:

• NDL structure F = {F1, · · · , Fl}

• offspring solution xc

Output: updated NDL structure F

1 T ← {xc};

2 for i ← 1 to l do

3 if CASE I then

4 continue;

5 else if CASE II then

6 Fi ← Fi

⋃
T;

7 break;

8 else if CASE III then

9 Move all solutions in Fk, k ∈ {i, · · · , l}, to Fk+1;

10 Fi ← T;

11 break;

12 else // CASE IV

13 Fi ← Fi

⋃
T;

14 T ← solutions in Fi ∧ dominated by those in T;

15 if i = l + 1 then

16 Fl+1 ← T;

17 return F

in F2, so on and so forth. Note that if xc does not belong to

any existing NDL Fi, where i ∈ {1, . . . , l}, xc is added to a

newly created NDL Fl+1.

2) Is There Any Solution That Needs to Change Its NDL:

According to the discussions in Section III-A1, for solutions

in Fi, where i ∈ {1, . . . , l}, only those dominated by the

newly added solutions need to change their NDLs.

3) What Is the New NDL Such Solution Belongs to: Assume

that xI is going to be added to Fi, where i ∈ {1, . . . , l},

and xI dominates one or more solutions in Fi. These domi-

nated solutions should be moved to another NDL after adding

xI. According to the property of NDL, in case j < i and

i, j ∈ {1, . . . , l}, none of these dominated solutions can dom-

inate any solution in Fj, and each of them should be at

least dominated by one solution in Fj. Therefore, these dom-

inated solutions cannot be moved to an NDL prior to Fi.

Moreover, each of these dominated solutions either be non-

dominated or dominates a solution in Fi+1. In this case, it

contradicts the property of NDL if those dominated solutions

are moved to Fk, where k > i + 1. In summary, solutions

in Fi and are dominated by xI can only be moved from

Fi to Fi+1.

Based on the above discussions, Algorithm 2 presents the

pseudo-code of the ENLU method after reproduction, i.e.,

when xc comes in. Note that the NDL structure of the parent

population P is already known a priori. This is guaranteed in

the steady-state EMO, e.g., steady-state NSGA-II, since the

NDS is performed at the initialization procedure and the NDL

structure is updated as long as xc comes in. To start with,

the algorithm first checks whether there exists a solution in

F1 that dominates xc. As long as we find such solution, we

start comparing xc with solutions in F2, so on and so forth.

Fig. 4. Example of CASE II in ENLU method after reproduction.

Fig. 5. Example of CASE III in ENLU method after reproduction.

Generally speaking, we might meet one of the following four

cases when checking with the solutions in Fi (1 ≤ i ≤ l).

1) CASE I: The newly added solutions1 are dominated by

at least one solution in Fi. According to the discussion

in Section III-A3, CASE I only happens to xc. In partic-

ular, if 1 ≤ i < l, we stop comparing with the remaining

solutions in Fi, and move to check with solutions in

Fi+1. Otherwise, xc is added to a newly created NDL

Fl+1.

2) CASE II: The newly added solutions are nondomi-

nated with all solutions in Fi. In this case, the newly

added solutions will be directly added to Fi, and no fur-

ther comparison is required for the remaining NDLs.

Fig. 4 presents a simple example to illustrate this case.

Let us start the comparison from F1. Since xc is dom-

inated by x1, it does not belong to F1. Then, we move

to check with solutions in F2. Since xc is nondominated

with all solutions in F2, it is added to F2 and we stop

comparing with the remaining solutions in F3.

3) CASE III: The newly added solutions dominate all

solutions in Fi. In this case, all solutions in Fk, where

k ∈ {i, . . . , l}, are moved to Fk+1, and the newly added

solutions are added to Fi. Fig. 5 presents a simple exam-

ple to illustrate this case. Let us start the comparison

from F1. Since xc is dominated by x1, it does not belong

to F1. Then, we move to check with solutions in F2.

Since xc dominates all solutions in F2, it is added to

F2. In the meanwhile, solutions originally in F2 and F3

are, respectively, moved to F3 and F4.

1The newly added solution is xc at the outset, and will be the solutions
that need to change their NDLs thereafter.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: ENLU METHOD FOR STEADY-STATE EMO 5

Fig. 6. Example of CASE IV in ENLU method after reproduction.

4) CASE IV: The newly added solutions dominate one or

more solutions in Fi. In this case, the newly added solu-

tions, denoted as T in Algorithm 2, are added to Fi. In

the meanwhile, the solutions originally in Fi and dom-

inated by one or more solutions in T are used to form

the new T for the next NDL. Fig. 6 presents a simple

example to illustrate this case. Let us start the compar-

ison from F1. Since xc is dominated by x2, it does not

belong to F1. Then xc is compared with solutions in F2.

Since xc dominates x5 and x6 and is nondominated with

others, it is added to F2 while x5 and x6 need to move

to F3. In F3, since x5 and x6 dominate x8 and x9, x5

and x6 are added to F3. At the same time, x8 and x9 are

added to a newly created NDL F4.

B. ENLU Method After Environmental Selection

According to the discussions in Section II, we have to figure

out the following two issues.

1) Is There Any Solution That Needs to Change Its NDL:

Let us assume that xE, which belongs to Fi, where

i ∈ {1, . . . , l}, is eliminated by the environmental selection.

Note that solutions in Fj, where 1 ≤ j ≤ i, either are

nondominated with xE or dominate it. Thus, the elimination

of xE cannot influence the NDL structure prior to Fi. Only

solutions dominated by xE might change their NDLs.

2) What Is the New NDL Such Solution Belongs to: Similar

to the discussions in Section III-A, a solution can only move

forward one NDL. Let us explain this by induction. Suppose

that ∃x∗ ∈ Fi+1 and xE � x∗. ∃x′ ∈ Fj, where 1 ≤ j ≤ i − 1,

and x′ � xE. According to the transitivity property of the

Pareto dominance, we have x′ � x∗. Therefore, x∗ cannot be

added to Fj. On the other hand, x∗ can be added to Fi if and

only if ∄x′′ ∈ Fi that x′′ � x∗.

Based on the above discussions, Algorithm 3 gives the

pseudo-code of the ENLU method after environmental selec-

tion. To start with, we locate the NDL Fi to which xE

belongs (line 1 in Algorithm 3). Then, we identify the solu-

tions in Fi+1 and are dominated by xE. If there does not

exist such solutions, the ENLU method terminates and no

solution needs to change its NDL. Otherwise, we store the

dominated solutions into a temporary archive S (line 3 in

Algorithm 3). For each solution x in S, we compare the dom-

inance relationship with the survived solutions in Fi. The

solutions in S and dominated by the survived solutions in Fi

are stored into a temporary archive D (line 5 in Algorithm 3),

Fig. 7. Example of ENLU method after environmental selection.

Algorithm 3: ENLU After Environmental Selection

Input:

• NDL structure F = {F1, F2, · · · , Fl}

• eliminated solution xE

Output: updated NDL structure F

1 Locate the NDL Fi to which xE belongs;

2 while i < l do

3 S ← solutions in Fi+1 ∧ dominated by xE;

4 if S
= ∅ then

5 D ← solutions in S ∧ dominated by the survived

solutions in Fi;

6 if D = S then

7 break;

8 Fi ← Fi

⋃
S\D;

9 i++;

10 return F

whereas those are nondominated with the survived solutions

in Fi are added into this NDL (line 9 in Algorithm 3). If

none of the solution in S can be added into Fi, we stop

considering solutions after Fi+1 (lines 6–8 in Algorithm 3).

Note that if xE ∈ Fl, no more operation is required. Fig. 7

presents a simple example to illustrate the ENLU method

after environmental selection. Suppose that x5 is eliminated

from the population. Since all solutions in F3 are domi-

nated by x5, all of them have the chance to be added to F2.

We compare the dominance relationship between solutions in

F3 with x4 and x6, and we find that x7 is dominated by x4.

Therefore, only x8 and x9 can be added to F2. Afterwards,

we find that x10 ∈ F4 is dominated by x5. Thus, we need to

consider the movement of x10 from F4 to F3. Since x10 is

nondominated with x7, it is added to F3. At last, the ENLU

method terminates.

IV. COMPUTATIONAL COMPLEXITY ANALYSIS

In this section, we analyze the computational complexity

of the proposed ENLU method. As discussed in Section III,

the ENLU method is performed twice at each iteration of a

steady-state EMO algorithm (lines 3–5 in Algorithm 1). In

the following paragraphs, we consider the computational com-

plexity in two different scenarios, i.e., the ENLU method after

reproduction and environmental selection, respectively.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

A. Best-Case Complexity of ENLU Method

Let us first consider the scenario of the ENLU method after

reproduction. The best-case happens when F1 only contains

a single solution and it is nondominated with the newly gen-

erated offspring solution xc. In this case, the ENLU method,

shown in Algorithm 2, only requires one dominance compar-

ison, i.e., m objective function comparisons. Thus, the best

case complexity of the ENLU method after reproduction is

O(m). As for the scenario of the ENLU method after environ-

mental selection, the best-case happens when the elimination

takes place at Fl. In this case, since this eliminated solution

does not dominate any other in the population, the ENLU

method, shown in Algorithm 3, does not require any further

dominance comparison. Note that in the steady-state NSGA-II,

this best-case always happens since its environmental selec-

tion deletes the worst solution from Fl as shown in line 5

of Algorithm 1. Nevertheless, there are some other steady-state

EMO algorithm, e.g., our recently proposed one for many-

objective optimization [16] in which the elimination of an

inferior solution might not always happen in Fl. In summary,

the best-case complexity of ENLU method is O(m).

B. Worst-Case Complexity of ENLU Method

The analysis of worst-case complexity is much more com-

plicated. Let us still first consider the scenario of the ENLU

method after reproduction.

Lemma 1: Given a population having N solutions, which

form l (1 ≤ l ≤ N) NDLs, i.e., F1, . . . , Fl. Each Fi contains

ϕi (1 ≤ ϕi ≤ N) solutions, where i ∈ {1, . . . , l}, and∑l
i=1 ϕi = N. The largest number of comparisons (NoCs) is

calculated as

NoC = ϕ1 +

k∑

i=2

(ϕi−1 − 1)ϕi (2)

where k = l in case there does not exist any NDL, before Fl,

in which the newly added solutions from the previous NDL

dominate or are nondominated with all solutions; otherwise k

is the index of the first such NDL.

The proof of Lemma 1 can be found in Appendix A in the

supplementary material. It is the foundation to figure out the

NDL structure that maximizes the NoC under the given N.

Lemma 2: When l = 2, the NDL structure ϕ1 = [(N/2)]+1

and ϕ2 = N−[(N/2)]−1 maximizes NoC, where [∗] can either

be a rounded up or rounded down operation in case (N/2) is

not an integer.

The proof of Lemma 2 can be found in Appendix B in the

supplementary material. Unfortunately, it is far from trivial

to directly derive the NDL structure that maximizes the NoC

when l > 2. In order to find some patterns, for a given N and

l, we perform an exhaustive search to find the combinations

of ϕi, where i ∈ {1, . . . , l}, that give us the largest NoC. Due

to the huge volume of different combinations, which grows

exponentially with the increase of N and l, here, we set N = 30

as a constant and l varies from 3 to 6 in our experiment for

illustrative purpose. Specifically, we have the following results.

1) When l = 3, there is one NDL structure that gives the

largest NoC
ϕ1 ϕ2 ϕ3

15 14 1
.

2) When l = 4, there are two different NDL structures that

give the largest NoC

ϕ1 ϕ2 ϕ3 ϕ4

14 14 1 1

15 13 1 1

.

3) When l = 5, there is one NDL structures that gives the

largest NoC
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

14 13 1 1 1
.

4) When l = 6, there are two different NDL structures that

give the largest NoC

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

13 13 1 1 1 1

14 12 1 1 1 1

.

Accordingly, we calculate the corresponding largest NoC

achieved by different number of NDLs as follows:

l = 2 l = 3 l = 4 l = 5 l = 6

226 224 209 195 181
.

Based on the above results, we have the following two

observations.

1) For a given N and l, most solutions should be located

in the first two NDLs in order to maximize NoC.

2) For a given N, the largest NoC decreases with the

increase of l.

Lemma 3: When l ≥ 3, the NDL structure ϕ1 =

[((N − l + 3)/2)], ϕ2 = N − [((N − l + 3)/2)] − 1, ϕi = 1,

i ∈ {3, . . . , l} maximizes NoC, where [∗] can either be a

rounded up or rounded down operation in case ((N − l + 3)/2)

is not an integer.

The proof of Lemma 3 can be found in Appendix C in

the supplementary material. This lemma provides the theoret-

ical support to the first observation in the above exhaustive

search, and it also gives the corresponding NDL structure that

maximizes the NoC in a general case.

Theorem 1: For a given N, l = 2 maximizes NoC.

The proof of Theorem 1 can be found in Appendix D in

the supplementary material. This theorem gives the theoreti-

cal support to the second observation in the above exhaustive

search. Based on Lemma 2 and Theorem 1, we find that the

worst-case complexity of our proposed ENLU method after

reproduction is O(mN2). Obviously, the computational com-

plexity of the ENLU method after environmental selection

cannot be larger than O(mN2), even if an exhaustive search

is performed. Therefore, we do not discuss the complexity

therein. In summary, the worst-case complexity of ENLU

method is O(mN2).

V. EMPERIMENTAL RESULTS

The empirical studies in this paper consist of two parts.

In the first part, we compare the performance of the ENLU

method with five popular NDS algorithms on two different

synthetic data sets; in the second part, we incorporate the

ENLU method and the other five NDS algorithms into the

EMO algorithm and compare their performance on some real

optimization scenarios. In particular, we employ the num-

ber of objective comparisons as the indicator to evaluate the

performance of different algorithms.2 In order to mimic the

reproduction, a point, randomly sampled from [0, 1]m, is added

2Since different algorithms are implemented in different programming
languages, we do not use CPU time cost in comparisons.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: ENLU METHOD FOR STEADY-STATE EMO 7

to a data set before performing the ENLU method after repro-

duction; while for the environmental selection, a randomly

chosen point is eliminated from the data set before performing

the ENLU method after environmental selection. In addition,

each NDS algorithm is launched 21 independent times for each

data set. The median indicator values are used for compar-

isons. In the second part, we have implemented six steady-state

NSGA-II variants by using the ENLU method and the other

five NDS algorithms, respectively. The performance of differ-

ent variants is studied on a variety of DTLZ problems with

various number of objectives. In the following paragraphs, we

at first give some brief descriptions on the five NDS algorithms

and the implementations of two different synthetic data sets.

Afterwards, we will discuss the experimental results in detail.

A. Nondominated Sorting Algorithms

1) Fast NDS [2]: Each solution is compared with other

solutions in the population, and solutions that are nondomi-

nated with others are assigned to F1. Then, solutions in F1 are

temporarily removed from the population, and the remaining

nondominated solutions are assigned to F2, so on and so forth.

It is worth noting that, in order to reduce some unnecessary

comparisons, the comparison between any two solutions only

performs once.

2) Deductive Sort [5]: In order to reduce unnecessary

comparisons, DS has two major strategies: one is to ignore

the comparisons of dominated solutions to the others; the

other is to infer the dominance relationship from the previous

comparison records.

3) Corner Sort [6]: Its basic idea is to use the nondomi-

nated solutions to ignore their dominated solutions. It has two

major strategies to reduce unnecessary comparisons: one is

to ignore the dominated solutions as in DS; the other is to

identify the nondominated solutions that are unique for CS.

4) Efficient Nondominated Sort [7]: In efficient nondomi-

nated sort (ENS), the comparison between any two solutions

is at most once, thereby avoiding many unnecessary compar-

isons. It has two implementations: one uses a sequential search

strategy (ENS-SS) and the other uses a binary search strategy

(ENS-BS) to identify the NDL to which a solution belongs.

Our proposed ENLU method and FNDS are implemented in

JAVA under the jMetal framework [21], an open source EMO

algorithm package. The source codes of the other four NDS

algorithms are obtained from their corresponding authors.

Specifically, DS and CS are implemented in C++; ENS-BS

and ENS-SS are implemented in MATLAB.

B. Synthetic Data Sets

1) Cloud Data Set: This data set contains solutions whose

objective values are randomly sampled from a uniform dis-

tribution within the range [0, 1]. This randomly sampled

population is unstructured, and it consists of solutions arranged

in a random order. In addition, the randomly sampled popu-

lation contains a varying number of NDLs, and each solution

dominates an unpredictable number of solutions in the popu-

lation. This data set tends to mimic the population structure in

the early stages of EMO, and it investigates the general ability

to identify the NDL structure in a mixed population.

2) Fixed Fronts Data Set: This data set contains a popula-

tion where solutions are divided into a controllable number

of NDLs. Each NDL has almost the same size, and solu-

tions in each NDL are distributed on a line or a hyper-plane.

More detailed descriptions on the construction of this kind of

data sets can be found in [5]. The fixed front data set tends

to investigate the change of the computational cost with the

variation of the number of NDLs. Note that the number of

NDLs diminishes with the progress of evolution. Due to the

page limit, further discussions upon this issue can be found in

Appendix E in the supplementary material.

C. Experiments on Cloud Data Set

In this section, we test the performance of the ENLU

method with the other five NDS algorithms on cloud data sets

in two-, five-, ten-, and fifteen-objective cases, respectively.

For each case, the size of a data set ranges from 100 to 5000

with an increment of 100. That is to say, for a given number

of objectives, there are 50 randomly generated populations in

total for the empirical studies.

Fig. 8 plots the variations of the number of objective com-

parisons for different data set sizes. Note that the y-axes

of Fig. 8 are labeled in log-scale, since FNDS costs much

more objective comparisons than others. It is worth noting

that the number of objective comparisons of FNDS increases

with the growth of the data set size, whereas its trajectories

have little change for different number of objectives. This

can be explained as the computational cost of FNDS largely

depends on the population size. Since DS ignores some dom-

inated solutions in sorting, it requires fewer comparisons than

FNDS. As discussed in [7], in ENS-SS and ENS-BS, only

solutions, which have already been assigned an NDL, are

used to compare with the other unassigned ones. Empirical

results in Fig. 8 demonstrate that both ENS-SS and ENS-BS

indeed reduce many unnecessary comparisons. Especially for

the two-objective case, ENS-BS requires much fewer objective

comparisons than the other four NDS algorithms. However, in

five- and ten-objective cases, ENS-SS performs slightly better

than ENS-BS. In addition, we notice that the number of objec-

tive comparisons of DS, ENS-SS, and ENS-BS increases with

the growth of dimensionality. Even worse, as shown in Fig. 8,

the performance of these three algorithms almost degenerate

to FNDS in the ten- and fifteen-objective cases. As for CS,

it takes the advantage of the corner solution, which has the

best value in a particular objective function, to reduce unnec-

essary comparisons. In contrast to the m(N − 1) objective

comparisons for identifying a nondominated solution, the iden-

tification of a corner solution only requires N − 1 objective

comparisons. This property makes CS very efficient for the

many-objective scenario. From the results shown in Fig. 8,

we find that the performance of CS is only better than FNDS

in the two-objective case, whereas it performs better than the

other four NDS algorithms when the number of objectives

becomes large. Nevertheless, the ENLU method shows a con-

stantly best performance in all comparisons. Its superiority

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 8. Median number of objective comparisons of ENLU method and the other five NDS algorithms for cloud data sets. (a) Two-objective case.
(b) Five-objective case. (c) Ten-objective case. (d) Fifteen-objective case.

Fig. 9. Median number of objective comparisons of ENLU method and the other five NDS algorithms for cloud data sets with fixed sizes. (a) N = 100.
(b) N = 1000. (c) N = 3000. (d) N = 5000.

becomes even more significant with the increase of the num-

ber of objectives. It is interesting to note that the trajectories

of the ENLU method fluctuate significantly in the two- and

five-objective cases, and become stable later on. As discussed

in Section IV, the computational cost of the ENLU method

largely depends on the population distribution. In the low-

dimensional case, the NDL structure is rather chaotic, thereby

adding a new solution might largely shake the original NDL

structure. On the other hand, the number of NDLs diminishes

with the growth of dimensionality, which makes the NDL

structure become relatively simpler. Thereby, the number of

objective comparisons cost by the ENLU method becomes sta-

ble in the high-dimensional cases. Due to the page limit, the

issues of NDL structure will be further explored in Appendix E

in the supplementary material.

In the above experiments, we investigate the performance

variation for different data set sizes for a particular dimension-

ality. People may also interest in the performance variation on

a data set with a fixed size in various dimensionalities. To this

end, we conduct another set of experiments on some cloud

data sets with a fixed size (100, 1000, 3000, and 5000, respec-

tively), where the number of objectives varies from 2 to 20

for each case. Fig. 9 presents the performance comparisons

of ENLU method and the other five NDS algorithms. From

these experimental results, we have observed a similar trend

as in Fig. 8: the performance of DS, ENS-SS, and ENS-BS

gradually degenerate to FNDS with the growth of dimension-

ality. In particular, the number of objective comparisons cost

by DS becomes the same as FNDS in case more than fifteen

objectives have been considered. This can be explained as the

cloud data sets with more than fifteen objectives usually have

only one NDL, thus no dominated solutions can be ignored

by the DS. As for CS, the number of objective comparisons

slightly increases with the growth of dimensionality. And sim-

ilar to the observations in Fig. 8, CS costs more objective

comparisons than DS, ENS-SS and ENS-BS when the num-

ber of objectives is small. However, with the increase of the

number of objectives, CS shows constantly better performance

than the other NDS algorithms. Nevertheless, as expected, our

proposed ENLU method is the most efficient method, which

costs much less number of objective comparisons, comparing

to all other NDS algorithms.

D. Experiments on Fixed Fronts Data Sets

After the experiments on cloud data sets, this section inves-

tigates the performance of ENLU method and the other five

NDS algorithms on data sets with a controllable number of

NDLs. In particular, we consider two factors that might influ-

ence of the computational cost, i.e., the number of NDLs and

the number of objectives.

The first experiment investigates the performance of ENLU

method and the other five NDS algorithms on the fixed fronts

data sets with two, five, ten, and fifteen objectives. The popula-

tion size is fixed to 2000, and the number of NDLs varies from

2 to 70 with an increment of one, resulting in 69 populations

in total for each test case. Fig. 10 presents the comparison

results of the ENLU method with FNDS, DS, CS, ENS-SS,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: ENLU METHOD FOR STEADY-STATE EMO 9

Fig. 10. Median number of objective comparisons of ENLU method and the other five NDS algorithms for fixed fronts data sets with controllable number
of NDLs. (a) Two-objective case. (b) Five-objective case. (c) Ten-objective case. (d) Fifteen-objective case.

Fig. 11. Median number of objective comparisons of ENLU method and the other five NDS algorithms for fixed fronts data sets with fixed number of NDLs.
(a) l = 1. (b) l = 10. (c) l = 30. (d) l = 50.

and ENS-BS, regarding the number of objective comparisons.

Similar to the observations for the cloud data sets, as shown

in Fig. 10, FNDS costs the largest number of objective compar-

isons among all six algorithms. In addition, it is also interesting

to note that the trajectories of FNDS keep stable over differ-

ent number of NDLs. This can be explained as the number

of objective comparisons incurred by FNDS largely depends

on the number of objectives and population size. As discussed

in [5], this quantity is m×(N2−N), regardless of the number of

NDLs. In contrast to FNDS, a significant decrease in the num-

ber of objective comparisons has been witnessed by the other

five algorithms. Generally speaking, their trajectories share a

common trend where the number of objective comparisons

decreases with the increase of the number of NDLs. More

specifically, the performance of ENS-SS is similar to ENS-

BS when the number of NDLs is relatively small, whereas its

performance deteriorates with the increase of the number of

NDLs. Even worse, ENS-SS costs more objective comparisons

than DS when the number of NDLs is larger than 40. As for

CS, it costs less number of objective comparisons when the

number of objectives becomes large. All in all, our proposed

ENLU method is the best algorithm in most test cases.

In the second experiment, we test the performance of the

ENLU method and the other five NDS algorithms on data

sets with 1, 10, 20, and 50 NDLs, respectively, for different

number of objectives. Here, the population size is constantly

set as 5000, and the number of objectives varies from 2 to 20

with an increment of one. From the empirical results shown

in Fig. 11, we find that our proposed ENLU method is the best

candidate in most test cases. Although ENS-SS and ENS-BS

cost fewer objective comparisons in two-objective case, their

trajectories surge up toward a high level later on. It is worth

noting that the performance of DS is almost the same as FNDS

when there is only one NDL. This is because DS cannot ignore

any solution when all solutions are nondominated with each

other. As for CS, its required number of objective comparisons

keep stable all the time.

E. Performance Investigations in Steady-State NSGA-II

Other than the empirical studies on synthetic data sets, it

is also interesting to see the efficiency improvement when

the ENLU method is embedded in a steady-state EMO algo-

rithm. To this end, we develop six steady-state NSGA-II

variants. In particular, the pseudo-code of the variant that

uses the ENLU method to update the NDL structure is given

in Algorithm 4, while the other variants are, respectively, using

FNDS, DS, ENS-SS, ENS-BS, and CS methods to replace

line 4 of Algorithm 1. DTLZ1 to DTLZ4 [20], with three, five,

eight, ten, and fifteen objectives, are chosen as the benchmark

problems. All steady-state NSGA-II variants use the simulated

binary crossover [22] and polynomial mutation [23] for off-

spring generation. The crossover probability is pc = 1.0 and

its distribution index is ηc = 30. The mutation probability is

pm = 1/n and its distribution index is ηm = 20. According

to our recent studies on many-objective optimization [16], the

settings of the number of generations and population size for

different number of objectives are given in Table I.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CYBERNETICS

Fig. 12. Median number of objective comparisons of six steady-state NSGA-II variants by using ENLU method and the other five NDS algorithms on
DTLZ1–DTLZ4. Note that problem index i means DTLZi. (a) Three-objective. (b) Five-objective. (c) Eight-objective. (d) Ten-objective. (e) Fifteen-objective.

Algorithm 4: Steady-State NSGA-II Using ENLU Method

Input: algorithm parameters

Output: population P

1 Initialize a population P ← {x1, · · · , xN};

2 Use NDS to divide P into several NDLs, i.e., F1, · · · , Fl;

3 while termination criterion is not met do

4 Mating selection and generate an offspring xc;

5 Use ENLU method to update the NDL structure of

P′ ← P
⋃

{xc};

6 Identify the worst solution x′ and set P ← P′ \ {x′};

7 Use ENLU method to update the NDL structure of P;

8 return P;

TABLE I
NUMBER OF GENERATIONS FOR DIFFERENT TEST INSTANCES

Each steady-state NSGA-II variant is launched 21 inde-

pendent times, and Fig. 12 presents the median number of

objective comparisons cost by these six variants on different

test instances. From the experimental results, we can clearly

see that the steady-state NSGA-II with the ENLU method costs

much fewer (more than 10 times) objective comparisons than

the other five variants. Although FNDS always costs more

objective comparisons than the other NDS methods in syn-

thetic data sets, it is not the worst candidate when embedding

in a steady-state NSGA-II in some cases. For instance, in the

three-objective case, the steady-state NSGA-II variants with

DS and CS consume more objective comparisons than the

one using FNDS. It is interesting to note that the number of

objective comparisons cost by ENS-SS and ENS-BS is almost

the same in most cases. Furthermore, these two methods have

shown better performance than the other NDS methods in the

three-objective case. But their superiorities gradually vanish

with the growth of dimensionality. In summary, our proposed

ENLU method not only shows the best performance in syn-

thetic data sets, it is also a reliable and efficient method to

maintain NDL structure in a steady-state EMO algorithm.

Algorithm 5: Canonical NSGA-II Using ENLU Method

Input: algorithm parameters

Output: population P

1 Initialize a population P ← {x1, · · · , xN};

2 Use NDS to divide P into several NDLs, i.e., F1, · · · , Fl;

3 while termination criterion is not met do

4 Mating selection and generate the offspring

population Q ← {xc
1, · · · , xc

N};

5 P′ ← P;

6 for i ← 1 to N do

7 P′ ← P′
⋃

{xc
i };

8 Use ENLU method to update the NDL structure

of P′;

9 i ← 0, P ← ∅;

10 while |P| < N do

11 i ← i + 1, P ← P
⋃

Fi;

12 while |P| > N do

13 Identify the worst solution x′ ∈ Fi and set

P ← P \ {x′};

14 Use ENLU method to update the NDL structure

of P;

15 return P;

F. Incorporation of ENLU Into the Generational Scenario

Although the ENLU method is designed for the steady-

state evolution model, an interesting question is whether it

is also useful for the generational scenario? To address this

issue, we incorporate the ENLU method into the canoni-

cal NSGA-II whose pseudo-code is given in Algorithm 5.

Note that each offspring is added to the parent population

one by one, followed by the ENLU method for updating

the NDL structure of the newly hybrid population each time

(lines 6–9 in Algorithm 5). Accordingly, the truncation is also

conducted in a sequential manner, coupled with the ENLU

method to keep the NDL structure up to date (lines 14–17

in Algorithm 5). Similar to Section V-E, we develop five other

canonical NSGA-II variants, which use FNDS, DS, ENS-SS,

ENS-BS, and CS methods to perform the NDS, respectively.

The experimental settings are exactly same as Section V-E, and

Fig. 13 presents the median number of objective comparisons

cost by these six variants on different test instances. From the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

LI et al.: ENLU METHOD FOR STEADY-STATE EMO 11

Fig. 13. Median number of objective comparisons of six NSGA-II variants by using ENLU method and the other five NDS algorithms on DTLZ1–DTLZ4.
Note that problem index i means DTLZi. (a) Three-objective. (b) Five-objective. (c) Eight-objective. (d) Ten-objective. (e) Fifteen-objective.

experimental results, we can see that the canonical NSGA-II

with the ENLU method costs the fewest number of objective

comparisons than the other five variants in most cases. ENS-SS

and ENS-BS are the second best NDS methods on three- and

five-objective scenarios; while their performance deteriorate

with the number of objectives. In contrast, the performance

of CS and DS are not very promising in the low-dimensional

scenarios; while their superiorities become evident when the

number of objectives becomes large. Moreover, we notice

that the superiority of our proposed ENLU method is not

as much as that in the steady-state scenario. All in all, it

is very interesting to see that the ENLU method is also

useful for the generational evolution model. This suggests

that maintaining the NDL structure without resorting to the

NDS is general to both steady-state and generational evolution

models.

VI. CONCLUSION

NDS, which is a basic step in EMO, can be very time

consuming when the number of objectives and population

size become large. To avoid unnecessary comparisons, instead

of performing the NDS from scratch, this paper presents an

ENLU method, which takes advantages of the current pop-

ulation to update the NDL structure, for the steady-state

EMO. At each iteration, the ENLU method is performed

twice: one is after reproduction and the other is after envi-

ronmental selection. By leveraging the population structure,

the ENLU method only updates the NDLs of a limited num-

ber of solutions. Theoretically, the best-case complexity of

the ENLU method is O(m), while the worst-case complex-

ity is O(mN2). Although the proposed ENLU method is very

simple and straightforward, extensive experiments have shown

that it avoids a significant amount of unnecessary compar-

isons, not only in the synthetic data sets, but also in some

real optimization scenarios. Furthermore, it is also very inter-

esting to see that the ENLU method can also be useful

for the generational evolution model. In future, we believe

that heuristics (e.g., taking advantage of previous compar-

isons as done in [5]) and advanced data structures (e.g.,

K-d tree [24]) are worth being applied to the ENLU method

to further improve its computational efficiency. It is also

interesting to apply the ENLU method to both steady-state

and generational EMO algorithms in more real optimization

scenarios [25]–[27].

REFERENCES

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and

Machine Learning. Reading, MA, USA: Addison-Wesley, 1989.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective genetic algorithm: NSGA-II,” IEEE Trans. Evol. Comput.,
vol. 6, no. 2, pp. 182–197, Apr. 2002.

[3] H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of
a set of vectors,” J. ACM, vol. 22, no. 4, pp. 469–476, Oct. 1975.

[4] M. T. Jensen, “Reducing the run-time complexity of multiobjective EAs:
The NSGA-II and other algorithms,” IEEE Trans. Evol. Comput., vol. 7,
no. 5, pp. 503–515, Oct. 2003.

[5] K. McClymont and E. Keedwell, “Deductive sort and climbing sort:
New methods for non-dominated sorting,” Evol. Comput., vol. 20, no. 1,
pp. 1–26, 2012.

[6] H. Wang and X. Yao, “Corner sort for Pareto-based many-objective opti-
mization,” IEEE Trans. Cybern., vol. 44, no. 1, pp. 92–102, Jan. 2014.

[7] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “An efficient approach to non-
dominated sorting for evolutionary multiobjective optimization,” IEEE

Trans. Evol. Comput., vol. 19, no. 2, pp. 201–213, Apr. 2015.

[8] J. J. Durillo, A. J. Nebro, F. Luna, and E. Alba, “On the effect of the
steady-state selection scheme in multi-objective genetic algorithms,” in
Proc. 5th Int. Conf. Evol. Multi Criterion Optim. (EMO), Nantes, France,
2009, pp. 183–197.

[9] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm
based on decomposition,” IEEE Trans. Evol. Comput., vol. 11, no. 6,
pp. 712–731, Dec. 2007.

[10] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective
selection based on dominated hypervolume,” Eur. J. Oper. Res., vol. 181,
no. 3, pp. 1653–1669, 2007.

[11] J. Bader and E. Zitzler, “HypE: An algorithm for fast hypervolume-based
many-objective optimization,” Evol. Comput., vol. 19, no. 1, pp. 45–76,
2011.

[12] K. Deb, M. Mohan, and S. Mishra, “Evaluating the ǫ-domination
based multi-objective evolutionary algorithm for a quick computation of
Pareto-optimal solutions,” Evol. Comput., vol. 13, no. 4, pp. 501–525,
2005.

[13] K. Li, A. Fialho, S. Kwong, and Q. Zhang, “Adaptive operator selec-
tion with bandits for a multiobjective evolutionary algorithm based on
decomposition,” IEEE Trans. Evol. Comput., vol. 18, no. 1, pp. 114–130,
Feb. 2014.

[14] K. Nag, T. Pal, and N. R. Pal, “ASMiGA: An archive-based steady-
state micro genetic algorithm,” IEEE Trans. Cybern., vol. 45, no. 1,
pp. 40–52, Jan. 2015.

[15] K. Li, S. Kwong, and K. Deb, “A dual-population paradigm for evo-
lutionary multiobjective optimization,” Inf. Sci., vol. 309, pp. 50–72,
Jul. 2015.

[16] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-
objective optimization algorithm based on dominance and decompo-
sition,” IEEE Trans. Evol. Comput., vol. 19, no. 5, pp. 694–716,
Oct. 2015.

[17] A. J. Nebro and J. J. Durillo, “On the effect of applying a
steady-state selection scheme in the multi-objective genetic algorithm
NSGA-II,” in Nature-Inspired Algorithms for Optimisation (Studies in
Computational Intelligence), vol. 193. Heidelberg, Germany: Springer,
2009, pp. 435–456.

[18] M. Buzdalov and V. Parfenov, “Various degrees of steadiness in
NSGA-II and their influence on the quality of results,” in Proc. Genet.

Evol. Comput. Conf. (GECCO), Madrid, Spain, 2015, pp. 749–750.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CYBERNETICS

[19] M. Buzdalov, I. Yakupov, and A. Stankevich, “Fast implementation
of the steady-state NSGA-II algorithm for two dimensions based on
incremental non-dominated sorting,” in Proc. Genet. Evol. Comput.

Conf. (GECCO), Madrid, Spain, 2015, pp. 647–654.
[20] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test prob-

lems for evolutionary multiobjective optimization,” in Evolutionary

Multiobjective Optimization (Advanced Information and Knowledge
Processing), A. Abraham, L. Jain, and R. Goldberg, Eds. London, U.K.:
Springer, 2005, pp. 105–145.

[21] J. J. Durillo and A. J. Nebro, “jMetal: A java framework for multi-
objective optimization,” Adv. Eng. Softw., vol. 42, no. 10, pp. 760–771,
2011.

[22] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous
search space,” Complex Syst., vol. 9, no. 2, pp. 1–34, 1994.

[23] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS)
for engineering design,” Comput. Sci. Informat., vol. 26, no. 4,
pp. 30–45, 1996.

[24] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[25] K. Li et al., “Achieving balance between proximity and diversity
in multi-objective evolutionary algorithm,” Inf. Sci., vol. 182, no. 1,
pp. 220–242, 2012.

[26] K. Li, S. Kwong, R. Wang, K.-S. Tang, and K.-F. Man, “Learning
paradigm based on jumping genes: A general framework for enhanc-
ing exploration in evolutionary multiobjective optimization,” Inf. Sci.,
vol. 226, pp. 1–22, Mar. 2013.

[27] K. Nag and N. R. Pal, “A multiobjective genetic programming-based
ensemble for simultaneous feature selection and classification,” IEEE

Trans. Cybern., vol. 46, no. 2, pp. 499–510, Feb. 2016.

Ke Li received the B.Sc. and M.Sc. degrees in
computer science and technology from Xiangtan
University, Xiangtan, China, in 2007 and 2010,
respectively, and the Ph.D. degree in computer
science from the City University of Hong Kong,
Hong Kong, in 2014.

He was a Post-Doctoral Research Associate with
Michigan State University, East Lansing, MI, USA,
and a Research Fellow with the University of
Birmingham, Birmingham, U.K. He is currently a
Lecturer (Assistant Professor) with the College of

Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter,
U.K. His current research interests include the evolutionary multiobjective
optimization, large scale optimization, statistical machine learning, and appli-
cations in software engineering and industrial design.

Dr. Li has served as the regular Reviewer and has published several
research paper in renowned journals such as the IEEE TRANSACTIONS

ON EVOLUTIONARY COMPUTATION and the IEEE TRANSACTIONS ON

CYBERNETICS.

Kalyanmoy Deb (F’13) received the bachelor’s
degree in mechanical engineering from the Indian
Institute of Technology Kharagpur, Kharagpur,
India, and the master’s and Ph.D. degrees from the
University of Alabama, Tuscaloosa, AL, USA, in
1985, 1989, and 1991, respectively.

He is the Koenig Endowed Chair Professor
with the Department of Electrical and Computer
Engineering, Michigan State University, East
Lansing, MI, USA, where he also holds joint
appointments with the Department of Mechanical

Engineering and with the Department of Computer Science and Engineering.
He has published over 435 research papers with over 90 000 Google Scholar
citation with an H-index of 100. His current research interests include
evolutionary optimization and their applications in optimization, modeling,
and machine learning.

Prof. Deb was a recipient of the Infosys Prize, the TWAS Prize in
Engineering Sciences, the CajAstur Mamdani Prize, the Distinguished
Alumni Award from IIT Kharagpur, the Edgeworth-Pareto Award, the
Bhatnagar Prize in Engineering Sciences, and the Bessel Research Award
from Germany. He is in the Editorial Board on 20 major international
journals. He is a fellow of ASME, and three Indian science and engineering
academies.

Qingfu Zhang (M’01–SM’06) received the B.Sc.
degree in mathematics from Shanxi University,
Taiyuan, China, in 1984, the M.Sc. degree in applied
mathematics and the Ph.D. degree in information
engineering from Xidian University, Xi’an, China,
in 1991 and 1994, respectively.

He is a Professor with the Department of
Computer Science, City University of Hong Kong,
Hong Kong, and a Changjiang Visiting Chair
Professor with Xidian University. He holds two
patents and has authored many research publications.

His current research interests include evolutionary computation, optimization,
neural networks, data analysis, and their applications. He is currently leading
the Metaheuristic Optimization Research Group with the City University of
Hong Kong.

Dr. Zhang was a recipient of the Unconstrained Multiobjective Optimization
Algorithm Competition at the Congress of Evolutionary Computation 2009
for MOEA/D, multiobjective optimization algorithm developed in his group,
the 2010 IEEE Transactions on Evolutionary Computation Outstanding Paper
Award, and the Highly Cited Researcher Award in Computer Science
by the Web of Science in 2016. He is an Associate Editor of the
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION and the IEEE
TRANSACTIONS ON CYBERNETICS. He is also an Editorial Board Member
of three other international journals.

Qiang Zhang received the B.Sc. and Ph.D. degrees
in computer science from the City University of
Hong Kong, Hong Kong, in 2009 and 2013, respec-
tively.

He is a Post-Doctoral Research Associate with the
Department of Computer, Control and Management
Engineering Antonio Ruberti, Sapienza University
of Rome, Rome, Italy. His current research
interests include algorithms, mechanism design, and
optimization.

