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Efficient O„N2
… method to solve the Bethe-Salpeter equation

W. G. Schmidt,* S. Glutsch, P. H. Hahn, and F. Bechstedt
Institut für Festkörpertheorie und Theoretische Optik, Friedrich-Schiller-Universita¨t Jena, Max-Wien-Platz 1, 07743 Jena, Germany

~Received 3 October 2002; published 6 February 2003!

We present a numerically efficient approach to solve the Bethe-Salpeter equation for the polarization func-
tion. Rather than from the usual eigenvalue representation, the macroscopic polarizability is obtained from the
solution of an initial-value problem. This reduces the computational effort considerably and allows for calcu-
lating excitonic and local-field effects in optical spectra of complex systems consisting of many atoms. As an
example we investigate the optical anisotropy of the monohydride Si(001)(231) surface. While excitonic
effects influence the surface optical properties considerably, the local-field effect induced changes are minimal.
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I. INTRODUCTION

Recent years have seen impressive methodolog
progress in the accurate numerical modeling of optical pr
erties from first principles~see, e.g., Ref. 1!. It has become
possible not only to calculate single-particle electronic ex
tation energies accurately using theGW approximation
~GWA!, but also to solve the Bethe-Salpeter equation~BSE!
for pair excitations in order to account for excitonic a
local-field ~LF! contributions to the optical response.2–4

However, the large numerical effort required to solve t
BSE has restricted such calculations to the interaction
relatively few electron-hole pairs. Therefore its applicati
has been limited to bulk semiconductors,2,3,5 strongly local-
ized surface states,6,7 small clusters,8 or molecules.9

At the same time, methods of optical spectroscopy
rapidly gaining importance for materials characterizatio
Techniques such as reflectance anisotropy spectros
~RAS! have evolved from experimental methods to char
terize static surfaces to very powerfulin situ diagnostic
probes which allow for the monitoring and controlling
surface growth in real time and in challenging environme
such as in high pressures or under liquids.10 In order to fully
exploit the potential of such methods, however, the accu
theoretical modeling of the optical properties of large a
complex systems—such as surfaces—is required. A num
of technical improvements such as optimized schemes to
culate the electron-hole interaction in reciprocal space11 and
methodological developments which allow to obtain the p
larization function from iterative schemes12 have been sug
gested in order to extend the applicability of the BSE
larger and potentially more interesting systems.

In the present work we suggest an alternative approac
solve the BSE. It is characterized by aO(N2) scaling of the
operation count~with N being the number of electron-hol
pair states! and allows for the accurate modeling of exciton
and LF effects in systems consisting of comparatively ma
atoms. After a brief description of the proposed methodolo
and its test for bulk Si we demonstrate its applicability
large systems by calculating the optical anisotropy of
monohydride Si(001)(231) surface in a wide spectra
range.

II. METHODOLOGY

We start from first-principles pseudopotential calcu
tions, using a massively parallel real-space finite-differe
0163-1829/2003/67~8!/085307~7!/$20.00 67 0853
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implementation of the density-functional theory in loca
density approximation~DFT-LDA!.13 A multigrid technique
is used for convergence acceleration. In order to inclu
electronic self-energy effects one needs to replace the l
exchange and correlation potentialVXC(r ) in the LDA by the
nonlocal and energy-dependent self-energy oper
S(r ,r 8;E) ~see, e.g., Refs. 14 and 15!. For the calculation of
S we use theGW approximation,16,17 where the self-energy
operator is expressed as the convolutionS5 iGW of the dy-
namically screened Coulomb potentialW and the single-
particle propagatorG. Since the calculation of surface optic
spectra involves a very large number of electronic sta
however, we introduce further approximations following t
schemes developed by Hybertsen and Louie18 and Bechstedt
et al.:19 theGW quasiparticle energies are obtained from t
DFT-LDA eigenvalues in a perturbative manner by

«n~k!QP5«n~k!1
1

11bn,k
$Sn,k

st 1Sn,k
dyn@«n~k!#2Vn,k

XC%,

~1!

where the self-energy operatorS has been divided into stati
(st) and dynamic (dyn) contributions. Indices atS andVXC

indicate diagonal matrix elements with the respective wa
functions.bn,k is the linear coefficient in the expansion o
Sdyn around the DFT-LDA eigenvalue«n(k). The static part
can be further divided into two parts,

Sst~r,r 8!5
1

2 (
n,k

cn,k~r !cn,k* ~r 8!@W~r,r 8;0!2v~rÀr 8!#

2(
v,k

cv,k~r !cv,k* ~r 8!W~r,r 8;0!, ~2!

representing the Coulomb holeSCOH and the screened ex
changeSSEX. The cn,k are the DFT-LDA wave functions
SSEX contains a sum over the occupied valence statesv only.
The major bottleneck in theGW calculation is the computa
tion of the screened interactionW. An extreme acceleration
can be achieved by using a model dielectric function,
which several functional forms have been suggested. We
the version suggested by Bechstedtet al.19
©2003 The American Physical Society07-1
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e~q,r!511H ~e`21!211F q

qTF~r!G
2

1
3q4

4kF
2~r!qTF

2 ~r!
J 21

,

~3!

where kF and qTF represent the Fermi and Thomas-Fer
wave vectors, respectively, which depend on the elec
densityr. This expression interpolates between the corr
behaviors at high and lowq vectors and, by construction
correctly obtains the static dielectric constant forq50. This
rather simple and intuitive model reproduces very well
random-phase approximation results for semiconducto20

Together with the LDA-like ansatz of Hybertsen and Louie18

for approximating the spatial dependence of the screenin
the inhomogeneous system

W~r ,r 8;0!5
1

2
$Wh@r2r 8,r~r !#1Wh@rÀr 8,r~r 8!#%

~4!

by that of a homogeneous electron gasWh, Eq.~3! allows for
an analytic solution forSCOH . The static Coulomb hole con
tribution to the self-energy takes the form of a local pote
tial,

SCOH~r !52
qTF~r !

2
A12

1

e`
F11

qTF~r !

kF~r !
A 3e`

e`21G21/2

,

~5!

wherekF andqTF are computed at the local densityr(r ).
The matrix elementsSn,k

SEX are calculated in Fourier spac
In order to accelerate the calculations, only the diagonal
ements in the Fourier transform ofW are retained. The effec
of local fields on the screening are approximated by us
state-averaged electron densities,

rn,k5E dr3r~r !ucn,k~r !u2, ~6!

in the calculation ofkF andqTF .19 Tests made for Si indicate
that rather small deviations, of the order of 0.05 eV, a
induced by this approximation, at least for bulk crystals w
moderate electron-density fluctuations. Finally, the dyna
termsbn,k andSdyn in Eq. ~1! are approximated by simpl
integrals of the dielectric function.19 For the actual calcula
tions we use Eq.~3! together with a single-plasmon-po
approximation to describe the frequency dependence. Lo
field effects are again included using the mean-density
proximation~6!. The integrals are numerically evaluated f
a dense sampling ofr and the results forbn,k(r) and
Sdyn(r) are fitted to polynomials. These are then used fo
fast computation of the dynamic contributions to the se
energy during the actualGW calculations. For several III-V
compounds and their surfaces this approximate treatmen
self-energy corrections has been shown to result in excita
energies which are within about 0.1 eV of the experimen
values.21–23

Excitation energies obtained within the quasiparticle f
malism describe one-particle excitations, such as those
volved in direct or inverse photoemission experiments.
the description of the optical absorption, however, one ne
08530
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to go beyond this single-quasiparticle level. The polarizat
function P including electron-hole attraction and local-fie
effects~or electron-hole exchange! can be obtained from the
solution of the Bethe-Salpeter equation~for details see, e.g.
Refs. 24–27!,

P5P01P0~ v̄2W!P, ~7!

wherev̄ is the bare Coulomb potential without its long-ran
part andP0 represents the polarization function in a rando
phase, or, more precisely, independent-quasiparticle appr
mation. The macroscopic polarizability is obtained from t
Fourier transform of the diagonal part ofP.

A convenient and natural basis for solving Eq.~7! is given
by the orthonormal and complete set of Bloch functions
fined by the Kohn-Sham problem. IfP0 is explicitly ex-
pressed in terms of Bloch functions and quasiparticle en
gies and transformed into Bloch space, the solution of
BSE ~7! can be written in resolvent representation as

P(n1 ,n2)(n3 ,n4)5@Ĥ2v# (n1 ,n2)(n3 ,n4)
21 ~ f n4

2 f n3
!, ~8!

where the two-particle Hamiltonian

Ĥ (n1 ,n2)(n3 ,n4)

[~«n1

QP2«n2

QP!d (n1 ,n3)d (n2 ,n4)1~ f n2
2 f n1

!

3E dr1dr2dr3dr4cn1
~r1!cn2

* ~r2!cn3
* ~r3!cn4

~r4!

3@d~r12r2!d~r32r4!v̄~r12r3!

2d~r12r3!d~r22r4!W~r1 ,r2!# ~9!

has been introduced.f n50,1 is the occupation number of th
staten, denoting both band index and wave vector. By p
forming a matrix inversion for a given frequencyv, the
corresponding polarization is given by Eq.~8!. However, for
any practical calculation this would be computationally f
too expensive, due to the non-Hermiticity and large dime
sion of Ĥ. The dimension can be reduced by a factor of
however, if one observes that due to the factors (f n4

2 f n3
) in

Eq. ~8! and (f n2
2 f n1

) in Eq. ~9!, only pairs containing one
filled and one empty Bloch state contribute to the mac
scopic polarization. A further reduction of the dimension
a factor of 2 can be achieved when the off-diagonal bloc
which couple the Hermitian resonant part ofĤ,

Ĥvck,v8c8k8
res

5~«ck
QP2«vk

QP!dvv8dcc8dk,k8

12E dr1dr2cck* ~r1!cvk~r1!v̄~r12r2!

3cc8k8~r2!cv8k8
* ~r2!

2E dr1dr2cck* ~r1!cc8k8~r1!W~r1 ,r2!

3cvk~r2!cv8k8
* ~r2!, ~10!

and the antiresonant part,2@Ĥres#* , are neglected. The cou
pling blocks with contributions only from the interactio
7-2
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terms involvingW and v̄ are small compared to the~anti-!
resonant diagonal blocks containing in addition the quasip
ticle transition energies. Apart from special cases, e.g.,
calculation of plasmon resonances where the mixing of
terband transitions of both positive and negative frequen
must be included in the calculations,28 the coupling can be
neglected in the calculation of optical properties.2,29 Further
approximations in Eq.~10! are the restriction to spin singlets
static screening and direct transitions, i.e., the neglect of
mentum transfer by photons. Furthermore if umklapp p
cesses are neglected, the exciton Hamiltonian can be ca
lated in reciprocal space according to

Ĥvck,v8c8k8
res

5~«ck
QP2«vk

QP!dvv8dcc8dkk8

1
4p

V (
G,G8

H 2
dGG8~12dG0!

uGu2
Bcv

kk~G!Bc8v8
k8k8* ~G!

2
e21~k2k81G,k2k81G8,0!

uk2k81Gu2

3Bcc8
kk8~G!Bvv8

kk8* ~G8!J , ~11!

where the Bloch integral

Bnn8
kk8~G!5

1

VE drunk* ~r !eiGrun8k8~r ! ~12!

over the periodic partsu of the Bloch wave functions ha
been introduced andV denotes the volume of the unit cell

The calculation of the Hamiltonian according to Eq.~11!
is computationally very demanding even for bulk system
due to the rankN of the Hamiltonian itself, as well as due t
the double sum overG andG8, which needs to be performe
for each single matrix element. The number of pair state
proportional to the number of valence bandsNv , conduction
bandsNc , and the numberNk of mesh points ink space,
N5Nv•Nc•Nk . In order to speed up the calculations, w
therefore replace the inverse dielectric matrix by the sa
diagonal model dielectric function of Bechstedt~3!, which
has been used in the calculation of the self-energy o
ator. The influence of the off-diagonal elements is ag
approximated by using state-dependent electron dens
in Eq. ~3!, which were calculated using the mean-dens
approximation~6!.

After the Hamiltonian has been calculated, one need
determine the frequency-dependent polarizability. The r
of Ĥ depends on the spectral region that is studied. I
typically of the order of 104 even for small bulk unit cells.
The large number of pair states excludes the straightforw
evaluation of Eq.~8!. The usual approach therefore consi
of transforming the calculation of the resolvent into an effe
tive eigenvalue problem, which is then solved
diagonalization.2,8 In detail, using the spectral representati
08530
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@Ĥ2v#215 (
l,l8

uAl&Sl,l8
21 ^Al8u

El2w
, ~13!

whereuAl& andEl are the eigenvectors and eigenvalues
the exciton Hamiltonians

ĤuAl&5EluAl&, Sl,l85^Al8uAl&, ~14!

the diagonal components of the macroscopic polarizab
are given by

a j j
M~v!5

4e2\2

V (
l

U(
k

(
c,v

^ckuv j uvk&
«c~k!2«v~k!

Avck
l U2

3H 1

El2\~v1 ig!
1

1

El1\~v1 ig!J , ~15!

where v j is the corresponding Cartesian component of
single-particle velocity operator andg the damping constant
Here, the contributions of the antiresonant part of the exci
Hamiltonian have been formally included, while the co
pling parts are neglected.

The calculation of the polarizability using Eq.~15! is
straightforward, but requires the solution of the eigenva
problem~14!. For small bulk unit cells the diagonalization o
Ĥ can typically be performed within a couple of CPU tim
hours. However, our work aims at determining of optic
properties for large and complex systems. The minimum s
thickness for the calculation of surface optical properties,
example, is about 12 layers. Typically more than 100k
points are needed to sample the surface Brillouin zo
About two valence and conduction bands per atom nee
be taken into account in order to cover a spectral region
several eV. The dimension of the exciton HamiltonianN
5Nv•Nc•Nk is therefore about 105 . . . 106, already for the
relatively small unit cell of an unreconstructed surface. Ev
with today’s powerful supercomputers, the diagonalization
matrices of this size, which scales asO(N3), is prohibitively
slow.

Therefore, we formulate the calculation of th
v-dependent polarizability as an initial-value problem. If
vector um j& of dipole moments with elements

mvck
j 5

^ckuv j uvk&
«c~k!2«v~k!

~16!

is introduced, Eq.~15! takes the form

a j j
M~v!5

4e2\2

V (
l

u^m j uAl&u2H 1

El2\~v1 ig!

1
1

El1\~v1 ig!J . ~17!

This is equivalent to the Fourier representation

a j j
M~v!5

4e2\2

V
i E

0

`

dtei (v1 ig)t$^m j uj j~ t !&2^m j uj j~ t !&* %,

~18!

where the time evolution of the vectoruj j (t)& is driven by
the pair Hamiltonian
7-3
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i\
d

dt
uj j~ t !&5Ĥuj j~ t !& ~19!

and the initial vector elements are given by

uj j~0!&5um j&. ~20!

The equivalence~see also Ref. 30! can be shown by integrat
ing uj(t)&5eĤt/ i\um& and exploiting the spectral represent
tion as in Eq.~13!. We have also verified numerically tha
Eqs.~17! and ~18! lead to exactly the same spectrum.31 The
latter formula, however, requires much less computatio
resources. We solve the initial-value problem defined by E
~19! and ~20! using the central-difference method~see, e.g.,
Ref. 32! which obtainsuj(t i 12)& from uj(t i)& and uj(t i 11)&
by an explicit scheme,

Ĥuj~ t i 11!&5 i\
uj~ t i 12!&2uj~ t i !&

2Dt
. ~21!

This procedure only requires one matrix-vector multiplic
tion per time step. The stability of the difference scheme~21!

requires thatDt,\/uuĤuu. The upper limit of the Fourier
integral ~18! can be truncated, due to the exponentiale2gt.
Therefore, the number of time steps, i.e., matrix-vector m
tiplications, is nearly independent of the dimension of t
system and governed byg. The order of 103 time steps are
typically required using a broadening parameterg50.1 eV.
The operation count for this method scales thus asO(N2),
compared toO(N3) for the matrix diagonalization. The
crossover point for CPU time usage of both methods in
implementation is reached for a number of electron-hole p
states as low as about 2000 for a single processor~see Fig.
1!. Moreover, the matrix-vector multiplications can be eas
distributed on several processors of a parallel compu
whereas the parallelization of matrix diagonalization is le
effective, due to the large amount of data transfer acr
processors.

As an example, the time-dependent polarizability cal
lated for bulk Si is plotted in Fig. 2. It is reminiscent of th
interference of two oscillators with different resonance f

FIG. 1. CPU time needed to solve the BSE for bulk Si as
eigenvalue and as an initial-value problem on a single-proce
Pentium PC dependent on the dimensionN5Nv•Nc•Nk of the ex-
citon Hamiltonian.
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quencies. The imaginary part of the correspond
frequency-dependent dielectric function is shown in Fig.
Here the influence of electronic self-energy effects calcula
in the GWA and of excitonic and local-field effects obtain
from the solution of the BSE are shown separately. Co
pared to the DFT-LDA spectrum~i.e., the spectrum in the
approximation of independent Kohn-Sham particles!, the
self-energy corrections lead to a blueshift of the characte
tic peaks corresponding to theE1 andE2 critical point ener-
gies. The line shape is only slightly affected. However, sim
lar to previous works,2,5 a strong redistribution of oscillato
strength from theE2 peak and partially from the high-energ
peak at about 5.5 eV to theE1 energy accompanied by
slight redshift is observed upon solving the BSE. Howev
the calculated peak positions still occur at energies that
about 0.2 eV too high. Our calculations were performed
the theoretical equilibrium lattice constant of 5.378 Å. Th
leads to an increase of the energy splitting between occu
and empty states by about 0.1 eV compared to calculation
the experimental lattice constant. In addition, temperat
effects in the measured spectrum33 result in a redshift by
about 0.05 eV.34 This shift is not included in the zero
temperature calculations, which use, however, a broade
parameterg50.15 eV in order to account for the finite num
ber of k points. Thus, despite the numerous simplificatio
used in the present approach, the solution of the BSE

n
or

FIG. 2. Time evolution of the polarizabilityR^muj(t)& calcu-
lated for bulk Si according to Eqs.~19! and ~20!.

FIG. 3. Dielectric function~imaginary part! of bulk Si calcu-
lated within the DFT-LDA, inGW approximation, and from the
BSE (GW1LF and excitonic effects! in comparison with the ex-
perimental data from Ref. 33~dotted line!.
7-4
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bulk Si yields an optical spectrum in nearly perfect agr
ment with experiment. The experimental results are se
ingly even better reproduced than in previous calculation2

where the screening has been fully included. That is sim
related to the fact that the approximations made here a
for a better convergence of the technical parameters.
discrepancies between experiment and theory discusse
Refs. 2 and 35, for example, are related to the insuffici
k-point sampling.36 The optical spectra shown in Fig. 3 we
calculated using a mesh of 4000k points uniformly distrib-
uted in the whole bulk Brillouin zone.

III. APPLICATION TO THE MONOHYDRIDE
Si„001…„2Ã1… SURFACE

Surfaces are complex systems and usually need to be
scribed by slabs containing several dozen atoms. In s
special cases, e.g., for Si(111)(231) or Ge(111)(231)
surfaces,6,7 certain surface optical features are solely det
mined by a few surface bands within the region of the fu
damental gap. More often, however, and in particular i
wide spectral range is considered, surface-modified b
states also contribute to the surface optical response. Th
the case for the hydrogenated Si~001! surface, where the
dimer-related surface states have been removed from the
damental gap region and the characteristic spectral feat
appear at the energies of the bulk critical points. Con
quently, a large number of electron-hole pairs need to
included in the calculation. Therefore, this surface is a s
able test case for our method.

The nominal (231) reconstructed Si~001! surface typi-
cally has both (231) and (132) reconstructed domains, th
optical anisotropy of which cancels. In order to obtain
single-domain surface, and in order to minimize at the sa
time optical anisotropies due to surface steps,37 Shioda and
van der Weide used electromigration to prepare an ato
cally flat, single-domain monohydride-terminated Si~001!~2
31! surface.38 Its measured normal-incidence surface opti
anisotropy

Dr

r
~v!52RH r [1̄10]2r [110]

r [1̄10]2r [110]
J ~22!

is shown in Fig. 4. Herer [1̄10](v) and r [110](v) denote the
complex reflectivities for light polarized parallel and perpe
dicular, respectively, to the dimer row of the majority d
main. The measured signal is characterized by positive
negative peaks around 3.4 (A8) and 4.3 (B8) eV. At these
energies, the critical points of the bulk electronic respons
the E1 and E2 structures occur.33 Therefore, the optical an
isotropy of the hydrogen-terminated Si~001! surface is ex-
plained as modulation of the bulk dielectric function. T
peak around 3.4 eV has also been observed in an ea
study by Müller et al.,39 who used a wet process to prepa
the surface.

Computationally, the monohydride Si~001! surface is
modeled in our study by a slab containing 12 atomic Si~001!
layers. Both sides of the slab are hydrogen terminated
vacuum region equivalent to 12 atomic layers in thickn
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separates the material slabs in the@001# direction. Apart from
the atoms of the innermost two layers, which were kept
their ideal bulk positions, all atomic coordinates are fu
relaxed. Fourk points in the irreducible part of the surfac
Brillouin zone are used for the self-consistent calculation
the ground-state charge density. For the calculation of
surface optical properties we use 200 uniformly distributek
points. Further numerical details of the DFT-LDA calcul
tions are like those in our previous works on the optic
response of Si~111!:H and Si~001! surfaces.37,40 The reflec-
tance anisotropy for normally incident light polarized par
lel to the @ 1̄10# and @110# directions is given by41,42

Dr

r
~v!5

8pv

c
IH a [1̄10]

hs
~v!2a [110]

hs ~v!

eb~v!21
J . ~23!

Here a j
hs(v) with j 5@ 1̄10#,@110# is the diagonal tenso

component of the averaged half-slab polarizability a
eb(v) is the bulk dielectric function. The spectra resultin
from the evaluation of Eq.~23! using the half-slab polariz-
abilities and bulk dielectric functions obtained within th
independent-particle approximation, i.e., the DFT-LDA; t
independent-quasiparticle approximation, i.e., including s
energy effects in theGW approximation; and the BSE, i.e
including local-field and excitonic effects are compared w
the measured data in Fig. 4.

The DFT-LDA spectrum in Fig. 4 shows, in principle, th
features observed experimentally. However, the calcula
A8 and B8 peaks are redshifted in comparison with the e
periment by 0.5 and 0.8 eV, respectively. In addition, the8
optical anisotropy is much smaller than measured. S
energy corrections calculated in theGW approximation shift
the excitation energies to larger values. Now the calcula
A8 and B8 peaks occur at 3.65 and 4.25 eV, respective
Furthermore, the B8 optical anisotropy is much increase

FIG. 4. RAS spectra calculated~within the DFT-LDA, in the
GW approximation, in the GWA with the effects of local field
included, and in GWA with the effects of local fields and th
electron-hole attraction included! for the monohydride Si(001)(2
31) surface are compared with the measured data from Ref. 3
7-5
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This is not only related to the nonuniform self-energy c
rections of the DFT-LDA eigenvalues, but is also a con
quence of thev scaling of the optical anisotropy in Eq.~23!.

In order to determine the influence of excitonic and
effects on the RAS we calculate the exciton Hamiltonian
the surface according to Eq.~11!. In the slab calculation 50
valence and 50 conduction bands at 200k points are taken
into account. This would give rise to a rankN5Nv•Nc•Nk
5500 000 of the electron-hole pair Hamiltonian~10!. Fortu-
nately, however, it turns out that not all matrix elements
needed to calculate a numerically converged optical sp
trum for the photon energies considered here. Using an
ergy cutoff we could reduce the rank of the Hamiltonian
100 000. Still, the calculation of the matrix elements requi
an appreciable amount of computer time, about 20 000 n
hours. The task was solved by parallelizing the calculati
using 128 Cray T3E processors. The calculation of the
larization itself, using the central-difference method~21!, is
highly efficient. It requires only about 2000 node hours. T
shows that now the bottleneck of the calculation is the co
putation of the Hamiltonian matrix rather than the solution
the BSE. Benedict and Shirley12 avoid the calculation of the
exciton Hamiltonian by using an iterative scheme that o
requires computing the Hamiltonian acting on a vector.

It has been discussed for a long time that LF effects c
tribute substantially to the surface optical anisotropy~see,
e.g. Refs. 43 and 44!. Surface LF effects can be expecte
from both the microscopic fluctuations of the electric fie
within the bulk, and from the truncation of the bulk itse
The numerical calculation for the hydrogenated Si~001! sur-
face, however, shows that LF effects lead to surprisin
small changes of the spectrum, at least in the particular c
studied here. A reduction of the calculated slab polariza
ities upon inclusion of LF effects is observed, which is co
parable to the one calculated for bulk Si. However, the
duction acts on both thea [1̄10] and the a [110] tensor
components. It is therefore largely canceled in the opt
anisotropy. Similar findings were recently obtained for t
Si~110!:H surface.45

A distinct change of the RAS spectrum, however, resu
from the inclusion of the attractive electron-hole interactio
We observe a strong reduction of the B8 optical anisotropy
and an increase of the integrated A8 peak area. At the sam
time, the A8 and B8 optical anisotropies are shifted to lowe
energies by about 0.2 eV.

The stepwise inclusion of many-particle effects in the c
culation leads to a considerable and systematic improvem
of the agreement with the experiment. The trends regard
peak positions and oscillator strengths are in accord with
results obtained for Si bulk~cf. Fig. 3!. However, the upper-
most calculated curve in Fig. 4 still deviates from the me
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sured data. On the one hand, this concerns the line sh
The calculated A8 optical anisotropy is too broad and the
are pronounced features in the calculated spectrum at 2.7
3.9 eV, where experiment shows only weak shoulders.
the other hand, the calculated peak positions do not ag
exactly with experiment. This is to some extent related to
approximations used in the present approach. In partic
the approximations used for the off-diagonal elements in
calculation of the screened Coulomb potentialW can be ex-
pected to lead to a somewhat inaccurate modeling of
highly inhomogeneous screening at the semiconductor
face. Probably more important, however, are the numer
limitations of our study. Well-converged calculations of su
face optical properties require thicker slabs and in particu
larger k-point sets than what could be used in the pres
study. At least 1024k points in the full~131! surface Bril-
louin zone are needed, for example, to obtain numeric
converged optical spectra for Si~001! surfaces~see Fig. 1 in
Ref. 37!. Despite the efficiency of the present approach
solving the BSE, such ak-point density is still out of reach
due to computer memory limitations. Temperature effects
the measured spectrum, which are neglected in our calc
tions, as well as surface defects, will also result in deviatio
between experiment and theory.

IV. SUMMARY

We presented an approach for solving the Bethe-Salp
equation, which is based on a time-evolution technique
allows for including local-field and electron-hole attractio
effects in the calculation of optical properties for compl
systems consisting of many atoms. The application to b
silicon results in nearly perfect agreement with the measu
dielectric function. The applicability to large systems h
been demonstrated by calculating the optical anisotropy
the monohydride Si~001!~231! surface. It is shown tha
many-body effects, in particular the electronic self-ene
and the electron-hole attraction, lead to strong modificati
of the surface optical response. In contrast, the spec
modifications due to local-field effects are negligible.
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