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ABSTRACT
Given a set of pins and a set of obstacles on a plane, an
obstacle-avoiding rectilinear Steiner minimal tree (OARSMT)
connects these pins, possibly through some additional points
(called Steiner points), and avoids running through any ob-
stacle to construct a tree with a minimal total wirelength.
The OARSMT problem becomes more important than ever
for modern nanometer IC designs which need to consider
numerous routing obstacles incurred from power networks,
prerouted nets, IP blocks, feature patterns for manufactura-
bility improvement, antenna jumpers for reliability enhance-
ment, etc. Consequently, the OARSMT problem has re-
ceived dramatically increasing attention recently. Neverthe-
less, considering obstacles significantly increases the prob-
lem complexity, and thus most previous works suffer from
either poor quality or expensive running time. Based on
the obstacle-avoiding spanning graph (OASG), this paper
presents an efficient algorithm with some theoretical op-
timality guarantees for the OARSMT construction. Un-
like previous heuristics, our algorithm guarantees to find
an optimal OARSMT for any 2-pin net and many higher-
pin nets. Extensive experiments show that our algorithm
results in significantly shorter wirelengths than all state-of-
the-art works.
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1. INTRODUCTION
Given a set of n pins and a set of obstacles on a plane, an

obstacle-avoiding rectilinear Steiner minimal tree (OARSMT) con-
nects these pins, possibly through some additional points (called
Steiner points), and avoids running through any obstacle to con-
struct a tree with a minimal total wirelength. The OARSMT
problem becomes more important than ever for modern nanome-
ter IC designs which need to consider numerous routing obsta-
cles incurred from large-scale power networks, prerouted nets, IP
blocks, feature patterns for manufacturability improvement, an-
tenna jumpers for reliability enhancement, etc. Consequently, the
OARSMT problem has received dramatically increasing attention
recently [3, 7, 8, 11, 12].

The rectilinear Steiner minimal tree problem, even without ob-
stacle consideration, is a well-known NP-complete problem [5].
The presence of obstacles further increases the complexity, and
thus most previous works on the OARSMT problem suffer from
either poor quality or expensive running time. As a fundamental
problem with extensive practical applications to routing and wire-
length/congestion/timing estimations in early IC design stages,
such as floorplanning and the placement, it is desired to develop
an effective and efficient algorithm for the OARSMT problem to
facilitate the IC design flow.

Previous methods for the OARSMT problem can be classi-
fied into four major categories: (1) the maze-routing based ap-
proach, (2) the nondeterministic approach, (3) the construction-
by-correction approach (called the sequential approach in [11]),
and (4) the connection graph based approach. Maze routing,
first proposed in [9], can optimally route 2-pin nets. However,
its time complexity and memory usage grow prohibitively huge
as the routing area becomes larger. Further, its multi-pin vari-
ants [6, 10] incur unsatisfiable solution quality since they are ini-
tially designed for 2-pin nets. As a result, the above drawbacks
make the maze-routing based approach less popular for modern
applications.

Based on ant colony optimization, Hu et al. [8] presented a non-
deterministic local search heuristic to handle small-scale OARSMT
problems with complex obstacles of both concave and convex
polygons. Although this nondeterministic approach is flexible
in handling complex obstacles, it incurs prohibitively expensive
running time for large-scale designs.

The construction-by-correction approach constructs a Steiner
or a spanning tree for a multi-pin net first and then replaces
the edges overlapping obstacles with edges around the obstacles.
This approach is popular in industry due to its simplicity and
efficiency. However, the first step for the tree construction may
not have the global view of the obstacles, and thus the second
step might only remove the overlaps locally around the obstacles.
As a result, the solution quality may be limited, as pointed out
in [11]. Example works in the category include [13] and [3]. Yang
et al. [13] presented a heuristic to remove the overlaps. Very



recently, Feng et al. [3] constructed an obstacle-avoiding Steiner
tree for an arbitrary λ-geometry by Delaunay triangulation.

The last category is based on the connection graph. This ap-
proach is to first construct a connection graph by pins and obsta-
cle boundaries, which guarantees at least a desired OARSMT is
embedded in the graph. Then, some search techniques are applied
to find the desired OARSMT from the connection graph. Un-
like the construction-by-correction approach, this approach has a
more global view of both pins and obstacles. Consequently, this
approach can often obtain much better solution quality. Nev-
ertheless, there exists a trade-off between effectiveness and effi-
ciency in this approach; the larger size of the connection graph,
the higher probability that a better OARSMT is embedded in the
connection graph, but the more expensive running time.

Clarkson et al. [1] considered only 2-pin nets and presented
an O(n(lg n)2)-time algorithm to compute a rectilinear shortest
path between two pins through polygonal obstacles, where n is
the number of pins and obstacle boundaries. Later, Ganley and
Cohoon [4] presented an algorithm to find an optimal OARSMT
with three or four pins, but its time complexity is O(n4). Hu et
al. [7] developed an efficient hierarchical heuristic to partition all
pins into subsets, then connect pins in each subset, and finally
construct an OARSMT using a connection graph-like approach.
Based on the spanning graph [14] that does not consider obstacles,
Shen et al. [11] recently proposed a clever heuristic to construct
an OARSMT. In this heuristic, an obstacle-avoiding spanning
graph (OASG) was first constructed and then transformed into
an OARSMT. The time complexity of the OASG construction is
O(n lg n), and that of the OARSMT transformation is Ω(n2 lg n)
though not analyzed or explicitly stated in [11]. This work [11] is
effective in general, but we observe that it misses many “essen-
tial” edges which can lead to more desired solutions in the con-
struction of the OASG, resulting in significant degradation in the
solution quality for many practical cases. Further, its OARSMT
transformation procedure could also be significantly improved.

In this paper, we construct an OASG with “essential” edges
and prove the existence of a rectilinear shortest path between
any two pins, which is not guaranteed in the OASG constructed
by [11]. With this property, our algorithm guarantees to find an
optimal OARSMT for any 2-pin net and many higher-pin nets.
After constructing an initial OARSMT, we develop an effective
refinement scheme for the U-shaped connection in the OARSMT
to further reduce the total wirelength. Empirical results based on
the least-square analysis show that our algorithm run in about
O(n1.46) time while the theoretical time complexity is O(n3).

Extensive experiments based on 22 test cases (5 industrial de-
signs, 12 test cases from [3], and 5 larger random designs) show
that our algorithm significantly outperforms all state-of-the-art
works in the total wirelength and requires comparable running
time to [11] for practical-sized problems. Considering the dif-
ferences from the half-perimeter of the bounding box of all pins
(which is a lower bound of the optimal OARSMT solution), the
respective average improvements are 27.79%, 6.66%, and 5.79%,
compared with the recent works [3], [12], and [11]. With the
completeness of the OASG construction, in particular, our algo-
rithm also provides key insights into the search for more desirable
OARSMT solutions.

The rest of this paper is organized as follows. Section 2 formu-
lates the OARSMT problem. Section 3 presents our OARSMT
algorithm and its time complexity. Section 4 reports the experi-
mental results. Finally, we conclude our work in Section 5.

2. PROBLEM FORMULATION
We define an obstacle and a pin-vertex as follows:

Definition 1. An obstacle is a rectangle on the xy-plane. No
two obstacles overlap with each other, but two obstacles could be
point-touched at the corner or line-touched at the boundary.

(a) (b) (c) (d) (e) (f)

Figure 1: (a) Any two obstacles cannot overlap each

other, but (b) two obstacles could be point-touched at

the corner or line-touched at the boundary. (c) A pin-

vertex may not locate inside any obstacle, but (d) it

could be at the corner or on the boundary of an ob-

stacle. (e) Any edge of the OARSMT cannot intersect

any obstacle, but (f) it could be point-touched at the

corner or line-touched on the boundary of an obstacle.

See Figure 1 (a) for two overlapped obstacles, and Figure 1 (b)
for point-touched and line-touched obstacles.

Definition 2. A pin-vertex is a vertex on the xy-plane. A
pin-vertex must not locate inside any obstacle, but it could be at
the corner or on the boundary of an obstacle.

See Figure 1 (c) for an illegal instance with two pin-vertices
inside an obstacle, and Figure 1 (d) for a legal instance with
a pin-vertex at the corner and another on the boundary of an
obstacle.

Let P = {p1, p2, . . . , pm} be a set of pin-vertices for an m-
pin net, O = {o1, o2, . . . , ok} be a set of k obstacles, and V =
{v1, v2, . . . , vn} = P ∪ {corners in O} be the set of n vertices
for the problem, where vi has the coordinate (xi, yi). We have
n ≤ m + 4k since each obstacle has four corners. The rectilinear
(Manhattan) distance between vi and vj can be computed by
|xi − xj |+ |yi − yj |.

We consider rectilinear (vertical and horizontal) routes and de-
fine the obstacle-avoiding rectilinear Steiner minimal tree (OARSMT)
problem as follows:

• Problem: Obstacle-Avoiding Rectilinear Steiner Min-
imal Tree: Given a set P of pins and a set O of obstacles on
a plane, construct a rectilinear Steiner tree to connect the
pins in P , possibly through some additional points (called
Steiner points), such that no tree edge intersects an obstacle
in O and the total wirelength of the tree is minimized.

Note that no edge of the OARSMT can intersect with any
obstacle, but an edge could be point-touched at the corner or
line-touched on the boundary of an obstacle. See Figure 1 (e) for
a rectilinear Steiner tree intersecting an obstacle, and Figure 1 (f)
for tree edges being line-touched on the boundary of an obstacle.

Throughout this paper, we represent the bottom-left, top-left,
top-right, and bottom-right corner-vertices of an obstacle oi by
ci,1, ci,2, ci,3, and ci,4 with their coordinates being (xi,min, yi,min),
(xi,min, yi,max), (xi,max, yi,max), and (xi,max, yi,min), respectively.

Besides, C =
Sk

i=1{ci,j}, j = 1, 2, 3, and 4.

3. ALGORITHM
We now present our algorithm. Our algorithm consists of the

following four steps:

1. Obstacle-Avoiding Spanning Graph (OASG) Construction:
In this step, an OASG connecting all vertices in P ∪ C
is constructed. This step ensures that the following steps,
except the operations in Section 3.4.3, can ignore the obsta-
cles without violating the obstacle-avoiding property. See
Figure 2(b) for an example OASG construction.

2. Obstacle-Avoiding Spanning Tree (OAST) Construction:
An OAST connecting all pin-vertices is constructed by se-
lecting edges from the OASG constructed in Step 1. See
Figure 2(c) for an example OAST construction.
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Figure 2: The four steps ((b)–(e)) for OARSMT con-
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Figure 3: The divided regions for (a) each corner-vertex

of an obstacle and (b) a pin-vertex.

3. Obstacle-Avoiding Rectilinear Spanning Tree (OARST) Con-
struction: An OARST is constructed by transforming each
slant edge of the OAST in Step 2 to rectilinear (vertical and
horizontal) edges. See Figure 2(d) for an example OARST
construction.

4. Obstacle-Avoiding Rectilinear Steiner Tree (OARSMT) Con-
struction: Finally, an initial OARSMT is constructed by in-
troducing Steiner points and removing overlapping edges of
the OARST in Step 3. Then, a refinement scheme for some
particular routing shapes is applied to find an OARSMT
with a smaller total wirelength. See Figure 2(e) for an ex-
ample OARSMT construction.

The following subsections detail the four steps.

3.1 OASG Construction
In this step, we construct an obstacle-avoiding spanning graph

(OASG) which is defined as follows:

Definition 3. An obstacle-avoiding spanning graph (OASG)
is an undirected connected graph on the vertex set P ∪ C, where
no edge intersects with an obstacle in O.

We extend the spanning graph proposed by Zhou [14] to con-
sider obstacles for the OASG construction. For each vertex in
P ∪C, we divide the plane into four regions, R1, R2, R3, and R4,
as shown in Figures 3 (a) and (b). The division is similar to that
in [11], but we construct an OASG with more “essential” edges to
improve the solution quality. As an example shown in Figure 4,
our OASG contains the edge (p1, p2) (see Figure 4 (a)) while that
in [11] does not (see Figure 4 (c)). After transforming them to
rectilinear connections, we can obtain an optimal connection as
shown in Figure 4 (b), while the work [11] results in a suboptimal
solution as shown in Figure 4 (d).

As the example shown in Figure 5 with r +1 pin-vertices, each
obstacle is of 2-unit high, and the edge (pi, pi+1), 1 ≤ i ≤ r, is
of 4-unit long. For this case, we can reduce the total wirelength
by about 33% over the algorithm in [11] and obtain an optimal
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Figure 4: A comparison between our OASG and that

of Shen et al. (a) Our OASG has the edge (p1, p2) and

(b) results in an optimal rectilinear connection. (c) The

OASG of Shen et al. does not contain the edge and (d)

results in two wasted segments.
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Figure 5: Another comparison between our OASG and

that of Shen et al. (a) Our OASG has the edges (pi, pi+1),

1 ≤ i ≤ r, and (b) results in an optimal rectilinear con-

nection with the total wirelength of 4r. (c) The OASG of

Shen et al. does not contain these edges and (d) results

in the connection with the total wirelength of 6r + 2.

solution. In Figure 5 (a), our OASG contains the edges (pi, pi+1),
1 ≤ i ≤ r, resulting in an optimal rectilinear connection with the
total wirelength of 4r, as shown in Figure 5 (b). However, the
OASG constructed by [11] is illustrated in Figure 5 (c), which
does not contain the edges (pi, pi+1), 1 ≤ i ≤ r, resulting in
the connection with the total wirelength of 6r + 2, as shown in
Figure 5 (d).

3.1.1 OASG Construction within a Region
For the OASG construction within a region, the neighbors of a

vertex are defined as follows:

Definition 4. A vertex f ∈ P ∪ C is a neighbor of a vertex
v ∈ P ∪C if no other vertex in P ∪C or obstacle is inside or on
the boundary of the bounding box of v and f .

As shown in Figure 6 (b), c4,4, c2,4, and c5,4 are the neigh-
bors of c6,2, but p2 is not because c5,4 is on the boundary of
the bounding box of c6,2 and p2. Our OASG construction is to
construct edges between a vertex v ∈ P ∪C and each of its neigh-
bors. We will focus on R2 of a vertex in P ∪C for the discussion,
while the other regions are similarly handled. Note that if the
vertex is at the corner or on the boundary of an obstacle, it is
clear that no edge will be constructed within the regions blocked
by the obstacle.

The algorithm of the OASG construction for R2 of a vertex
is summarized in Figure 7. Figure 6 (a) shows an example to
construct the OASG within the R2 of c6,2. After the initial-
ization steps (lines 1–3), line sweeping is performed from left to
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Figure 6: (a) An example instance and (b) the OASG

construction for the vertex c6,2 in R2 of a vertex.

Algorithm: OASG-R2(O, P, v, E)
Input: O /* the set of obstacles */

P /* the set of pin-vertices */
v = (x, y) /* OASG is for the R2 of v */

Output: E /* edges added to OASG */
1 E = ∅
2 A = ∅ /* candidate set */
3 I = ∅ /* interval set as the blocking information */
4 Perform line sweeping from left to right
5 if it meets l left boundaries of obstacles, oα1 , oα2 , . . . , oαl
6 I = I ∪ {[yα1,min, yα1,max], . . . , [yαl,min, yαl,max]}
7 if it meets r right boundaries of obstacles, oβ1 , oβ2 , . . . , oβr
8 I = I \ {[yβ1,min, yβ1,max], . . . , [yβr,min, yβr,max]}
9 for j = 1 to l
10 if cαj,1 ∈ R2 of v and [y, yαj,min] is not blocked by I

11 A = A ∪ {cαj,1}
12 for j = 1 to r
13 if cβj,4 ∈ R2 of v and [y, yβj,min] is not blocked by I

14 A = A ∪ {cβj,4}
15 else if cβj,3 ∈ R2 of v and [y, yβj,max] is not blocked by I

16 A = A ∪ {cβj,3}
17 if it meets i pin-vertices, pγ1 , pγ2 , . . . , pγi
18 for j = 1 to i
19 if pγj

∈ R2 of v and [y, yγj
] is not blocked by I

20 A = A ∪ {pγj
}

21 if the sweeping line meets v
22 Go to line 23
23 Sort vertices in A in the non-decreasing y-coordinate order

(For vertices with the same y-coordinate,
sort them with the non-decreasing x-coordinate order.)

24 for each vertex v′ ∈ A
25 if the vertex v′ is a neighbor of v
26 E = E ∪ {(v, v′)}
27 Return E

Figure 7: The algorithm of the OASG construction for

the R2 of a vertex.

right. When the line meets the left boundary of o1, the interval
[y1,min, y1,max] is inserted into the interval set I as the “blocking
information” (lines 5–6). When the line meets the left bound-
ary of o2, the interval [y2,min, y2,max] is also inserted into the
interval set I as the “blocking information” (lines 5–6). At the
same time, the sweeping line meets the pin-vertex p1, but p1 is
not inserted into the candidate set A due to the intersection of
the blocking information (lines 17–19). When the sweeping line
meets the right boundary of o1, [y1,min, y1,max] is deleted from
the interval set I (lines 7–8), and c1,4 is inserted into the candi-
date set A (lines 12–14). Similarly, c4,4, c2,4 are inserted into the
candidate set A (lines 12–14), while c3,4 is not due to the inter-
section of the blocking information (lines 12–13). Then, when the
sweeping line meets the pin-vertex p2 and the right boundary of
o5, p2 and c5,4 are inserted into the candidate set A (lines 17–20
and lines 12–14). Therefore, when the sweeping line meets the
left boundary of o6, the sweeping line halts (lines 21–22), and
the candidate set A is {c1,4, c4,4, c2,4, p2, c5,4}. After the sorting
(line 23), the candidate set A becomes {c1,4, c4,4, c2,4, p2, c5,4}.
Therefore, c4,4, c2,4, and c5,4 can easily be detected as the neigh-
bors of c6,2 (lines 24–25). Finally, (c4,4, c6,2), (c2,4, c6,2), and
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Figure 8: An example OAST construction.

(c5,4, c6,2) are inserted into the set E (line 26), and the OASG
within the R2 of c6,2 is constructed as shown in Figure 6 (b).

3.1.2 Properties of Pin-Vertex Shortest Paths
We claim that the OASG implies a rectilinear shortest path

of any two vertices in P ∪ C, i.e., a rectilinear shortest path of
any two vertices can be obtained by transforming some edges in
the OASG to rectilinear (vertical and horizontal) edges. Besides,
each slant edge is transformed into only one vertical edge and one
horizontal edge. We first define the territory of a vertex in P ∪C
as follows:

Definition 5. A vertex g on the xy-plane is in the territory
of a vertex v ∈ P ∪ C if no other vertex in P ∪ C or obstacle is
inside the bounding box of v and g.

Note that the territory of a vertex is not necessarily a close
region.

Lemma 1. Given a source s ∈ P∪C, a target t ∈ P∪C (s 6= t),
and any of their rectilinear shortest paths, RSP (s, t), there must
exist a neighbor f of s such that the rectilinear shortest length
δr(s, t) = δr(s, f) + δr(f, t).

Lemma 2. Given a vertex v ∈ P ∪ C, for any neighbor f of
v, there must exist an edge between v and f in the OASG, i.e., a
rectilinear shortest path of v and f is implied by the OASG.

Due to the limitation of space, we omit the proofs of Lemma 1,
Lemma 2, and other theorems throughout this paper.

Theorem 1. The OASG implies a rectilinear shortest path of
any two vertices in P ∪ C.

3.2 OAST Construction
We first define an obstacle-avoiding spanning tree (OAST) as

follows:

Definition 6. An obstacle-avoiding spanning tree (OAST) is
an undirected tree connecting all pin-vertices without intersecting
with any obstacle.

We construct an OAST by selecting some edges from the given
OASG. As illustrated in Figure 8, the OAST construction consists
of three steps: (1) pin-vertices shortest path computation, (2)
initial OAST construction, and (3) local refinement.

3.2.1 Pin-Vertices Shortest Path Computation
For each edge in the given OASG, its length is defined as the

Manhattan distance of its two end vertices. We apply Dijkstra’s
shortest-path algorithm [2] for each pin-vertex pair to compute
their distance, as illustrated in Figure 8 (b).
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Algorithm: OARST (Ei, Vo, Eo)
Input: Ei /* the edge set of OAST */
Output: Vo /* the vertex set of OARST */

Eo /* the edge set of OARST */
1 Vo = ∅
2 Eo = ∅
3 A = Ei /* unprocessed edge set */
4 while A 6= ∅
5 Select the longest edge e in A /* e = (v, v′) */
6 if e is a vertical edge or a horizontal edge
7 Vo = Vo ∪ {v, v′}
8 Eo = Eo ∪ {e}
9 else
10 Select a neighboring edge e′ of e with longest sharing length
11 if e′ = NULL or the relation of e and e′ is Case 1

/* e′ = NULL if e has no neighboring edge */
/* Case 1, Figures 9 (a) and (b) */

12 A = A \ {e}
13 Decide va, vb, and vc

14 Vo = Vo ∪ {va, vb, vc}
15 Eo = Eo ∪ {(va, vb), (vb, vc)}
16 else if the relation of e and e′ is Case 2

/* Case 2, Figure 9 (c) and (d) */

17 A = A \ {e, e′}
18 Decide va, vb, vc, vd, and ve

19 Vo = Vo ∪ {va, vb, vc, vd, ve}
20 Eo = Eo ∪ {(va, vb), (vb, vc), (vc, vd), (vd, ve)}
21 else /* Case 3, Figures 9 (e) and (f) */

22 A = A \ {e, e′}
23 Decide va, vb, vc, vd, and ve

24 Vo = Vo ∪ {va, vb, vc, vd, ve}
25 Eo = Eo ∪ {(va, vb), (vb, vc), (vc, vd), (vd, ve)}
26 Return (Vo, Eo)

Figure 10: The algorithm for the OARST construction.

3.2.2 Initial OAST Construction
We then construct a complete graph for the |P | pin-vertices.

The edge weight is defined as the distance of its two end vertices
computed in Section 3.2.1. We then apply Prim’s algorithm [2]
on the complete graph to obtain a minimum spanning tree (see
Figure 8 (c)). By the shortest paths computed in Section 3.2.1,
we can map each edge in the minimum spanning tree to a shortest
path in the spanning graph, so the initial spanning tree on the
spanning graph is constructed (see Figure 8 (d)). It should be
noted that shortest paths may share a common edge. In such a
case, the initial spanning tree on the spanning graph will count
it only once.

3.2.3 Local Refinement
In the initial OAST, there could be some pairs of vertices

whose corresponding edges are in the OASG, but not in the initial
OAST. We add such edges into the OAST (see Figure 8 (e)) and
compute the minimum spanning tree on it to remove unwanted
cycles (see Figure 8 (f)). This local refinement may lead to a new
OAST with a smaller total wire length.

3.3 OARST Construction
In this step, we transform each slant edge of the given OAST

into vertical and horizontal edges to obtain an obstacle-avoiding
rectilinear spanning tree (OARST).
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Figure 11: An example OARST construction.

Definition 7. An obstacle-avoiding rectilinear spanning tree
(OARST) is an undirected graph connecting all pin-vertices with
vertical and horizontal edges.

We then define a neighboring edge and its sharing length in an
OAST as follows:

Definition 8. A neighboring edge of an edge e is an edge
which has a common end vertex with e.

Definition 9. The sharing length of two edges e1 and e2 is
the summation of the overlapping lengths when e1 and e2 are
projected to the x- and the y-axes.

Three cases in the OARST construction for a slant edge e and
its neighboring edge e′ need to be considered, in which we take
the common vertex as the origin on the xy-plane:

Case 1. The two edges are in opposite regions (see Figure 9 (a)).
In this case, e is transformed into a vertical edge and a
horizontal edge (see Figure 9 (b)). There are two possible
transformations, so we randomly choose one.

Case 2. The two edges are in neighboring regions (see Figure 9 (c)).
In this case, both e and e′ are transformed into a verti-
cal edge and a horizontal edge. There are several possible
transformations, so we choose the one with edge overlap
(see Figure 9 (d)).

Case 3. The two edges are in the same region (see Figure 9 (e)).
In this case, using Figure 9 (f) as an example, e and e′ are
transformed into (va, vb) and (vb, vc), respectively . There
are two possible transformations for (vc, ve), and we ran-
domly choose one.

Figure 10 summarizes the algorithm for the OARST construc-
tion. We use the example shown in Figure 11 (a) to explain the
process. After the initialization steps (lines 1–3), the unprocessed
edge set A is {(p1, c1), (p2, c1), (c1, c2), (c2, p3), (p3, p4), (p3, p5)}
as shown in Figure 11 (a), and the set Eo is ∅. In the first it-
eration, (p3, p5) is selected as e (line 5), and (p3, p4) is selected
as e′ (line 10). Then, Case 3 (see Figure 9 (e)) is applied, and
they are transformed into (t1, p4), (t1, p5), (t1, t2), and (t2, p3)
as shown in Figure 11 (b) (lines 21–25). After the first iteration,
the unprocessed edge set A is {(p1, c1), (p2, c1), (c1, c2), (c2, p3)},
and the set Eo is {(t1, p4), (t1, p5), (t1, t2), (t2, p3)}. In the sec-
ond iteration, (p1, c1) is selected as e (line 5), and (p2, c1) is se-
lected as e′ (line 10). Then, Case 2 is applied (see Figure 9 (c));
(p1, c1) is transformed into (p1, t3) and (t3, c1), and (p2, c1) is
transformed into (p2, t4) and (t4, c1) (see Figure 11 (c)) (lines 16–
20). After the second iteration, the unprocessed edge set A
is {(c1, c2), (c2, p3)}, and the set Eo is {(t1, p4), (t1, p5), (t1, t2),
(t2, p3), (p1, t3), (t3, c1), (p2, t4), (t4, c1)}. In the third iteration,
(c2, p3) is selected as e (line 5), and (c1, c2) is selected as e′
(line 10). Then, Case 1 is applied (see Figure 9 (a)), and (c2, p3) is
transformed into (c2, t5) and (t5, p3) (see Figure 11 (d)) (lines 11–
15). After the third iteration, the unprocessed edge set A is
{(c1, c2)}, and the set Eo is {(t1, p4), (t1, p5), (t1, t2), (t2, p3), (p1, t3),
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Figure 12: Five cases of the overlapping edge removal.

The graphs in (a), (c), (e), (g), and (i) are transformed

into those in (b), (d), (f), (h), and (j), respectively.
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Figure 13: The OARSMT construction of Figure 11 (e).

(t3, c1), (p2, t4), (t4, c1), (c2, t5), (t5, p3)}. In the fourth iteration,
(c1, c2) is selected as e (line 5). Since (c1, c2) is a horizontal
edge, it is transformed into (c1, c2) directly (lines 6–8). After the
fourth iteration, the unprocessed edge set A is ∅, and the set Eo is
{(t1, p4), (t1, p5), (t1, t2), (t2, p3), (p1, t3), (t3, c1), (p2, t4), (t4, c1),
(c2, t5), (t5, p3), (c1, c2)}. Finally, the OARST is constructed as
shown in Figure 11 (e).

3.4 OARSMT Construction
In this step, we construct an obstacle-avoiding rectilinear Steiner

tree (OARSMT). The construction consists of three steps: (1)
overlapping edge removal, (2) redundant vertex removal, and (3)
U-shaped pattern refinement.

3.4.1 Overlapping Edge Removal
For each pair of edges in the OARST, we classify their relation

into five cases as shown in Figure 12 (a), (c), (e), (g), and (i), and
then transform them into those in Figure 12 (b), (d), (f), (h), and
(j), respectively. Using Figure 11 (e) as an example, the result
after overlapping edge removal is shown in Figure 13 (a).

3.4.2 Redundant Vertex Removal
A redundant-vertex is defined as follows:

Definition 10. A redundant-vertex is a non-pin-vertex with
the degree of 2, and the two edges connecting to it are parallel.

For a redundant-vertex, we merge the two edges connecting to
it. Using Figure 13 (a) as an example, two vertices are removed
as shown in the Figure 13 (b).

3.4.3 U-Shaped Pattern Refinement
The total wirelength can be further improved by some local

refinements. Considering the trade-off between solution quality
and efficiency, we especially refine U-shaped patterns. The U-
shaped pattern refinement rules are defined as follows:

Definition 11. A vertex satisfies the U-shaped pattern refine-
ment rules if it is not a pin-vertex, and its degree is 2.

We need to consider two cases for the U-shaped pattern refine-
ment:
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Figure 14: Two cases of the U-shaped pattern refine-

ment. The graphs in (a) and (c) are transformed into

those in (b) and (d) respectively.
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Figure 15: When m = 3, a rectilinear Steiner tree is one

of the two topologies: (a) two simple paths between pin-

vertices, or (b) three pin-vertices connected to a single

Steiner-vertex.

Case 1. Several edges form the shape as shown in Figure 14 (a).
One of the vertices v1 and v2 must satisfy the refinement
rule. In this case, without intersecting any obstacle, the
edge e2 is moved as right as possible, while edges e1 and e3

are still connected by it. Edges connected to a vertex satis-
fying the refinement rule (e1 in Figure 14 (a)) are shortened.
The resulting refinement is shown in Figure 14 (b).

Case 2. Several edges form the shape as shown in Figure 14 (c).
Both vertices v1 and v2 must satisfy the refinement rules.
In this case, without intersecting any obstacle, the edges e2

and e3 are moved as right as possible, while edges e1 and
e4 are still connected by them. The edge e5 is stretched,
but the two edges connected to a vertex satisfying the re-
finement rule (e1 and e4 in Figure 14 (c)) are shortened.
The resulting refinement is shown in Figure 14 (d).

After the U-shaped pattern refinement, the redundant vertex
removal is applied to ensure that there is no redundant-vertex in
the OARSMT. Using Figure 13 (b) as an example, the resulting
removal is shown in Figure 13 (c).

A Steiner-vertex is a vertex which is not a pin-vertex, and its
degree is more than 2. We also mark Steiner-vertices. As an
example shown in Figure 13 (c), two Steiner-vertices are marked
(see Figure 13 (d)).

Theorem 2. The overall time complexity of our algorithm is
O(n3) in the worst case and O(n2 lg n) for practical applications.

Note that n is the total number of pin-vertices and corner-
vertices.

3.4.4 Optimality
We can construct an optimal OARSMT when the pin num-

ber m = 2. Even for nets with m ≥ 3, our algorithm can still
achieve optimal solutions in many cases. In the following, we give
theorems for the optimality of our algorithm. Note that these
theorems give the sufficient but not necessary conditions for an
optimal solution, i.e., more optimal solutions may still be gen-
erated in other cases. Besides, the U-shaped pattern refinement
is not necessary for these theorems, implying that our OASG is
indeed complete to generate these optimal solutions.

Theorem 3. If m = 2, our constructed OARSMT is an opti-
mal solution.

When m = 3, a rectilinear Steiner tree is one of the two topolo-
gies: two simple paths between pin-vertices as shown in Figure 15



Test HPBB Total Edge-Length Improvement (%) ( X−E
X / X−E

X−A )

Cases m k (A) [12] (B) [3] (C) [11] (D) Ours (E) [12] (X = B) [3] (X = C) [11] (X = D)

ind1 10 32 501 — — 646 632 — — 2.17 / 9.66
ind2 10 43 8,200 — — 10,100 9,600 — — 4.95 / 26.32
ind3 10 50 498 — — 623 613 — — 1.61 / 8.00
ind4 25 79 705 — — 1,121 1,121 — — 0.00 / 0.00
ind5 33 71 732 — — 1,392 1,364 — — 2.01 / 4.24

rc1 10 10 17,890 26,970 30,410 27,730 26,900 0.26 / 0.77 11.54 / 28.04 2.99 / 8.43
rc2 30 10 19,470 41,700 45,640 42,840 42,210 -1.22 / -2.29 7.52 / 13.11 1.47 / 2.70
rc3 50 10 19,380 62,380 58,570 56,440 55,750 10.63 / 15.42 4.81 / 7.20 1.22 / 1.86
rc4 70 10 19,850 66,560 63,340 60,840 60,350 9.33 / 13.29 4.72 / 6.88 0.81 / 1.20
rc5 100 10 19,600 80,010 83,150 76,970 76,330 4.60 / 6.09 8.20 / 10.73 0.83 / 1.12
rc6 100 500 19,593 — 149,750 86,403 83,365 — 44.33 / 51.00 3.52 / 4.55
rc7 200 500 19,882 — 181,470 117,427 113,260 — 37.59 / 42.21 3.55 / 4.27
rc8 200 800 19,803 — 202,741 123,366 118,747 — 41.43 / 45.91 3.74 / 4.46
rc9 200 1,000 19,964 — 214,850 119,744 116,168 — 45.93 / 50.64 2.99 / 3.58
rc10 500 100 19,900 — 198,010 171,450 170,690 — 13.80 / 15.34 0.44 / 0.50
rc11 1,000 100 19,984 — 250,570 238,111 236,615 — 5.57 / 6.05 0.63 / 0.69
rc12 1,000 10,000 65,422 — 1,723,990 843,529 789,097 — 54.23 / 56.37 6.45 / 7.00

rt1 10 500 1,363 — — 2,438 2,267 — — 7.01 / 15.91
rt2 50 500 16,280 — — 51,981 48,441 — — 6.82 / 9.92
rt3 100 500 1,996 — — 8,783 8,368 — — 4.73 / 6.11
rt4 100 1,000 1,985 — — 10,619 10,306 — — 2.95 / 3.63
rt5 200 2,000 8,097 — — 55,557 53,993 — — 2.82 / 3.30

Average — — — — — — — 4.72 / 6.66 23.31 / 27.79 2.89 / 5.79

Table 1: The comparison on the total edge-length, where “HPBB” is the half-perimeter of the bounding
box of all pin-vertices, and “—” means that the result is not available. The results before “/” are the
improvements on the total edge-length, while those after “/” are the improvements on the difference from
the half-perimeter of the bounding box of all pin-vertices.

(a), or three pin-vertices connected to a single Steiner-vertex as
shown in Figure 15 (b). We can construct an optimal OARSMT
for the first topology.

Theorem 4. If m = 3 and the topology of an optimal solution
contains two simple paths between pin-vertices, our constructed
OARSMT is an optimal solution.

Note that none of the aforementioned properties is guaranteed
by the algorithm in [11] due to the missing “essential” edges,
so [11] cannot guarantee optimal solutions even for m = 2, as
illustrated in Figure 4. Also, most nets in a real case are 2-
pin nets or 3-pin nets, which makes the above properties more
important for practical applications. Furthermore, regardless of
the topology, we can construct an optimal OARSMT for a 3-pin
net if there is no obstacle.

Theorem 5. If m = 3 and there is no obstacle, our con-
structed OARSMT is an optimal solution.

When m ≥ 4, we can also construct an optimal OARSMT
which contains only simple paths between pin-vertices.

Theorem 6. If m ≥ 4 and the topology of an optimal solution
contains only simple paths between pin-vertices, our constructed
OARSMT is an optimal solution.

Similarly, this property is not guaranteed by the algorithm in
[11].

4. EXPERIMENTAL RESULTS
We implemented our algorithm in the C/C++ language on a

2 Ghz AMD-64 machine with 8 GB memory under Ubuntu 6.06
operating system. There are totally 22 benchmark circuits, five
industrial test cases (ind1–ind5) from Synopsys, twelve test cases
used in [3] (rc1–rc12), and five random test cases (rt1–rt5) gen-
erated by us. We removed an overlap of two obstacles in rc12
because it is invalid. On the other hand, the number of obstacles
is usually much larger than that of pin-vertices in a real design,

so we set the ratios of k and m to 5, 10, and 50 to generate the
five large random cases. Given the constraints on the areas and
the aspect ratios of obstacles, their positions, lengths, and widths
were randomly generated without overlapping each other. Be-
sides, the positions of pin-vertices were also randomly generated
without locating inside any obstacle.

We compared our algorithm with those presented in [12], [3],
and [11]. The results of [12] are provided by the authors, and were
generated from a Unix workstation with 2.66 GHz CPU and 1 GB
memory. The results of [3] are directly quoted from the paper,
where the algorithm was performed on a Sun V880 fire worksta-
tion with 755 MHz CPU and 4 GB memory. We also implemented
the algorithm in [11]. Different from our OASG graph construc-
tion, it only constructs an edge within each region. In addition,
it operates without the U-shaped pattern refinement as described
in Section 3.4.3. We also verified the generated OARSMTs by
another program to ensure that all pin-vertices were connected
without intersecting any obstacle.

Table 1 lists the total wirelengths of these algorithms without
any scaling. Considering the differences from the half-perimeter
of the bounding box of all pin-vertices, the respective average im-
provements on the total wirelength are 6.66%, 27.70%, and 5.79%,
compared with the algorithms in [12], [3], and [11]. Furthermore,
the improvement over [11] can be up to 26.32% (for ind2). Since
the half-perimeter of the bounding box of all pin-vertices is a lower
bound for an optimal solution for this OARSMT problem, these
improvements are very significant. (If we consider the differences
from an optimal solution, the improvement is even larger.) In
larger test cases, since the half-perimeters of these cases are far
from their optimal solutions, the improvements seem to be less
than those of small cases. In fact, considering the percentages
of the reduced length, the algorithm is still very effective, inde-
pendent of the sizes of test cases. Figure 16 shows the resulting
layout for the test case rt3.

Table 2 compares the CPU times of these algorithms. Our algo-
rithm is sufficiently efficient. For example, when the numbers of
pin-vertices and obstacles reach 200 and 1,000 respectively (rc9),
our algorithm takes only 0.91 seconds and achieves 3.58% im-
provement over the algorithm in [11]. As shown in Figure 17,



Figure 16: The final routing result of rt3, where a pin-

vertex is represented by a solid circle.
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Figure 17: The CPU time is plotted as a function of n.

the CPU times of [11] and ours are plotted as functions of the
input size n. By the least squares fitting on the log-log-axes, the
respective slopes of the fitting lines are 1.40 and 1.46, implying
that the empirical time complexity of our algorithm is close to
O(n1.46) while that of [11] is about O(n1.40). Note that this is
reasonable since we add more edges into our OASGs to guaran-
tee the optimality described in Section 3.4.4, while the work [11]
does not. Further, the empirical time complexity is far under the
theoretical worst-case complexity of O(n3) in Theorem 2. The
much lower empirical time complexity can be explained by the
sizes of our OASGs. The numbers of edges in our OASGs are
listed in the last column of Table 2. By the least squares fitting
on the log-log function of the number of edges to the circuit size,
the number of edges in our OASG grows only about O(n1.03)
empirically in the input size n, which is far under the theoretical
worst-case complexity of O(n2). The experimental results show
that our algorithm is very effective and efficient.

5. CONCLUSIONS
We have proposed an algorithm to construct an obstacle-avoiding

rectilinear Steiner tree (OARSMT). We can achieve an optimal
solution for any 2-pin net and nets with more pins in many cases.
Experimental results have shown that our algorithm is very effec-
tive and efficient. With the completeness of the OASG construc-

Test CPU Time (second) # Edges
Cases [12] [3] [11] Ours in our OASG

ind1 — — < 0.01 < 0.01 437
ind2 — — < 0.01 < 0.01 798
ind3 — — < 0.01 < 0.01 903
ind4 — — < 0.01 < 0.01 488
ind5 — — < 0.01 0.01 346

rc1 0.49 < 0.01 < 0.01 < 0.01 125
rc2 1.03 < 0.01 < 0.01 < 0.01 205
rc3 8.79 < 0.01 < 0.01 < 0.01 314
rc4 67.62 < 0.01 < 0.01 < 0.01 427
rc5 595.10 < 0.01 0.01 0.01 574
rc6 — 0.06 0.17 0.24 6,582
rc7 — 0.06 0.30 0.43 7,299
rc8 — 0.10 0.48 0.83 10,332
rc9 — 0.13 0.64 0.91 12,505
rc10 — 0.03 0.27 0.62 4,445
rc11 — 0.04 0.95 3.15 10,546
rc12 — 2.82 65.73 118.52 204,091

rt1 — — 0.06 0.06 5,358
rt2 — — 0.11 0.11 6,244
rt3 — — 0.16 0.47 6,447
rt4 — — 0.34 0.95 10,832
rt5 — — 1.42 2.06 21,938

Table 2: The comparison on the CPU time, where
“—” means that the result is not available.

tion, in particular, our algorithm also provides key insights into
the search for more desirable OARSMT solutions.
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