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It was recently shown [Phys. Rev. Lett. 110, 227201 (2013)] that the critical behavior of the random-field Ising
model in three dimensions is ruled by a single universality class. This conclusion was reached only after a proper
taming of the large scaling corrections of the model by applying a combined approach of various techniques,
coming from the zero- and positive-temperature toolboxes of statistical physics. In the present contribution we
provide a detailed description of this combined scheme, explaining in detail the zero-temperature numerical
scheme and developing the generalized fluctuation-dissipation formula that allowed us to compute connected and
disconnected correlation functions of the model. We discuss the error evolution of our method and we illustrate
the infinite limit-size extrapolation of several observables within phenomenological renormalization. We present
an extension of the quotients method that allows us to obtain estimates of the critical exponent α of the specific
heat of the model via the scaling of the bond energy and we discuss the self-averaging properties of the system
and the algorithmic aspects of the maximum-flow algorithm used.
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I. INTRODUCTION

The random-field Ising model (RFIM) is one of the
archetypal disordered systems [1–11], extensively studied due
to its theoretical interest, as well as its close connection to ex-
periments in condensed matter physics [12–17]. In particular,
several important systems can be studied through the RFIM:
diluted antiferromagnets in a field [15], colloid-polymer
mixtures [17,18], colossal magnetoresistance oxides [19,20],
phase coexistence in the presence of quenched disorder
[21–23], nonequilibrium phenomena such as the Barkhausen
noise in magnetic hysteresis [24,25] or the design of switchable
magnetic domains [26], etc.

The existence of an ordered ferromagnetic phase for the
RFIM, at low temperature and weak disorder, followed from
the seminal discussion of Imry and Ma [1], when the space
dimension is greater than two (D > 2) [27–31]. This has
provided us with a general qualitative agreement on the sketch
of the phase boundary, separating the ordered ferromagnetic
phase from the high-temperature paramagnetic one. The
phase-diagram line separates the two phases of the model
and intersects the randomness axis at the critical value of
the disorder strength. Such qualitative sketching has been
commonly used in most papers for the RFIM [32–37] and
closed form quantitative expressions are also known from the
early mean-field calculations [37]. However, it is generally
true that the quantitative aspects of phase diagrams produced
by mean-field treatments are very poor approximations.

On the theoretical side, a scaling picture is available
[27–29]. The paramagnetic-ferromagnetic phase transition is
ruled by a fixed point [in the renormalization-group (RG)
sense] at temperature T = 0 [14]. The spatial dimension D

is replaced by D − θ , in hyperscaling relations (θ ≈ D/2).
Nevertheless, one expects only two independent expo-
nents [2,8,9,14], as in standard phase transitions [38].

Unfortunately, establishing the scaling picture is far from
trivial. Perturbation theory predicts that, in D = 3, the
ferromagnetic phase disappears upon applying the tiniest
random field [3]. Even if the statement holds at all orders
in perturbation theory [5], the ferromagnetic phase is stable
in D = 3 [31]. Nonperturbative phenomena are obviously at
play [39,40]. Indeed, it has been suggested that the scaling
picture breaks down because of spontaneous supersymmetry
breaking, implying that more than two critical exponents are
needed to describe the phase transition [41].

On the experimental side, a particularly well researched
realization of the RFIM is the diluted antiferromagnet in an
applied magnetic field [15]. Yet, there are inconsistencies in
the determination of critical exponents. In neutron scatter-
ing, different parametrizations of the scattering line shape
yield mutually incompatible estimates of the thermal critical
exponent, namely ν = 0.87(7) [42] and ν = 1.20(5) [43].
Moreover, the anomalous dimension η = 0.16(6) [42] violates
hyperscaling bounds, at least if one believes experimental
claims of a divergent specific heat [16,44]. Clearly, a reliable
parametrization of the line shape would be welcome. This
program has been carried out for simpler, better understood
problems [45]. Unfortunately, it is a common belief that we do
not have such a strong command over the RFIM universality
class.

The model has been also investigated by means of nu-
merical simulations [34,46,47]. However, typical Monte Carlo
schemes get trapped into local minima with escape time
exponential in ξ θ , where ξ denotes the correlation length.
Although sophisticated improvements have appeared [48–52],
these simulations produced low-accuracy data because they
were limited to linear sizes of the order of Lmax � 32.
Larger sizes can be achieved at T = 0, through the well-
known mapping of the ground state to the maximum-flow
optimization problem [53–66]. Yet, T = 0 simulations lack
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many tools, standard at T > 0. In fact, the numerical data at
T = 0 and their finite-size scaling analysis mostly resulted in
strong violations of universality [55,57,58,60].

The criteria for determining the order of the low temperature
phase transition and its dependence on the form of the field dis-
tribution have been discussed throughout the years [37,67–73].
In fact, different results have been proposed for different
field distributions, like the existence of a tricritical point
at the strong disorder regime of the system, present only
in the bimodal distribution [37,69]. Currently, despite the
huge efforts recorded in the literature, a clear picture of the
model’s critical behavior is still lacking. Although the view
that the phase transition of the RFIM is of second order is
well established [48–50,64], the extremely small value of
the exponent β continues to cast some doubts. Moreover,
a rather strong debate exists with regards to the role of
disorder: the available simulations are not able to settle the
question of whether the critical exponents depend on the
particular choice of the distribution for the random fields,
analogous to the mean-field theory predictions [37]. Thus the
whole issue of the model’s critical behavior is under intense
investigation [41,48,49,51,52,74–78].

Recently, progress has been made towards this direction
by the present authors [79]. In particular, using a combined
approach of state of the art techniques from the pool of
statistical physics and graph theory, it was shown that the
universality class of the RFIM is independent of the form of the
implemented random-field distribution. This, somehow unex-
pected, according to the current literature, result, was reached
only after a proper taming of the large scaling corrections,
a fact that, although emphasized many years ago [53], was
overlooked in numerous subsequent relevant investigations of
the model. In the current paper we present the full technical
details of our numerical implementation, originally outlined
in Ref. [79] and we provide some further numerical results
relevant to the scaling behavior of the specific heat and the
self-averaging aspects of the model in terms of the magnetic
susceptibility and the bond energy. We also discuss the scaling
aspects of the implemented maximum-flow algorithm.

The methods that we shall explain in the present paper will
be useful way beyond the context of the 3D RFIM. The most
obvious generalization is of course the RFIM in higher dimen-
sions (see, e.g., [80]). However, similar ideas can be applied to
many disordered systems and should be useful when one needs
to take derivatives, or to perform reweighting extrapolations,
with respect to the disorder-distribution parameters. The ability
to obtain these derivatives is most important when the relevant
RG fixed point lies at zero temperature (thus parameters
other than temperature should be varied to cross the phase
boundaries). For instance, for 2D Ising spin glasses several
RG fixed-points appear at T = 0 depending on the nature of
the couplings distribution [81]. It should be possible then to
study the corresponding phase boundaries and RG flows using
our formalism. Another difficult problem that can be tackled
with the current prescription is the diluted antiferromagnet in
a uniform external field [15]. The ground state of this model
is degenerate, and it is thus difficult to sample with uniform
probability from the set of all ground states [59]. Even if
in experiments the external field is uniform, in simulations
it is desirable to add a small, local random noise to the

magnetic field [52]. The small random magnetic fields make it
possible to employ the full formalism that we derive in the
following sections. Furthermore, the fluctuation-dissipation
formulas elucidated below are also valid when working at
finite (rather than zero) temperature, which is necessary for
some algorithms [48,51].

The outline of paper is as follows: In the following
Sec. II we define the model and the random-field distributions
under study. In Sec. III we outline the T = 0 maximum-
flow algorithm, and in Sec. IV we define the set of useful
physical observables that will be mainly analyzed. However,
a complication arises: the sought observables cannot be
straightfowardly computed, as we explain in Sec. V. The
problems are overcome in Sec. VI, where we derive explicitly a
fluctuation-dissipation formalism that allowed us to compute
connected and disconnected correlation functions from the
T = 0 data for each field distribution distinctively. The use
of a reweighting method with respect to the disorder strength
consists another asset at hand of our combinatorial scheme.
In Sec. VII we give a brief description of our finite-size
scaling vehicle, the quotients method [82]. In Sec. VIII and on
the basis of our main physical result of a single universality
class [79], we illustrate the size evolution of several effective
critical exponents and we present a finite-size scaling analysis
of additional numerical data for the bond energy. For this latter
task, we adopt an extension of the quotients method, necessary
for monitoring the scaling of the effective exponent α of
the specific heat. Furthermore, we discuss the self-averaging
aspects of the model, by implementing a proper noise to signal
ratio for the magnetic susceptibility and the bond energy,
and we estimate the critical slowing-down exponent z of the
zero-temperature algorithm used to generate the ground states
of the model. Our contribution ends with a summary in Sec. IX.

II. MODEL AND RANDOM-FIELD DISTRIBUTIONS

Our Sx = ±1 spins are placed on a cubic lattice with size
L and periodic boundary conditions. The Hamiltonian of the
RFIM in a general form may be written as

H = −J
∑
〈x,y〉

SxSy −
∑

x

hxSx, (1)

where in the above equation J is the nearest-neighbors’
ferromagnetic interaction, which is set to be J = 1. With hx

we denote the set of independent quenched random fields.
Common field distributions considered in the literature are
the Gaussian and bimodal distributions [12,14,83], for which
marginally distinct results have been proposed [55,57,58,60].

In the current work the quenched random fields hx are
extracted from one of the following double Gaussian (dG) or
Poissonian (P) distributions (with parameters hR , σ ):

dG(σ )(hx ; hR) = 1√
8πσ 2

[
e
− (hx−hR )2

2σ2 + e
− (hx+hR )2

2σ2

]
, (2)

P(hx ; σ ) = 1

2|σ |e
−|hx |/σ . (3)

The limiting cases σ = 0 and hR = 0 of Eq. (2) correspond
to the well-known bimodal (b) and Gaussian (G) distributions,
respectively. In the Poissonian and Gaussian cases the strength
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of the random fields is parametrized by σ , while in the double
Gaussian case we shall take σ = 1 and 2, and vary hR .

As we are only interested in a T = 0 study of the model by
estimating ground states via the use of efficient optimization
methods that will be discussed below, a proper choice of the
random-field distributions is of major importance in our task.
In particular, the main advantage of considering the double
Gaussian distribution of Eq. (2) is that one can mimic for
certain values of σ the double-peak structure of the bimodal
distribution, capturing its effects and at the same time escaping
the implication of nondegenerate ground states. As is well
known, for cases of discrete distributions, like the bimodal,
degeneracy complicates the numerical solution of the system
at T = 0, since one has to sweep over all the possible ground
states of the system [56,59]. On the other hand, for the cases
of the above distributions (2) and (3), the ground state of the
system is nondegenerate, so it is sufficient to calculate just one
ground state in order to get the necessary information.

III. ZERO-TEMPERATURE ALGORITHM

As already discussed extensively in the literature (see
Refs. [84,85] and references therein), the RFIM captures
essential features of models in statistical physics that are
controlled by disorder and have frustration. Such systems
show complex energy landscapes due to the presence of
large barriers that separate several metastable states. If such
models are studied using simulations mimicking the local
dynamics of physical processes, it takes an extremely long
time to encounter the exact ground state. However, there are
cases where efficient methods for finding the ground state
can be utilized and, fortunately, the RFIM is one such clear
case. These methods escape from the typical direct physical
representation of the system, in a way that extra degrees of
freedom are introduced and an expanded problem is finally
solved. By expanding the configuration space and choosing
proper dynamics, the algorithm practically avoids the need of
overcoming large barriers that exist in the original physical
configuration space. An attractor state in the extended space
is found in time polynomial in the size of the system and
when the algorithm terminates, the relevant auxiliary fields
can be projected onto a physical configuration, which is the
guaranteed ground state.

The random field is a relevant perturbation at the pure fixed
point, and the random-field fixed point is at T = 0 [27,86,87].
Hence the critical behavior is the same everywhere along
the phase boundary and we can predict it simply by staying
at T = 0 and crossing the phase boundary at the critical
field point. This is a convenient approach because we can
determine the ground states of the system exactly using
efficient optimization algorithms [53–66,79,88–93] through
an existing mapping of the ground state to the maximum-flow
optimization problem [94–96]. A clear advantage of this
approach is the ability to simulate large system sizes and
disorder ensembles in rather moderate computational times.
We should underline here that even the most efficient T > 0
Monte Carlo schemes exhibit extremely slow dynamics in the
low-temperature phase of these systems [84,85]. Further assets
in the T = 0 approach are the absence of statistical errors
and equilibration problems, which, on the contrary, are the

two major drawbacks encountered in the T > 0 simulation of
systems with rough free-energy landscapes [84,85].

The application of maximum-flow algorithms to the RFIM
is nowadays well established [88]. The most efficient network
flow algorithm used to solve the RFIM is the push-relabel
algorithm of Tarjan and Goldberg [97]. For the interested
reader, general proofs and theorems on the push-relabel
algorithm can be found in standard textbooks [95,96]. In
the present study we prepared our own C version of the
algorithm that involves a modification proposed by Middleton
et al. [63,64,98] that removes the source and sink nodes,
reducing memory usage and also clarifying the physical
connection [64,98]. For the sake of completeness, we recall
here the algorithm we use, which is exactly the algorithm
proposed in Refs. [63,64,98].

The algorithm starts by assigning an excess xi to each lattice
site i, with xi = hi . Residual capacity variables rij between
neighboring sites are initially set to J . A height variable ui

is then assigned to each node via a global update step. In
this global update, the value of ui at each site in the set
T = {j |xj < 0} of negative excess sites is set to zero. Sites
with xi � 0 have ui set to the length of the shortest path, via
edges with positive capacity, from i to T . The ground state
is found by successively rearranging the excesses xi , via push
operations, and updating the heights, via relabel operations.
When no more pushes or relabels are possible, a final global
update determines the ground state, so that sites which are
path connected by bonds with rij > 0 to T have σi = −1,
while those which are disconnected from T have σi = 1. A
push operation moves excess from a site i to a lower height
neighbor j , if possible, that is, whenever xi > 0, rij > 0, and
uj = ui − 1. In a push, the working variables are modified
according to xi → xi − δ, xj → xj + δ, rij → rij − δ, and
rji → rji + δ, with δ = min(xi,rij ). Push operations tend to
move the positive excess towards sites in T . When xi > 0
and no further push is possible, the site is relabeled, with ui

increased to 1 + min{j |rij >0} uj . This is defined as a single
push-relabel step; the number of such steps will be our
measure of algorithmic time. In addition, if a set of highest
sites U becomes isolated, with ui > uj + 1, for all i ∈ U
and all j /∈ U , the height ui for all i ∈ U is increased to its
maximum value, L3, as these sites will always be isolated
from the negative excess nodes. The order in which sites are
considered is given by a queue. In this paper, we have used
the first-in-first-out (FIFO) queue [98]. The FIFO structure
executes a push-relabel step for the site i at the front of a
list. If any neighboring site is made active by the push-relabel
step, it is added to the end of the list. If i is still active after
the push-relabel step, it is also added to the end of the list.
This structure maintains and cycles through the set of active
sites. Last but not least, the computational efficiency of the
algorithm has been increased via the use of periodic global
updates every L3 relabels [64,98].

Using the above version of the push-relabel algorithm, we
performed large-scale simulations of the RFIM defined above
in Eqs. (1)–(3) for a wide range of the simulation parameters.
Our tactic included three steps: originally, we performed
preliminary runs with Nsamples = 106, where Nsamples counts
the number of independent disorder realizations, to locate
the hR or σ values (depending on the parametrization) of
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TABLE I. Summary of simulation details.

Distribution Lmin Lmax Nsamples (×106)

G 8 192 10
dG(σ=1) 8 128 50
dG(σ=2) 8 128 10
P 8 192 10

the crossing points of the connected correlation length of the
system for pairs of lattice sizes of the form (L,2L), as this
is indicated in the main heart of the scaling method used
(see below). Subsequently, the main part of the simulations
took place in these estimated crossing points, with details, in
terms of linear system sizes and disorder-averaged ensembles,
summarized in Table I. In Table I Lmin(Lmax) denotes the mini-
mum(maximum) linear size considered within the sequence of
size points L ∈ {8,12,16,24,32,48,64,96,128,192}. Finally,
we performed an additional set of simulations for triplets of
systems sizes as shown in Table II in order to compute the
critical exponent of the specific heat via the scaling of the
bond energy. This will be exemplified in Sec. VIII.

IV. OBSERVABLES

An instance of the random fields {hx} is named a sample.
Thermal mean values are denoted as 〈· · · 〉, while the sub-
sequent average over samples is indicated by an overline.
The two most basic quantities are the bond energy and the
order-parameter density:

EJ = −J
∑
〈x,y〉

SxSy, m = 1

LD

∑
x

Sx. (4)

A crucial feature of the RFIM is that we have to deal with two
different correlation functions, namely the disconnected and
the connected propagators.

TABLE II. Effective critical exponent ratio (α − 1)/ν using a
three lattice-size variant (L1,L2,L3) = (L,2L,4L), see Eq. (71), of
the original quotients method.

Distribution (L1,L2,L3) (α − 1)/ν

G (12,24,48) − 0.758(11)
(16,32,64) − 0.793(17)
(24,48,96) − 0.860(30)
(32,64,128) − 0.881(75)

dG(σ=1) (16,32,64) 0.954(66)
(24,48,96) − 0.036(23)
(32,64,128) − 0.309(23)

dG(σ=2) (12,24,48) − 0.735(16)
(16,32,64) − 0.766(16)
(24,48,96) − 0.882(60)
(32,64,128) − 0.867(56)

P (12,24,48) − 1.120(6)
(16,32,64) − 1.089(10)
(24,48,96) − 1.071(42)
(32,64,128) − 0.970(37)

The disconnected propagator, is straightforward to compute
both in real, G(dis)

xy , and Fourier space, χ
(dis)
k :

G(dis)
xy = 〈SxSy〉, χ

(dis)
k = LD〈|mk|2〉k, (5)

where

mk = 1

LD

∑
x

eik·xSx. (6)

In particular, special notations are standard for vanishing wave
vector: mk=(0,0,0) = m (i.e., the order-parameter density) and
χ

(dis)
k=(0,0,0) = χ (dis) (i.e., the disconnected susceptibility).

On the other hand, we have the connected propagator:

Gxy = ∂〈Sx〉
∂hy

. (7)

At finite temperature, one could compute Gxy from the
fluctuation-dissipation theorem

Gxy = 1

T
〈SxSy〉 − 〈Sx〉〈Sy〉. (8)

However, we work directly at T = 0, as explained in Sec. III.
Therefore, Eq. (8) is clearly unsuitable for us, and the methods
of Sec. VI will be needed (see also Ref. [8]). For later use, we
note the symmetry

Gxy = Gyx = Gxy + Gyx

2
. (9)

In fact, our numerical data will never verify this symmetry
(because of statistical fluctuations); hence we prefer to use the
symmetrized propagator (Gxy + Gyx)/2. Now, the connected
propagator in Fourier space is

χk = 1

LD

∑
x,y

eik·(x−y) Gxy + Gyx

2
. (10)

Again, the case of vanishing wave vector deserves a special
naming: χk=(0,0,0) = χ is the connected susceptibility.

From both propagators, we compute the connected,
ξ , and disconnected, ξ (dis), second-moment correlation
lengths [38,99]. Let kmin = (2π/L,0,0); then

ξ # = 1

2 sin(π/L)

√
χ#

χ#
kmin

− 1, (11)

where the superscript # stands both for the connected or the
disconnected case [100]. Of course, we improve our statis-
tics by computing χ#

kmin
= 1

3 [χ#
k=(2π/L,0,0) + χ#

k=(0,2π/L,0) +
χ#

k=(0,0,2π/L)].
Other important quantities are the well-known universal

Binder ratio

U4 = 〈m4〉
〈m2〉2 , (12)

and the susceptibilities ratio

U22 = χ (dis)

χ2
(13)

that we use as a platform for investigating the validity of the
so-called two-exponent scaling scenario; see Sec. VIII.
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V. PROBLEMS WITH THE STRAIGHTFORWARD
APPROACH

Computing response functions is very important. Unfortu-
nately, the traditional approach for disordered systems (see,
e.g., [101]) is not feasible at zero temperature. The problem
is easily understood by considering the example of the Monte
Carlo computation of the magnetic susceptibility.

The traditional approach would start by generating Nsamples

of the random fields according to the appropriate probability
density w({hx}). Then, one would add to each random field a
uniform external field

hx → hx + H, (14)

and the magnetic susceptibility would be estimated as

χnaive = 1

Nsamples

Nsamples∑
s=1

∂〈ms〉H
∂H

∣∣∣∣
H=0

, (15)

where 〈ms〉H is the thermal expectation value of instance s

under the displaced magnetic fields in Eq. (14). Yet, as we
explain below, the naive Monte Carlo estimator (15) yields
χnaive = 0 with probability one for any smooth random-field
probability density w({hx}) such as ours; recall Eqs. (2)
and (3).

The approach outlined in Eq. (15) fails because, at zero
temperature, the only spin assignment with a nonvanishing
statistical weight is the ground state for the Hamiltonian (1).
The crucial point is that the ground state is unique, excepting a
zero-measure set in the LD-dimensional space spanned by the
random fields. Indeed, consider two arbitrary but fixed spin
assignments, {S(1)

x } and {S(2)
x }. The condition of equal energy

H
({

S(1)
x

}) = H
({

S(2)
x

})
(16)

defines a hyperplane in the random-fields space. There are
2LD

(2LD − 1)/2 such space-dividing hyperplanes. For random
fields {hx} not in thesehyperplanes, each of the 2LD

possible
spin assignments has a distinct energy, and thus the ground
state is unique. Furthermore, the ordering of the 2LD

energy
levels is fixed away from the hyperplanes (which are the locus
in random-fields space where level crossings happen).

Now, let us suppose that none of the Nsamples instances
in Eq. (15) lies exactly in one of the dividing hyperplanes
[this happens with probability one for any smooth w({hx})].
Then, for H small enough, the fields displacement in Eq. (14)
will not cross any of the hyperplanes and thus adding the
field H will leave the ground state unvaried. In other words,
d〈ms〉H /dH |H=0 = 0, with probability one.

However, the connected susceptibility is not zero. The way
out of the paradox is simple: the H derivatives in Eq. (15) are
actually a sum of Dirac δ functions, centered at the precise
H values that cause the displaced fields (14) to cross some
of the dividing hyperplanes (16). It is the integral over the
random fields of these Dirac δ functions which produces a
finite susceptibility χ > 0:

χ =
∫ ∏

x

dhx w({hx}) ∂〈m〉
∂H

∣∣∣∣
H=0

. (17)

We see the heart of the problem: naive Monte Carlo estimations
such as Eq. (15) cannot correctly reproduce integrals such as

Eq. (17) when the integrand is such a singular object as a sum
of Dirac’s δ functions.

Nevertheless, people have tried to overcome the zero-
measure problem. For instance, one could keep H finite and
compute the Monte Carlo (MC) average

[〈m〉](MC)
H = 1

Nsamples

Nsamples∑
s=1

〈ms〉H , (18)

and then try to extrapolate to H → 0 the slope d[〈m〉](MC)
H /dH .

Of course, the smaller is H the larger is the number Nsamples

needed to observe some H dependency. Yet, reasonable
tradeoffs between number of instances and size of the applied
field could be empirically found [61].

In Sec. VI we explain a completely different approach that
(i) allows one to work directly at H = 0 and (ii) avoids Dirac’s
δ functions. How this is possible can be easily understood by
considering the following one-dimensional toy model.

Toy model

Imagine we have a single random field h. In analogy with
the general case, let us also assume that the magnetization,
regarded as a function of h, is constant but for a set of R

discontinuities:

〈m〉h = −1 +
R∑

i=1

[mi+1 − mi] θ (h − hi). (19)

In the above expression θ (x) is the Heaviside step function,
θ (x > 0) = 1 and θ (x < 0) = 0, and the magnetization
plateaus are monotonically increasing, mi+1 > mi , with
m1 = −1 and mR+1 = 1.

Now, if we displace the field, h → h + H , and take the H

derivative in Eq. (19), a sum of Dirac δ functions will arise,
making unfeasible the Monte Carlo method.

However, it is useful to take one step back and recall how
the susceptibility is defined. First, we consider the average
magnetization as a function of the displaced field

〈m〉(H ) =
∫ ∞

−∞
dw(h)〈m〉h+H . (20)

The derivative with respect to H is taken onlyafter computing
the integral [the random-field probability density w(h) must
decrease fast enough at infinity to make the integral conver-
gent]. Yet, a change of variable h′ = h + H yields

〈m〉(H ) =
∫ ∞

−∞
dw(h − H )〈m〉h. (21)

The change of variable is mathematically sound, as it relies
only on the translational invariance of the integration measure
in Eq. (20). If the probability density w(h) is smooth, one can
now interchange derivative and integral obtaining

χtoy model =
∫ ∞

−∞
dw(h)

−1

w(h)

dw

dh
〈m〉h. (22)

063308-5
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The integrand in Eq. (22) is a regular function, allowing for a
Monte Carlo estimation of the form

χ
(MC)
toy model = 1

Nsamples

Nsamples∑
s=1

〈m〉hs

−1

w(hs)

dw

dh

∣∣∣∣
h=hs

, (23)

where the independent random fields hs are obtained with
weight w(h). Note that the summands in Eq. (23) cannot be
interpreted as the magnetic susceptibility of a given instance
(there are no Dirac δ functions). However, χ

(MC)
toy model does

converge to χtoy model in the limit of large Nsamples.

VI. FLUCTUATION-DISSIPATION FORMALISM

Reweighting methods are a major asset for numerical
studies of critical phenomena [102,103]: From a single
simulation at a given temperature we get a continuous curve
for (say) the disconnected susceptibility, χ (dis)(T ).

However, we will be working at zero temperature. Hence
standard reweighting methods are not useful for us. In fact,
we shall explain here our extension of reweighting methods
originally devised for percolation studies [101,104,105]. From
a single simulation, we extrapolate the mean value of observ-
ables to nearby parameters of the disorder distribution. We
varied σ for the Poissonian and Gaussian distributions, see
panel (a) in Fig. 1 below for an illustrative flavor, and hR for
the double Gaussian distribution. These reweighting methods
were instrumental for our previous work [79].

As we discuss below, a closely related problem is the
computation of the connected correlation functions (recall
also Sec. V). Our solution for the case of the Gaussian
distribution, in Sec. VI A, will turn out to be identical to
the one in Ref. [8]. However, modifications are needed for
the Poissonian or double Gaussian distributions, which are
explained in Secs. VI B and VI C, respectively.

For all three distributions, we shall compute the connected
propagator by adding a source h̃x to the random fields:

hx → hx + εh̃x, (24)

where ε is a small parameter. At variance with the random
fields {hx}, the sources {h̃x} will be arbitrary but fixed: the
overline will indicate and average only with respect to the {hx}.
Then, the connected propagator Gxy(= Gyx) follows from the
Taylor expansion

〈Sy〉{hx+εh̃x } = 〈Sy〉 + ε
∑

x

Gyxh̃x + O(ε2). (25)

In the above expression, 〈Sy〉{hx+εh̃x } is the thermal expectation
value obtained when plugging {hx + εh̃x} as the random
magnetic fields in the Hamiltonian, Eq. (1).

The formalism will be explained in the same way, for all
three random-field distributions. We start from the general
observation that computing thermal expectation values at T =
0 is trivial: one just needs to evaluate the function of interest,
see Sec. IV, on the ground-state spin assignment corresponding
to a given sample (recall that a sample is characterized by a
set of random fields {hx}). In this sense, thermal mean values
are mere functions of the {hx}. Next, we observe that a special
function of the random fields, when averaged over the {hx},
is equal to the connected propagator. Finally, we show how to
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0.0014
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1.75
1.80
1.85
1.90
1.95

(b)

er
ro
r

σ
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L = 48 L = 96

ξ
/L

L = 16
L = 24
L = 32
L = 48
L = 64
L = 96

(a)

FIG. 1. (a) For several system sizes, we show ξ/L as a function of
the strength of the Poissonian random field σ . Lines join data obtained
from reweighting extrapolation (discontinuous lines of the same color
come from independent simulations). In the large-L limit, ξ/L is L

independent at the critical point σ (c). In the quotients method, we
consider the ξ/L curves for pair of lattices (L,2L) and seek the σ

where they cross. This crossing is employed for computing effective,
L-dependent critical exponents with Eq. (68). (b) Illustration of
statistical errors in the universal ratio ξ/L for the pairs of the system
sizes shown in panel (a).

perform reweighting extrapolations for a generic function of
the random fields F({hx}).

Before we start, let us mention that a practical consideration
had an important impact in the designing of our fluctuation-
dissipation formalism. We simulated a large number of
samples (∼ 107) on large system sizes (L = 192); see Table I.
Clearly, storing in the hard drive all the corresponding ground-
state assignments is out of the question. Therefore, we need
to select beforehand a small set of quantities to be computed
on the ground-state spin assignment and stored on the hard
drive. This small set of observables includes EJ, m, and mkmin ,
recall Sec. IV, but also the quantities needed to compute the
connected propagators and the reweighting extrapolations [in
all cases, we restricted the wave vectors to a bare minimum:
k = (0,0,0) and k = kmin].

A. Gaussian distribution

The combined probability density for our N=LD Gaussian
random fields with width parameter σ is

wG({hx},σ ) = 1

(2πσ 2)
N
2

e
− 1

2σ2

∑
x h2

x . (26)
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Our computation starts from Eq. (25):

〈Sy〉{hx+εh̃x }

=
∫ ∏

x

dhx wG({hx},σ ) 〈Sy〉{hx+εh̃x } (27)

=
∫ ∏

x

dh′
x wG({h′

x − εh̃x},σ ) 〈Sy〉{h′
x }. (28)

In the above expressions the N integrals extend from −∞
to +∞. We went from (27) to (28) by changing integration
variables as h′

x = hx + εh̃x [we shall drop the prime for the
dummy integration variables, h′

x , in Eq. (28)]. Now, one just
needs to Taylor expand in the small parameter ε in Eq. (28). A
direct comparison with Eq. (25) yields

Gzy =
∫ ∏

x

dhx wG({hx},σ )
hz〈Sy〉{hx }

σ 2
(29)

= hz〈Sy〉
σ 2

. (30)

We now use Eq. (10) to compute the propagator in the Fourier
space

χk = LD

〈
hG

−kmk + hG
k m−k

〉
2σ 2

, (31)

where mk was defined in Eq. (6) and

hG
k = 1

LD

∑
x

eik·xhx. (32)

The reader will note that Eq. (31) was obtained in Ref. [8]
(yet, our argument is sound as well when one starts directly at
T = 0, which is exactly our case). Our rationale for recalling
this fluctuation-dissipation argument here is that the derivation
of the new formulas in Secs. VI B and VI C is completely
analogous.

At this point it should be obvious that, for all the observables
of interest, we are after the computation of multidimensional
integrals of the form

F |σ =
∫ ∏

x

dhx wG({hx},σ )F({hx}), (33)

where F({hx}) could be F = 〈SzSy〉{hx }, or F = hz〈Sy〉{hx },
etc. Now, we need to solve the following three problems.

(1) Compute derivatives with respect to σ , DσF . Recall
that σ is the width for the Gaussian weight in Eq. (33).

(2) Extrapolate the expectation values at σ + δσ from
integrals at σ such as Eq. (33).

(3) Estimate how large the extrapolation window δσ may
be in a numerical simulation.

Fortunately, we can solve all three problems with a single
trick. The starting point is

F |σ+δσ =
∫ ∏

x

dhx wG({hx},σ + δσ )F({hx}) (34)

=
∫ ∏

x

dhx wG({hx},σ )F({hx})R({hx},σ,δσ ), (35)

where the reweighting factor R is just the ratio of probability
densities:

R({hx},σ,δσ ) = wG({hx},σ + δσ )

wG({hx},σ )
(36)

=
(

σ

σ + δσ

)N

e
1
2 [σ−2−(σ+δσ )−2]

∑
x h2

x . (37)

The computation of σ derivatives follows straightforwardly
by Taylor expanding the reweighting factor in δσ :

R({hx},σ,δσ + ε) = R({hx},σ,δσ )(1 + εD + O(ε2)), (38)

where

D({hx},σ,δσ ) = 1

σ + δσ

[ ∑
x h2

x

(σ + δσ )2
− N

]
. (39)

Our reweighting formulas can be cast in a more aesthetically
appealing form

F |σ+δσ = FRσ,δσ |σ , DσF |σ+δσ = FRσ,δσDσ,δσ |σ . (40)

Note that Eq. (40) refers to a function F of the random fields
only. Explicit dependency on σ , like in Gzy = hz〈Sy〉/σ 2, is
not included but can be taken care of straightforwardly.

In summary, in order to perform a complete reweighting
study for each sample we need to store on the hard drive only
EJ, mk , hG

−kmk + hG
k m−k [restricting ourselves to k = (0,0,0)

and k = kmin], as well as
∑

x h2
x .

The final question we need to address is the following: how
large can δσ reasonably be in a Monte Carlo simulation? Of
course, the question is ill posed, because the answer depends
on how many samples are simulated. In the limit of infinite
statistics, one could have arbitrarily large δσ . However, this
ideal situation is never reached in practice. As a rule of thumb
one may use many different criteria, but all of them boil down
to requiring that the typical set of random fields for σ + δσ

could also be typical at σ (or, at least, not too unusual). A par-
ticularly simple such criterium requires the absolute value of∑

x

h2
x

∣∣
σ+δσ

−
∑

x

h2
x

∣∣
σ

= N [(σ + δσ )2 − σ 2] (41)

to be no larger than the dispersion of
∑

x h2
x at σ , namely√

2Nσ 2. The resulting bound is

|δσ | �
√

σ 2

2N
. (42)

B. Poissonian distribution

This case is a straightforward translation of the results in
Sec. VI A. Since there is not any new idea involved, let us just
give the main results.

The connected propagator in real space is

Gzy = hz〈Sy〉
|hz|σ . (43)

Note the small, but crucial, difference with Eq. (30): we
correlate 〈Sy〉 with the sign of hz. In the Fourier space, Eq. (30)
translates to

χk = LD

〈
hP

−kmk + hP
km−k

〉
2σ

, (44)
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where mk was defined in Eq. (6) and

hP
k = 1

LD

∑
x

eik·x hx

|hx | . (45)

Note, again, that we Fourier transform the sign of the
Poissonian random fields.

The reweighting factor is again the ratio of probability
densities for the Poisson fields:

R({hx},σ,δσ ) =
(

σ

σ + δσ

)N

e[σ−1−(σ+δσ )−1]
∑

x |hx |, (46)

and the derivative operator follows from a Taylor expansion
with respect to δσ :

R({hx},σ,δσ + ε) = R({hx},σ,δσ )(1 + εD + O(ε2)), (47)

where

D({hx},σ,δσ ) = 1

σ + δσ

[ ∑
x |hx |

(σ + δσ )
− N

]
. (48)

The final reweighting formulas can be cast in exactly the
same form that we found for the Gaussian random fields

F |σ+δσ = FRσ,δσ |σ , DσF |σ+δσ = FRσ,δσDσ,δσ |σ . (49)

As for the maximum reasonable reweighting extrapolation,
we also use an analogous criterium: the absolute value of the
difference∑

x

|hx ||σ+δσ −
∑

x

|hx ||σ = N (σ + δσ ) − Nσ (50)

should be no larger than the dispersion of
∑

x |hx | at σ , namely√
Nσ . The resulting bound is

|δσ | �
√

σ 2

N
. (51)

C. Double Gaussian distribution

Our formalism for this distribution is slightly more compli-
cated. Let us start by explaining how we obtain a random field
distributed as prescribed in Eq. (2). For each hx we extract
two independent random variables. One of them is discrete,
ηx = ±1, with 50% probability. The other variable, ϕx , is
Gaussian distributed with zero mean and unit variance. Then,
we set [the width σ is given in Eq. (2)]

hx = hRηx + σϕx. (52)

The combined probability density for our 2N variables is

wdG({ηx,ϕx}) = e− 1
2

∑
x ϕ2

x

2N (2π )N/2
. (53)

In order to understand the origin of the additional compli-
cations for this distribution, let us add a source (i.e., hx →
hx + εh̃x), while we simultaneously modify the position of
the peaks (i.e., hR → hR + δhR) [106].

Under our circumstances, Eq. (25) reads

〈Sy〉{hx+εh̃x }|hR+δhR
=

∑
{ηx }

∫ ∏
x

dϕx wdG({ηx,ϕx}) 〈Sy〉{ĥx },

(54)

ĥx = hRηx + δhRηx + σϕx + εh̃x. (55)

The sum in Eq. (54) extends to the 2N possible values of
the discrete variables ηx . The problem now is apparent from
Eq. (55). For each site, we have a single integration variable,
namely ϕx . We need to carry out a change of variable that
brings Eq. (55) to the form in Eq. (52):

ϕ′
x = ϕx + δhRηx + εh̃x

σ
. (56)

In other words, if δhR �= 0, there is no way of distinguishing
δhRηx from the source term εh̃x .

With this caveat in mind, and dropping the prime in the
dummy integration variables, Eq. (54) now reads

〈Sy〉{hx+εh̃x }|hR+δhR
=

∑
{ηx }

∫ ∏
x

dϕx wdG

×
({

ηx,ϕx − δhRηx + εh̃x

σ

})
〈Sy〉{ĥx },

(57)

ĥx = hRηx + σϕx. (58)

Now,

wdG

({
ηx,ϕx − δhRηx + εh̃x

σ

})

= wdG({ηx,ϕx})R({ηx,ϕx},δhR)

× exp

[
ε

σ

∑
x

h̃x

(
ϕx − δhRηx

σ

)]
exp

[
− ε2

2σ 2

∑
x

h̃2
x

]
,

(59)

where the reweighting factor appropriate for our implementa-
tion of the double Gaussian distribution is

R({ηx,ϕx},δhR) = exp

[
δhR

σ

∑
x

ηxϕx

]
exp

[
−δh2

RN

2σ 2

]
. (60)

Taylor expanding with respect to ε in Eq. (59) we finally
get the connected propagator

Gzy |hR+δhR
= 1

σ
RδhR

(
ϕz − δhRηz

σ

)
〈Sy〉

∣∣∣∣
hR

. (61)

In particular, the correction term −δhRηz was absent for the
Poissonian and Gaussian distributions. Similarly, one can get
the connected propagator in the Fourier space

χk|hR+δhR
= LD

σ
RδhR

〈(
ϕ̂−k − δhRη̂−k

σ

)
mk

+
(

ϕ̂k − δhRη̂k

σ

)
m−k

〉∣∣∣∣
hR

, (62)
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where mk was defined in Eq. (6) and

ϕ̂k = 1

LD

∑
x

eik·xϕx, η̂k = 1

LD

∑
x

eik·xηx. (63)

Instead, for disconnected observables (e.g., EJ, connected
propagators, etc.), the reweighting formulas take the standard
form

F |σ+δσ = FRδhR
|σ , DσF |σ+δσ = FRδhR

DδhR
|σ , (64)

where, in this case, the derivative operator is

D({ηx,ϕx},δhR) = 1

σ

∑
x

(
ηxφx − δhR

σ

)
. (65)

Finally, we need to assess the maximum sensible size for
δhR . The simplest way to proceed is to compute the moments
of the reweighting factor

Rk
δhR

= exp

[
N

k2 − k

2

δh2
R

σ 2

]
. (66)

If we now demand the dispersion (i.e., square root of
variance) to be as large as the mean value, we get

|δhR| � σ

√
log 2

N
. (67)

VII. QUOTIENTS METHOD

To extract the values of critical points, critical exponents,
and dimensionless universal quantities, we employed the
quotients method, also known as phenomenological renor-
malization [38,82,107]. This method allows for a particularly
transparent study of corrections to scaling, that up to now have
been considered as the Achilles’ heel in the study of the D � 3
random-field problem. We should note that previous appli-
cations of the method include diluted antiferromagnets [48]
and the spin-glass problem; see Ref. [108] and references
therein.

We compare observables computed in a pair of lattices
(L,2L). We start imposing scale invariance by seeking the
L-dependent critical point: the value of σ (hR for the dG),
such that ξ2L/ξL = 2 [i.e., the crossing point for ξL/L, see
Fig. 1(a)]. Now, for dimensionful quantities O, scaling in the
thermodynamic limit as ξxO/ν , we consider the quotient QO =
O2L/OL at the crossing. For dimensionless magnitudes g, we
focus on g2L. In either case, one has

Q
(cross)
O = 2xO/ν + O(L−ω), g

(cross)
(2L) = g∗ + O(L−ω), (68)

where xO/ν, g∗, and the scaling-corrections exponent ω are
universal.

Examples of dimensionless quantities are the connected
and disconnected correlation lengths over the system size,
i.e., ξ/L and ξ (dis)/L, and the Binder ratio U4. Instances of
dimensionful quantities are then the derivatives of ξ , ξ (dis)

(xξ = 1 + ν), the connected and disconnected susceptibilities
χ and χ (dis) [xχ = ν(2 − η), xχ (dis) = ν(4 − η̄)], and the ratio
U22 [xU22 = ν(2η − η̄)] (see also Sec. IV), which as already
noted above will serve as an alternative platform for inves-
tigating the validity of the so-called two-exponent scaling
scenario [8,9].

Let us point out here that an extension of the quo-
tients method using the sequence of three lattice-size points
(L,2L,4L) will be presented below in Sec. VIII. This general-
ization is necessary for the scaling study of of the bond energy
of the RFIM, which is governed by a nondiverging background
term.

VIII. RESULTS AND DISCUSSION

Let us start with a few illustrations on the main heart of the
scaling method applied, that is the crossing of the universal
ratio ξ/L together with the error evolution of the presented
numerical scheme. As already mentioned above, we varied σ

for the Poissonian and Gaussian distributions, see panel (a)
in Fig. 1, and hR for the double Gaussian distribution. Panel
(b) in Fig. 1 shows the statistical errors of the universal ratio
corresponding to the pairs of system sizes shown in panel
(a) of the same figure. As expected, the error is minimal
exactly at the simulation point denoted hereafter as σ (s) or h

(s)
R ,

respectively, and increases further away from it. Furthermore,
a comparative illustration with respect to the errors induced by
the reweighting method and the disorder averaging process is
shown in Fig. 2 again for the universal ratio ξ/L of an L = 64
Poissonian RFIM and for three sets of simulations, as outlined
in the figure. Clearly, this latter accuracy test serves in favor
of the proposed scheme.

The full application of Eq. (68) to our four random-field
distributions has been summarized in Table II of Ref. [79],
where all the estimates of critical points, universal ratios, and
critical exponents are given, together with the corrections-to-
scaling exponent ω = 0.52(10) (see also Fig. 4 in Ref. [79]).
In particular, the computation of the corrections-to-scaling
exponent ω has been performed by means of a joint fit, third-
order polynomial in L−ω, for the dimensionless quantities ξ/L,
ξ (dis)/L, and U4 using data for L � 24. We should point out
that joint fits share the value of some fitting parameters such as
the L → ∞ extrapolation (which is the same for all random-
field distributions), or the corrections-to-scaling exponent ω

(which is common to all magnitudes). Here, we provide some

1.758 1.759 1.760 1.761 1.762 1.763 1.764

1.74

1.77

1.80

1.83

1.86

1.89

1.7608 1.7612 1.7616
1.80

1.81

1.82

1.83

σ(s) = 1.7597 ; N
samples

= 107

σ(s) = 1.76 ; N
samples

= 106

σ(s) = 1.7625 ; N
samples

= 107

ξ
/L

σ

FIG. 2. Universal ratio ξ/L of an L = 64 Poissonian RFIM
for three different sets of simulations, corresponding to different
simulation values σ (s) and different sets of random realizations. The
inset is a mere enlargement of the intermediate regime of σ values.
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FIG. 3. Infinite limit-size extrapolation of the effective critical
exponent ν.

complementary illustrations, showing the infinite limit-size
extrapolation of the effective exponents of the correlation
length ν, the anomalous dimension η, and the two-exponent
difference 2η − η̄, the latter serving as an independent test
of the two-exponent scaling scenario in the theory of the
random-field problem [8].

Figures 3 and 4 illustrate the infinite limit-size extrapolation
of the effective exponents ν and η, respectively, for all
the four types of distributions studied. The solid lines are
joint polynomial fits of first order in L−ω including data
points for L � 32, extrapolating to L−ω = 0, as shown by
the filled circle in each figure. We remind the reader that
for the effective exponent ν we have two sets of data for
each of the four distributions coming from the connected
and disconnected correlation lengths [79]. Let us comment
here that our estimation ν = 1.38(10)[3] is similar to the
most modern computations that suggest on average a value
of 1.35(7) [61,63,65,66]. For the anomalous dimension es-
timate η = 0.5153(9)[2], we note also η = 0.50(3) from
Ref. [61] as a comparison. Obviously, our errors for ν are
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0.508

0.510
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0.514

0.516
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ef
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FIG. 4. Infinite limit-size extrapolation of the effective critical
exponent η. Four solid lines are shown corresponding to the four
random-field distributions as in Fig. 3, although they are not easily
discerned due to very close values of their linear coefficient terms.
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FIG. 5. Infinite limit-size extrapolation of the effective exponent
2η − η̄.

larger than those for η because we compute derivatives
as connected correlations [109] (see also the discussion in
Sec. VI).

Subsequently in Fig. 5 we perform an extrapolation of the
effective exponent difference 2η − η̄, corresponding to the di-
mensionful quantity U22, Eq. (13), in order to discuss the
two-exponent scaling scenario. The solid lines in this figure
illustrate a joint polynomial fit, first-order in L−ω, including
data points for L � 16, giving 2η − η̄ = 0.0026(9)[1] as
shown by the filled black circle at L−ω = 0. However, we
should note here that if one fixes the infinite limit-size point
(2η − η̄)|L=∞ to zero, the fit becomes of better quality in
terms of the merit χ2/DOF [79]. Unfortunately, in the present
D = 3 case, we can not draw a definite conclusion on the
validity of the two-exponent scaling scenario. Additional work
is under way to tackle this problem at higher dimensions
(D > 3) [80].

We turn our discussion now to the most controversial issue
of the specific heat of the RFIM. The specific heat of the
RFIM can be experimentally measured [16] and is, for sure,
of great theoretical importance. Yet, it is well known that it
is one of the most intricate thermodynamic quantities to deal
with in numerical simulations, even when it comes to pure
systems. For the RFIM, Monte Carlo methods at T > 0 have
been used to estimate the value of its critical exponent α,
but were restricted to rather small systems sizes and have
also revealed many serious problems, i.e., severe violations of
self-averaging [40,110]. A better picture emerged throughout
the years from T = 0 computations, proposing estimates of
α ≈ 0. However, even by using the same numerical techniques,
but different scaling approaches, some inconsistencies have
been recorded in the literature. The most prominent was that
of Ref. [61], where a strongly negative value of the critical
exponent α was estimated. On the other hand, experiments on
random field and diluted antiferromagnetic systems suggest a
clear logarithmic divergence of the specific heat [16].

The specific heat can be estimated using ground-state
calculations and applying thermodynamic relations employed
by Hartmann and Young [61] and Middleton and Fisher [64].
The method relies on studying the singularities in the bond-
energy density EJ [111]. This bond energy density is the first
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FIG. 6. Semilogarithmic illustration of statistical errors appear-
ing in the three lattice-size variant of the quotients method. We show
results for the Poissonian RFIM and L1 = 12, L2 = 24, and L3 = 48.
The values of the field strength where the simulations were performed
for both pairs of system sizes are also given in the figure.

derivative ∂E/∂J of the ground-state energy with respect to
the random-field strength, say σ [61,64]. The derivative of the
sample averaged quantity EJ with respect to σ then gives the
second derivative with respect to σ of the total energy and
thus the sample-averaged specific heat C. The singularities in
C can also be studied by computing the singular part of EJ ,
as EJ is just the integral of C with respect to σ . The general
finite-size scaling form assumed is that the singular part of the
specific heat behaves as

Cs ∼ Lα/νC̃[(σ − σ (c))L1/ν]. (69)

Thus one may estimate α by studying the behavior of EJ at
σ = σ (c) [64]. The computation from the behavior of EJ is
based on integrating the above scaling equation up to σ (c),
which gives a dependence of the form

EJ (L,σ = σ (c)) = A + BL(α−1)/ν, (70)

with A and B nonuniversal constants.
Since α − 1 is negative, Eq. (70) is dominated by the nondi-

vergent background A, forcing us to modify the standard phe-
nomenological renormalization. We get rid of A by considering
three lattice sizes in the following sequence: (L1,L2,L3) =
(L,2L,4L). We generalize Eq. (68) by taking now the quotient
of the differences QO = (O4L − O2L)/(O2L − OL) at the
crossings of the pairs (L,2L) and (2L,4L), respectively.
Applying this formula to the bond energy we obtain

Q
(cross)
EJ

= 2(α−1)/ν + O(L−ω). (71)

Of course, at variance with the standard two lattice-
size phenomenological renormalization, statistical errors are
significantly amplified by the reweighting extrapolation, as it
can be clearly seen in Fig. 6. Hence we have preferred to
carry out an independent set of simulations for parameters
corresponding to the crossing points identified in the main
analysis of the quotients method. Our results for the effective
exponent ratio (α − 1)/ν are given in Table II and their
extrapolation is shown in Fig. 7. We have excluded from the
fitting procedure the data of the double Gaussian distribution
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FIG. 7. Infinite limit-size extrapolation of the effective exponent
ratio (α − 1)/ν.

with σ = 1 as their inclusion destabilized the fit. The solid
lines in Fig. 7 show a joint polynomial fit, second order
in L−ω. The extrapolated value for the exponent ratio is
(α − 1)/ν = −0.85(25) and is marked by the filled circle in the
figure at L−ω = 0. Using now our estimate ν = 1.38(10) for
the critical exponent of the correlation length, simple algebra
(and error propagation) gives the value α = −0.16(35) for
the critical exponent of the specific heat. Let us point out
here that also Middleton and Fisher, using the scaling of the
bond energy at the candidate critical field value σ (c) = 2.27,
proposed a value of α = −0.12(16) [64], compatible with our
result. Although the error proposed by the latter authors is
much smaller than ours, we have to note that their method
implies an a priori knowledge of the “exact” value of the
critical field. Obviously, as we have no command over this
value, what is usually done is to use some candidate values
of the critical field around the best known estimate and then
repeat the simulations for all those candidate values. However,
even in this case the results are ambiguous, as a change in the
value of σ (c) by a factor of δσ (c) = 10−3 results, on an average,
in a change of the order of δα ≈ 0.04 in the value of α [112].

Following the discussion above, our numerical studies of
disordered systems are carried out near their critical points
using finite samples; each sample is a particular random
realization of the quenched disorder. This makes it then crucial
to study the dependence of some observables with the disorder,
the so-called self-averaging properties of the system. The study
of these properties in disordered systems has generated in the
past years a large amount of work [40,113–119], still mostly
focused on the bond- and site-diluted versions of the Ising
model in D = 2 and 3.

A typical measure of the self-averageness of a random
system via a physical quantity A is given from RA = [〈A〉2 −
〈A〉2

]/〈A〉2
. Aharony and Harris [113] predicted that the

size evolution of RA(L) for the random system depends on
whether the system is controlled by the pure or the random
fixed point, i.e., RA(L) ∝ L(α/ν)pure for pure fixed point, and
RA(L) ∝ const �= 0 for random fixed point, respectively, as
L → ∞. In the case of the random fixed point, the system
has no self-averaging. On the other hand, the system exhibits
weak self-averaging in the case of the pure fixed point. Clearly
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FIG. 8. Infinite limit-size extrapolation of the effective ratios Rχ

(main panel) and REJ
(inset).

enough, the system is expected to be self-averaging if RA → 0,
as L → ∞.

The RFIM is a nice candidate to check the analytical
predictions of Aharony and Harris on self-averaging [113],
monitoring the infinite limit-size extrapolation of RA. In
particular, we investigated here the behavior of the ratio for two
observables, the connected susceptibility, Rχ , and the bond
energy, REJ

. In Fig. 8 we plot the effective values of the
ratios Rχ and REJ

in the main panel and inset, respectively,
estimated at the crossing points of ξ/L as usual, for all
our four distributions studied, as indicated by the different
colors and symbols. In both cases, the solid lines show a
joint, second-order in L−ω polynomial fit, using as a lower
cutoff the lattice size Lmin = 16. For the case of Rχ , the
extrapolated values shown by black stars are dependent on the
field distribution and are clearly nonzero, indicating violation
of self-averaging.

In particular, we quote the following limiting values:
Rχ = {0.600(2), 6.38(11), 1.047(4), 1.81(9)}, for the cases of
the Gaussian, double Gaussian with σ = 1, double Gaussian
with σ = 2, and Poissonian distributions, respectively. The
above results verify the prediction of Ref. [113], according
to which the susceptibility at the critical point is not self-
averaging for models where the disorder is relevant, relevant
meaning that the critical exponent of the specific heat of the
corresponding pure model is positive (αpure > 0) [120]. As for
the self-averaging ratio for the bond energy, shown in Fig. 8,
inset, it goes to zero with increasing system size, indicating
self-averaging in the thermodynamic limit.

Finally, we present some computational aspects of the
implemented push-relabel algorithm and its performance on
the study of the RFIM. Although its generic implementation
has a polynomial time bound, its actual performance depends
on the order in which operations are performed and which
heuristics are used to maintain auxiliary fields for the algo-
rithm. Even within this polynomial time bound, there is a
power-law critical slowing down of the push-relabel algorithm
at the zero-temperature transition [53,98]. This critical slowing
down is certainly reminiscent of the slowing down seen in local
algorithms of statistical mechanics at finite temperature, such
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FIG. 9. Infinite limit-size extrapolation of the effective exponent
z of the push-relabel algorithm.

as the Metropolis algorithm, and even for cluster algorithms.
In fact, Ogielski [53] was the first to note that the push-relabel
algorithm takes more time to find the ground state near
the transition in three dimensions from the ferromagnetic to
paramagnetic phase.

A direct way to measure the dynamics of the algorithm is
to examine the dependence of the running time, measured by
the number of push-relabel operations, on system size L. Such
an analysis has already been performed in Ref. [121] for the
Gaussian D = 3 RFIM and a FIFO queue implementation, as
in the current paper, finding a dynamic exponent z = 0.43(6),
using the data collapse technique and fixing the values σ (c) =
2.27 and ν = 1.37 in the scaling ansatz. Here, we present
a complementary analysis based on the numerical data also
for Gaussian RFIM, using our scaling approach within the
quotients method and without assuming prior knowledge of
the critical field and correlation length exponent. Our fitting
attempt is shown in Fig. 9, where the solid line is a second order
in L−ω polynomial for system sizes L � 16 and the obtained
estimate for the dynamic critical exponent z is 0.427(2), very
close to the estimate of Ref. [121].

IX. SUMMARY AND OUTLOOK

To summarize, we have presented in the current paper a
fluctuation-dissipation approach to the study of the random-
field Ising model, using as a platform the three-dimensional
version of the model. We combined several efficient numerical
methods, from zero-temperature optimization algorithms to
generalized fluctuation-dissipation formulas and reweighting
extrapolations that allowed the computation of response
functions, as well as advanced finite-size scaling techniques
that offered us the possibility to tackle some of the hardest
open problems in the random-field literature, like the existence
and role of scaling corrections and the universality principle
of the model. We hope that this contribution gives a clear
overview of all the technical details of our implementation,
paving the way to even more sophisticated studies in the field of
disordered systems. Currently, using the prescription outlined
above, we are dealing with the random-field problem at higher
dimensions and we expect to provide clearcut results regarding
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the validity of the two-exponent scaling scenario, one of the
building blocks in the scaling theory of the random-field Ising
model.
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