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Abstract

Smartphones that can support and assist the screening of various cardiovascular diseases are gaining popularity in recent 

years. The timely detection, diagnosis, and treatment of atrial fibrillation (AF) are critical, especially for those who are at 

risk of stroke. AF detection via screening with wearable devices should always be confirmed by a standard 12-lead electro-

cardiogram (ECG). However, the inability to perform on-site AF confirmatory testing results in increased patient anxiety, 

followed by unnecessary diagnostic procedures and treatments. Also, the delay in confirmation procedure may conclude 

the condition as non-AF while it was indeed present at the time of screening. To overcome these challenges, we propose an 

efficient on-site confirmatory testing for AF with 12-lead ECG derived from the reduced lead set (RLS) in a wireless body 

area network (WBAN) environment. The reduction in the number of leads enhances the comfort level of patients as well as 

minimizes the hurdles associated with continuous telemonitoring applications such as data transmission, storage, and band-

width of the overall system. The proposed method is characterized by segment-wise regression and a lead selection algorithm, 

facilitating improved P-wave reconstruction. Further, an efficient AF detection algorithm is proposed by incorporating a 

novel three-level P-wave evidence score with an RR irregularity evidence score. The proposed on-site AF confirmation test 

reduces false positives and false negatives by 88% and 53% respectively, compared to single lead screening. In addition, the 

proposed lead derivation method improves accuracy, F
1
-score, and Matthews correlation coefficient (MCC) for the on-site 

AF detection compared to existing related methods.

Keywords Atrial fibrillation (AF) · Reduced lead set (RLS) · Derived 12-lead ECG · Regression · Wireless body area 

network (WBAN)

1 Introduction

According to the World Health Organization (WHO), cardio-

vascular disease (CVD) is the leading cause of death glob-

ally, causing about an estimated 17.9 million deaths each 

year. To reduce the incidence, prevalence, morbidity, and 

mortality of CVD, WHO joins hands with countries and 

various healthcare partners to develop cost-effective and fea-

sible innovations for detecting CVD accurately. The widely 

used and inexpensive diagnostic method to investigate CVD 

is electrocardiogram (ECG) monitoring. The ability to 

acquire, process, and transmit ECG in conjunction with the 

ability to automatically verify and provide decisions based 

on the remotely perceived ECG, help the medical practi-

tioners to tackle the dangers of CVD considerably. With the 

rapid advancement in technology, wireless body area net-

works (WBANs) have become indispensable for IoT-based 

remote health monitoring (Abiodun et al. 2019; Siddharth 

et al. 2019; Dong et al. 2021; Manickavasagam and Amutha 

2020). The prevalence of CVD has prompted an increased 

surge in the electrocardiogram (ECG) based monitoring 

system in WBAN (Tinnakornsrisuphap and Billo 2015). 

However, the scarcity of resources at the sensor nodes and 

gateway nodes has hampered the efficient use and implemen-

tation of WBAN (Poon et al. 2015).

Atrial fibrillation (AF) is one of the most common CVD 

among elderly people, especially those who are at risk of 

strokes (Psaty et al. 1997). It is characterized by uncoordi-

nated atrial activation and contraction resulting in irregu-

larly irregular R peaks, absence of P-waves, and the pres-

ence of fibrillatory waves (Harris et al. 2012). Due to its 
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asymptomatic nature and prevalence among people, there 

raised a need to promote screening of AF using wearable 

devices (Lip et al. 2016; Petryszyn et al. 2019). In Almusal-

lam and Soudani (2019), the authors presented an embed-

ded solution for AF screening using smart wireless body 

sensors. However, the screening process comes with many 

snags (Mandrola et al. 2018). The gold standard for AF con-

firmation is the standard 12-lead ECG (Harris et al. 2012). 

False positive findings in the screening of AF and the lack 

of availability of immediate on-site 12-lead ECG data results 

in unwanted patient anxiety. In situations like COVID-19 

pandemic, various factors such as the fear of getting infected, 

saturation of clinics/hospitals, travel restriction due to lock-

down etc. prevents the patients from visiting the clinics/

hospitals to record the standard 12-lead ECG for confirm-

ing the screen-detected AF. In paroxysmal AF, episodes of 

AF persists for a short duration and then vanishes, to return 

later. In such cases, the delay in confirmation testing may 

diagnose the condition as non-AF, although AF was present 

at the time of screening. Hence, there is a strong recommen-

dation for standard 12-lead on-site AF confirmation testing 

in a WBAN environment (Rosenfeld et al. 2019) that will 

eventually help physicians to improve the medical care and 

the treatment made available to the patients.

The acquisition and transmission of 12-lead ECG from 

ten electrodes in a WBAN environment will considerably 

reduce the battery lifetime of sensor nodes and gateway 

nodes; it will also pose discomfort to the patients making 

them carry more nodes on their body for a long duration. 

Several data compression techniques have been presented in 

the literature (Cetin et al. 1993; Miaou and Yen 2001; Eft-

ekharifar et al. 2018; Olmos and Laguna 1999) for address-

ing these issues, but a reduction in the number of leads ulti-

mately determines the overall compression of the system. 

There are methods reported in the literature to derive 12-lead 

ECG from a reduced lead set (RLS) with 3 or 4 leads by 

exploiting the spatial redundancy (Maheshwari et al. 2014; 

Nelwan et al. 2004; Maheshwari et al. 2014). RLSs are 

designed in such a way as to derive the 12-lead ECG that 

matches the actual recorded 12-lead ECG to the best extent. 

In diagnosing atrial arrhythmia like AF, the absence of 

P-waves in all the leads is a reliable indicator. However, due 

to its low amplitude and the presence of artifacts, faithful 

reconstruction of P-waves from RLS as well as the P-wave 

detection from the derived leads are challenging tasks. In the 

literature, the RLS-based lead derivation methods (Nelwan 

et al. 2004; Nallikuzhy and Dandapat 2017) are prone to 

P-wave distortions. Therefore special care needs to be taken 

to prevent the loss of P-wave information during the deriva-

tion of 12-lead ECG from the RLS. So the challenge here is 

to ensure robust and reliable derivation of standard 12-lead 

ECG signals with acceptable medical quality from the RLS 

and efficiently detect AF from the derived ECG signals at 

the receiver end.

This paper addresses the efficient design of on-site con-

firmatory testing for AF with 12-lead ECG derived from 

an RLS in a WBAN environment. The contributions of our 

paper are as follows: 

1. Derivation of 12-lead ECG from the RLS such that the 

P-waves of the derived leads follow the original signal 

in all leads. This is achieved by incorporating segment-

wise regression together with the best lead selection for 

the RLS.

2. Design of an efficient method to detect AF from the 

derived ECG leads. The method involves two param-

eters, namely, a novel P-wave measure based on three 

levels of P-wave evidence score and an R-wave measure 

based on RR irregularity score.

3. Performance analysis of the proposed 12-lead ECG deri-

vation method together with AF detection method, and 

validation of improved performance by comparing with 

the existing related methods.

2  Related work

In this section, we outline the significant related works that 

addressed the reduced ECG lead system and AF detection.

2.1  Reduced ECG lead system

Even though there are several methods for compressing 

12-lead ECG signals, the ability to derive all the 12-leads 

data from a reduced set of leads without affecting the diag-

nosability will ultimately determine the effectiveness of 

the system (Maheshwari et al. 2014). The most common 

method for obtaining coefficients to derive 12-lead ECG 

from the reduced lead system is by applying linear regres-

sion on the learning set. Nelwan et al. (2004) found that the 

best 3-lead subset consists of (I, II, and V2), which was also 

recommended by Scherer et al. (1989). Nelwan et al. (2004) 

focused on continuous ischemia monitoring, and the authors 

did not include the P-wave in their performance assessment 

due to its distortion. Scherer et al. (1989) extracted a subset 

of leads (I, II, and V2) and created a separate set of recon-

struction coefficients for PR, QRS, and ST segments. The 

authors determined that the segmented technique had higher 

correlations and smaller deviations compared to the non-

segmented case. However, their reduced lead set consists of 

fixed leads and did not employ the selection of best lead for 

deriving the remaining leads. In Tsouri and Ostertag (2014), 

the authors reconstructed 12-lead ECG signals using inde-

pendent component analysis (ICA) from two reduced 3-lead 

systems, namely (I, II, and V2) and Frank’s XYZ leads. 
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However, the method requires high computational power 

for implementing ICA. Also, the performance is deterio-

rated as the ECG recording progresses. The method based 

on ICA also faces the issue of convergence. Although the 

principal component analysis (PCA) based lead derivation 

method in Maheshwari et al. (2015) shows better results, it 

requires all the leads for computing principal components 

and is effective only in reducing the transmission costs rather 

than reducing the number of leads on the body. The patient 

specific model presented in Nallikuzhy and Dandapat (2017) 

exploits the frequency domain characteristics of the ECG 

signal along with the best predictor lead-set to improve the 

diagnosability from the derived leads. The discrete wavelet 

transform (DWT) computation in the method requires high 

computational power and hence, the method is not feasible 

in a resource-constrained WBAN nodes. Also, the authors 

have experimentally shown that the P-waves are distorted in 

most of the leads.

2.2  AF detection

In the literature, various ECG features are employed to 

detect and characterize AF using single-lead or multi-lead 

ECG signals. The three cardinal features of AF are (i) RR 

irregularity, (ii) absence of P-wave, and (iii) presence of 

fibrillatory waves. Most of the AF detectors are based on RR 

intervals (Dash et al. 2009; Lee et al. 2013) rather than that 

based on P-wave (Clavier et al. 2002) and fibrillatory waves 

(Henriksson et al. 2018), and this is mainly due to the low 

computational requirement of RR based detectors. P-wave 

detection has been an open problem due to its low ampli-

tude, presence of noise, as well as the wave segments that 

mimics the P-waves (Kennedy et al. 2016). The Physionet/

CinC challenge 2017 (Clifford et al. 2017) presented a wide 

range of AF detection algorithms using single lead short 

ECG recordings. However, most of those algorithms involve 

high computational processes such as machine learning and 

neural networks. In the case of AF detection using 12-lead 

ECGs, most of the methods in the literature are based on 

deep learning (Cai et al. 2020). It is impractical to consider a 

computationally intensive method for a WBAN environment 

where the sensors as well as gateways are battery-powered 

entities. Hence, in this paper, in order to have an efficient 

on-site AF detection using multi-lead ECG, we use RR 

irregularity measure and a P-wave measure based on novel 

three-level P-wave evidence score.

In the literature, although there are works (Guldenring 

et al. 2012) evaluating the performance of a reduced lead 

system for the monitoring of ST segment using continuous 

12-lead ECG, there are no work related to the detection of 

AF using reduced lead system.

3  System model

The proposed system model consists of a reduced lead sys-

tem, an on-body super node (smartwatch), a gateway node 

(smartphone), and a remote receiver as shown in Fig. 1. The 

reduced lead system is activated as soon as AF is detected 

by a screening device or by the instruction of a physician. 

The smartwatch will collect the ECG data from reduced 

lead system and forward them to the gateway node. The 

gateway node will derive the remaining leads from the 

reduced set of leads and confirm whether the patient has 

AF or not. Also, the gateway node can send the ECG data to 

the remote station for further analysis. The standard 12-lead 

ECG comprises of 12-leads (I, II,III, aVR, aVL, aVF, V1, 

V2, V3, V4, V5, V6). Among these leads (III, aVR, aVL, 

aVF) can be directly derived from leads {I, II} as follows: 

III = II − I, aVR = −(I − II)∕2, aVL = (I − III)∕2, aVF =

(II + III)∕2 .  The remaining independent ECG leads need to 

be derived from the RLS through a suitable method. The 

RLS includes two limb leads I, II, and one or two precordial 

leads from V1-V6.

4  Proposed method

A novel approach to on-site AF detection from RLS is 

presented in this section. Since the presence or absence 

of P-wave is significant in AF detection, there is a need to 

increase the resolution of P-waves in the derived ECG leads. 

The authors in Scherer et al. (1989) demonstrated that the 

derivation of leads via segment-wise regression have higher 

average correlation between the derived and original leads 

compared to that of regression using the entire beat. But 

their method used a fixed subset of leads (I, II, V2), and the 

improvement in signal quality for individual segments were 

not analyzed and discussed. The lead selective algorithm in 

Nallikuzhy and Dandapat (2017) selected the best precor-

dial lead for linear regression and it is shown that the lead 

selection will enhance the signal quality of derived leads 

compared to the regression using any fixed subset of leads. 

However, the method in Nallikuzhy and Dandapat (2017) 

exploits the inter-lead correlation in wavelet domain, and 

the authors have illustrated that the P-waves are distorted 

in most of the derived leads. Also, the linear regression in 

wavelet domain requires the transformation of incoming sig-

nals to the wavelet domain which is an energy consuming 

process, and it will eventually burden the sensor nodes and 

gateway nodes in a WBAN system. In our proposed method, 

we integrate the segment-wise regression with lead selec-

tive algorithm in time domain and demonstrate the viability 

in reliable and efficient derivation of ECG leads for on-site 

AF detection.
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The proposed method comprises of different stages, 

namely preprocessing, lead selection, model learning, sig-

nal derivation, and AF detection as shown in Fig. 2. The 

derivation of 12-lead ECG from a 3-lead/ 4-lead RLS is 

based on segment-wise regression and patient-specific best 

lead selection. The segment-wise regression improves the 

reconstruction quality of each segment of ECG beat. The AF 

detection procedure involves two measures, namely R-wave 

measure based on RR irregularity score and P-wave measure 

based on three levels of P-wave evidence score.

4.1  Derivation of 12-lead ECG from RLS

For the derivation of 12-lead ECG from RLS, the preproc-

essed data is employed to perform model learning, lead 

selection and signal derivation as shown in Algorithms 1, 

2, and 3 respectively. Lead selection and model learning 

Fig. 1  Proposed system model for on-site AF confirmatory testing

Fig. 2  Different stages in the proposed method
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operations are performed in the off-line phase where the 

eight independent leads of ECG are used to learn the model 

as well as to select the best lead to be used along with limb 

leads (I, II) or (I, II, and V1) for deriving the remaining 

leads. The regression model C
s
 containing regression coef-

ficients to derive the different segments of remaining leads 

is chosen from the model learning stage based on the lead 

V
s
 selected. In the on-line phase, using the regression model 

C
s
 and the lead V

s
 , the incoming ECG signal from 3/4 RLS 

of the patient’s body is processed at the on-body super node 

or gateway node so as to derive the remaining precordial 

leads. To simplify the usage of notations in algorithms and 

equations, the precordial leads V1, V2, V3, V4, V5, and 

V6 are denoted as V
1
 , V

2
 , V

3
 , V

4
 , V

5
 , V

6
 , respectively. The 

detailed description of each stage is presented in the follow-

ing subsections.

4.1.1  Preprocessing

The preprocessing block performs the conditioning of 

12-lead ECG for further analysis. It mainly involves the 

removal of baseline wandering, normalization of amplitude, 

and removal of the mean.

4.1.2  Model learning

The model learning unit determines the regression coeffi-

cients for the derivation of different segments in the derived 

leads. As mentioned in Sect. 3, two limb leads I and II are 

readily included in the reduced lead system. Lead II is seen 

as one of the best leads to verify P-waves. From the precor-

dial leads V
1
 to V

6
 , different leads can give best results for 

verification of P-wave depending upon the statistical proper-

ties of ECG signal which vary from person to person. So the 

best practice will be to check for P-waves in all leads.

Algorithm 1: Model learning algorithm

Input : Leads [I, II, V1, V2, V3, V4, V5,V6]
Output: Regression coefficients Ci

1 Divide ECG into 3 segments [S1, S2 and S3]
2 for n ←− 1 to N do
3 for i ←− 1 to 6 do
4 for ∀ j �= i, j ∈ { 1, 2, 3, 4, 5, 6 } do
5 for k ←− 1 to 3 do
6 Gikn ←− [Sk(In) Sk(IIn) Sk(Vin)]

7 Cijkn ←− (Gikn
T Gikn)−1Gikn

T Sk(Vjn)
8 end for
9 end for

10 end for
11 end for
12 Ci(jk) ←− mean(Cijkn), ∀ j �= i, j ∈ { 1, 2, 3, 4, 5, 6 }

To design a reduced 3-lead set, we have to select one of 

the best precordial lead from V
1
− V

6
 along with limb leads I 

and II. The model learning algorithm is summarized in Algo-

rithm 1. The model learning unit takes 8-lead ECG as its input. 

Initially the beat interval of each lead is segmented into three: 

(i) segment S
1
 (containing P-wave), (ii) segment S

2
 (contain-

ing QRS) and (iii) segment S
3
 (containing T-wave). N is the 

total number of beats taken for model learning. For each beat, 

different precordial leads are taken as the predictor lead along 

with the limb leads I and II, and the regression coefficients are 

determined for different segments to derive the other precordial 

leads. i.e., the separate regression coefficients are determined 

for each segment corresponding to various lead combinations 

{I, II, V
i
∣ i ∈ 1, 2, 3, 4, 5, 6} by applying the regression analysis 

based on least square optimization technique as shown in (1).

Here, Cijkn represents the regression coefficients for deriving 

the segment S
k
 of lead Vj using leads {I, II, V

i
} for the nth 

beat interval and G
ikn

 is an N
k
 × 3 matrix, where N

k
 is the 

length of segment S
k
 . For the nth beat interval,

The final regression coefficients Ci(jk) are obtained for each 

model by taking the mean of regression coefficients com-

puted for N beats. At the end of model learning stage, each 

model C
i
, i ∈ {1, 2, 3, 4, 5, 6} consist of five set of regression 

coefficients [ j ∈ {{1, 2, 3, 4, 5, 6} − {i}} ] corresponding to 

each precordial lead i for deriving the other five precordial 

leads j, and in total there will be six learned models.

In similar lines, there are three different ways to deter-

mine a reduced 4-lead set: (i) Fix the popular combination 

{I, II, V2, V5} (ii) Select the two precordial leads from the set 

V
1
-V

6
 which give best reconstruction quality (iii) Fix three 

leads as {I, II, V1} and then select the best lead from V
2
-V

6
 

using the lead selection algorithm. The reason for fixing lead  

(1)Cijkn = (Gikn
TGikn)

−1Gikn
TSk(Vjn)

(2)G
ikn

⟵ [S
k
(I

n
)S

k
(II

n
)S

k
(V

in
)]
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V
1
 lies in the fact that P-waves are best seen in V

1
 , and informa-

tion loss in the P-waves will lead to error in detecting AF. In 

order to learn the model for a 4-lead RLS, the lead combina-

tion {I, II, V1, Vp} is considered in the proposed work, where 

Vp corresponds to any one of the five precordial leads V
2
-V

6
 , 

and each model contains four sets of segment-wise regression 

coefficients to derive the four other precordial leads.

4.1.3  Lead selection

The lead selection unit selects the precordial lead that is used 

to derive other leads in such a way as to retrieve P-wave with 

the best accuracy levels. The learned model C
s
 correspond-

ing to the selected precordial lead V
s
 is picked out, which 

holds the segment-wise regression coefficients for deriving 

the other precordial leads. Here, diagnostic similarity score 

(DSS) used in Nallikuzhy and Dandapat (2017) is incorpo-

rated to select the best precordial lead. The procedure for lead 

selection is depicted in Algorithm 2. The 8-lead ECG and the 

models C
i
 learned via model learning, where i varies from 1 

to 6, are taken as input in the lead selection algorithm. For 

each lead combination, the corresponding regression model 

obtained via model learning is used to derive the other leads. 

The three segments in each beat interval are derived using the 

segment-wise regression coefficients as shown in (3).

Here, Ŝk(Vijn) denotes the derived kth segment in the nth beat 

interval of precordial lead Vj for the lead combination {I, II, V
i
} . 

The performance of each precordial lead in deriving other leads 

is then quantified by using the following metrics: (1) M(1), 

inverse of percent root mean square difference (PRD), (2) M(2), 

inverse of wavelet energy based diagnostic distortion (WEDD) 

measure, and (3) M(3), correlation coefficient (CC).

(3)Ŝk(Vijn) ⟵ GiknCi(jk)

Algorithm 2: Lead selection algorithm

Input : Leads [I, II, V1, V2, V3, V4, V5,V6] and learned models Ci, where, i varies
from 1 to 6

Output: Selected lead Vs and Model Cs

1 Divide ECG into 3 segments [S1, S2 and S3]
2 for i ←− 1 to 6 do
3 for j �= i, j ∈ { 1, 2, 3, 4, 5, 6 } do
4 for n ←− 1 to N do
5 for k ←− 1 to 3 do
6 Gikn ←− [Sk(In) Sk(IIn) Sk(Vin)]

7 ̂Sk(Vijn) ←− Gikn Ci(jk)
8 end for

9 V̂ijn ←− [ ̂S1(Vijn) ̂S2(Vijn) ̂S3(Vijn)]

10 [Mijn(1), Mijn(2), Mijn(3)] ←− metric(Vijn, V̂ijn)
11 end for
12 [Mij(1), Mij(2), Mij(3)] ←− mean(Mijn(1), Mijn(2), Mijn(3))
13 end for
14 [MMi(1), MMi(2), MMi(3)] ←− mean(Mij(1), Mij(2), Mij(3))
15 end for
16 Vs ←− FQ(DSS(MM))

Inverse of PRD: PRD (Zigel et al. 2000) indicates the 

signal quality between the reconstructed/derived signal x′ 

and the original signal x. Lower the PRD, higher the recon-

struction quality. This inturn implies that higher the inverse 

of PRD, higher the reconstruction quality.

Inverse of Wavelet energy based diagnostic 

distortion(WEDD): WEDD (Manikandan and Dandapat 

2007) is determined from the Wavelet coefficients of the 

original and the reconstructed/derived ECG signals. The 

inverse of WEDD value is higher for the reconstructed sig-

nal with less distortion in diagnostic features.

The w
i
 in (6) is the weight for ith sub-band and it is given by 

(7). The wavelet PRD for ith sub-band is given by (8). The 

t
i
(h) and t̂

i
(h) represents the hth wavelet coefficients in ith 

sub-band for original and derived bands respectively.

(4)PRD(%) =
‖x − x

�‖

‖x‖
× 100

(5)M(1) =
1

PRD

(6)WEDD =

L+1
∑

i=1

w
i
.WPRD

i

(7)w
i
=

∑Hi

h=1
t
2

i
(h)

∑L+1

k=1

∑Hi

h=1
t
2

k
(h)

, i = 1, 2, ....(L + 1))

(8)WPRD
i
=

�

�

�

�

�

∑Hi

h=1
[t

i
(h) − t̂

i
(h)]2

∑Hi

h=1
[t

i
(h)]2

× 100
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Correlation coefficient (CC): It is a measure of linear 

dependence between two signals (say, x and y). Higher the 

correlation coefficient, better the correlation between the 

signals.

where, x̄ and ȳ denote mean of x and y respectively.

The DSS function specified in Algorithm 2 takes as input, 

the mean values of metrics denoted as MM. Let Mij(k) where 

k ∈ {1, 2, 3} be the kth metric for deriving jth precordial 

lead using (I, II, V
i
 ). Then MM

i
(k) denotes the average of 

metric Mj(k) where j ∈ {{1, 2, 3, 4, 5, 6} − {i}} . Thus MM is 

a 6 × 3 matrix where the ith row [ MM
i
(1) MM

i
(2) MM

i
(3) ] 

corresponds to the ith precordial lead V
i
 . The function DSS 

calculates the sum of metrics SUM
i
 for each precordial lead i 

for different combinations as given in Eq. (11) where [ a
1
 , a

2
 , 

a
3
 ] range from [0 0 1] to [1 1 1], and picks the ith lead that 

gives maximum SUM
i
 value for each combination.

Out of the different leads assigned to 7 combinations 

using DSS function, the lead that occurs most frequently is 

selected as the best lead V
s
 by the function FQ. The func-

tion FQ selects the precordial lead that occurs frequently 

in DSS(MM). The learned model C
s
 corresponding to the 

best lead V
s
 is then used to derive the signals through linear 

regression.

(9)M(2) =
1

WEDD

(10)
M(3) = CC =

∑n

i=1
(xi − x̄)(yi − ȳ)

�

∑n

i=1
(xi − x̄)2

�

∑n

i=1
(yi − ȳ)2

(11)SUM
i
= a

1
.MM

i
(1) + a

2
.MM

i
(2) + a

3
.MM

i
(3)

4.1.4  Lead derivation

The lead derivation is the on-line real-time operation in 

the proposed scheme, whereas the model learning and lead 

selection operations are off-line procedures. In the lead deri-

vation stage, the selected lead and the set of regression coef-

ficients from the corresponding learned model are employed 

to derive the remaining precordial leads as shown in Algo-

rithm 3. Here, the precordial lead V
s
 selected via lead selec-

tion algorithm is used along with the limb leads I and II to 

derive the remaining precordial leads. The learned model C
s
 

corresponding to the lead V
s
 equips the lead derivation stage 

with the required segment-wise regression coefficients. i.e., 

the kth segment of the precordial lead Vj for the nth beat 

interval is derived via linear regression as follows.

where G
skn

 denotes the arrangement of kth segment of leads 

{I, II, V
s
} as given in Eq. (2), and Csjk denotes the regres-

sion coefficients for the derivation of kth segment of precor-

dial lead Vj . The derived three segments are concatenated 

to form V̂jn for the nth beat interval. Then the N beats are 

concatenated to form the derived lead V̂j . In this way, all 

the remaining precordial leads are derived from the reduced 

lead set {I, II, V
s
}.

4.2  On-site confirmatory testing for AF

A new approach to on-site AF detection from the RLS is 

presented in this section. Since the presence or absence 

(12)Ŝk(Vjn) ⟵ GsknCsjk

Algorithm 3: Lead derivation algorithm

Input : Leads [I, II, Vs], Model Cs

Output: { V̂j }, j ∈ { { 1, 2, 3, 4, 5, 6 } - s }
1 for n ←− 1 to N do
2 for ∀ j �= s, j ∈ { 1, 2, 3, 4, 5, 6 } do
3 for k ←− 1 to 3 do
4 Gskn ←− [Sk(In) Sk(IIn) Sk(Vsn)]

5 ̂Sk(Vjn) ←− Gskn Csjk

6 end for

7 V̂jn ←− [ ̂S1(Vjn) ̂S2(Vjn) ̂S3(Vjn)]
8 end for

9 V̂j ←− Concatenate (V̂jn), ∀ j �= s, j ∈ { 1, 2, 3, 4, 5, 6 }
10 end for
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of P-wave is significant in AF detection, there is a need 

to increase the resolution of P-waves in the derived ECG 

leads. The proposed method for lead derivation derivation 

which is designed in such a way as to ensure improvement 

in the reconstruction quality of all the three segments of the 

ECG signal can be used to confirm the AF, since it gives 

excellent reconstruction quality for P-waves. Therefore, the 

12-lead ECG derived from the RLS is applied to AF detector 

as shown in Fig. 2. The proposed AF detection procedure 

involves two measure scores, namely RR irregularity score 

and three levels of P-wave evidence score. The derived sig-

nal at the gateway node can be verified for AF directly at 

the gateway node, or it can be sent to the hospitals for the 

physicians to confirm the same. For the AF detection at the 

gateway node, a simple algorithm is developed to detect AF 

from the 12-lead ECG derived from RLS using the proposed 

method.

4.2.1  Parameters employed for AF detection

To develop the energy-efficient on-site AF detector, two 

parameters are employed namely RR irregularity score and 

P-wave evidence score as shown in Fig. 3. RR irregularity 

score is based on the number of consecutive R–R intervals 

extracted that differ by more than 50 ms, and P-wave evi-

dence score is based on three levels of P-wave evidence. 

The objectives of three levels of P-wave evidence are sum-

marized in Table 1.

RR irregularity: Heart rate variability (HRV) analysis, 

a noninvasive method for assessing cardiac autonomic con-

trol, provides useful information about the variation between 

consecutive heartbeats (TFESC/NASPE 1996). The HRV 

analysis on ECG signal can be done in time domain and 

frequency domain. A decreased HRV is a predictor of ven-

tricular arrhythmias and sudden death in different patient 

populations (Sessa et al. 2018). In the proposed AF detection 

scheme, RR irregularity score employed is pNN50 (Mietus 

et al. 2002), and it is determined by the ratio of number of 

consecutive RR intervals that differ by more than 50 ms to 

the total number of RR intervals. RR irregularity score is 

significantly higher for AF compared to normal sinus rhythm 

(Khan et al. 2021).

First level P-wave evidence: In this level, P-wave detec-

tion of individual leads is performed and the lead having 

P-wave detection as 80% of the total number of beats is 

identified. The procedure to determine the first level P-wave 

evidence score is summarized in Algorithm 4. Initially, 

R-peaks are detected and the corresponding RR intervals 

are determined. The detected P-waves that have duration 

atleast 0.12 times the respective RR interval (Kimura-

Medorima et al. 2018) are considered as valid P-waves. If 

this condition is not met, then the respective P-wave loca-

tions are skipped. The ratio of P-waves detected initially to 

the number of beat intervals in each lead is referred as the  

Fig. 3  Block diagram for AF detection

Table 1  Objectives of three levels of P-wave evidence

P-wave evidence Objectives

First level 1. P-wave detection in individual leads

2. The best lead with maximum number of P-waves is identified

Second level Individual leads are compared with best lead and missed P-waves in the first level are scrutinized

Third level For each beat interval, P-wave positions of 8 leads are compared and confirmed the presence or 

absence of p-waves in each beat interval
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Fig. 4  Adjusting P-wave duration based on the variation in maxima

initial P-wave score. The initial ratio of P-waves detected 

in 8 leads is referred to as the initial P-wave score. If none 

of the leads have more than 50% P-wave detection, then the 

new onset and offset locations of P-wave are found based on 

the slope variation in maximas (continuously reducing maxi-

mas from the peak P value is included in P-wave duration) 

as shown in Fig. 4 and the corresponding P-wave duration 

(PWD) are checked for validity. Finally, the ratio of P-waves 

detected in each lead to the total number of beat intervals 

defines the first level P-wave evidence score. The lead having 

the highest first level P-wave evidence score is selected as 

the best lead for the spatial comparison in the second level.

Second level P-wave evidence: This level performs cor-

relation between the PWD in different leads and the PWD 

of best lead selected in the first level as depicted in Algo-

rithm 5. If the correlation between PWDs of best lead and 

other lead is greater than a threshold (say, 0.7), then that 

PWD with a maxima is designated as a P-wave; otherwise 

the PWD is ignored in those leads. Finally, the enhanced 

P-wave count is determined, and the ratio of P-waves 

detected in 8 leads is taken as the second level P-wave evi-

dence score.

Algorithm 4: First level P-wave evidence algorithm

Input : 8 lead ECG
Output: Best Lead, Initial P-wave score, First level P-wave evidence score

1 Detect R peaks
2 Determine the maxima and minima in the range [0.65×RR 0.9×RR]
3 Find the potential P-wave location from maxima
4 Find the onset and offset for P-wave from minima
5 if P-wave duration < 0.12×RR
6 Skip the corresponding P-wave locations
7 end if
8 Initial P-wave score ←− Percentage of P-waves detected in 8 leads
9 If no leads have initial P-wave score > 0.5

10 Set new onset and offset P-wave locations based on variation in maximas
11 if P-wave duration < 0.12×RR
12 Skip the corresponding P-wave locations
13 end if
14 end if
15 First level P-wave evidence score ←− Ratio of no. of P-waves detected to the no. of

beat intervals for each lead.
16 Best lead ←− Lead with highest first level P-wave evidence score.
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Algorithm 5: Second level P-wave evidence algorithm

Input : 8 lead ECG, Best Lead, PWDs, P-wave locations
Output: Second level P-wave evidence score

1 Determine the correlation between the PWDs of best lead and the other leads.
2 if the correlation > threshold (say, 0.7),
3 Designate a P-wave with the corresponding duration in the missed lead.
4 else
5 Recognize a P-wave miss with the corresponding duration in the missed lead.
6 end if
7 Determine the P-wave count for each leads
8 Second level P-wave evidence score ←− Ratio of no. of P-waves detected to the no. of

beat intervals for each lead.

Algorithm 6: Third level P-wave evidence algorithm

Input : 8 lead ECG, Best Lead, PWDs, P-wave positions
Output: Third level P-wave evidence score

1 Consider the entire P-wave search area for signal analysis
2 Remove the trend from signals
3 Determine the maxima and minima in the range [0.5×RR 0.9×RR]
4 P-wave position (PWP) ←− position at which maximum peak lies.
5 Find the mean M of PWPs for different leads at the same beat intervals
6 for each interval g do
7 for i ←− 1 to 8 do
8 if PWP(g,i) is within range [M(g) ± 0.2×M(g)]
9 P-wave identified

10 count(g) = count(g) + 1
11 else
12 No P-wave
13 end if
14 end for
15 if count(g) ≥ T
16 P-wave count = P-wave count + 1
17 end if
18 end for
19 Net P-wave count = P-wave count/no. of beat intervals
20 Third level evidence score ←− Net P-wave count

Third level P-wave evidence: This level determines the 

final P-wave count in spatial domain based on the P-waves 

detected in various leads as shown in Algorithm 6. In this 

level, the P-wave position (PWP) in each lead for a particular 

time beat is compared, and the PWP is validated accord-

ingly. PWPs of 8 leads are compared for each beat interval, 

and if the PWP is within a range ( ± 0.2 times the mean of 

the positions), then the P-wave count is incremented. The 

final P-wave count denotes the number of leads in which 

the PWPs are validated. If the final P-wave count is greater 

than a threshold T (say, six leads), then the P-wave in that 

particular beat interval is validated. The ratio of number of 

P-waves validated to the total number of beat intervals gives 

the net P-wave count. The net P-wave count thus obtained is 

referred to as the third level P-wave evidence score.

4.2.2  AF detection algorithm

The architecture of the proposed AF detection algorithm is 

depicted in Fig. 5. Initially, RR irregularity is determined 

using a score that measures the number of consecutive RR 

intervals which differ by 50 ms and more. If the RR score 

is greater than a threshold (Thr), then the system proceeds 

to determine the three levels of P-wave evidence score. 

The P-wave evidence score is measured in three levels as 

explained in Algorithms 4, 5, and 6. The thresholds are 

determined experimentally, and the four rules in Fig. 5 are 

formulated as follows, where N(score > z) denotes the num-

ber of leads in which ’score’ has a value greater than z, and 

{AND, OR} denote the logical operators:

Rule 1: RR irregularity score < 0.35

If RR irregularity score is less than a threshold Thr, then 

the detection algorithm can rule out the presence of AF. 

Otherwise, the next rule is carried out. The authors in Chris-

tov et al. (2018) have shown that the RR irregularity for 

the normal ECG ranges from 0-0.2, whereas it ranges from 

0.4-1 for AF. So, we varied Thr from 0.2 to 0.4 in steps of 

0.05 in the simulation study and validated that Thr = 0.35 

yields good results.

Rule 2: [N(First level P-wave evidence score > 0.8) ≥ 5] 

OR [N(First level P-wave evidence score > 0.9) ≥ 3]
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After the first level detection, if 5 or more number of 

leads have more than 80% P-wave detection OR at least 3 

leads have more than 90% P-wave detection, then the detec-

tion algorithm will ascertain that P-waves are present and 

rule out the possibility of AF. Otherwise, the algorithm 

passes to Rule 3. This rule is formulated after experimentally 

validating that the probability of falsely detecting more than 

80% P-waves in more than 4 leads is very low.

Rule 3: [N(Second level P-wave evidence score > 0.8) ≥ 

4] AND [N(Initial P-wave score > 0.5) ≠ 0]

Since second level search improves the confidence level 

of P-wave detection, the possibility of AF is ruled out if 

4 or more leads have 80% P-wave detection. But here, an 

additional condition that at least one lead has more than 50% 

P-wave detection in the initial P-wave score is included to 

avoid the effect of false detected P-waves. This is because, 

we observed during our experiments that some subjects with 

none of the leads having an initial P-wave score greater than 

0.5 exhibit very good second-level P-wave evidence score 

due to the falsely detected P-waves.

Rule 4: Third level P-wave evidence score < 0.5

The highest level of scrutiny is at the third level, where 

P-wave positions of 8 leads are compared and the presence 

or absence of P-waves in each beat interval is confirmed. If 

the ratio of number of P-waves validated to the total num-

ber of beat intervals considered is greater than 0.5, then the 

detection algorithm can rule out the possibility of AF. Oth-

erwise, the algorithm confirms that the particular subject 

has AF.

5  Results

The experiments are performed on two different databases, 

namely the most commonly used PTB (Physikalisch-Tech-

nische Bundesanstalt) ECG database Goldberger et  al. 

(2000) and China Physiological Signal Challenge (CPSC) 

2018 database (Liu et al. 2018). Since the number of AF 

subjects in PTB database is very low, the performance of 

RLS in AF detection is determined using the CPSC 2018 

Fig. 5  Architecture of proposed 

AF detection algorithm
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database. There are nine classes/categories of ECG signal 

records in CPSC 2018 database that include one normal 

class and eight abnormal classes. AF is one of the abnormal 

classes in the database. All the experiments are carried out 

in the MATLAB platform using a 3.3 GHz Intel Xeon pro-

cessor. The ECG data from the datasets are downloaded in 

MATLAB format.

5.1  Experiment 1: Effect of RLS on the P-wave 
analysis

The PTB database contains 549 records from 290 subjects 

with each record having the conventional 12 leads (I, II,III, 

aVR, aVL, aVF, V
1
 , V

2
 , V

3
 , V

4
 , V

5
 , V

6
 ) and the 3 Frank lead 

ECGs (vx, vy, vz). The signals are recorded at a sampling 

frequency of 1000 Hz. In the case of a reduced lead system 

with three leads, two leads I and II are fixed, and one of 

the precordial lead is selected from V
1
-V

6
 . The reduced lead 

system having four leads includes I, II, V
1
 and one of the 

leads from V
2
-V

6
.

Fig. 6 shows the distortion in ECG signal of lead V
1
 com-

pared with the original signal when the lead V
1
 is derived 

from a 3-lead RLS with the method mentioned in Nallikuzhy 

and Dandapat (2017). Similarly, Fig. 7 depicts the effect 

of using separate regression coefficients for different seg-

ments of ECG compared to the same coefficients. Although 

the P-wave can be detected, the morphology is completely 

changed when the method in Nallikuzhy and Dandapat 

(2017), or the method with same regression coefficients is 

applied for lead derivation. The proposed lead derivation 

method with separate regression coefficients shows an excel-

lent reconstruction quality for the P-wave as shown in Fig. 7.

Table 2 shows the significance of lead selective approach 

compared to the fixed lead combinations for a 4-lead reduced 

system in terms of PRDs (Mean ± Standard deviation). The 

PRDs are averaged over the entire subjects in PTB database. 

As the reconstruction quality increases with the decrease in 

PRDs, the lead selective approach has better reconstruction 

quality compared to other fixed lead combinations. Tables 3 

and 4 show the average PRDs and correlation coefficients 

corresponding to different segments {S1, S2, S3} with same 

regression coefficients as P
s
 , R

s
 and T

s
 , and with different 

coefficients as P
d
 , R

d
 and T

d
 for a 3-lead RLS. The PRDs 

as well as correlation coefficients are improved drastically 

by segment-wise regression (i.e., different regression coef-

ficients for different segments). Also, it can be seen that 

the improvement is very significant in the case of P-wave. 

Entire beat
d
 denotes the PRD or correlation coefficient for 

Fig. 6  Original and derived V
1
 lead using the method in Nallikuzhy 

and Dandapat (2017) in a 3-lead reduced system for PTB database 

subject ’ s0460_rem’

Fig. 7  Original and derived 

V
1
 lead using separate coeffi-

cients and same coefficients for 

different segments in a 3-lead 

reduced system for PTB data-

base subject ’ s0460_rem’
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the entire beat when each segment in the beat are regressed 

using different coefficients. The signal quality of each seg-

ment particularly P-wave segments are improved signifi-

cantly by the different coefficients. Similarly, Tables 5 and 

6 show the performance of 4-lead reduced system with dif-

ferent coefficients for different segments and with same coef-

ficients for different segments. The performance of 4-lead 

reduced system is superior compared to 3-lead RLS.

Figs. 8 and 9 present the boxplots of overall PRD values 

for P-waves with same regression coefficients and with dif-

ferent regression coefficients respectively in a 3-lead reduced 

system. Similarly, Figs. 10 and 11 show the boxplots cor-

responding to 4-lead reduced system. The performance of 

system with different regression coefficients is superior and 

is clearly visible from figures. The performance of the pro-

posed system compared to the method in Nallikuzhy and 

Dandapat (2017) in terms of different performance metrics 

is shown in Table 7. The performance evaluation using met-

rics such as PRD, correlation coefficient, WEDD, and R2 

statistics indicate that the proposed system outperforms the 

system presented in Nallikuzhy and Dandapat (2017) for 

both the 3-lead and 4-lead reduced systems.

The important observations from the experimental results 

are the following: (i) The lead selective approach has better 

reconstruction quality for the complete ECG signal com-

pared to other fixed lead combinations as shown in Table 2. 

This clearly demonstrates that the proposed method out-

weighs the state-of-the-art methods presented in Nelwan 

et al. (2004) and Scherer et al. (1989) (ii) The proposed 

method shows an excellent reconstruction quality for the 

P-wave compared to other existing methods in Nelwan et al. 

(2004) and Nallikuzhy and Dandapat (2017) as illustrated 

in Figs. 6 and 7. (iii) By analyzing Table 7, we can conclude 

that the proposed method has better performance in terms of 

Table 2  PRDs corresponding to different lead combinations for a 4-lead reduced system

Lead combinations V
2

V
3

V
4

V
5

V
6

Net average

[I, II, V
1
 , V

2
] – 11.98 ± 7.94 20.31 ± 13.62 20.45 ± 16.28 17.94 ± 15.94 17.67 ± 13.44

[I, II, V
1
 , V

3
] 9.31 ± 7.87 – 12.81 ± 10.63 17.48 ± 14.30 16.88 ± 13.71 14.12 ± 11.63

[I, II, V
1
 , V

4
] 13.81 ± 10.09 11.34 ± 9.50 – 12.90 ± 11.23 15.43 ± 13.48 13.37 ± 11.07

[I, II, V
1
 , V

5
] 16.68 ± 11.81 18.66 ± 13.11 15.96 ± 12.80 – 10.96 ± 11.00 15.57 ± 12.18

[I, II, V
1
 , V

6
] 17.58 ± 12.20 21.56 ± 13.66 22.55 ± 14.91 13.16 ± 11.48 – 18.71 ± 13.06

Lead selective [I, II, V
1
 , V

s
] 11.14 ± 8.58 11.32 ± 9.92 11.83 ± 9.37 14.20 ± 10.78 14.13 ± 11.69 12.52 ± 10.07

Table 3  Average PRDs 

corresponding to different 

segments with same regression 

coefficients ((P
s
 , R

s
 and T

s
 )) 

and with different regression 

coefficients ( P
d
 , R

d
 and T

d
 ) for 

3-lead reduced system

V
1

V
2

V
3

V
4

V
5

V
6

Average

P
s

86.65 81.37 65.59 64.53 79.17 66.80 74.02

P
d

52.21 32.53 28.59 24.92 32.32 34.26 34.14

R
s

19.85 19.22 17.86 18.14 18.73 15.75 18.26

R
d

16.75 13.96 14.47 14.82 15.77 13.86 14.94

T
s

45.53 30.62 29.43 35.87 49.23 41.70 38.73

T
d

33.18 21.35 20.37 22.80 31.46 31.12 26.71

Entire beat 
s

24.96 20.31 20.40 21.91 24.59 21.47 22.28

Entire beat 
d

20.17 14.98 15.80 15.83 18.19 17.00 17.00

Table 4  Average correlation 

coefficients corresponding to 

different segments with same 

regression coefficients ((P
s
 , 

R
s
 and T

s
 )) and with different 

regression coefficients ( P
d
 , 

R
d
 and T

d
 ) for 3-lead reduced 

system

V
1

V
2

V
3

V
4

V
5

V
6

Average

P
s

0.60 0.52 0.68 0.85 0.88 0.89 0.74

P
d

0.79 0.86 0.89 0.92 0.89 0.89 0.87

R
s

0.97 0.97 0.97 0.97 0.98 0.99 0.98

R
d

0.98 0.98 0.99 0.98 0.98 0.99 0.98

T
s

0.83 0.91 0.94 0.92 0.85 0.87 0.89

T
d

0.88 0.95 0.96 0.95 0.91 0.90 0.93

Entire beat 
s

0.96 0.97 0.97 0.97 0.96 0.97 0.97

Entire beat 
d

0.97 0.98 0.98 0.98 0.98 0.98 0.98
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Table 5  Average PRDs 

corresponding to different 

segments with same regression 

coefficients ( P
s
 , R

s
 and T

s
 ) 

and with different regression 

coefficients ( P
d
 , R

d
 and T

d
 ) for 

4-lead reduced system

V
2

V
3

V
4

V
5

V
6

Average

P
s

61.75 50.95 48.19 57.85 52.51 54.25

P
d

25.87 25.56 23.51 28.32 30.98 26.85

R
s

12.26 11.97 12.83 13.87 12.30 12.64

R
d

9.74 10.05 10.91 12.11 11.26 10.81

T
s

22.50 20.74 25.66 36.34 33.39 27.73

T
d

16.65 16.27 18.25 25.51 26.85 20.71

Entire beat 
s

14.69 14.26 15.74 18.18 16.88 15.95

Entire beat 
d

11.16 11.41 12.14 14.37 14.23 12.66

Table 6  Average correlation 

coefficients corresponding to 

different segments with same 

regression coefficients ( P
s
 , 

R
s
 and T

s
 ) and with different 

regression coefficients ( P
d
 , 

R
d
 and T

d
 ) for 4-lead reduced 

system

V
2

V
3

V
4

V
5

V
6

Average

P
s

0.83 0.83 0.84 0.87 0.88 0.85

P
d

0.93 0.92 0.93 0.92 0.91 0.92

R
s

0.99 0.99 0.99 0.98 0.99 0.99

R
d

0.99 0.99 0.99 0.99 0.99 0.99

T
s

0.95 0.96 0.95 0.90 0.90 0.93

T
d

0.97 0.97 0.97 0.94 0.93 0.96

Entire beat 
s

0.99 0.99 0.98 0.98 0.98 0.98

Entire beat 
d

0.99 0.99 0.99 0.99 0.99 0.99

Fig. 8  Boxplot showing PRD of P-waves with same regression coef-

ficients in a 3-lead reduced system

Fig. 9  Boxplot showing PRD of P-waves with separate regression 

coefficients in a 3-lead reduced system

Fig. 10  Boxplot showing PRD of P-waves with same regression coef-

ficients in a 4-lead reduced system

Fig. 11  Boxplot showing PRD of P-waves with separate regression 

coefficients in a 4-lead reduced system
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various performance metrics compared to the method in Nal-

likuzhy and Dandapat (2017) that exploits frequency domain 

characteristics of ECG signal along with best lead selection.

The power efficiency of the proposed system is evalu-

ated by following a power model reported in Abdulghani 

et al. (2009) and employed in earlier studies (Majumdar et al. 

2014; Shukla and Majumdar 2015a, b; Majumdar and Ward 

2015); Singh et al. 2017) for comparative power consump-

tion analysis in remote monitoring applications. The total 

power ( P
tot

 ) is given by the sum of three different types of 

power.

The power consumed for signal sensing ( P
sen

 ) includes two 

stages, namely amplification ( Pamp ) and analog-to-digital 

conversion ( P
ADC

 ). For C number of channels,

The processing power ( Pproc ) involves power needed for dif-

ferent operations like regression ( Preg ) or principal compo-

nent analysis ( P
PCA

 ) or discrete wavelet transform ( P
DWT

 ). 

The transmission power ( P
trans

 ) is given as

where C, J, fs , and R denote the number of channels/leads, 

transmission energy per bit, sampling frequency, and the 

number of bits per sample, respectively.

In the proposed method, C = 3 or 4 as reduced number of 

leads are used to derive the other leads. Also, we consider 

the entire system of deriving leads for calculating the power 

efficiency. A CMOS amplifier having a gain of 67.7 dB 

(13)Ptot = Psen + Pproc + Ptrans

(14)Psen = C(Pamp + PADC)

(15)Ptrans = CJfsR

consumes Pamp = 0.274 �W  for ECG signal amplification. 

An ADC with 12-bit resolution and fs = 500 Hz consumes 

approximately 0.2 �W  . The transmission energy per bit is 

5 nJ. Preg involves 4 N
s
 multiplications and 3 N

s
 additions 

for deriving a single lead from RLS. As the energy cost 

for addition is negligible, we consider only the energy cost 

for 32-bit floating-point multiplication which is 3.7 pJ. The 

power required for DWT computation, i.e. P
DWT

 is 100 �W 

per ECG channel.

With the above-mentioned values for different types of 

power, the total power for the proposed method using 4-lead 

RLS (i.e., C = 4) is compared with that in Nallikuzhy and 

Dandapat (2017) as shown in Table 8. The lead derivation 

using method in Nallikuzhy and Dandapat (2017) involves 

DWT computation on the four input predictor leads as well 

as inverse DWT computation on the four regressed output 

(wavelet coefficients). Therefore, the total P
DWT

 in Nalliku-

zhy and Dandapat (2017) is estimated as 800 �W  . Table 8 

shows that the proposed method consumes only 13% power 

compared to that in Nallikuzhy and Dandapat (2017).

Table 7  Comparison of 

proposed system with the 

system presented in Nallikuzhy 

and Dandapat (2017) in terms 

of different performance metrics

Reduced 

lead system

Method Metric V
1

V
2

V
3

V
4

V
5

V
6

Average

3-lead  Nalliku-

zhy and 

Dandapat 

(2017)

PRD 27.12 21.61 23.54 24.01 28.82 29.81 25.82

Correlation 0.95 0.96 0.96 0.96 0.94 0.94 0.95

WEDD 9.36 6.47 7.82 8.47 11.04 10.61 8.96

R
2 0.90 0.93 0.92 0.92 0.89 0.88 0.91

Proposed PRD 20.17 14.98 15.80 15.83 18.19 17.00 17.00

Correlation 0.97 0.98 0.98 0.98 0.98 0.98 0.98

WEDD 7.12 4.44 4.70 5.46 6.78 5.91 5.74

R
2 0.93 0.95 0.95 0.96 0.95 0.96 0.95

4-lead  Nalliku-

zhy and 

Dandapat 

(2017)

PRD – 15.54 16.21 17.20 18.49 19.79 17.45

Correlation – 0.98 0.98 0.98 0.98 0.97 0.98

WEDD – 4.89 5.35 6.13 7.47 7.79 6.33

R
2 - 0.96 0.96 0.96 0.95 0.94 0.95

Proposed PRD – 11.14 11.32 11.83 14.20 14.13 12.52

Correlation – 0.99 0.99 0.99 0.99 0.99 0.99

WEDD – 3.39 3.39 3.39 3.39 3.39 3.39

R
2 – 0.98 0.98 0.97 0.97 0.96 0.97

Table 8  Power consumption analysis

Method Sensor node Gateway node P
tot

 ( �W)

P
sen

 ( �W) P
trans

 

( �W)

Preg ( �W) P
DWT

 

( �W)

 Nalliku-

zhy and 

Dan-

dapat 

(2017)

1.896 120 0.03 800 921.9

Proposed 1.896 120 0.03 – 121.9
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5.2  Experiment 2: Performance of RLS in AF 
detection

The CPSC 2018 database is intended to boost the development 

of algorithms for the detection of various ECG abnormalities. 

The 12-lead ECGs used in CPSC 2018 include one normal type 

and eight abnormal types, namely AF, First-degree atrioven-

tricular block, Left bundle brunch block, Right bundle brunch 

block, Premature atrial contraction (PAC), Premature ventricular 

contraction (PVC), ST-segment depression (STD), and ST-seg-

ment elevated (STE). The training set contains 6877 recordings 

sampled at 500 Hz. Out of 6877 records in the first training set, 

990 records having number of beats greater than 30 are selected 

for simulation. Among the 990 records, 229 records are positive 

class (i.e., having AF) and 761 records are negative class (i.e., 

having no AF). To evaluate the performance of proposed AF 

detection algorithm, the metrics used are the following.

(16)Specificity (%) =
TN

TN + FP
× 100

(17)Sensitivity (%) =
TP

TP + FN
× 100

(18)Accuracy (%) =
TP + TN

T
× 100

(19)Recall =
TP

TP + FN

(20)Precision =
TP

TP + FP

(21)F
1
− score =

2 × Precision × Recall

Precision + Recall

(22)

MCC

=
(TP × TN) − (FP × FN)

√

(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)

where the parameters TP, TN, FP, FN and T denote true 

positive, true negative, false positive, false negative and total 

(T = TP + TN + FP + FN) respectively. MCC denotes Mat-

thews correlation coefficient (Boughorbel et al. 2017) and 

it is a binary classification rate that achieves a high score 

only if the predictor is able to correctly predict the majority 

of positive data instances and the majority of negative data 

instances.

The threshold values for the different rules in the deci-

sion tree are determined experimentally. In Table 9, the 

performance of the proposed algorithm on AF detection is 

compared with method in Nallikuzhy and Dandapat (2017) 

and the AF screening method in Almusallam and Soudani 

(2019). A total of 990 subjects from CPSC 2018 database is 

used to evaluate the performance. The proposed method per-

forms better as the false positives are reduced significantly. 

The number of false positives in the screening method 

(Almusallam and Soudani 2019) is considerably reduced 

from 356 to 42 by the proposed on-site AF confirmation 

scheme. Also, the accuracy of the proposed scheme is high 

compared to other methods. Even though the method in Nal-

likuzhy and Dandapat (2017) has accuracy in AF detection 

somewhat closer to the proposed lead derivation method, 

this is achieved at a much higher power consumption for 

DWT computation (Acharya and Chakrabarti 2006).

In order to handle the imbalanced classification problem 

(Luque et al. 2019), precision, recall, F
1
-score, and MCC are 

considered for comparing the classification performance of 

the proposed system with the methods in Almusallam and 

Soudani (2019) and Nallikuzhy and Dandapat (2017). F
1

-score, the most common metric employed on imbalanced 

classification problem, captures the properties of both preci-

sion and recall. The F1-score is simply the harmonic mean 

of precision and recall. Higher the F
1
-score, better the per-

formance. The MCC value ranges between –1 (perfect mis-

classification) and +1 (perfect classification). The proposed 

method exhibits higher F
1
-score and MCC value compared 

to Almusallam and Soudani (2019) and Nallikuzhy and Dan-

dapat (2017) as shown in Fig. 12 and thus it is evident that 

the proposed method outweighs the other methods.

Table 9  Performance 

comparison of methods in 

Almusallam and Soudani (2019) 

and Nallikuzhy and Dandapat 

(2017) with the proposed 

method for AF detection in 

terms of specificity, sensitivity, 

and accuracy

Single lead 3-lead 4-lead

Almusallam and 

Soudani (2019)

Nallikuzhy and 

Dandapat (2017)

Proposed Nallikuzhy and 

Dandapat (2017)

Proposed

TP 193 213 213 212 212

FP 356 57 48 50 42

TN 405 704 713 711 719

FN 36 16 16 17 17

Specificity (%) 53.2 92.5 93.69 93.43 94.48

Sensitivity (%) 84.3 93.01 93.01 92.58 92.58

Accuracy (%) 60.4 92.63 93.53 93.23 94.04
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The reconstruction quality of the derived ECG leads 

depends on the quality of the input ECG signal. The 

recorded ECG signals will have a low amplitude in gen-

eral, particularly for P-waves. When the noise during signal 

recording causes the signal-to-noise ratio (SNR) to reduce, 

the system fails to detect P-waves from the noisy signal, and 

as a result, false-positive for atrial fibrillation (AF) detection 

increases. As SNR of the input ECG signal is varied from 

20 to 10 dB, the proposed method exhibits robustness to 

noise till SNR = 11 dB as depicted in Fig. 13 by the effect 

of noise on the F
1
-score of the proposed method. Only some 

subjects are adversely affected by the noise, whereas others 

are robust to noise.

Some common types of ECG noises are baseline wan-

der noise, powerline interference noise, electromyographic 

(EMG) noise, and electrode motion artifact noise. The effect 

of baseline wander noise can be reduced by using a high pass 

filter with a cut-off frequency of 0.5 to 0.6 Hz. Powerline 

interference noise (50 or 60 Hz noise from mains supply) 

can be removed by using a notch filter of 50 or 60 Hz cut-off 

frequency. High-frequency noise such as EMG noise can be 

removed by employing a low pass filter with an appropriate 

cut-off frequency. Under noisy environment, the ECG signal 

has to be filtered as a part of preprocessing before proceed-

ing to the detection process.

6  Discussion

This paper discusses the method for confirming AF in a 

WBAN scenario using the derived standard 12-lead ECG 

from an RLS. Although there exist several AF detectors 

using single lead and 12-lead standard ECG, AF confirma-

tion using standard 12-lead ECG in a low-power setting like 

WBAN is not addressed in the literature. The confirmation 

using standard 12-lead ECG is vital even for the most reli-

able existing AF screening/detection methods.

The proposed ECG signal derivation from RLS employs 

segment-wise regression of ECG and lead selection algo-

rithm. The proposed method improves the reconstruction 

quality of P-wave signals in almost all leads. From the 

Tables 3, 4, 5, 6 and 7, it is evident that the reconstruction 

quality of the derived signals ( V
1
-V

6
 ) are improved signifi-

cantly with the proposed method. Compared to the reduced 

lead system with the same regression coefficients, PRD of 

P-wave segment is reduced to half from 54.46% to 26.21% as 

well as the correlation coefficient is increased from 0.85 to 

0.92 for the system with different regression coefficients. In 

the proposed ECG lead derivation method, the morphology 

of P-waves are preserved better than the other methods as 

clearly depicted in Figs. 6 and 7.

Each on-body sensor node of the RLS senses the ECG 

signal and sends it to the gateway node for lead derivation. 

For reduced power consumption at the sensor nodes and 

gateway node, deterministic binary block diagonal (DBBD) 

matrix based compressed sensing (CS) can be performed 

at the sensor nodes as discussed in Mamaghanian et al. 

(2011) and Koya and Deepthi (2019). The ECG signals of 

the reduced lead set can be reconstructed from the received 

measurements at the gateway node through a simple and low 

complex algorithm (Koya and Deepthi 2019). The proposed 

lead derivation algorithm is carefully developed with very 

low number of operations to ensure that the power consump-

tion at gateway node is maintained low. The proposed lead 

derivation at the gateway node is a simple linear mapping of 

the reduced leads using the learned model regression coef-

ficients during the online phase. Here, only 4 N
s
 multiplica-

tions and 3 N
s
 additions are required for the derivation of a 

lead from the 4-lead reduced set at the gateway node, where 

N
s
 is the number of samples in each lead. This computational 

complexity is very low when compared with the recent lead 

derivation method presented in Nallikuzhy and Dandapat 

(2017), where the online phase involves both DWT and 

inverse DWT functions in addition to the 4 N
s
 multiplica-

tions and 3 N
s
 additions required for the lead derivation via 

Fig. 12  Performance comparison of methods in Almusallam and 

Soudani (2019) and Nallikuzhy and Dandapat (2017) with the pro-

posed method for AF detection in terms of recall, precision, F
1
-score, 

and MCC

Fig. 13  Effect of noise on the F
1
-score of the proposed method
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regression analysis. The DWT computations are computa-

tionally intensive; even the hardware-efficient DWT filter 

banks that can be employed in embedded platforms for 

physiological signal monitoring consume reasonable power 

(Eminaga et al. 2018). Hence the proposed AF detection 

scheme having lead derivation based on time-domain com-

putation is power-efficient, and it is a suitable candidate for 

deployment in a resource-constrained WBAN environment.

The proposed AF detection scheme has improved speci-

ficity, sensitivity, accuracy, precision, recall, F
1
-score, and 

MCC as demonstrated in Table 9 and Fig. 12. The few 

false positives and false negatives in the proposed scheme 

(Table 9) can be substantially reduced to a minimum by 

making available the derived 12-lead ECG to a physician 

via cloud for confirmation. To tackle the effect of mobility 

artifacts, the patients can rest in a supine position to record 

the 12-lead ECG using RLS when the AF is detected via 

screening. Also, the proposed method can be combined 

with other energy-saving techniques like duty-cycling, pro-

tocol optimization, and transmission power adaptation as 

presented in Xu et al. (2020) and Xu et al. (2020) so as to 

develop a cross-layer design for resolving the various chal-

lenges inherent in remote continuous healthcare monitoring.

7  Conclusion

In this paper, we proposed a scheme for the efficient on-site 

confirmation testing of AF using standard 12-lead ECG. The 

proposed lead derivation method improves patient comfort 

and reduces the power consumption of sensor nodes and 

gateway nodes. On-site confirmatory testing minimizes the 

patients’ anxiety and improves the medical care that can be 

timely provided to the patients. The segment-wise regres-

sion approach together with the precordial lead selection 

improves the reconstruction quality of the signals compared 

to the entire ECG beat regression using the same regres-

sion coefficients. Different performance evaluation metrics 

such as PRD, correlation coefficient, WEDD and R2 statistics 

were used to quantify the improvement in signal quality. AF 

detection is carried out on the derived ECG signal using 

a simple scheme that involves only two score measures, 

namely RR irregularity score and a novel P-wave evidence 

score specifically designed for AF. The proposed scheme 

exhibits improved accuracy, F
1
-score, and MCC in classify-

ing AF from a dataset containing one normal and 8 abnormal 

types including AF.

Further research is required to understand the effect of 

noise and mobility artifacts on the performance of the pro-

posed scheme.
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