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This overview paper reviews numerical methods for solution of optimal con-
trol problems in real-time, as they arise in nonlinear model predictive control
(NMPC) as well as in moving horizon estimation (MHE). In the first part, we
review numerical optimal control solution methods, focussing exclusively on a
discrete time setting. We discuss several algorithmic ”building blocks” that can
be combined to a multitude of algorithms. We start by discussing the sequential
and simultaneous approaches, the first leading to smaller, the second to more
structured optimization problems. The two big families of Newton type opti-
mization methods, Sequential Quadratic Programming (SQP) and Interior Point
(IP) methods, are presented, and we discuss how to exploit the optimal control
structure in the solution of the linear-quadratic subproblems, where the two
major alternatives are “condensing” and band structure exploiting approaches.
The second part of the paper discusses how the algorithms can be adapted to
the real-time challenge of NMPC and MHE. We recall an important sensitivity
result from parametric optimization, and show that a tangential solution pre-
dictor for online data can easily be generated in Newton type algorithms. We
point out one important difference between SQP and IP methods: while both
methods are able to generate the tangential predictor for fixed active sets, the
SQP predictor even works across active set changes. We then classify many pro-
posed real-time optimization approaches from the literature into the developed
categories.

1 Introduction

Nonlinear optimal control algorithms are at the core of all nonlinear MPC or
moving horizon estimation (MHE) schemes. In contrast to linear MPC, where
convex quadratic programs are mostly solved exactly at each sampling time,
nonlinear MPC faces a dilemma: either the nonlinear iteration procedure is
performed until a pre-specified convergence criterion is met, which might in-
troduce considerable feedback delays, or the procedure is stopped prematurely
with only an approximate solution, so that a pre-specified computation time
limit can be met. Fortunately, considerable progress has been achieved in the
last decade that allows to reduce both, computational delays and approximation
errors. This progress would not have been possible by using just off-the-shelf
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optimal control codes; it is the development of dedicated real-time optimization
algorithms for NMPC and MHE that allows to nowadays apply NMPC to plants
with tens of thousands of states or to mechatronic applications.

While several excellent numerical optimization textbooks exist [25,28,44],
in the field of numerical optimal control there are only a few [2,11], and when
it comes to real-time optimal control algorithms there is even less overview
material [5]. The aim of the present article is to help closing this gap and to
summarize the state-of-the-art in this field by presenting those algorithmic ideas
that appear to be crucial to the authors. We choose a rather simplified setting,
leaving many important special cases aside, in order to present the major ideas
as clearly as possible.

The article is organized as follows: In Section 2 the NMPC and MHE prob-
lems are stated, in Section 3 we review Newton type optimization methods of
different flavor, and in Section 4 we discuss how to exploit the optimal control
structure of the linear equation systems to be solved in each Newton type it-
eration. In Section 5 we present online initialization strategies for subsequent
NMPC problems, and in Section 6 the online algorithms of different flavours are
discussed, and we finally conclude the paper in Section 7.

2 Problem Formulation

Throughout this paper we regard discrete time dynamical systems augmented
with algebraic equations, as follows:

Tryr = fr(Tr, 25, uk) (la)
9k(Tks 2, up) = 0 (1b)

Here, x; € R"= is the differential state, zp € R™: the algebraic state, and
up € R™ is the control. Functions f; and g, are assumed twice differentiable
and map into R™ and R"z, respectively. The algebraic state z; is uniquely
determined by (1b) when zj and uy, are fixed, as we assume that % is invertible
everywhere.

We choose to regard this difference-algebraic system form because it covers
several parametrization schemes for continuous time dynamic systems in dif-
ferential algebraic equation (DAE) form, in particular direct multiple shooting
with DAE relaxation [39] and direct collocation [3,59]. Note that in the case of
collocation, all collocation equations on a collocation interval would be collected
within the function g and the collocation node values in the variables zj.
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2.1 NMPC Optimal Control Problem

Based on this dynamic system form, we regard the following simplified optimal
control problem in discrete time:

minimize Z Li(zi,zi,wi)  +  E(zn) (2a)
x,%Z,u —
subject to o — To 0, (2b)
Ti41 _fi(xiyziaui) = 07 1 ) '7N_17 (QC)
(xlvzlaul) - 07 i= ) '7N_17 (2d)
hi(xi,zi,u;)) < 0, i=0,...,N—1, (2e)
r(zy) < 0 (2f)
Here, the free wvariables are the differential state vector =z =
(a 2T .. 2%, 25)T at all considered time points and the algebraic
and control vector on all but the last time points: 2z = (27,27 ..., 2% )T and
u=(ul,uf .. L )T,

Remark on fixed and free parameters: In most NMPC applications there
are some constant parameters p that are assumed constant for the NMPC op-
timization, but that change for different problems, like Zo. We do not regard
them here for notational convenience, but note that they can be regarded as
constant system states with fixed initial value p. In some NMPC applications
free parameters p exist that are part of the optimization variables, but that are
— in contrast to the controls uy — constant in time. Again, we disregard this
case for notational simplicity.

2.2 Moving Horizon Estimation: Nearly a Dual Problem

For moving horizon estimation (MHE), see e.g. [21,48,65], we typically choose
convex functions to penalize the mismatch between the real measurements
yr and the corresponding model predictions my(zk, 2k, ug, wg). For no-
tational simplicity, we regard only weighted Euclidean norms here, ||y, —
my (T, 2k, Uk, Wk ) ||Z?7 but point out that it is often useful to regard other penalty
functions like e.g. the £, penalty, which necessitate slight adaptations in the nu-
merical solution algorithms presented later. The controls uy are here regarded
as fixed and known and enter the system dynamics only as constant but time
varying parameters. However, time varying disturbances wy are often intro-
duced in the MHE problem to account for plant-model mismatch. They take
the same role as the controls in the NMPC problem and are often /5 penalized.

N—-1
minimize 170 = Zollp + D llvi — mi(@i, zi, wi, wi) |3 + w7 (3a)

T, zZ,w i=0

subject to

Tip1 — [i(wi, zi, ug, wy) 0, ¢=0,...,.N—1, (3b)
gi(wi, zisuiyw) = 0, i=0,...,N—1, (3¢)
hi(xi,zi,ui,wi) S 0, Z—O ,N ]., (3(21)
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Due to the fact that the MHE problem has the same optimal control structure
as the NMPC problem, they are often called “dual” to each other, in a slight
abuse of terminology. However, the starkest contrast to the NMPC problem is
the fact that the MHE problem has a free initial value zy and often has a much
higher dimensional “control vector” wg. This necessitates possibly different
linear algebra solvers in the solution procedures described below.

2.3 Sequential vs. Simultaneous Optimal Control

For simplicity of presentation, we will in this subsection only focus on the NMPC
problem (2a)-(2f). Here, the equality constraints (2b)-(2d) uniquely determine
the variables x and z if the vector u is fixed. Thus, they can be inverted to yield
the implicit functions Z(u) and Z(u) that satisfy (2b)-(2d) for all u, by a system
simulation. It allows to reduce the optimization problem to

N-1
minimize Z Li(@i(u), Zi(u),us)  +  E(@n(uw)) (4a)

u =0
subject to hi(Z;(u), Zi(u),u;)) < 0, i=0,...,N—1, (4b)
r(Zy(u)) < 0. (4c)

This problem has a strongly reduced variable space compared to the original
problem, and it is thus an appealing idea to use the reduced problem within
an optimization procedure. This gives rise to the so called “sequential” ap-
proach to optimal control problems, where in each optimization iteration the
two steps, system simulation and optimization, are performed sequentially, one
after the other. This approach emerged early in the nonlinear optimal control
literature [50].

In contrast to the sequential approach, the so called “simultaneous” approach
addresses the full nonlinear program as stated above in (2a)-(2f) directly by
a Newton type optimization algorithm, i.e., optimization and simulation are
performed simultaneously. It comes in the form of direct collocation methods |3,
59,64] as well as in form of direct multiple shooting [9, 39].

The optimization problem of the sequential approach has much less variables,
but also less structure in the linear subproblems than the simultaneous approach
(an interesting structure preserving sequential algorithm was however presented
in [58]). Even more important, the Newton type optimization procedure behaves
quite differently for both approaches: typically, faster local convergence rates
are observed for the simultaneous approach, in particular for unstable or highly
nonlinear systems, because — intuitively speaking — the nonlinearity is equally
distributed over the nodes.

3 Newton Type Optimization

Newton’s method for solution of a nonlinear equation R(W) = 0 starts with
an initial guess W° and generates a series of iterates W* that each solves a
linearization of the system at the previous iterate, i.e., for given W* the next
iterate W*+1 shall satisfy R(W*) + VR(W*)T (WL — W*) = 0. The hope is
that the linearizations — that can be solved w.r.t. W**! by standard linear alge-
bra tools — are sufficiently good approximations of the original nonlinear system
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and that the iterates converge towards a solution W*. Newton’s method has
locally a quadratic convergence rate, which is as fast as making any numerical
analyst happy. If the Jacobian VR(W*)T is not computed or inverted exactly,
this leads to slower convergence rates, but cheaper iterations, and gives rise to
the larger class of “Newton type methods”. An excellent overview of the field
is given in [13]. But how are these ideas generalized to nonlinear optimization?

The NMPC and MHE problems as stated above are specially structured
cases of a generic nonlinear program (NLP) that has the form

minimize F(X) s.t. {

=0
(5)
% H(X) < 0

Under mild assumptions, any locally optimal solution X* of this problem has
to satisfy the famous Karush-Kuhn-Tucker (KKT) conditions: there exist mul-
tiplier vectors A* and p* so that the following equations hold:

VxL(X* N0 = 0 (6a)
G(X*) = 0 (6b)
0> H(X*) L p* > 0. (6¢)

Here we have used the definition of the Lagrange function
L£(X, A1) = F(X) + G(X)TA+ H(X) (7)

and the symbol L between the two vector valued inequalities in Eq. (6¢) states
that also the complementarity condition

shall hold. All Newton type optimization methods try to find a point satisfying
these conditions by using successive linearizations of the problem functions.
Major differences exist, however, on how to treat the last condition (6¢) that
is due to the inequality constraints, and the two big families are Sequential
Quadratic Programming (SQP) type methods and Interior Point (IP) methods.

3.1 Sequential Quadratic Programming

A first variant to iteratively solve the KKT system is to linearize all nonlinear
functions appearing in Egs. (6a)—(6¢). It turns out that the resulting linear com-
plementarity system can be interpreted as the KKT conditions of a quadratic

program (QP)

minimize Ffp(X) s.t.
X

with objective function
1
Fip(X)=VF(XMTX + 5 (X = XITT2 L(XF N uP) (X - XF).  (10)

In the case that the so called Hessian matrix V3 £(X*, A 1i¥) is positive semi-
definite, this QP is convex so that global solutions can be found reliably. This
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general approach to address the nonlinear optimization problem is called Se-
quential Quadratic Programming (SQP). Apart from the presented ”exact Hes-
sian” SQP variant presented above, several other — and much more widely used
— SQP variants exist, that make use of inexact Hessian or Jacobian matrices.

3.1.1 Powell’s Classical SQP Method

One of the most successfully used SQP variants is due to Powell [47]. It uses ex-
act constraint Jacobians, but replaces the Hessian matrix V3 £(X kAR uF) by
an approximation A;. Each new Hessian approximation Ax; is obtained from
the previous approximation A by an update formula that uses the difference of
the Lagrange gradients, v = Vx L(XFHL L yF 1) W £(XF NFFHL Rt
and the step 0 = X*t1 — X*  Aim of these ”Quasi-Newton” or ” Variable-
Metric” methods is to collect second order information in Axi1 by satisfying
the secant equation Ax410 = . The most widely used update formula is the
Broyden-Fletcher-Goldfarb-Shanno (BFGS) update A1 = Ax +vy7 /(7T o) —
ArooT Ay /(0T Ao), see e.g. [44]. Quasi-Newton methods can be shown to con-
verge superlinearly under mild conditions, and had a tremendous impact in the
field of nonlinear optimization. Successful implementations are the packages
NPSOL and SNOPT for general NLPs [27], and MUSCOD-II [39] for optimal
control. Note that in this paper we omit all discussion on the usually cru-
cial issue of globalisation strategies, because these are less important in online
optimization.

3.1.2 Constrained Gauss-INewton Method

Another particularly successful SQP variant — the Constrained (or Generalized)
Gauss-Newton method — is also based on approximations of the Hessian. It is
applicable when the objective function is a sum of squares:

1
F(X) = S| R(X)]3. (11)
In this case, the Hessian can be approximated by
A, = VR(XF)VR(X™T (12)

and the corresponding QP objective is easily seen to be
1
Fép(X) = §HR(X'“)+VR(X'“)T(X—X'“)H§ (13)

The constrained Gauss-Newton method has only linear convergence but often
with a surprisingly fast contraction rate. The contraction rate is fast when
the residual norm ||[R(X™*)|| is small or the problem functions R,G,H have
small second derivatives. It has been developed and extensively investigated by
Bock and coworkers, see e.g. [6,53]. The constrained Gauss-Newton method is
implemented in the packages PARFIT [6], FIXFIT [53], and also as one variant
within MUSCOD-II [14, 39].

Remark on adjoint based SQP variants: Newton type SQP methods may
not only use an approximation of the Hessian, but also of the constraint Jaco-
bians. The most general formulation including inexact inequalities, which is
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originally due to [7] and was analysed in [61], uses approximations Ay, By, Ck of
the matrices V4 £(-), VG(X*), VH(X¥), and a so called “modified gradient”

ar = VxL(X5 N, 1F) = BpA* — Crp (14)

in the QP objective

a

1
Fuajor(X) = i X + S (X = XHTA(X = XF). (15)

The following QP is solved in each iteration:

minimize Flyiop(X) st (16)

{ G(X*) + BF (X — X*)
X

H(X*) +CF(X — X*)

IA I
o

It can be shown that using a modified gradient aj allows to locally converge to
solutions of the original nonlinear NLP even in the presence of inexact inequality
constraint Jacobians [7,20,61]. A crucial ingredient of the adjoint based SQP
scheme is the fact that the Lagrange gradient needed for aj in (14) can be
evaluated efficiently by adjoint based techniques or, equivalently, by the reverse
mode of automatic differentiation [30]. Adjoint based SQP schemes are at the
core of the multi-level real-time iterations described in Section 6.1. Even quasi
Newton update schemes can be used in order to approximate the Jacobians [32].

3.2 Interior Point Methods

In contrast to SQP methods, an alternative way to address the solution of the
KKT system is to replace the last nonsmooth KKT condition in Eq. (6¢) by a
smooth nonlinear approximation, with 7 > 0:

VxL(X*,X,p") = 0 (17a)
GX*) =0 (17b)
H(X"p: = 7, i=1,...,ng. (17¢)

This system is then solved with Newton’s method. The obtained solution is not
a solution to the original problem, but to the problem

min;nize F(X)—TZlog(—Hi(X)) st.  G(X) = 0. (18)

Thus, the solution is in the interior of the set described by the inequality con-
straints, and closer to the true solution the smaller 7 gets. The crucial feature of
the family of “interior point methods” is the fact that, once a solution for a given
7 is found, the parameter 7 can be reduced by a constant factor without jeopar-
dising convergence of Newton’s method. After only a limited number of Newton
iterations a quite accurate solution of the original NLP is obtained. We refer
to the excellent textbooks [10,63] for details. A widely used implementation of
nonlinear Interior Point methods is the open source code IPOPT [60].
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Remark on the structure of the linear subproblems: It is interesting to
note that the linearization of the smoothed KKT system (17a)-(17c) is a linear
system that is equivalent — after elimination of the variable p**! — to the KKT
conditions of an equality constrained quadratic program. It is important to re-
mark that most structure exploiting features of SQP type methods also have an
equivalent in IP methods, like globalisation strategies, use of adjoints, structure
preserving linear algebra, etc., and we will mention them when applicable.

Remark on Ohtsuka’s inequality treatment: An interesting treatment of
inequality constraints that is similar to interior point methods was proposed
and successfully used in the context of NMPC by Ohtsuka [45]. He proposes to
approximate the inequality constrained NLP (5) by a formulation

nHy
L GX) =0
minimize F(X)—szi s.t. { , 5 _ (19)
Xy — H(X)+Y? = 0,i=1,...,ng
which is equivalent to
nHg
minimize F(X)—TZ v—Hi(X) st. GX) = 0. (20)
X i=1

This barrier is not self-concordant and does not connect easily to the dualtiy
theory of interior-point methods, but we will nevertheless call this approach a
variant of IP methods in this paper.

4 Numerical Optimal Control

When Newton type optimization strategies are applied to the optimal control
problem (2a)-(2f), the first question is, if a simultaneous or a sequential approach
is used. In the case of a sequential approach, where all state variables x, z are
eliminated and the optimization routine only sees the control variables u, the
specific optimal control problem structure plays a minor role. Thus, often an
off-the-shelf code for nonlinear optimization can be used. This makes practical
implementation very easy and is a major reason why the sequential approach
is used by many practitioners. It is in strong contrast to the simultaneous ap-
proach, that addresses the optimal control problem (2a)-(2f) in the full variable
space z, z, u, and thus allows — and necessitates — to exploit the specific problem
structure. In all Newton type optimization routines there are two crucial and
often costly computational steps, namely (a) Derivative Computation and (b)
Solution of the Quadratic Subproblems. In both areas, specific structures can
be exploited. In this paper we will focus on (b), the solution of the QPs, but
add suitable remarks on how to treat derivative computations when necessary.

4.1 The Linearized Optimal Control Problem

Let us regard the linearization of the optimal control problem (2a)-(2f) within
an SQP method, which is a structured QP. It turns out that due to the dynamic
system structure the Hessian of the Lagrangian function has the same separable
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structure as the Hessian of the original objective function (2a), so that the
quadratic QP objective is still representable as a sum of linear-quadratic stage
costs, which was first observed by Bock and Plitt [9]. Thus, the QP subproblem
has the following form, where we left out the SQP iteration index k for notational
simplicity, and where the summands of the objective each are linear-quadratic.

N1
minimize ; Lap,i(zi zi,ui)  +  Eqp (zn) (21a)
subject to To — To 0, (21b)
Tig1 — fl — Ffa; — Ffzi— F'u; = 0, i=0,...,N—1, (2lc)
g+ Giri +Gizi +Glu; = 0, i=0,...,N—1, (21d)
h;+ Hfr;+ Hfzi+ H'v;, < 0, i=0,....,N—1, (2le)
r+Rxy < 0. (21f)

When the linear algebra within the QP solution is concerned, the dynamic
system structure can be exploited in different ways.

Remark on high rank Hessian updates: The fact that the Hessian matrix
of the optimal control problem is block diagonal does not only allow to write
down the objective (21a) in a separable form and exploit this sparsity in the
linear algebra; when quasi Newton Hessian update methods are used, it also
allows to perform “partitioned variable metric” or “high rank updates” of the
Hessian, by updating all Hessian blocks separately [9, 31].

4.2 Elimination of Algebraic Variables

We consider now several algorithmic building blocks helping to solve the QP
problem (21a)-(21f). Let us first regard Eq. (21d). Due to our assumptions in
the problem statement of (2a)-(2f), we know that the Jacobian matrix G? is
invertible. Thus, Eq. (21d) can directly be inverted by a factorization of the
matrix G7, yielding an explicit expression for z;:

5= —(G5) 7 gl + Gy + Gyl (22)

Note that the matrix G7 is often sparse and might best be factorized by a direct
sparse solver. Once this factorization is performed, it is possible to reduce
problem (21a)-(21f) to a smaller scale QP in the variables x and u only, which
has the following form:

N-1
miraljirﬁize Z Licaqpi(wiui)  +  Eqp (o) (23a)
) i=0
subject to To — To 0, (23b)
Ti+1 — G —Az.ﬁ? —Biui = O, 7= 0,...,N— 1, (23C)
hi+ Hfz; + H'v; < 0, i=0,...,N—1, (23d)
r+Rxy < 0. (23e)

This partially reduced QP can be post-processed either by a condensing or a
band structure exploiting strategy.
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Remark on Leineweber’s Partially Reduced SQP Method: In the con-
text of a direct multiple shooting method, the evaluation of the Jacobian ma-
trices F7, F7, F* in (21c) is a very CPU intensive step. Given the fact that
finally only the reduced matrices A; and B; are needed in the reduced QP,
Leineweber [39] proposed a partially reduced SQP method that never computes
the matrices needed in the QP (21a)-(21f). Instead, it first performs the sparse
matrix factorization of G7 needed for elimination of the variables z; via Eq. (22),
and then it computes the matrices A; and B; directly as directional derivatives
of fi(xi, Ziy ui):

I 0
_0fi() -1 _ _0fh0) A1
Ai = m — (G) Gz and Bz = a(xvzvu) — (Gz?l Gz . (24)

This allows to reduce the computational burden significantly in case of many
algebraic variables z; and expensive evaluation of f;.

4.3 Condensing

In order to see how the variable space of a QP can be reduced further in a very
simple way, let us recall that it was possible to reduce the large scale NLP via
a nonlinear system simulation in the sequential approach. The basic idea of the
”condensing” approach that was first proposed by Bock and Plitt [9] is to use
the same fact, but apply it only to the linearized dynamic system. For this aim
let us note that Egs. (23b) and (23c) describe nothing else than a linear time
varying discrete time system, and that for fixed u the values for x can easily be
obtained by a forward simulation of the linear dynamics. Hence, the vector x is
completely determined by the vector u and the given initial state Zy. Therefore,
the states can be eliminated from the linearized problem resulting in a smaller,
but dense quadratic program of the form

miniumize fcondQP,z’ (i‘O; u) (25&)
subject to 7+ R™Zg+ R'u < 0. (25b)

Here, the inequalities (25b) contain both types of the original inequalities,
(23d) and (23e), in “condensed” form. If the dimension of the vector u =
(uf ol ... uk )T is not too large, this QP can be solved fast using dense
general purpose QP solvers. By doing so, the cost of solving one QP subprob-
lem grows with O(N3n3), i.e. cubically with the horizon length N.

Remark on Schléder’s Reduction Trick: In the context of direct multiple
shooting methods, the generation of the matrices 4; and B; in (23c) is expensive
if the differential state dimension n, is large. It needs O(N (n, +n,,)) stage wise
directional derivatives. We might instead, as in Leineweber’s partially reduced
SQP method, directly compute the quantities needed in the objective and the
constraints of the condensed QP (25a)-(25b). This idea was first proposed by
Schloder [53], in the context of the Generalized Gauss-Newton method. The
method is implemented in the codes FIXFIT [53] and MSOPT [52]. It is only

advantageous for large state but small control dimensions (n, < ng), and it
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exploits the fact that the initial value z( is fixed in the NMPC problem. Thus,
it offers no advantages in the MHE problem where the initial value is free for
optimization.

4.4 Band Structure Exploiting Riccati Based Solutions

Instead of condensing the linearized problem, one can opt to keep the con-
straints (23b) and (23c) and the variables = as unknowns in the QP. To sketch
the idea, let us regard a QP without the inequalities (23d) and (23e). The
KKT conditions of this equality constrained QP (23a)-(23c¢) in the primal and
dual variables w = (AL, o, ud N 2T ut, . NE, 2%)T are a symmetric linear
system Mw = b with KKT matrix

I
I Q Sy -—AY
_ sy Ry -BT
M= 0 0 0 (26)
—A() —B() . I

I Qn

The almost block diagonal structure of this linear system allows it to be effi-
ciently factorized by a (discrete time) Riccati recursion. This was shown for
optimal control problems within an active set framework in [29] and within an
interior point framework in [56]. For linear model predictive control, Riccati
based solutions are described in [35,49]. The cost of this factorization, which is
usually dominating the cost for solving the QP, is O(N(n, + n,)?). The cost
grows only linearly with the horizon length N, in contrast to condensing with
its cubic growth O(N3n3). This makes the Riccati method favorable for larger
horizon lengths N and when n, =~ n,. A Riccati based factorization is particu-
larly advantageous for the MHE problem where the dimension of the “controls”
w is typically as big as the state dimension.

Remark on direct or iterative sparse solvers: Note that it is not nec-
essary to use a Riccati based solution in order to obtain the complexity
O(N(ng + ny)3), but that this can also be achieved by using a direct sparse
solver, as e.g. done in the general purpose and open-source NLP package
IPOPT [60]. Also, iterative linear solvers might be used.

Remark on Tenny’s Feasibility Perturbed SQP Method: An interest-
ing method for optimal control and NMPC was proposed by Tenny, Wright
and Rawlings [58], who regard a simultaneous formulation within an SQP type
framework, but “perturb” the result of each SQP iteration in order to make
the state trajectory consistent, i.e., they close all nonlinear continuity condi-
tions (2c). This can be done by a simple “open loop” forward simulation of the
system given the new controls, or by more complex “closed loop” simulations.
In the open loop variant, this is nearly a sequential approach and performs, if
exact Hessians are used, even the same SQP iterations. But it differs in one
important aspect: it allows to exploit the same sparsity structure as a simul-
taneous approach, e.g. full space derivative computation, Riccati based linear
algebra, or high rank updates for the block structured Hessian [9]. This makes it
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an interesting cross-over between typical features of sequential and simultaneous
methods.

4.5 A Classification of Optimal Control Methods

It is an interesting exercise to try to classify Newton type optimal control algo-
rithms. Let us have a look at how nonlinear optimal control algorithms perform
their major algorithmic components, each of which comes in several variants:

(a) Treatment of Inequalities: Nonlinear IP vs. SQP

(b) Nonlinear Iterations: Simultaneous vs. Sequential

(¢) Derivative Computations: Full vs. Reduced

(d) Linear Algebra: Banded vs. Condensing
In the last two of these categories, we observe that the first variants each ex-
ploit the specific structures of the simultaneous approach, while the second
variant reduces the variable space to the one of the sequential approach. Note
that reduced derivatives imply condensed linear algebra, so the combination
[Reduced,Banded] is excluded. In the first category, we might sometimes dis-
tinguish two variants of SQP methods, depending on how they solve their un-
derlying QP problems, via active set QP solvers (SQP-AS) or via interior point
methods (SQP-IP).

Based on these four categories, each with two alternatives, and one
combination excluded, we obtain seven possible combinations. In these
categories, the classical single shooting method [50] could be classified as
[SQP,Sequential, Reduced] or as [SQP,Sequential, Full,Condensing] because some
variants compute directly the reduced derivatives R" in (25b), while others com-
pute first the matrices A; and B; in (23c) and condense then. Tenny’s feasibility
perturbed SQP method [58] could be classified as [SQP,Sequential,Full,Banded],
and Bock’s multiple shooting [9] as well as the classical reduced SQP col-
location methods [2,3,59] as [SQP,Simultaneous,Full,Condensing]. The band
structure exploiting SQP variants from Steinbach [56] and Franke [26] are
classified as [SQP-IP,Simultaneous,Full,Banded], while the widely used inte-
rior point direct collocation method in conjunction with TPOPT by Biegler
and Wéchter [60] as [IP,Simultaneous,Full,Banded]. The reduced Gauss-Newton
method of Schldder [53] would here be classified as [SQP,Simultaneous,Reduced].

5 Online Initialization and NLP Sensitivities

For exploiting the fact that NMPC requires the solution of a whole sequence of
"neighboring” NLPs and not just a number of stand-alone problems, we have
first the possibility to initialize subsequent problems efficiently based on previ-
ous information. In this section we introduce several concepts for such initial-
izations, in particular the important concept of NLP sensitivities. On the other
hand, in Section 6 we will give an overview of specially tailored online algo-
rithms for approximately solving each NLP, that deliver on purpose inaccurate
solutions and postpone calculations from one problem to the next.
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5.1 Shift Initialization

A first and obvious way to transfer solution information from one solved
NMPC problem to the initialization of the next one is based on the princi-
ple of optimality of subarcs, also called the dynamic programming principle.
It states the following: Let us assume we have computed an optimal solution
(x, 25, uh, x5, 25, ut, . .., @) of the NMPC problem (2a)-(2f) starting with ini-
tial value Zg. If we regard a shortened NMPC problem without the first interval,
which starts with the initial value Z; chosen to be 7, then for this shortened
problem the vector (z7, 27, uj,...,x%) is the optimal solution.

Based on the expectation that the measured or observed true initial value
for the shortened NMPC problem differs not much from z} — i.e. we believe
our prediction model and expect no disturbances — this “shrinking” horizon
initialization is canonical, and it is used in MPC of batch or finite time processes,
see e.g. [15,34].

However, in the case of moving (finite) horizon problems, the horizon is
not only shortened by removing the first interval, but also prolonged at the
end by appending a new terminal interval — i.e. the horizon is moved forward
in time. In the moving horizon case, the principle of optimality is thus not
strictly applicable, and we have to think about how to initialize the appended
new variables zy,un,zn4+1. Often, they are obtained by setting uy = uny—_1
or setting un as the steady state control. The states zy and xny41 are then
obtained by forward simulation. This transformation of the variables from one
problem to the next is called “shift initialization”. It is not as canonical as
the “shrinking horizon” case, because the shifted solution is not optimal for the
new undisturbed problem. However, in the case of long horizon lengths N we
can expect the shifted solution to be a good initial guess for the new solution.
Moreover, for most NMPC schemes with stability guarantee (for an overview
see e.g. [42]) there exists a canonical choice of uy that implies feasibility (but
not optimality) of the shifted solution for the new, undisturbed problem. The
shift initialization is very often used e.g. in [4,19,41,43].

A comparison of shifted vs. non-shifted initializations was performed in [8]
with the result that for autonomous NMPC problems that shall regulate a sys-
tem to steady state, there is usually no advantage of a shift initialization com-
pared to the “primitive” warm start initialization that leaves the variables at the
previous solution. In the extreme case of short horizon lengths, it turns out to be
even advantageous NOT to shift the previous solution, as subsequent solutions
are less dominated by the initial values than by the terminal conditions. On
the other hand, shift initialization are a crucial prerequisite in periodic tracking
applications [19] and whenever the system or cost function are not autonomous.

5.2 Parametric Sensitivities

In the shift initialization discussed above we did assume that the new initial
value corresponds to the model prediction. This is of course never the case,
because exactly the fact that the initial state is subject to disturbances motivates
the use of MPC. By far the most important change from one optimization
problem to the next one are thus the unpredictable changes in the initial value.
Is there anything we can do about this in the initialization of a new problem?
It turns out that we can, if we use the concept of parametric NLP sensitivities
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to construct a new initial guess. To illustrate the idea, let us first regard the
parametric root finding problem R(Zg, W) = 0 that results from the necessary
optimality conditions of an IP method, i.e. the system (17a)—(17¢) in variables
W = (X, A\ un). In the NMPC context, this system depends on the uncertain
initial value Zo. We denote the solution manifold by W*(Zy). When we know the
solution W = W*(Zy) for a previous initial value Zo and want to compute the
solution for a new initial value Z{,, then a good solution predictor for W*(zj,) is
provided by W/ =W + %(io)(ig —Zp) where %(a’:o) is given by the implicit
function theorem. An important practical observation is that an approximate
tangential predictor can also be obtained when it is computed at a point W
that does not exactly lie on the solution manifold. This more general predictor
is given by the formula

-1

W' =W — (g—tf/(xo’ W)) {g—;(xo, W) (5:6 - i;o) + R(%o, W)} . (27)
This fact, that is illustrated in Fig. 1(a), and that leads to a combination of a
predictor and corrector step in one linear system, is exploited in the continuation
method by Ohtsuka [45] and in a generalized form in the real-time iteration
scheme [16], both described below. When R(Zo, W) = 0 the formula simplifies to
the tangential predictor of the implicit function theorem, which is e.g. employed
in the advanced step controller[64].

W*

o Fa Ty

(a) Linearizing at approximate solution (b) Linearizing at active set change

Figure 1: Tangential predictors for interior point method using a small 7.

To - 5

(a) Linearizing at approximate solution (b) Linearizing at active set change

Figure 2: Tangential predictors for interior point method using a larger 7.
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Remark on IP Sensitivities at Active Set Changes: Unfortunately, the
interior point solution manifold is strongly nonlinear at points where the active
set changes, and the tangential predictor is not a good approximation when
we linearize at such points, as visualized in Fig. 1(b). One remedy would be
to increase the path parameter 7, which decreases the nonlinearity, but comes
at the expense of generally less accurate IP solutions. This is illustrated in
Figs. 2(a) and 2(b) for the same two linearization points as before. In Fig. 2(b)
we see that the tangent is approximating the IP solution manifold well in a
larger area around the linearization point, but that the IP solution itself is
more distant to the true NLP solution.

5.3 Generalized Tangential Predictors via SQP Methods

In fact, the true NLP solution is not determined by a smooth root finding prob-
lem (17a)—(17c), but by the KKT conditions (6a)—(6c). It is a well-known fact
from parametric optimization, cf. [33], that the solution manifold has smooth
parts when the active set does not change (and bifurcations are excluded), but
that non-differentiable points occur whenever the active set changes. Is there
anything we can do in order to “jump” over these non-smooth points in a way
that delivers better predictors than the IP predictors discussed before?

In fact, at points with weakly active constraints, we have to regard direc-
tional derivatives of the solution manifold, or “generalized tangential predic-
tors”. These can be computed by suitable quadratic programs [33, Thm 3.3.4]
and are visualized in Fig. 3(b). The theoretical results can be made a practical
algorithm by the following procedure proposed in [14]: first, we have to make
sure that the parameter Zy enters the NLP linearly, which is automatically the
case for simultaneous optimal control formulations, cf. Eq. (2b). Second, we
address the problem with an exact Hessian SQP method. Third, we just take
our current solution guess W for a problem Zj, and then solve the QP sub-
problem (21a)—(21f) for the new parameter value T, but initialized at W. It
can be shown [14, Thm. 3.6] that this “initial value embedding” procedure
delivers exactly the generalized tangential predictor when started at a solution
W = W*(Zp), as in Fig. 3(b). It is important to remark that the predictor
becomes approximately tangential when (a) we do not start on the solution
manifold, see Fig. 3(a), or (b) we do not use an exact Hessian or Jacobian
matrix or (c) we do not evaluate the Lagrange gradient or constraint residuals

Zo Zo

(a) Linearizing at approximate solution (b) Linearizing at active set change

Figure 3: Generalized tangential predictors for SQP method.
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exactly.

6 Online Algorithms

In NMPC and MHE we would dream to have the solution to a new optimal
control problem instantly, which is impossible due to computational delays.
Several ideas help to deal with this issue, which we discuss before explaining in
detail several of the existing online algorithms. We focus on the NMPC problem
but remark that all ideas are also transferable to the MHE problem, which we
sometimes mention explicitly.

Offline precomputations: As consecutive NMPC problems are similar,
some computations can be done once and for all before the controller starts. In
the extreme case, this leads to an explict precomputation of the NMPC control
law that has raised much interest in the linear MPC community [1], or a solution
of the Hamilton-Jacobi-Bellman Equation, both of which are prohibitive for
state and parameter dimensions above ten. But also when online optimization
is used, code optimization for the model routines is often essential, and it is in
some cases even possible to precompute and factorize Hessians or even Jacobians
in Newton type Optimization routines, in particular in the case of neighboring
feedback control along reference trajectories [12,37].

Delay compensation by prediction: When we know how long our com-
putations for solving an NMPC problem will take, it is a good idea not to
address a problem starting at the current state but to simulate at which state
the system will be when we will have solved the problem. This can be done using
the NMPC system model and the open-loop control inputs that we will apply
in the meantime [24]. This feature is used in many practical NMPC schemes
with non-negligible computation time.

Division into preparation and feedback phase: A third ingredient of
several NMPC algorithms is to divide the computations in each sampling time
into a preparation phase and a feedback phase [16]. The more CPU intensive
preparation phase (a) is performed with an old predicted state Zy before the new
state estimate, say T, is available, while the feedback phase (b) then delivers
quickly an approzimate solution to the optimization problem for Z{. Often,
this approximation is based on one of the tangential predictors discussed in the
previous section.

Iterating while the problem changes: A fourth important ingredient of
some NMPC algorithms is the idea to work on the optimization problem while
it changes, i.e., to never iterate the Newton type procedure to convergence for
an NMPC problem getting older and older during the iterations, but to rather
work with the most current information in each new iteration. This idea is used
in [16,41,45].

6.1 A Survey of Online Optimization for NMPC

We will in the following review several of the approaches suggested in the lit-
erature, in a personal and surely incomplete selection, and try to classify them
along the algorithmic lines discussed in this paper.
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The Newton-Type Controller of Li and Biegler [40]: This was prob-
ably one of the first true online algorithms for NMPC. It is based on a se-
quential optimal control formulation, thus it iterated in the space of controls
u = (ug, u1,...,un—1)only. It uses an SQP type procedure with Gauss-Newton
Hessian and line search, and in each sampling time, only one SQP iteration is
performed. The transition from one problem to the next uses a shift of the
controls u™™ = (u1,...,un—1,uh"). The result of each SQP iterate is used
to give an approximate feedback to the plant. As a sequential scheme without
tangential predictor, it seems to have had sometimes problems with nonlinear
convergence, though closed-loop stability was proven for open-loop stable pro-
cesses [41], and in principle, the theoretical NMPC stability analysis from [18]
is applicable.

The Continuation/GMRES Method of Ohtsuka [45]: Similar to the
Newton-Type controller, the Continuation/GMRES method performs only one
Newton type iteration in each sampling time, and is based on a sequential for-
mulation. It is different in that it is based on an IP treatment of the inequalities
with fixed path parameter 7 > 0, see Section 3.2, that it uses an exact Hessian,
and that it uses the iterative GMRES method for linear system solution in each
Newton step. Most important, it makes no use of a shift, but instead use of
the tangential predictor described in Eq. (27). This features seems to allow it
to follow the nonlinear IP solution manifold well — which is strongly curved at
active set changes. For a visualization, see Fig. 4(a). In each sampling time,
only one linear system is built and solved by the GMRES method, leading to
a predictor-corrector pathfollowing method. The closed-loop stability of the
method is in principle covered by the stability analysis for the real-time itera-
tions without shift given in [17]. A variant of the method is given in [54], which
uses a simultanous approach and condensing and leads to improved accuracy
and lower computational cost in each Newton type iteration.

% %

(a) Ohtsuka’s C/GMRES method (b) Real-Time Iteration scheme

Figure 4: Subsequent solution approximations.

The Real-Time Iteration Scheme [16]: Similar to the Newton-Type con-
troller, the real-time iteration scheme presented in [14,16] performs one SQP
type iteration with Gauss-Newton Hessian per sampling time. However, it em-
ploys a simultaneous NLP parameterization, Bock’s direct multiple shooting
method, with full derivatives and condensing. Moreover, it uses the generalized
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tangential predictor of the “initial value embedding” discussed in Section 5.3
to correct for the mismatch between the expected state To and the actual state
Zg. In contrast to the C/GMRES method, where the predictor is based on one
linear system solve from Eq. (27), here an inequality constrained QP is solved.
The computations in each iteration are divided into a long “preparation phase”
(a), in which the system linearization, elimination of algebraic variables and
condensing are performed, as described in Sections 4.1-4.3, and a much shorter
“feedback phase” (b). The feedback phase solves just one condensed QP (25a)—
(25b), more precisely, an “embedded” variant of it, where the expected state Z
is replaced by the actual one, . Depending on the application, the feedback
phase can be several orders of magnitude shorter than the feedback phase. The
iterates of the scheme are visualized in Fig. 4(b). The same iterates are ob-
tained with a variant of the scheme that uses Schloder’s trick for reducing the
costs of the preparation phase in the case of large state dimensions [51]. Note
that only one system linearization and one QP solution are performed in each
sampling time, and that the QP corresponds to a linear MPC feedback along a
time varying trajectory. In contrast to IP formulations, the real-time iteration
scheme gives priority to active set changes and works well when the active set
changes faster than the linearized system matrices. In the limiting case of a
linear system model it gives the same feedback as linear MPC. Error bounds
and closed loop stability of the scheme have been established for shrinking hori-
zon problems in [15] and for NMPC with shifted and non-shifted initializations
in [18] and [17].

Advanced Step Controller by Zavala and Biegler [64]: In order to avoid
the convergence issues of predictor-corrector pathfollowing methods, in the “ad-
vanced step controller” of Zavala and Biegler a more conservative choice is made:
in each sampling time, a complete Newton type IP procedure is iterated to con-
vergence (with 7 — 0). In this respect, it is just like offline optimal control —
IP, simultaneous, full derivatives with exact Hessian, structure exploiting linear
algebra. However, two features qualify it as an online algorithm: first, it takes
computational delay into account by solving an “advanced” problem with the
expected state Ty as initial value — similar as in the real-time iterations with
shift — and (b), it applies the obtained solution not directly, but computes first
the tangential predictor which is correcting for the differences between expected
state Top and the actual state T, as described in Eq. (27) with R(W,Zy) = 0.
Note that in contrast to the other online algorithms, several Newton itera-
tions are performed in part (a) of each sampling time, the “preparation phase”.
The tangential predictor (b) is computed in the “feedback phase” by only one
linear system solve based on the last Newton iteration’s matrix factorization.
As in the C/GMRES method, the IP predictor cannot “jump over” active set
changes as easily as the SQP based predictor of the real-time iteration. Roughly
speaking, the advanced step controller gives lower priority to sudden active set
changes than to system nonlinearity. As the advanced step controller solves each
expected problem exactly, classical NMPC stability theory [42] can relatively
easily be extended to this scheme [64].

Multi-Level Real-Time Iterations [7]: While the advanced step controller
deviates from the other online NMPC schemes in that it performs many Newton
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iterations per sampling time, the opposite choice is made in the multi-level real-
time iterations presented in [7], where even cheaper calculations are performed
in each sampling time than one Newton step usually requires. At the lowest level
(A), only one condensed QP (25a)—(25b) is solved, for the most current initial
value To. This provides a form of linear MPC at the base level, taking at least
active set changes into account with a very high sampling frequency. On the
next two intermediate levels, that are performed less often than every sampling
time, only the nonlinear constraint residuals are evaluated (B), allowing for
feasibility improvement, cf. also [12], or the Lagrange gradient is evaluated (C),
allowing for optimality improvement, based on the adjoint based SQP presented
in Section 3.1.2. Note that in all three levels A, B, and C mentioned so far, no
new QP matrices are computed and that even system factorizations can be
reused again and again. Level C iterations are still considerably cheaper than
one full SQP iteration [61], but also for them optimality and NMPC closed-loop
stability can be guaranteed by the results in [17] — as long as the system matrices
are accurate enough to guarantee Newton type contraction. Only when this is
not the case anymore, an iteration on the highest level, D, has to be performed,
which includes a full system linearization and is as costly as a usual Newton
type iteration.

Remark on Critical Regions and Online Active Set Strategies: It is
interesting to have a look at the parameter space Z visualized in Fig.5(b). The
picture shows the “critical regions” on each of which the active set in the solution
is stable. It also shows three consecutive problems on a line that correspond
to the scenario used in Figures 4(a), 4(b), and 5(a). Between problem 1 and
2 there is one active set change, while problems 2 and 3 have the same active
set, i.e., are in the same critical region. The C/GMRES method and Advanced
Step Controller exploit the smoothness on each critical region in order to obtain
the conventional Newton predictor that, however, looses validity when a region
boundary is crossed. The real-time iteration basically “linearizes” the critical
regions which then become polytopic, by using the more accurate, but also more
expensive QP predictor.

As the QP cost can become non-negligible for fast MPC applications, a
so-called online active set strategy was proposed in [23]. This strategy goes
on a straight line in the space of linearized regions from the old to the new

0

(a) Solutions of Advanced Step Controller (b) Critical regions of a parametric NLP

Figure 5: Subsequent solution approximations (left), and critical regions (right).
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QP problem. As long as one stays within one critical region, the QP solution
depends affinely on Ty — exactly as the conventional Newton predictor. Only
if the homotopy crosses boundaries of critical regions, the active set is updated
accordingly. The online active set strategy is available in the open-source QP
package qpOASES [22], and is particularly suitable in combination with real-
time iterations of level A, B, and C, where the QP matrices do not change,
see [62].

Remark on Online MHE Algorithms: Many algorithmic NMPC ideas
have been generalized to MHE problems. For example, a Newton-type con-
trol framework was used for MHE in [43], the C/GMRES method in [55], cf.
also [46], the real-time iteration in [21] and [38], and the advanced step frame-
work in [65]. A somewhat interesting online MHE approach related to the
Newton-type control framework was presented in [36], which uses backwards
single shooting making it not suitable for stiff systems. Other numerical MHE
schemes were presented in [35] and [57].

7 Conclusions

In this paper we have tried to give a self-contained overview of Newton type
methods for online solution of nonlinear optimal control problems. We first
reviewed several categories in which offline algorithms differ, such as simul-
tanous vs. sequential approaches, Interior Point (IP) vs. Sequential Quadratic
Programming (SQP) methods, band structure exploiting linear algebra vs. con-
densing, and different ways to compute the derivatives needed in Newton type
iterations. We then categorized several offline approaches along these lines.
The second part started by a discussion of online initializations. We stressed
the importance of sensitivity results from parametric optimization, which in
SQP type frameworks even allow to obtain cheaply a solution predictor across
active set changes. We then classified many proposed real-time optimization
approaches from the literature into the developed categories, starting with the
”Newton-type controller” [40] and the related ” continuation method” [45], both
based on sequential approaches, and then went over to the ”real-time iteration
scheme” [16], a simultaneous approach characterized by an SQP type solution
predictor and iterations that perform only one system linearization at each sam-
pling time. We also discussed the recently proposed simultaneous ”advanced
step controller” [64] and "multi-level real-time iterations” [7], as well as fast
online QP solutions [23].
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