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TABLE II 

A 30 dB TAYLOR PATERN so THAT THE SECOND RIGHT- 
CHANGE IN APERTURE DISIWBUTION NEEDED TO MODIFY 

HAND LOBE Is AT -40 dB 

Incremental  Percent  Phase 
= X Normalized Change in Change in 

a Amplitude  Amplitude  Degrees 

0 

n - 
12 

72 - 
6 
R - 
4 

72 - 
3 

- 572 
12 

72 - 
2 

7n 
12 
- 

- 372 
4 

5n 
6 

1172 
12 

- 

- 

72 

- 0.0072 

- 0.0120 

- 0.0187 

- 0.01  75 

- 0.0096 

- 0.0004 

+0.0080 

+ 0.01 35 

+0.0141 

-t 0.01 11 

+ 0.0064 

+0.0035 

0 

- 2.39 0 

- 4.06 - 0.1 

- 6.04 - 0.4 

-4.60 - 0.8 

- 1.99 - 1.5 

- 0.07 - 2.5 

1.19 - 3.4 

1.77 - 4.3 

1.67 - 4.8 

1.22 - 4.7 

0.67 - 3.4 

0.35 -1 .3  

0 0 

rapid. The corresponding aperture distributions  can be found 
routinely and computer costs are extremely  reasonable. 

Perhaps one of the most  fruitful areas of application  of this 
perturbation technique  is  diagnostics. It is  now  possible to take 
an experimental pattern (providing  it has deep  nulls) and analyze 
why it does not achieve the design  goal  merely  by perturbing the 
design pattern until  it  is transformed to  the experimental pattern. 
The resulting aperture distribution, when  compared to  the 
design aperture distribution,  reveals  exactly what changes  need 
to be made in aperture excitation  in order to correct the experi- 
mental pattern. 
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Efficient Numerical Techniques for Solving Pocklington’s 
Equation  and Their Relationships to Other  Methods 

DONALD R. WILTON, ~ ~ E I J . ,  IEEE,  AN^ 
CHALMERS M. BUTLER, MEMBER, IEEE 

Abstract-It is shown that  testing  Pocklington’s  equation  with 
piecewise  sinnsoidal  functions  yields an integrodifference equation  whose 
numerical  solntion is identical  to  that  of  the  point-matched  Hallen’s 
equation  when a common set of basis  functions is used  with each. For 
any  choice  of  basis  functions,  the  integrodifference  equation has the 
simple  kernel,  the  fast  convergence,  the  simplicity of point-matching, 
and  the  adequate  treatment of rapidly  varying  incident  fields,  but  none 
of the additional unknowns normally associated with Hallen’s eqnation. 
Fnrthermore, for  the  special  choice of piecewise  sinusoids as the  basis 
functions,  the  method reduces to  Richmond’s  piecewise  sinusoidal  reaction 
matching  technique, or Galerkin’s  method. It is also shown that  testing 
with  piecewise linear (triangle)  functions  yields  an  integrodilference 
equation  whose solution converges  asymptotically at the  same  rate as 
that of Hallen’s  equation.  The  resulting  equation is essentially  that 
obtained  by  approximating  the  second  derivative  in  Pocklington’s 
equation  by its k i t e  difference  equivalent.  The  authors  suggest  a  simple 
and  highly  efficient  method  for  solving  Pocklington’s  equation. This 
approach is contrasted to the  point-matched  solution of Pocklington’s 
equation and  the reasons for the poor convergence of the  latter are 
examined. 

INTRODUCTION 

In order to handle complicated  problems  using moment 
methods it is necessary to optimize  numerical solution procedures 
from  the point of  view of speed and convergence. This leads one 
to a study of the properties of various integral equation formu- 
lations and of the choice  of  basis and testing functions [l ] in 
solution methods, both with an end toward improving the 
numerical  efficiency  of  given computations. Also desirable are 
techniques  which are conceptually  simple to apply (so as to 
minimize programming time) and which have a wide range of 
applicability. 

One difficulty  which  frequently  arises in the numerical solution 
of an integral equation is the appearance of  derivatives outside 
the vector potential integrals on  the induced currents. For thin 
wires, this problem, encountered in  Pocklington’s equation, is 
usually handled in one of three ways. First, the E-field integro- 
differential equation may be converted to a Hallen type equation 
plus boundary conditions on  the current. This procedure has 
the disadvantages of introducing additional unknowns into  the 
problem (associated with  the homogeneous  solutions  of the 
differential operator) and of producing a new  integral equation 
which does not incorporate the boundary conditions on  the 
unknown current. However, the Hallen-type equation offers good 
convergence for almost all commonly  used  basis  functions. In 
the second  scheme, the kernel  of the E-field  integral equation is 
made regular by approximations which  result in the so-called 
reduced  kernel, and  the differentiation  is brought inside the 
integral and  onto  the unknown current by integration by parts. 
When collocation  (point-matching)  is  used  with this technique 
and a basis  representation for current is  chosen  which permits 
slope  discontinuities in current, e.g.,  piecewise constant or 
piecewise linear representation,  convergence  is  relatively  slow. 
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Convergence can usually be improved  by a somewhat more 
complicated choice of basis functions having no slope dis- 
continuities. Finally, a relatively  expensive testing procedure, 
such  as  Galerkin's method, may  be  used to treat  the derivatives 
and  to accelerate  conver,  oence. 

The desirable feature of Hallen's equation  that  the con- 
vergence  is almost independent of the basis functions is an over- 
whelming advantage from  the  standpoint of computational 
simplicity  because the simple  pulse or triangle expansions can 
be  used for almost all calculations. It is shown in this paper, 
however, that by the proper choice of the testing functions, 
Pocklington's equation is cast into a form which  has exactly the 
same  solution (and hence the same  convergence rate) as the 
point-matched Hallen's  equation but without the  constants of 
integration of the  latter. Furthermore, it is  shown that  the well- 
known piecewise sinusoidal reaction matching technique of 
Richmond [2] is a special  case of the present method wherein 
the basis functions are chosen to be  piecewise  sinusoids.  Given the 
equivalence  between the present method  and Hallen's equation 
with its relative independence of the basis  set  used, this technique 
may  be  viewed as an expansion of the class of basis functions 
which  enjoy the  good convergence properties of Richmond's 
method. Finally, we demonstrate  that approximation of the 
derivative operator in  Pocklington's equation by a finite dif- 
ference operator  is closely akin to testing with  piecewise linear 
(triangle) testing functions and  that  the resultant equation is 
asymptotically  convergent at  the same rate as Hallen's equation 
with point-matching. 

TESTING WITH l?fECE.wIsE SINUSOIDS 

We consider a thin cylindrical dipole of radius a formed by a 
perfectly conducting tube of length L subject to an impressed 
field E,'(z) tangent to the wire.  We include antennas  as well as 
scatterers by permitting E,'(z) to be a delta function to model a 
delta-gap generator. Requiring the z component of the tangential 
electric field to vanish on the  conductor results in  Pocklington's 
equation 

[-$ + k2]   A , (z )  = -jopeE,'(z) 

where 
-k LIZ 

A,(z) = E 1 Z(Z')G(Z - z')  dz' 
4n -LIZ 

and where the kernel is given  by 

271 e- j k ~ w 2 + 4 n ~ s i n 2 @ ' / 2  
G ( w )  = - 

2lR so dqi'. 
J w z  + 4a2 sin2 4112 

In  the preceding  expressions l ( z )  is the unknown total axial 
current, ,u and E are  the permeability and permittivity,  respectively, 
of  the medium surrounding the tube, k is the wavenumber or 
2x/(wavelength in the medjum), and w is the angular frequency 
of the suppressed  time  dependence  exp (jwt).  If we d e h e  the 
piecewise sinusoidal testing functions by 

otherwise  (2) 

where z, = mAz, Az = L/(2N + 2), and  the inner product [I]  
(or more accurately, the reaction) between quantities g and h as 

LIZ 

( a h )  = g(z)h(z) dz 

then testing (1) and (2) results in 

Integrating by parts twice, one may write the left  side of  (3) as 
1. ~ L / Z  

+ 6 ( z  - Z , - I ) ] A ~ ( Z )  dz 

where 6(z) is the familiar delta function, from which  we  easily 
obtain  the integro-difference equation 

Az(zm+1) - 2 COS kAzA,(zd + A,(z,- 1) 

- - -- jwpe ',+I 

k L - ,  
E,'(z) sin k(Az - Iz - z,l) dz,  

M = O , f l , . * * , + N .  (4) 

By direct substitution, it may  be  verified that a solution to. the 
difference equation (4) is 

A,(z,) = B COS kz ,  + C sin kz ,  

- - [ E j ( z )  sin k(z ,  - z )  dz, 
jcow 

Jo 
m = O,kl,...,f(N + 1) (5) 

which  is  precisely the point-matched  Hallen's equation  for 
arbitrary excitation. The  current may  be  expanded  in terms of a 
set of basis functions f,(z), 

Z ( Z )  = InL(z) 
n= - n  

N 

which are assumed to be  chosen so as to satisfy the  current 
boundary conditions 

I(+L/2) = 0. 

When this expansion is substituted into (4) and (3, a matrix 
equation results for  the unique determination of the unknown 
current expansion coefficients 1,. Since (4) and (5) are  obtainable 
one from  the  other,  the solution of either is identical. Hence, 
we reach the rather surprising but  important conclusion that 
testing  with  piecewise  sinusoids results in an integro-difference 
equation whose solution is identical to  that of Hallen's equation 
with point-matching, independent of the basis set chosen to re- 
present the current. Comparison of (4) and (5) shows that no 
extra calculations or integrations are needed in the integro- 
difference equation formulation compared  to Hallen's fomula- 
tion and,  in addition, the two unknown constants B and C no 
longer appear. Furthermore,  it is not necessary to regularize the 
kernel in Pocklington's equation by means of the reduced 
kernel approximation [3] 

,-/k= 
G(w) 1: K ( w )  = 

J7T-2  
bemuse the vector potential kernel is integrable. The fact that the 
equivalence holds for  arbitrary excitation is also important 
because  Hallen's equation, as does  now the integro-difference 
equation (4), has the advantage that  the incident  field appears 
under an integral. Thus  the influence of a rapidly  varying  incident 
field, even that of the widely-used delta-function generator, is 
properly  reflected  in the solution. With any of the usual point- 
matching procedures and Pocklington's equation, often  the 
excitation is not sampled adequately [4]. 



It is also of interest to note that  the use  of  piecewise  sinusoids, 
(2), as a basis  set in (4) leads directly to Richr;lond's  so-called 
piecewise sinusoidal reaction matching, and one can  obtain his 
formulas for  the reaction between two sinusoidal dipoles [5]  
from  the left side of (4) using the integral 

= Te'jk[Ci (ku,) + j Si (ku,) - Ci (ku,) - j Si (ku, ) ]  

ut = ~ ( z  - zi )  - .\/aZ + ( z  - zi)', i = 1,2 

where  Ci and Si are cosine and sine integrals, respectively. The 
procedure leading to (4) has the characteristics of testing  with 
functions other  than delta functions and, indeed,  is Galerkin's 
method if piecewise sinusoids are used to represent the current; 
yet (4) possesses all  the  computational simplicity  usually attri- 
buted only to point-matching. 

TESTING WITH ~ C E ~ I ~ E  LINEAR FUNC~ONS AND THE 
FINITE DIFFERENCE INTERPRETA~ON 

We  define the piecewise linear testing functions as 

otherwise. (6)  

These functions are seen to approach  the piecewise sinusoids (2) 
as kAz --f 0' and  one may  expect that  their use  in ndmerical 
solutions closely approximates the use  of  piecewise  sinusoids. To 
see this, we test ( 1 )  with (6) and &ve at  an  equation analogous 
to (4): 

Az(zm+ 1) - 2Az(zm) + Az(Zm-1) + k2h(Az(z),Tm(z)) 

= -ju,u&Az (E:(z), TA(z) ). 
To simplify the following we treat, without loss  of  generality, an 
antenna driven at a delta-gap located at the center of the wire. 
Hence, we set E,'(z) = V6(z). We also note that  the vector 
potential is generally a very smooth function regardless of the 
basis  set and, hence, the integral in the preceding can be approx- 
imated as 

(Az(z)?Trn(z)) = s z = z m + t  
Az(z)Tm(z)  dz  AzA,(z,) (7) 

z = z m - l  

so that we finally obtain, analogous to (4), 

AZ(zm+,) - 2(1 - k2Az2/2)Az~z,,,) + AZ(zm-,) = -jw,u&VAz6m,, 

m = O,* l , . - - , fN  (8) 

where a,, is the Kronecker delta function. A solution of this 
difference equation is easily  verified to be 

A,(z,,,) = B cos me + C sin me 

- j - .  wpeV sin I me1 
2k 4 1  - (kAz/2)' ' 

m = o , * I , . . . , * ( N  + 1) (9;) 

where 0 = cos-, (1 - k2Az2/2). Equation (9) corresponds 
closely to Hallen's equation (5) as  can be  seen by noting  that, 
for N large, kAz << 1 and we may write 

k2Az2 e2 

2 2! 
C O S ~ = I - - Z I - - -  
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TABLE I 
ILLUSTRATION OF COIUNERGENCE OF VALUES OF e TO k k  m 

DECREASING SLJEIDO.MAIN SUE 

k2Az2 
8 = cos-1 [l - 

1.3000 

0.8000 

0.5000 
0.6000 

0.2500 
0.1250 
0.6000.10- 

1.6961 
1.41 52 

0.8230 
1 .O472 

0.6094 

0.1251 
0.6001 * lo-' 
0.6000. lo-' 

from which  we  conclude that 

lim 8 = kAz. 

In a practical sense, the limit is approached rather quickly as 
gustrated in Table I. When this limit  is substituted into (9), 
Hallen's (point-matched) equation (4) specialized to  the  antenna 
problem is obtained. We conclude that a solution of (8) will 
very  quickly  converge to  the corresponding solution of Hallen's 
equation with  point-matching. 

An alternative interpretation of (8) is also illuminating  Con- 
sider the point-matched Pocklington's equation  for  the center- 
driven antenna, 

N - r  m 

m = O , + l , - - - , t - N .  (10) 

To obtain  the right side  of (lo),  the delta-function drive is 
approximated by a rectangular pulse of unit  area distributed 
over the  subdomain m = 0, i.e., over the interval [ - h / 2 ,   & 7 / 2 ] ,  
and  the resulting  driving  field is sampled at  the center of the 
region. In view  of the difficulties  mentioned earlier in connection 
with the differential operator in (lo), one  might choose to 
replace the derivative by the finite  difference approximation 

which,  when Fbsd;uted into (lo),  also yields (8). This approach 
has been  used  by  Tesche [6] and  others with good succiss. We 
are led to conclude that testing by  piecewise linear functions is 
approximately equivalent to replacing the derivative operator by 
a finite difference approximation. This same interpretation  also 
applies to testing with  piecewise sinusoids when it is  realized 
that  the left  side of (4) is a weightedfinite  difference approximation 
to  the harmonic  operator. 

While it seems reasonable that  the smoothing resulting from 
testing by  piecewise linear or sinusoidal functions might enhance 
the convergence of the solution, it may at first appear surprising 
that  the same  effect results from replacing an exact derivative 
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Current Distribution Resulting from 
Piece-wke Linear Basis Functions- 

(a) 

/ud Resulting 
from Assumed 

4 A Z k  
Z i , i M > . . .  i-, 4 4 :.. i” in* QJandm 

(b) 

(dz/dz*+k*)AJzl Resultlng from 

(C) 

Fig. 1. (a) Piecewise linear  current  representation. @) Point-matching 
solution of Hallen’s equation. (c) Point-matchingsolution of Pocklington’s 
equation. 

by an approximate one. An explanation of this follows from a 
graphical comparison of (5) and (10). In Fig. l(a) is  depicted  a 
current represented by  piecewise linear functions, and in Fig. 
l(b) we  represent qualitatively both sides of (5) specialized to  an 
antenna. The resulting  vector potential A,(z) ripples  somewhat, 
but at precisely the match points z,,, the potential is  required to 
be equal to the right side of (5) which is a smooth function. For 
the purposes of illustration we regard the constants B and C 
as already determined by the two equations m = t- ( N  + 1) in 
(5) .  Ideally,  of  course, the left and right sides should be equal 
for all z, but this is  unlikely in an approximate solution.  We note 
further  that because of the rippled form of the vector  potential, 
as represented  by the left  side  of (5) with subdomain basis 
functions,  derivatives of A, will be completely inaccurate (com- 
pared to those of the “correct”  vector  potential) unless the sub- 
domain size  is  extremely  small.  Yet,  (10)  may  be interpreted as a 
constraint on a weighted sum of the vector potential and its 
second  derivative at  the match point. The inaccuracy of the 
second  derivative of the potential produces resultant fields  which 
are extremely  peaked at  the match points. This is  shown  by 
Fig. l(c) which  illustrates  qualitatively both sides  of (1) with the 
reduced  kernel and with the pulse approximation for  the delta 
function and a  point-matching solution. Because of the un- 
physical  behavior  of the left side of (10) resulting from the slope 
discontinuities in current, the solution of the point-matched 
Pocklington’s equation (10) tends to converge  slowly as compared 
to that of Hallen’s equation (5) in which the  unnatural slope 
discontinuities are effectively smoothed. The choice of the finite 

basis  functions. This formulation in terms of  integro-difference 
equations (4) enjoys the advantages  normally  associated  with 
collocation  solutions of Hallen’s equation, which are listed  here. 

1) The method exhibits the same rapid convergence rate 
associated  with  solutions of Hallen’s equation. 

2) Only  well-behaved  kernels  (exact)  need  be  calculated 
numerically. 

3) The method admits the use  with equal ease of any  form of 
excitation,  e.g.,  delta-gap  voltage source and incident  field 
illumination, and assures that  the forcing function is adequately 
sensed [4]. 

4) The simplicity of collocation  is  retained. 
On the  other hand, the method does not suffer the major 

disadvantage  of  Hallen-type equations; speci6cally, in the tech- 
nique, no complicating arbitrary constants of integration are 
introduced-the  system of difference equations retains the 
boundary conditions of the problem.  We  also mention that, 
when one uses  piecewise  sinusoids for basis functions as well 
as  for testing, the method suggested in  the preceding readily 
specializes to Richmond’s  piecewise sinusoidal reaction matching 
technique. 

One draws an equivalence  between  piecewise linear testing of 
Pocklington’s equation and  the approximation of its derivative 
operator by the corresponding  difference operator. Furthermore, 
piecewise linear and piecewise sinusoidal testing  yield  systems  of 
integro-difference equations which approach a common limit 
as  the number of testing functions is  increased.  Hence, in this 
limit,  observations  pertinent to one hold for  the  other testing  set. 

Aside from the comparisons and interrelationships  discussed 
here, it should be  emphasized that direct  use of (4), or a  similar 
form obtained via  piecewise linear testing of (l), in a numerical 
solution procedure  yields an efficient and computationally simple 
scheme for solving equations like (1). The efficiency and simplicity 
of  these  schemes,  when compared to, for example, the numerically 
equivalent  Hallen formulation, become  greater factors in prob- 
lems more complex than  the simple straight wire discussed  here. 

The  authors have found observations  presented here to be 
not only  interesting, but also  extremely  useful in analyzing or 
predicting the success or failure of various  numerical approaches 
[7]. We  also add  that  the equivalences and techniques  described 
here have been  generalized to include arbitrary skew  wires as 
well as plates. It is, of course, in these  much more difficult prob- 
lems  where the techniques  described will be  most  useful.  These 
extensions will be described in a later paper. 
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difference approximation to  the harmonic operator might be 
expected to result in improved  convergence for Pocklington’s 
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