
IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES 1

Efficient Numerical Evaluation of Singular Integrals
in Volume Integral Equations

Cedric Münger, Kristof Cools

Abstract—We present a method for the numerical evaluation
of 6D and 5D singular integrals appearing in Volume Integral
Equations. It is an extension of the Sauter-Schwab/Taylor-Duffy
strategy for singular triangle-triangle interaction integrals to
singular tetrahedron-tetrahedron and triangle-tetrahedron in-
teraction integrals. The general advantages of these kind of
quadrature strategy is that they allow the use of different kinds
of kernel and basis functions. They also work on curvilinear do-
mains. They are all based on relative coordinates tranformation
and splitting the integration domain into subdomains for which
quadrature rules can be constructed. We show how to build
these tensor-product quadrature rules in 6D and 5D and further
show how to improve their efficiency by using quadrature rules
defined over 2D, 3D and 4D simplices. Compared to the existing
approach, which computes the integral over the subdomains as a
sequence of 1D integrations, significant speedup can be achieved.
The accuracy and convergence properties of the method are
demonstrated by numerical experiments for 5D and 6D singular
integrals. Additionally, we applied the new quadrature approach
to the triangle-triangle interaction integrals appearing in Surface
Integral Equations.

Index Terms—volume integral equations, singular integrals,
numerical quadrature

I. INTRODUCTION

Volume Integral Equations (VIE) are used to solve EM
scattering problems involving inhomogeneous domains, with
application in geological prospecting or microwave imaging.
There are different formulations for VIEs [1]. They all have
in common that they require the accurate evaluation of 6D
interaction integrals that may contain a singular kernel. Fur-
thermore, some formulation involve the evaluation of boundary
terms that require the evaluation of singular 5D interaction
integrals between surface triangles and internal tetrahedrons.
For VIE methods to be competitive with other well established
numerical methods - such as finite element or finite difference
methods - these integrals need an accurate and efficient eval-
uation. In recent years, several methods on how to compute
these integrals have been proposed. There are semi-analytic
approaches that evaluate a part of the integral analytically [2].
Alternatively, the divergence theorem can be used to convert
the volume integrals into surface integrals [3].

In [4], our starting point was the approach from [5],
where the integrand is expressed in relative coordinates and
the integration domain is subdivided. The advantage of this
method is that it moves the singularities to the boundaries of

This paper is an expanded version of a conference paper presented at
2021 IEEE International Conference on Microwaves, Antennas, Biomedical
Engineering & Electronic Systems (COMCAS), Tel Aviv, Israel.

C. Münger and K. Cools are with IDLab, Department of Information
Technology at Ghent University.

the subdomains. In [6], it is demonstrated how to evaluate the
inner non-singular integrals analytically.

Instead of computing an analytic expression for the inner
integrals we proposed to use lower dimensional quadrature
rules to build 6D tensor-product quadrature rules and use
the Duffy-Transformation [7] to remove the singularities and
evaluate the full 6D integral numerically. This makes our
approach suitable for use with a wide class of kernel functions
and curvilinear parametrization of the integration domains.

In [8], triangle-triangle interactions are computed by a
sequence of 1D integrals. For the 4D integrals encountered
in computing triangle-triangle interactions, this results in ac-
ceptable performance. Unfortunately, in the 6D tetrahedron-
tetrahedron case this approach leads to prohibitive computa-
tional costs. Here, we show in detail how to build customized
quadrature methods that factorize the 6D or 5D integration in
a sequence of lower dimensional integrals while maximizing
the dimension for the individual integrals in the sequence. The
numerical experiments will show this can reduce the compu-
tational cost up to an order of magnitude in 6D. New results
for 5D and 4D integrals will show that this approach still can
achieve an significant improved performance compared to the
standard approach.

II. FORMULATION

We want to evaluate integrals of the form

IT×T ′ =

∫
T

∫
T ′

k(x⃗, y⃗)dx⃗dy⃗, (1)

where k(x⃗, y⃗) = b(y⃗)g(x⃗, y⃗)β(x⃗) and g(x⃗, y⃗) is a scalar or
dyadic Green’s function and b(y⃗) and β(y⃗) are scalar or vector
test function and trial function, respectively. T and T ′ are
the integration domains, usually a pair of tetrahedrons, a pair
of triangles or a tetrahedron and a triangle. Typically, the
integrand k(x⃗, y⃗) behaves like 1/r or 1/r2 with r = |x⃗− y⃗|.
Thus, the numerical evaluation of (1) is not straightforward if
the two integration domains overlap or touch.

A. Decomposition into subdomains

If the integration domains overlap or touch, we use the same
steps as in [5] and [8] to subdivide the integration domain and
move the singularity to a more tractable location. We assume
that the tetrahedrons T and T ′ can be parametrized by the
reference tetrahedron τ with corners (0, 0, 0), (1, 0, 0), (1, 1, 0)
and (1, 1, 1) via the mappings MT : τ → T and MT ′ : τ →
T ′. Further, we assume that the tetrahedrons overlap or touch

IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES 2

in a very specific way. Namely, for the common face case we
have

MT (s, t, 0) = MT ′(s, t, 0) ∀s, t ∈ [0, 1], [0, s],

for the common edge case

MT (s, 0, 0) = MT ′(s, 0, 0) ∀s ∈ [0, 1]

and for the common vertex

MT (⃗0) = MT ′ (⃗0).

This can be achieved by reordering the vertices and choosing
an appropriate transformation to the reference tetrahedron.
Similar assumptions are made if T or T ′ is a triangle.

With these assumptions in mind, all our subsequent ma-
nipulations are made on the reference element. We define the
relative coordinate transformation (x⃗, y⃗) 7→ (ˆ⃗x, ˆ⃗z) to move
the singularity to ˆ⃗z = 0. This results in different coordinate
transformations, when the two tetrahedrons are identical, share
a face, edge or only a vertex. They are summarized in Table
I for tetrahedron-tetrahedron interaction. Table II lists the
transformations for triangle-tetrahedron interactions. For the
sake of completeness, the relative coordinates for triangle-
triangle interactions from [8] are listed in Table III.

TABLE I
RELATIVE COORDINATE TRANSFORMATIONS FOR TWO TETRAHEDRONS

Identical Tetrahedron Common Face
x̂1

x̂2

x̂3

ẑ1
ẑ2
ẑ3

 =

x1

x2

x3

y1 − x1

y2 − x2

y3 − x3

x̂1

x̂2

ẑ1
ẑ2
ẑ3
ẑ4

 =

x1

x2

y1 − x1

y2 − x2

y3
x3

Common Edge Common Vertex

x̂1

ẑ1
ẑ2
ẑ3
ẑ4
ẑ5

 =

x1

y1 − x1

y2
y3
x2

x3

ẑ1
ẑ2
ẑ3
ẑ4
ẑ5
ẑ6

 =

x1

x2

x3

y1
y2
y3

TABLE II
RELATIVE COORDINATE TRANSFORMATIONS FOR TETRAHEDRON AND

TRIANGLE

Common Face Common Edge Common Vertex

x̂1

x̂2

ẑ1
ẑ2
ẑ3

 =

x1

x2

y1 − x1

y2 − x2

x3

x̂1

ẑ1
ẑ2
ẑ3
ẑ4

 =

x1

y1 − x1

y2
x2

x3

ẑ1
ẑ2
ẑ3
ẑ4
ẑ5

 =

x1

x2

x3

y1
y2

In a second step, we change the order of integration such
that the outer integration is over z⃗ and the inner integration
variable is x⃗. The reordering of integration variables moves the

TABLE III
RELATIVE COORDINATE TRANSFORMATIONS FOR TWO TRIANGLES

Identical Triangle Common Edge Common Vertex

x̂1

x̂2

ẑ1
ẑ2

 =

 x1

x2

y1 − x1

y2 − x2

x̂1

ẑ1
ẑ2
ẑ3

 =

 x1

y1 − x1

y2
x2

ẑ1ẑ2ẑ3
ẑ4

 =

x1

x2

y1
y2

singular behavior to the outer integrals, which will help with
relocating the singularity to the boundary of the integration
subdomains. Having the singularity at the boundary of the
subdomains is necessary to be able to apply the Duffy-
Transformation that we will discuss in the next section.

During the reordering, we split the integration domain
D into multiple subdomains Di. The reasoning behind this
subdivision is twofold. First, it will allow for the singularity to
be located on the boundaries of the subdomains. And second,
it will simplify the description of the integration bounds. For
a illustration of this concept in 1D, let us assume we have two
identical unit segments (I and I ′) that completely overlap.

MI(s) = MI′(s) ∀s ∈ [0, 1]

Then the integration domain is D = [0, 1] × [0, 1], where
the singularity (x = y) is located along the diagonal in
leftmost picture of Figure 1. With the coordinate transform
(x̂, ẑ) = (x, y − x), we can move the singular points to the
more tractable location of ẑ = 0 (middle Figure 1). In a final
step, we switch axis of x̂ and ẑ and split the integration domain
along the singularity (ẑ = 0) into two subdomains D1 and D2.

Fig. 1. Integration domain in Cartesian coordinates (left), same domain in
relative coordinates (middle), and after swapping the relative coordinates and
subdividing the integration domain. (right).

Written down algebraically this translates to the following
constraints for the integration bounds.{

0 ≤ x ≤ 1
0 ≤ y ≤ 1

}
=

{
0 ≤ x̂ ≤ 1

−x̂ ≤ ẑ ≤ 1− x̂

}
(2)

=

{
−1 ≤ ẑ ≤ 0
−ẑ ≤ x̂ ≤ 1

}
∩
{

0 ≤ ẑ ≤ 1
0 ≤ x̂ ≤ 1− ẑ

}
.

Common Vertex: The splitting of the integration domain
for the common vertex case is a bit different. We have only ẑ-
variables after the relative coordinate transformation (see Table
I, II and III). We can not simply change the order of the ẑ and

IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES 3

x̂ variables. The domain decomposition is again more easily
illustrated in an 1D example. We again have two 1D segments
but this time they only share one endpoint.

MI (⃗0) = MI′ (⃗0)

The integration domain forms a square with the singularity
located in one corner. This square can be split along the
diagonal going through the common (singular) vertex, see
Figure 2. After we switch the order of integration in the second
domain for a more symmetric result, the integration domain
becomes{

0 ≤ ẑ1 ≤ 1
0 ≤ ẑ2 ≤ 1

}
=

{
0 ≤ ẑ1 ≤ 1
0 ≤ ẑ2 ≤ ẑ1

}
∩
{
0 ≤ ẑ1 ≤ 1
ẑ1 ≤ ẑ2 ≤ 1

}
(3)

=

{
0 ≤ ẑ1 ≤ 1
0 ≤ ẑ2 ≤ ẑ1

}
∩
{
0 ≤ ẑ2 ≤ 1
0 ≤ ẑ1 ≤ ẑ2

}
.

This can be analogously extended to higher dimensions. The
result is that we can divide the integration domain of the
common vertex case in only two subdomains.

Fig. 2. Domain splitting for common vertex. Common vertex is the point at
the origin and the integration domain is split along the diagonal.

Performing the relative coordinate transformation and the
reordering of the integration variables on (1), gives us

IT×T ′ =

∫∫
T×T ′

k′(ˆ⃗x, ˆ⃗z)dẑdx̂ =

N∑
i=1

∫∫
Di

k′(ˆ⃗x, ˆ⃗z)dx̂dẑ,

(4)
where the integral splits into N integrals over the subdomains
Di. For singular tetrahedron-tetrahedron interaction integrals
we have in the case of ’Identical Tetrahedrons’ that the change
of integration variables results in a total of 18 subdomains
(N = 18). For the ’Common Face’ case we have N = 15,
for the ’Common Edge’ case we have N = 5 and for the
’Common Vertex’ we have N = 2. The corresponding number
of subdomains for the different cases in 5D and 4D can be
found in Table IV.

TABLE IV
OVERVIEW OF NUMBER OF SUBDOMAINS AFTER SPLITTING

Tet x Tet Tet x Tria Tria x Tria
Common Vertex 2 2 2
Common Edge 5 5 5
Common Face 15 9 6
Identical Tetrahedron 18

Note that in (4) the inner integrals (integrals over x̂) could
be evaluated explicitly as demonstrated in [6]. Due to the
relative coordinate transformation the singular behavior only
happens in the ẑ variable. We apply a numerical quadrature

scheme on the full 6D or 5D integral to approximate it. This
allows our method to be kernel independent, as opposed to
an semi-analytic approach. In a semi-analytic algorithm the
analytic part changes for each different kernel function. In
addition our method is applicable with minimal modifications
to integrals over curvilinear parametrized domains. In a semi-
analytic algorithm, it gets soon too difficult and complex to
compute the analytic part of the solution if one has to deal
with curved integration domains.

B. Duffy-Transformation and Simplex tensor-product

After the transformation and change of integration order we
map each integration domain to a reference domain. Many
integration domains can be mapped to the same reference
domains. When integration domains map to the same reference
domain, we have to ensure that the singularities from all
domains are mapped to the same vertex, edge or face of the
reference domain. This allows us to only define quadrature
rules on the reference domains and reuse them for multiple
integration domains. For example, in the case of ’Identical
Tetrahedrons’ (T = T ′) we will have a total of 18 integration
domains. For the first 16 (out of 18) domains there exist linear
mappings to the 6D simplex and for the last two domains there
are linear mappings to a polytope with 8 corners. Instead of
defining quadrature rules for 18 different integration domains
we only need to define two rules, one on the 6D simplex and
one on the polytope.

The integrals still have a singularity at ˆ⃗z = 0. This sin-
gularity can be reduced by applying a Duffy-Transformation
[7]. In the standard approach all the reference domains are
transformed to the 6D hypercube. The determinant of the
transformation’s Jacobian cancels the singularity in the in-
tegrand. To evaluate the integrand over the hypercube, the
most simple and straight-forward way is to build a 6D tensor-
product quadrature from the 1D Gauss-Legendre quadrature
rule (G1D). Transforming a reference domain to the 6D
hypercube and using the 6D Gauss tensor-product (G1D ×
G1D ×G1D ×G1D ×G1D ×G1D) is very inefficient. If a 10-
point 1D Gauss-Legendre quadrature rule is used to construct
a 6D tensor-product one ends up with 106 quadrature points.

Thus, we are looking for better transformations that still
remove the singularity but are less expensive. As it turns out,
it is sufficient to inflate a domain only along some dimensions
to remove the singularity with the Jacobian. But since the
reference domain is no longer the hypercube, we can no
longer use the tensor-product of 1D Gauss quadrature rules.
Therefore, we look for other quadrature rules or combination
of quadrature rules to cover the inflated domains. For an
illustration of this concept in 3D see Fig. 3, where we can
either inflate a tetrahedron to a cube or a prism. For the
cube, we use a standard tensor-product of three 1D rules
(G1D × G1D × G1D) and for the prism we can combine a
1D rule with any 2D quadrature rule defined over a triangle
(G1D × S2D). For triangles, there are dedicated quadrature
rules available that are significantly more efficient in terms of
number of quadrature nodes for a given order when compared
to quadrature rules that are built by pullback of tensor rules

IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES 4

for the square to the triangle. The computation time required
to compute the integrals decreases along with the number of
quadrature points.

Fig. 3. Domain inflation in 3D to a cube (left) and only along ’necessary’
dimension to a prism (right).

The same principle also applies for 6D integrals, but it is
more difficult and requires more work. What is required, are
dedicated quadrature rules for the 6D inflated domains. Due
to their beneficial properties (positive weights, symmetry and
locality), we implemented the family of quadrature methods
that were developed and studied by Shunn et al. in [9], [10] and
[11] for 2D, 3D and 4D simplices, respectively. The general
idea behind these type of quadrature rules is that they are
the optimal solution of a constraint optimization problem that
minimizes the quadrature error of a polynomial of given order
n while the constraints guarantee that the quadrature rule is
exact for lower degree polynomials (< n). This means that the
quadrature rule will exact up to degree n−1. We implemented
a framework that allows us to generate these kind of rules. First
we derive the symbolic expressions for the quadrature error
of a given degree and all necessary constraints. Of course,
these expressions additionally depend on the dimension of the
simplex and the number of quadrature points in the simplex.
Afterwards, we use the analytic expressions in combination
with an optimization algorithm to find the optimal quadrature
rules for the given set of parameters (dimension, number of
quadrature points, etc.). Finding an optimal solution for this
problem becomes harder and more expensive with increasing
order and dimension. For more details on these kind of
quadrature method and the detailed nature of the quadrature
error expression and the constraints we refer to [11].

Now, we demonstrate how we find the right combination of
quadrature rules that span the inflated domain. Here, we only
cover the case of ’Identical Tetrahedrons’. The other cases
are analogous. First, we assume that the integrand from (4)
has a 1/r2 singularity and hence can be written in relative
coordinates as

k′(x⃗, z⃗) =
f(x⃗, z⃗)

z21 + z22 + z23
(5)

where f is an analytic function and the singular behavior in
the denominator only depends on z⃗. Recall, that the reference
domain Dref for the domains D1−16 is the 6D simplex

Dref = {0 ≤ x1 ≤ 1; 0 ≤ x2 ≤ x1; 0 ≤ x3 ≤ x2;

0 ≤ z1 ≤ x3; 0 ≤ z2 ≤ z1; 0 ≤ z3 ≤ z2}
. (6)

We can inflate Dref to the 6D hypercube and get the Duffy-
Transformation between the Dref and the 6D hypercube

x1

x2

x3

z1
z2
z3

 =

ρ1
ρ1ρ2
ρ1ρ2ρ3
ρ1ρ2ρ3ρ4
ρ1ρ2ρ3ρ4ρ5
ρ1ρ2ρ3ρ4ρ5ρ6

 (7)

with 0 ≤ ρi ≤ 1. Its Jacobian is

ρ51ρ
4
2ρ

3
3ρ

2
4ρ5. (8)

Using (7) together with (5) results in the integral∫
f ′(ρ1, ρ2, ρ3, ρ4, ρ5, ρ6)ρ

5
1ρ

4
2ρ

3
3ρ

2
4ρ5

(ρ1ρ2ρ3ρ4)2 + (ρ1ρ2ρ3ρ4ρ5)2 + (ρ1ρ2ρ3ρ4ρ5ρ6)2
dρ⃗

(9)
We simplify the denominator with the determinant and see that
the integrand is now analytic:∫

f ′(ρ1, ρ2, ρ3, ρ4, ρ5, ρ6)ρ
3
1ρ

2
2ρ3ρ5

1 + (ρ5)2 + (ρ5ρ6)2
dρ⃗. (10)

In this case, it is more efficient if we only inflate along the
forth dimension and use the transformation

x1

x2

x3

z1
z2
z3

 =

ρ1
ρ2
ρ3
ρ4
ρ4ρ5
ρ4ρ6

 (11)

with 0 ≤ ρ1 ≤ 1, 0 ≤ ρ2 ≤ ρ1, 0 ≤ ρ3 ≤ ρ2, 0 ≤ ρ4 ≤ ρ3
and 0 ≤ ρ5 ≤ 1, 0 ≤ ρ6 ≤ ρ5. Its Jacobian is ρ24. Using (11)
together with (5) results in the integral∫

f((ρ1, ρ2, ρ3), (ρ4, ρ4ρ5, ρ4ρ6))

ρ24 + (ρ4ρ5)2 + (ρ4ρ6)2
ρ24dρ⃗ (12)

which is again analytic.
We observe that ρ1-ρ4 span a pentatope (4D simplex) and

ρ5 and ρ6 span a triangle (2D simplex). Thus, we use the
combination of a 4D and a 2D simplex quadrature rule (S4D

and S2D) on these simplices respectively to build a simplex
tensor-product rule (S4D ×S2D) that spans the whole inflated
domain. For other domains and other cases, similar Duffy-
Transformations and combinations of quadrature rules can be
defined and found.

If we combine all above steps, we will receive quadrature
rules for singular interaction integrals. As an example for one
of these quadrature rules, the quadrature points in case of two
tetrahedron with a common edge are given in Table V, the
tables for other rules can can be found at [12]. We recall
that in the case of an common edge, we need to subdivide
the integration domain in five parts, thus we have five Duffy-
Transformations, one for each subdomain D1 −D5. For each
subdomain we give the combination of the quadrature rules
used and the Duffy-Transformation. The last column in Table
V contains the coordinates of the quadrature point on the
reference tetrahedron after reversing the relative coordinate

IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES 5

TABLE V
SIMPLEX TENSOR-PRODUCT QUADRATURE FOR TWO TETRAHEDRON WITH

A COMMON EDGE. SY
XD IS AN X-DIMENSIONAL SIMPLEX QUADRATURE

RULE WITH QUADRATURE POINTS (pY1 , ..., pYX).

Domain Quad. Rule combi-
nation

Duffy-
Transformation

Quad. Points on
Ref. Tet.

D1 S1
2D × S2

2D × S3
2D

ξ1 = p11

ξ2 = p12

ξ3 = p12p
2
1

η1 = p12p
2
2

η2 = p12p
3
1

η3 = p12p
3
2

x1 = ξ1

x2 = ξ2 − η1

x3 = ξ3 − η1

y1 = ξ1 − ξ2 + η2

y2 = η2

y3 = η2 − η3

D2 S1
2D × S2

3D × S3
1D

ξ1 = p11

ξ2 = p12

ξ3 = p12p
2
1

η1 = p12p
2
2

η2 = p12p
2
3

η3 = p12p
3
1

x1 = ξ1

x2 = ξ2

x3 = ξ2 − η3

y1 = ξ1 − ξ2 + ξ3

y2 = η1

y3 = η2

D3 S1
2D × S2

4D

ξ1 = p11

ξ2 = p12

ξ3 = p12p
2
1

η1 = p12p
2
2

η2 = p12p
2
3

η3 = p12p
2
4

x1 = ξ1 − η1

x2 = ξ2 − η1

x3 = ξ3 − η1

y1 = ξ1

y2 = η2

y3 = η3

D4 S1
2D × S2

1D × S3
3D

ξ1 = p11

ξ2 = p12

ξ3 = p12p
2
1

η1 = p12p
3
1

η2 = p12p
3
2

η3 = p12p
3
3

x1 = ξ1 − η3

x2 = η1 − η3

x3 = η2 − η3

y1 = ξ1

y2 = ξ2

y3 = ξ3

D5 S1
2D ×S2

1D ×S3
2D ×

S4
1D

ξ1 = p11

ξ2 = p12

ξ3 = p12p
2
1

η1 = p12p
3
1

η2 = p12p
2
1p

3
2

η3 = p12p
3
1p

4
1

x1 = ξ1 − η2

x2 = ξ2 − η2

x3 = ξ2 − ξ3

y1 = ξ1

y2 = η1

y3 = η3

transformation and the mapping to the reference subdomain
for the Duffy-Transformation.

The complete implementation of the quadrature rules for
the all cases can be found here [12].

III. NUMERICAL RESULTS

In this section, we use the quadrature method developed in
the previous section to compute singular integrals and compare
the accuracy of the Gauss tensor-product quadrature rule
(standard) against the simplex tensor-product quadrature rule
(new). We further analyze the efficiency of the simplex tensor-
product compared to the Gauss tensor-product quadrature. In
our experiments, we choose the generic k(x⃗, y⃗) in (1) to be

k(x⃗, y⃗) = (x⃗− P⃗)T
e−ik|x⃗−y⃗|

4π|x⃗− y⃗|
(y⃗ − Q⃗) (13)

where P⃗ and Q⃗ are corners of T or T ′, respectively. The
reader might recognize the Green’s function for the Helmholtz

equation in (13). The terms (x⃗ − P⃗)T and (y⃗ − Q⃗) can be
thought as placeholders for test and trial functions that would
arising in a Galerkin discretization and their particular shape
has no major influence on the accuracy.

We consider different cases for the overlapping of the two
tetrahedrons T and T ′. The exact definitions used for T and T ′

in the experiments reported here can be found in the appendix
as well as in [12]. We compute the relative error compared to
a high accuracy version of the Gauss tensor-product method
that uses a 15-point 1D Gauss rule as basis for the tensor-
product. With 15 point in each dimension the standard Gauss
tensor-product method reaches machine precision in 4D. In
6D the Gauss tensor-product method based on a 15-point 1D
rule has precision of about 10−11.

First, we consider again the case of ’Identical Tetrahedrons’
(T = T ′). Fig. 4 shows on the vertical axis the relative error.
On the horizontal axis the number of quadrature points is
shown. Here, the number of quadrature points corresponds to
the number of evaluations of the integral kernel. The Gauss
tensor-product quadrature rule and the simplex tensor-product
quadrature rule are compared against the high accuracy version
of the Gauss tensor-product quadrature rule. The errors of
both methods behave similar, while the simplex tensor-product
approach requires significantly fewer function evaluations to
achieve the same level of accuracy. The similar behavior of the
error can be expected, since both methods use the same tech-
nique (splitting into subdomains and Duffy-Transformation)
to deal with the singularity in the kernel. The difference
of number of quadrature points for the same accuracy can
be explained by the following reasoning: The Gauss tensor-
product method always inflates the integration subdomains to
the 6D hypercube. In contrast, the Simplex tensor-product
method inflates the subdomains to a 6D polytope (see Fig.
3 for visualization in 3D). Since this polytope usually only
correspond to a significant smaller part of the hypercube,
we need fewer quadrature points to cover the polytope with
quadrature points than we need to cover the whole hypercube.

At the time of writing, the quadrature rules for 2D, 3D and
4D simplices have only been computed up to order 10, thus
there are fewer measurements for the newer method depending
on these simplex quadrature rules. Fig. 5 shows the relative
error in the case where two tetrahedrons share a face. Again,
the behavior of the errors are similar while the simplex tensor-
product rules need fewer function evaluations for the same
accuracy.

TABLE VI
TIMING AND NUMBER OF FUNCTION EVALUATIONS FOR A SINGLE

INTEGRAL USING GAUSS TENSOR-PRODUCT QUADRATURE

Case Time (ms) #Eval. Rel. Error
Identical Tetrahedron 13.282 281′250 8.91× 10−6

Common Face 11.456 234′375 4.26× 10−6

Common Edge 4.516 78′125 5.30× 10−7

Common Vertex 2.516 31′250 3.39× 10−6

Positive Distance 0.211 4′096 3.22× 10−7

To obtain a clearer picture of the efficiency gain for the sim-
plex tensor-product rule in the case of tetrahedron-tetrahedron

IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES 6

Fig. 4. Relative error convergence for overlapping tetrahedron using Gauss
tensor-product and simplex tensor-product quadrature rules. Both methods
converge at the same rate, while the simplex tensor-product method needs
fewer function evaluations to achieve the same accuracy.

Fig. 5. Relative error convergence for overlapping face of tetrahedrons
using Gauss tensor-product and simplex tensor-product quadrature rules. Both
methods converge at the same rate, while the simplex tensor-product method
needs fewer function evaluations to achieve the same accuracy.

TABLE VII
TIMING AND NUMBER OF FUNCTION EVALUATIONS FOR A SINGLE

INTEGRAL USING SIMPLEX TENSOR-PRODUCT QUADRATURE

Case Time (ms) #Eval. Rel. Error
Identical Tetrahedron 0.897 20′300 1.28× 10−5

Common Face 1.092 22′575 6.36× 10−6

Common Edge 2.107 41′895 4.28× 10−7

Common Vertex 0.302 6′272 4.94× 10−6

Positive Distance 0.020 400 9.38× 10−7

TABLE VIII
EFFICIENCY OF SIMPLEX TENSOR-PRODUCT QUADRATURE COMPARED TO

GAUSS TENSOR-PRODUCT QUADRATURE FOR TWO TETRAHEDRONS

Case Time (%) #Eval (%)
Identical Tetrahedron 6.75 7.22

Common Face 9.53 9.632
Common Edge 46.66 53.63

Common Vertex 12.01 20.07
Positive Distance 9.47 9.77

interactions, we measured the time and the number of function
evaluations for roughly the same relative error, namely 10−6.
The results for the different cases are summarized in Table
VI for Gauss tensor-product and in Table VII for the simplex
tensor-product method. For all time measurements an Intel®
Core™ i7-1185G7 @ 3.00GHz CPU with 12MB of cache
was used. Table VIII shows the relative efficiency in time and
function evaluations of the simplex tensor-product over the
Gauss tensor-product. In most cases, the number of function
evaluations can be directly linked to the computation times.
The speedup in time and the reduction of function evaluation
ranges from a factor of 2.1 to 14.8. The largest speedups are
gained in the case of ’Identical Tetrahedrons’.

The speedup for a ’Common Edge’ is much lower. In this
case, the subdomains are more complicated, and therefore the
reference domains too. They can not be spanned efficiently
by simplex tensor-product rules like in the other cases. The
simplex tensor-product contains more factors.

The positive distance case is included for the sake of
completeness, but there is no need to inflate the domain and
thus it makes no sense to use a 6D tensor-product quadrature
rule here. One can use a simple quadrature rule for each
tetrahedron separately.

Fig. 6. Relative error convergence for tetrahedron (blue) and triangle (green)
with common edge (red) using Gauss tensor-product and simplex tensor-
product quadrature rules. Both methods converge very similar, while the
simplex tensor-product method again needs fewer function evaluations to
achieve the same accuracy.

TABLE IX
TIMING AND NUMBER OF FUNCTION EVALUATIONS FOR A SINGLE

INTEGRAL USING GAUSS TENSOR-PRODUCT QUADRATURE FOR
TETRAHEDRON AND TRIANGLE

Case Time (ms) #Eval. Rel. Error
Common Face 1.253 28′125 6.35× 10−6

Common Edge 0.710 15′625 6.56× 10−6

Common Vertex 0.298 6′250 4.10× 10−6

Positive Distance 0.051 1′024 1.72× 10−7

Of course, the simplex tensor-product method can also be
used in the case of tetrahedron-triangle interaction. We did the
same measurements as in the previous experiment in 6D. Fig.
6 and 7 show the relative error using an increasing number

IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES 7

Fig. 7. Relative error convergence for tetrahedron and triangle with common
vertex using Gauss tensor-product and simplex tensor-product quadrature
rules. Both methods converge at the similar rate, while the simplex tensor-
product method again needs fewer function evaluations to achieve the same
accuracy.

TABLE X
TIMING AND NUMBER OF FUNCTION EVALUATIONS FOR A SINGLE
INTEGRAL USING SIMPLEX TENSOR-PRODUCT QUADRATURE FOR

TETRAHEDRON AND TRIANGLE

Case Time (ms) #Eval. Rel. Error
Common Face 0.231 5′325 8.87× 10−6

Common Edge 0.203 4′425 2.72× 10−6

Common Vertex 0.055 1′050 2.81× 10−6

Positive Distance 0.009 200 2.96× 10−5

of quadrature points for a Gauss tensor-product quadrature
rule and the simplex tensor-product quadrature rule in the
case of a triangle and tetrahedron sharing an edge or an
vertex, respectively. The error of both methods behaves again
similar, while the simplex tensor-product approach requires
significantly fewer function evaluations to achieve the same
level of accuracy. The relative speedup is not as not as
large as in 6D but the speed up still ranges between 3.5
and 5.7, see Table XI. We observe the best improvements in
the case of ’Common Face’ and a ’Common Vertex’. The
reduced efficiency in 5D can be explained by that we still
need to inflated the same number of dimension to remove
the singularity with the Duffy-Transformation as in the 6D
case, thus leaving fewer dimension that aren’t inflated. This
lowers the ratio between inflated and uninflated dimension in
5D compared to 6D. In the end, this leads to a lower efficiency
of the new method in 5D. An even lower efficiency of the new

TABLE XI
EFFICIENCY OF SIMPLEX TENSOR-PRODUCT QUADRATURE COMPARED TO

GAUSS TENSOR-PRODUCT QUADRATURE FOR TRIANGLE AND
TETRAHEDRON

Case Time (%) #Eval (%)
Common Face 18.41 18.93
Common Edge 28.53 28.32

Common Vertex 18.35 16.80
Positive Distance 17.57 19.53

method can be observed when we look at the results from 4D
next.

TABLE XII
TIMING AND NUMBER OF FUNCTION EVALUATIONS FOR A SINGLE

INTEGRAL USING GAUSS TENSOR-PRODUCT QUADRATURE FOR TWO
TRIANGLES

Case Time (ms) #Eval. Rel. Error
Identical Triangle 0.335 7′776 3.92× 10−6

Common Edge 0.278 6′480 2.51× 10−7

Common Vertex 0.115 1′296 1.73× 10−7

Positive Distance 0.011 256 6.20× 10−9

TABLE XIII
TIMING AND NUMBER OF FUNCTION EVALUATIONS FOR A SINGLE

INTEGRAL USING SIMPLEX TENSOR-PRODUCT QUADRATURE FOR TWO
TRIANGLES

Case Time (ms) #Eval. Rel. Error
Identical Triangle 0.089 2′016 3.92× 10−6

Common Edge 0.117 2′520 3.28× 10−7

Common Vertex 0.039 441 2.57× 10−7

Positive Distance 0.005 100 3.26× 10−8

TABLE XIV
EFFICIENCY OF SIMPLEX TENSOR-PRODUCT QUADRATURE COMPARED TO

GAUSS TENSOR-PRODUCT QUADRATURE FOR TWO TRIANGLES

Case Time (%) #Eval (%)
Identical Triangle 26.44 25.93

Common Edge 42.03 38.89
Common Vertex 33.75 34.03
Positive Distance 45.45 39.06

If we applied the simplex tensor-product in the triangle-
triangle interaction integrals that are very common in Surface
Integral Equations, we can still see an improvement between
2.2 up to 3.8 times faster (Table XIV) than if we employ
standard Gauss tensor-product quadrature.

The exact speed up depends highly on the geometric ar-
rangement of the involved elements. In general, the simplex
tensor-product can increase the evaluation speed of singular
integrals in 6D by a factor of 10, in 5D by a factor of 5 and
in 4D by a factor of 3 while achieving the same accuracy as
the method based on Gauss tensor-product quadrature.

IV. CONCLUSION

In this work, we extended the approach for singular triangle-
triangle interaction integrals for Surface Integral Equations
to singular tetrahedron-tetrahedron and tetrahedron-triangle
interaction integrals that appear in Volume Integral Equations.
Finally, we showed that with careful selection, which dimen-
sions to inflate using a Duffy-Transformation, we can reduce
the number of function evaluations by a factor varying from
2.1 to 14.8 in 6D. Also singular integrals in surface Integral
Equations are evaluated up to 3 times faster with this new
approach.

IEEE JOURNAL ON MULTISCALE AND MULTIPHYSICS COMPUTATIONAL TECHNIQUES 8

ACKNOWLEDGMENTS

This project has received funding from the European Re-
search Council (ERC) under the European Union’s Horizon
2020 research and innovation programme (Grant agreement
No. 101001847).

APPENDIX

COORDINATES USED IN THE NUMERICAL EXPERIMENTS

TABLE XV
CORNERS OF TETRAHEDRONS FOR TETRAHEDRON-TETRAHEDRON
INTERACTIONS AND CHOICES OF P,Q IN THE INTEGRAL KERNEL.

Identical Tetrahedron
T = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} P = T1

T ′ = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} Q = T ′
3

Common Face
T = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} P = T1

T ′ = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0,−1)} Q = T ′
3

Common Edge
T = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} P = T1

T ′ = {(0, 0, 0), (1, 0, 0), (0,−1, 0), (0, 0,−1)} Q = T ′
3

Common Vertex
T = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} P = T1

T ′ = {(0, 0, 0), (−1, 0, 0), (0,−1, 0), (0, 0,−1)} Q = T ′
3

Positive Distance
T = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} P = T1

T ′ = {(10, 0, 0), (9, 0, 0), (10,−1, 0), (10, 0,−1)} Q = T ′
3

TABLE XVI
CORNERS OF TETRAHEDRON AND TRIANGLE FOR

TETRAHEDRON-TRIANGLE INTERACTION AND CHOICES OF P,Q IN THE
INTEGRAL KERNEL.

Common Face
T = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} P = T4

T ′ = {(0, 0, 0), (1, 0, 0), (0, 1, 0)} Q = T ′
1

Common Edge
T = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} P = T4

T ′ = {(0, 0, 0), (1, 0, 0), (0,−1, 0)} Q = T ′
1

Common Vertex
T = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} P = T4

T ′ = {(0, 0, 0), (−1,−1, 0), (0,−1, 0)} Q = T ′
1

Positive Distance
T = {(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1)} P = T4

T ′ = {(10, 0, 0), (9, 0, 0), (10,−1, 0)} Q = T ′
1

TABLE XVII
CORNERS OF TRIANGLES FOR TRIANGLE-TRIANGLE INTERACTION AND

CHOICES OF P,Q IN THE INTEGRAL KERNEL.

Identical triangle
T = {(0, 0, 0), (1, 0, 0), (0, 1, 0)} P = T2

T ′ = {(0, 0, 0), (1, 0, 0), (0, 1, 0)} Q = T ′
3

Common Edge
T = {(0, 0, 0), (1, 0, 0), (0, 1, 0)} P = T1

T ′ = {(0, 0, 0), (1, 0, 0), (0,−1, 0)} Q = T ′
2

Common Vertex
T = {(0, 0, 0), (1, 0, 0), (0, 1, 0)} P = T2

T ′ = {(0, 0, 0), (−1, 0, 0), (0,−1, 0)} Q = T ′
3

Positive Distance
T = {(0, 0, 0), (1, 0, 0), (0, 1, 0)} P = T2

T ′ = {(10, 0, 0), (9, 0, 0), (10,−1, 0)} Q = T ′
3

REFERENCES

[1] J. Markkanen, P. Yla-Oijala and A. Sihvola, “Discretization of Volume
Integral Equation Formulations for Extremely Anisotropic Materials,“
in IEEE Transactions on Antennas and Propagation, vol. 60, no. 11, pp.
5195-5202, Nov. 2012.

[2] E. H. Bleszynski, M. K. Bleszynski and T. Jaroszewicz, “Reduction of
Volume Integrals to Nonsingular Surface Integrals for Matrix Elements
of Tensor and Vector Green Functions of Maxwell Equations,“ in IEEE
Transactions on Antennas and Propagation, vol. 61, no. 7, pp. 3642-
3647, July 2013.

[3] J. Rivero, F. Vipiana, D. R. Wilton and W. A. Johnson, “Evaluation
of 6-D Reaction Integrals via Double Application of the Divergence
Theorem,“ in IEEE Transactions on Antennas and Propagation, vol. 70,
no. 5, pp. 3523-3537, May 2022.

[4] C. Münger and K. Cools, “Efficient and kernel-independent Evaluation
of Singular Integrals in Volume Integral Equations,“ 2021 IEEE Inter-
national Conference on Microwaves, Antennas, Communications and
Electronic Systems (COMCAS), 2021, pp. 188-192.

[5] D. J. Taylor, “Accurate and efficient numerical integration of weakly
singular integrals in Galerkin EFIE solutions,“ IEEE Transactions on
Antennas and Propagation, vol. 51, no. 7, pp. 1630-1637, July 2003.

[6] M. T. H. Reid, “Taylor–Duffy Method for Singular Tetrahedron-Product
Integrals: Efficient Evaluation of Galerkin Integrals for VIE Solvers,“
in IEEE Journal on Multiscale and Multiphysics Computational Tech-
niques, vol. 3, pp. 121-128, 2018.

[7] M. Duffy, “Quadrature Over a Pyramid or Cube of Integrands with a
Singularity at a Vertex,“ SIAM Journal on Numerical Analysis, vol. 19.
no. 6, pp. 1260-1262, 1982.

[8] S. Sauter and C. Schwab, “Generating the Matrix Coefficients,“ Bound-
ary Element Methods, pp 289-352, 2011

[9] L. Shunn and F. Ham, “‘Symmetric quadrature rules for tetrahedra
based on a cubic close-packed lattice arrangement,“ in Journal of
Computational and Applied Mathematics, vol. 236, Issue 17, pp. 4348-
4364, 2012.

[10] D. Williams, L. Shunn and A. Jameson, “Symmetric quadrature rules for
simplexes based on sphere close packed lattice arrangements,“ Journal
of Computational and Applied Mathematics, Vol. 266, pp. 18-38, 2014.

[11] D. Williams, C. Frontin, E. Miller and D. Darmofal, “A family of
symmetric, optimized quadrature rules for pentatopes,“ Computers &
Mathematics with Applications, vol. 80, Issue 5, pp. 1405-1420. 2020.

[12] https://github.com/cmuenger/SauterSchwab3D.jl

