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Abstract— We investigate online nonlinear regression and
introduce novel regression structures based on the long short
term memory (LSTM) networks. For the introduced structures,
we also provide highly efficient and effective online training
methods. To train these novel LSTM-based structures, we put
the underlying architecture in a state space form and introduce
highly efficient and effective particle filtering (PF)-based updates.
We also provide stochastic gradient descent and extended Kalman
filter-based updates. Our PF-based training method guarantees
convergence to the optimal parameter estimation in the mean
square error sense provided that we have a sufficient num-
ber of particles and satisfy certain technical conditions. More
importantly, we achieve this performance with a computational
complexity in the order of the first-order gradient-based methods
by controlling the number of particles. Since our approach is
generic, we also introduce a gated recurrent unit (GRU)-based
approach by directly replacing the LSTM architecture with the
GRU architecture, where we demonstrate the superiority of
our LSTM-based approach in the sequential prediction task via
different real life data sets. In addition, the experimental results
illustrate significant performance improvements achieved by the
introduced algorithms with respect to the conventional methods
over several different benchmark real life data sets.

Index Terms— Gated recurrent unit (GRU), Kalman filtering,
long short term memory (LSTM), online learning, particle
filtering (PF), regression, stochastic gradient descent (SGD).

I. INTRODUCTION

A. Preliminaries

T
HE problem of estimating an unknown desired signal

is one of the main subjects of interest in contemporary

online learning literature, where we sequentially receive a data

sequence related to a desired signal to predict the signal’s next

value [1]. This problem is known as online regression and

it is extensively studied in the neural network [2], machine

learning [1], and signal processing literatures [3], especially

for prediction tasks [4]. In these studies, nonlinear approaches

are generally employed because for certain applications, linear

modeling is inadequate due to the constraints on linearity [3].

Here, in particular, we study the nonlinear regression in an

online setting, where we sequentially observe a data sequence
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and its label to find a nonlinear relation between them to

predict the future labels.

There exists a wide range of nonlinear modeling approaches

in the machine learning and signal processing literatures for

regression [1], [3]. However, most of these approaches usually

suffer from high computational complexity and they may

provide inadequate performance due to stability and overfitting

issues [3]. Neural network-based regression algorithms are

also introduced for nonlinear modeling since neural networks

are capable of modeling highly nonlinear and complex struc-

tures [2], [4], [5]. However, they are also shown to be prone

to overfitting problems and demonstrate less than adequate

performance in certain applications [6], [7]. To remedy these

issues and further enhance their performance, neural networks

composed of multiple layers, i.e., known as deep neural net-

works (DNNs), are recently introduced [8]. In DNNs, a layered

structure is employed so that each layer performs a feature

extraction based on the previous layers [8]. With this mecha-

nism, DNNs are able to model highly nonlinear and complex

structures [9]. However, this layered structure poorly performs

in capturing time dependencies in the data so that DNNs can

provide only limited performance in modeling time series and

processing temporal data [10]. As a remedy, basic recurrent

neural networks (RNNs) are introduced since these networks

have inherent memory that can store the past information [5].

However, basic RNNs lack control structures so that the long-

term components cause either an exponential growth or decay

in the norm of gradients during training, which are the

well-known exploding and vanishing gradient problems,

respectively [6], [11]. Hence, they are insufficient to cap-

ture long-term dependencies on the data, which significantly

restricts their performance in real life tasks [12]. In order

to resolve this issue, a novel RNN architecture with several

control structures, i.e., long short term memory (LSTM)

network [12], [13], is introduced. However, in the classi-

cal LSTM structures, we do not have the direct contribu-

tion of the regression vector to the output, i.e., the desired

signal is regressed only using the state vector [4]. Hence,

in this paper, we introduce LSTM-based online regression

architectures, where we also incorporate the direct contribu-

tion of the regression vectors inspired from the well-known

ARMA models [14].

After the neural network structure is fixed, there exists a

wide range of different methods to train the corresponding

parameters in an online manner. Especially the first-order

gradient-based approaches are widely used due to their effi-

ciency in training because of the well-known backpropagation

2162-237X © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



ERGEN AND KOZAT: EFFICIENT ONLINE LEARNING ALGORITHMS BASED ON LSTM NEURAL NETWORKS 3773

recursion [4], [15]. However, these techniques provide poorer

performance compared with the second-order gradient-based

techniques [5], [16]. As an example, the real-time recurrent

learning (RTRL) algorithm is highly efficient in calculating

gradients [15], [16]. However, since the RTRL algorithm

exploits only the first-order gradient information, it performs

poorly on ill-conditioned problems [17]. On the other side,

although the second-order gradient-based techniques provide

much better performance, they are highly complex compared

with the first-order methods [5], [16], [18]. As an example,

the well-known extended Kalman filter (EKF) method also

uses the second-order information to boost its performance,

which requires to update the error covariance matrix of

the parameter estimate and brings an additional complexity

accordingly [19]. Furthermore, the second-order gradient-

based methods provide limited training performance due

to an abundance of saddle points in neural network-based

applications [20]. To alleviate the training issues, we intro-

duce particle filtering (PF) [21]-based online updates for the

LSTM architecture. In particular, we first put the LSTM

architecture in a nonlinear state space form and formulate

the parameter learning problem in this setup. Based on

this form, we introduce a PF-based estimation algorithm to

effectively learn the parameters. Here, our training method

guarantees convergence to the optimal parameter estimation

performance in an online manner provided that we have

sufficiently many particles and satisfy certain technical con-

ditions. Furthermore, by controlling the amount of particles

in our experiments, we demonstrate that we can significantly

reduce the computational complexity while providing a supe-

rior performance compared with the conventional second-order

methods. Here, our training approach is generic such that we

also put the recently introduced gated recurrent unit (GRU)

architecture [22] in a nonlinear state space form and then

apply our algorithms to learn its parameters. Through exten-

sive set of simulations, we illustrate significant performance

improvements achieved by our algorithms compared with the

conventional methods [18], [23].

B. Prior Art and Comparisons

Neural network-based learning methods are powerful in

modeling highly nonlinear structures such that a single hidden

layer neural network can adequately model any nonlinear

structure [24]. In addition, these methods, especially complex

RNNs-based methods, are capable of effectively processing

temporal data and modeling time series [4], [12]. Complex

RNNs, e.g., LSTM networks, provide this performance thanks

to their memory to keep the past information and several

control gates to regulate the information flow inside the net-

work [12], [13]. However, for complex RNNs, adequate perfor-

mance requires high computational complexity, i.e., training of

a large number of parameters at every time instance [4]. Thus,

to mitigate complexity, the LSTM network-based methods

in [16] and [5] choose a low-complexity first-order gradient-

based technique, i.e., stochastic gradient descent (SGD) [23],

to train their parameters. Even though there exist certain appli-

cations of LSTM trained with the second-order techniques,

e.g., EKF in [18] and a Hessian free technique in [25], they

suffer from complexity issues and also poor performance due

to an abundance of saddle points [20]. On the contrary, for

basic RNNs, we have less parameters to train; however, these

neural networks do not have control structures [12], [13].

Hence, the exploding and vanishing gradient problems occur

due to long-term components [6], [11]. These problems pre-

vent the basic RNNs from learning correlation between distant

events [6]. To ameliorate performance, the basic RNN-based

learning methods in [5] and [16] choose a high-complexity

second-order gradient-based techniques to train their para-

meters. Hence, either low-complexity neural networks or

low-complexity training methods are chosen to avoid unman-

ageable computational complexity increase. However, basic

RNNs suffer from inadequately capturing long- and short-term

dependencies compared with complex networks [12], [13].

On the other hand, the first-order gradient-based methods

suffer from slower convergence and poorer performance com-

pared with the second-order gradient-based techniques [5].

To circumvent these issues, in this paper, we derive online

updates based on the PF algorithm [21] to train the

LSTM architecture. Thus, we not only provide the second-

order training without any ad hoc linearization but also accom-

plish this with a computational complexity in the order of the

first-order methods (by carefully controlling the number of

particles in modeling).

We emphasize that the conventional neural networks-

based learning methods [5], [16], [18], [23] suffer from the

well-known complexity–performance tradeoff. Due to this

tradeoff, they usually are not chosen to address the nonlinear

regression problem. There are certain neural network-based

methods [5], [16] that particularly investigate the nonlinear

regression; however, they only employ the basic RNN architec-

ture for this purpose. In addition, in their regression approach,

they provide the final estimate by setting the output of the

basic RNN architecture as a scalar value so that the final

estimate becomes linear combination of only the internal

states. Instead, in this paper, we employ the LSTM architecture

for the nonlinear regression and also introduce additional terms

to incorporate the direct contribution of the regression vector

to our final estimate. Therefore, we significantly improve the

regression performance as illustrated in our simulations.

C. Contributions

Our main contributions are as follows.

1) As the first time in the literature, we introduce online

learning algorithms based on the LSTM architecture

for data regression, where we efficiently train the

LSTM architecture in an online manner using our

PF-based approach.

2) We propose novel LSTM-based regression structures

to compute the final estimate, where we introduce an

additional gate to the classical LSTM architecture to

incorporate the direct contribution of the input regressor

inspired from the ARMA models.

3) We put the LSTM equations in a nonlinear state space

form and then derive online updates based on the state-

of-the-art state estimation techniques [21], [26] for each
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parameter. Here, our PF-based method achieves a sub-

stantial performance improvement in online parameter

training with respect to the conventional second- and

first-order methods [18], [23].

4) We achieve this substantial improvement with a com-

putational complexity in the order of the first-order

gradient-based methods [18], [23] by controlling the

number of particles in our method. In our simulations,

we also illustrate that by controlling the number of

particles, we can achieve the same complexity with the

first-order gradient-based methods while providing a far

superior performance compared with the both first- and

second-order methods.

5) Through extensive set of simulations involving real life

and financial data, we illustrate performance improve-

ments achieved by our algorithms with respect to the

conventional methods [18], [23]. Furthermore, since

our approach is generic, we also introduce GRU-based

algorithms by directly applying our approach to

the GRU architecture, i.e., also a complex RNN,

in Section IV.

D. Organization of This Paper

The organization of this paper is as follows. We intro-

duce the online regression problem and then describe our

LSTM-based model in Section II. We then introduce different

architectures to compute the final estimate for data regression

in Section III-A. In Section III-B, we review the conventional

training methods and extend these methods to the introduced

architectures. We then introduce our PF-based training algo-

rithm in Section III-C. In Section IV, we illustrate the merits

of the proposed algorithms and training methods via extensive

set of experiments involving real life and financial data, and

we also introduce a GRU-based approach for online learning

tasks. We then finalize our paper with concluding remarks

in Section V.

II. MODEL AND PROBLEM DESCRIPTION

All vectors are column vectors and denoted by boldface

lower case letters. Matrices are represented by boldface capital

letters. For a vector u (or a matrix U), uT (UT ) is the ordinary

transpose. The time index is given as subscript, e.g., ut is

the vector at time t . The 1 is a vector of all ones, 0 is a

vector or matrix of all zeros, I is the identity matrix, where

the size is understood from the context. Given a vector u,

diag(u) is the diagonal matrix constructed from the entries

of u.

We sequentially receive {dt }t≥1, dt ∈ R, and regression vec-

tors, {xt }t≥1, xt ∈ R
p such that our goal is to estimate dt based

on our current and past observations {. . . , xt−1, xt }. Given our

estimate d̂t , which can only be a function of {. . . , xt−1, xt }

and {. . . , dt−2, dt−1}, we suffer the loss l(dt , d̂t ). This frame-

work models a wide range of machine learning problems

including financial analysis [27], tracking [28], and state

estimation [19]. As an example, in one step ahead data

prediction under the square error loss, where we sequen-

tially receive data and predict the next sample, we receive

xt = [xt , xt−1 . . . , xt−p+1]
T and then generate d̂t ; after

dt = xt+1 is observed, we suffer l(dt , d̂t ) = (dt − d̂t )
2.

In this paper, to generate the sequential estimates d̂t , we

use RNNs. The basic RNN structure is described by the

following set of equations [16]:

ht = κ(W (h)xt + R(h)ht−1) (1)

yt = u(R(y)ht ) (2)

where ht ∈ R
m is the state vector, xt ∈ R

p is the input,

and yt ∈ R
m is the output. The functions κ(·) and u(·) apply

to vectors pointwise and commonly set to tanh(·). For the

coefficient matrices, we have W (h) ∈ R
m×p , R(h) ∈ R

m×m ,

and R(y) ∈ R
m×m .

As a special case of RNNs, we use the LSTM neural

network [12] with only one hidden layer. Although there

exists a wide range of different implementations of the

LSTM network, we use the most widely used extension, where

the nonlinearities are set to the hyperbolic tangent function

and the peephole connections are eliminated. This LSTM

architecture is defined by the following set of equations [12]:

zt = h(W (z)xt + R(z) yt−1 + b(z)) (3)

i t = σ(W (i)xt + R(i) yt−1 + b(i)) (4)

f t = σ(W ( f )xt + R( f ) yt−1 + b( f )) (5)

ct = �
(i)
t zt + �

( f )
t ct−1 (6)

ot = σ(W (o)xt + R(o) yt−1 + b(o)) (7)

yt = �
(o)
t h(ct ) (8)

where �
( f )
t = diag( f t ), �

(i)
t = diag(i t ), and �

(o)
t = diag(ot ).

Furthermore, ct ∈ R
m is the state vector, xt ∈ R

p is the

input vector, and yt ∈ R
m is the output vector. Here, i t , f t ,

and ot are the input, forget, and output gates, respectively.

The functions g(·) and h(·) apply to vectors pointwise and

commonly set to tanh(·). Similarly, the sigmoid function σ(·)

applies pointwise to the vector elements. For the coefficient

matrices and the weight vectors, we have W (z) ∈ R
m×p ,

R(z) ∈ R
m×m , b(z) ∈ R

m , W (i) ∈ R
m×p , R(i) ∈ R

m×m ,

b(i) ∈ R
m , W ( f ) ∈ R

m×p , R( f ) ∈ R
m×m , b( f ) ∈ R

m ,

W (o) ∈ R
m×p , R(o) ∈ R

m×m , and b(o) ∈ R
m . Given the

output yt , we generate the final estimate as

d̂t = wT
t yt (9)

where the final regression coefficients wt will be trained in

an online manner in the following. Our goal is to design

the system parameters so that
∑n

t=1 l(dt , d̂t ) or E[l(dt , d̂t )]

is minimized.

Remark 1: The basic LSTM network can be extended by

including last s outputs in the recursion, e.g., { yt−s, . . . , yt−1};

however, this case corresponds to an extended output defini-

tion, i.e., an extended super output vector consisting of all

{ yt−s, . . . , yt−1}. We use only yt−1 for notational simplicity.

In the following section, we first introduce novel LSTM

network-based regression architectures inspired from the

ARMA models. Then, we review and extend the conventional

methods [18], [23] to learn the parameters of LSTM in an

online manner. Finally, we provide our novel PF-based training

method.
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Fig. 1. Detailed schematic of the proposed architecture in (11) for
the regression tasks. Note that for the summations before the gate and
h(·) functions, we multiply xt and yt−1 by W (.) and R(.), respectively,

and also we add the weight vector b(.) to these summations. We omit these
operations for presentation simplicity.

III. NOVEL LEARNING ALGORITHMS BASED

ON LSTM NEURAL NETWORKS

In this section, we first introduce our novel contributions for

data regression. For these contributions, we also derive online

updates based on the SGD, EKF, and PF algorithms.

A. Different Regression Architectures

We first consider the direct linear combination of the

output yt with the weight vector wt . In this case, given (8),

we generate the final estimate as

d̂
(1)
t = wT

t yt

= wT
t �

(o)
t h(ct ) (10)

where wt ∈ R
m . In (10), the final estimate of the system

does not directly depend on xt . However, in generic non-

linear regression tasks, the final estimate usually depends

on the current regression vector also [29]. For this purpose,

we introduce a linear term to incorporate the effects of the

input vector, i.e., the regression vector, to the final estimate as

shown in Fig. 1. Hence, we introduce the second regression

architecture as

d̂
(2)
t = wT

t �
(o)
t h(ct ) + vT

t �
(α)
t h(xt ) (11)

vt ∈ R
p , in accordance with (10), where �

(α)
t = diag(αt ) and

αt = σ
(

W (α)xt + R(α)�
(o)
t−1h(ct−1) + b(α)

)

.

Here, the final estimate directly depends on xt and also the

dependence is controlled by the control gate, i.e., αt .

In (10) and (11), the effects of the input and state vectors are

controlled by the control and output gates, respectively. Thus,

TABLE I

COMPARISON OF THE COMPUTATIONAL COMPLEXITIES OF THE PROPOSED

ONLINE TRAINING METHODS. p REPRESENTS THE DIMENSIONALITY

OF THE REGRESSOR SPACE, m REPRESENTS THE DIMENSIONALITY

OF THE NETWORK’S OUTPUT SPACE, AND N REPRESENTS

THE NUMBER OF PARTICLES FOR THE PF ALGORITHM

these gates may restrict the exposure of the state and input

contents in nonlinear regression problems. To expose the full

content of the state and input vectors, we remove the control

and output gates in (11) and introduce the third regression

architecture as follows:

d̂
(3)
t = wT

t h(ct ) + vT
t h(xt ). (12)

Note that d̂
(2)
t is our most general architecture to compute

the final estimate since the updates for d̂
(1)
t are a special case

when �
(α)
t = 0 and the updates for d̂

(3)
t are a special case when

�
(o)
t = I and �

(α)
t = I . In the following sections, we provide

the full derivations for d̂
(1)
t for notational and presentation

simplicity, and also provide the required updates to extend

these basic derivations to d̂
(2)
t and d̂

(3)
t .

B. Conventional Online Training Algorithms

In this section, we introduce methods to learn the cor-

responding parameters of the introduced architectures in an

online manner. We first derive the online updates based

on the SGD algorithm [17], i.e., also known as the

RTRL algorithm [23] in the neural network literature, where

we derive the recursive gradient formulations to obtain the

online updates for the LSTM architecture.

The SGD algorithm exploits only the first-order gradient

information so that it usually converges slower compared

with the second-order gradient-based techniques and performs

poorly on ill-conditioned problems [17]. To mitigate these

problems, we next consider the second-order gradient-based

techniques, which have faster convergence rate and are more

robust against ill-conditioned problems [5]. We first put the

LSTM equations in a nonlinear state space form so that we

can consider the EKF algorithm [19] to train the parameters in

an online manner. However, the EKF algorithm requires the

first-order Taylor series expansion to linearize the nonlinear

network equations and this degrades its performance [5], [19].

In addition, Table I shows that the EKF algorithm has high

computational complexity compared with the SGD algorithm.

In the following sections, we derive both the SGD- and

EKF-based training methods and extend these derivations to

the regression architectures in (10)–(12).

1) Online Learning With the SGD Algorithm: For each

parameter set, we next derive the stochastic gradient updates,

i.e., also known as the RTRL algorithm [23], to minimize the

instantaneous loss, i.e., l(dt , d̂t ) = (dt − d̂t )
2, and extend these
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calculations to the introduced architectures. For the weight

vector, we use

wt+1 = wt − µt∇wt l(dt , d̂t )

= wt + 2µt (dt − d̂t )�
(o)
t h(ct ) (13)

where for the learning rate µt , we have µt → 0 as t → ∞

and
∑t

k=1 µk → ∞ as t → ∞, e.g., µt = 1/t . For the

parameter W (z), we have the following update:

W (z) = W (z) − µt∇W (z)l(dt , d̂t ).

For notational simplicity, we derive the updates for each entry

of W (z) separately. We denote the entry in the i th row and

j th column of W (z) by w
(z)
i j . We have the following update

for each entry of W (z):

w
(z)
i j = w

(z)
i j + 2µt (dt − d̂t )w

T
t

∂
(

�
(o)
t h(ct )

)

∂w
(z)
i j

. (14)

We write the partial derivative in (14) as

∂
(

�
(o)
t h(ct )

)

∂w
(z)
i j

= �

(

∂o

∂w
(z)
i j

)

t h(ct ) + �
(o)
t �

(h′(c))
t

∂ct

∂w
(z)
i j

(15)

where h′(·) denotes the differential of h(·) with respect to its

argument, �
(h′(c))
t = diag(h′(ct )), and

�

(

∂o

∂w
(z)
i j

)

t = diag

(

∂ot

∂w
(z)
i j

)

.

Now, we compute the partial derivatives of ot and ct with

respect to w
(z)
i j . Taking derivative of (7) gives

∂ot

∂w
(z)
i j

= �
(σ ′(ζ (o)))
t

⎡

⎢

⎢

⎣

R(o)�
(o)
t−1�

(h′(c))
t−1 ψ

(z)
i j,t−1

+ R(o)�

(

∂o

∂w
(z)
i j

)

t−1 h(ct−1)

⎤

⎥

⎥

⎦

(16)

where

ζ
(o)
t = W (o)xt + R(o)�

(o)
t−1h(ct−1) + b(o) (17)

and

ψ
(z)
i j,t−1 =

∂ct−1

∂w
(z)
i j

. (18)

To get (15), we also compute the partial derivative of ct with

respect to w
(z)
i j . Using (18), we write the following recursive

equation:

ψ
(z)
i j,t = �

(z)
t

∂ i t

∂w
(z)
i j

+ �
(i)
t

∂ zt

∂w
(z)
i j

+�
(c)
t−1

∂ f t

∂w
(z)
i j

+�
( f )
t ψ

(z)
i j,t−1.

(19)

To obtain (19), we compute the partial derivatives of (3)–(5)

with respect to w
(z)
i j as follows:

∂ i t

∂w
(z)
i j

= �
(σ ′(ζ (i)))
t

⎡

⎢

⎢

⎣

R(i)�
(o)
t−1�

(h′(c))
t−1 ψ

(z)
i j,t−1

+ R(i)�

(

∂o

∂w
(z)
i j

)

t−1 h(ct−1)

⎤

⎥

⎥

⎦

(20)

∂ f t

∂w
(z)
i j

= �
(σ ′(ζ ( f )))
t

⎡

⎢

⎢

⎣

R( f )�
(o)
t−1�

(h′(c))
t−1 ψ

(z)
i j,t−1

+ R( f )�

(

∂o

∂w
(z)
i j

)

t−1 h(ct−1)

⎤

⎥

⎥

⎦

(21)

∂ zt

∂w
(z)
i j

= �
(h′(ζ (z)))
t

⎡

⎢

⎢

⎣

δi j xt + R(z)�
(o)
t−1�

(h′(c))
t−1 ψ

(z)
i j,t−1

+ R(z)�

(

∂o

∂w
(z)
i j

)

t−1 h(ct−1)

⎤

⎥

⎥

⎦

(22)

where δi j is an m × p matrix with all entries zeros, except a 1

in the i j th position. With these equations, we can compute (19)

and then obtain (15) using (19) and (16). By this, we have all

the required equations for the SGD update in (14).

Remark 2: Here, we derive the updates just for the entries

of W (z). When we take the partial derivative of d̂t with

respect to the entries of the other parameters, (14), (15), (18),

and (19) still hold with a change of the derivative variable.

For (16) and (20)–(22), we also have a change in the form

and location of the δi j xt term. In particular, as in (22), when

we take the derivative of W (.), R(.), and b(.) with respect to

their entries, respectively, additional δi j xt , δi j yt−1, and δi j

terms appear in the derivative equation of the corresponding

structure, i.e., one of (16) and (20)–(22). Here, the size of δi j

changes accordingly.

Remark 3: In case of d̂
(2)
t , instead of (14), we have the

following update:

w
(z)
i j = w

(z)
i j + 2µt (dt − d̂t )

⎡

⎢

⎢

⎣

wT
t

∂
(

�
(o)
t h(ct )

)

∂w
(z)
i j

+ vT
t �

(

∂α

∂w
(z)
i j

)

t h(x t )

⎤

⎥

⎥

⎦

(23)

where the introduced partial derivative term ∂αt/∂w
(z)
i j is

computed in the same manner with (16). Furthermore, we
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have an additional update for vt as follows:

vt+1 = vt + 2µt (dt − d̂t )�
(α)
t h(x t ). (24)

Then, we follow the derivations in (13), (15), (16), and

(19)–(22). For d̂
(3)
t , we just set �

(o)
t = I and �

(α)
t = I and

then all the derivations in (13), (15), (16), (19), and (20)–(24)

follow as in d̂
(2)
t .

According to the update equations in (15), (16), and (19),

update of an entry of a parameter has a computational com-

plexity O(m2 + mp) due to the matrix vector multiplications

in (17). Since we have mp, m2, and m entries for W (.), R(.),

and b(.), respectively, this results in O(m4 + m2 p2) compu-

tational complexity to update the entries of all parameters as

given in Table I.

2) Online Learning With the EKF Algorithm: We next pro-

vide the updates based on the EKF algorithm in order to train

the parameters of the system described in (3)–(8) and (10).

In the literature, there are certain EKF-based methods to train

LSTM (see [18], [30]); however, these methods estimate only

the parameters, i.e., θ t . However, in our case, we also estimate

the state and the output vector of LSTM, i.e., ct and yt ,

respectively. In the following, we derive the updates for our

approach and extend these to the introduced architectures.

The EKF algorithm assumes that the posterior density

function of the states given the observations is Gaussian [19].

This assumption can be satisfied by introducing perturbations

to the system equations via Gaussian noise [31]. Hence,

we first write the LSTM system in a nonlinear state space

form and then introduce Gaussian noise terms to be able to use

the EKF updates. For convenience, we group the parameters

{w, W (z), R(z), b(z), W (i), R(i), b(i), W ( f ), R( f ), b( f ), W (o),

R(o), b(o)} together into a vector θ , θ ∈ R
nθ , where

nθ = 4m(m + p) + 5m. By this, we write the LSTM system

as

yt = τ (ct , x t , yt−1) + ǫt (25)

ct = 	(ct−1, xt , yt−1) + vt (26)

θ t = θ t−1 + et (27)

dt = wT
t yt + εt (28)

where τ (·) and 	(·) are the nonlinear functions

in (8) and (6), respectively, and ǫt , et , vt , and εt are zero-mean

Gaussian random variables. In addition, [ǫT
t , vT

t , eT
t ]T , and εt

are with variances Qt and Rt , respectively. Here, we assume

that Qt and Rt are known or can be estimated from the

data as detailed later in this paper. We write (25)–(27) in a

compact form as

⎡

⎣

yt

ct

θ t

⎤

⎦ =

⎡

⎣

τ (ct , xt , yt−1)

	(ct−1, xt , yt−1)

θ t−1

⎤

⎦ +

⎡

⎣

ǫt

vt

et

⎤

⎦ (29)

dt = wT
t yt + εt . (30)

In the system described in (29) and (30), we are able to

observe only dt and we can estimate yt , ct , and θ t based

on the observed dt values. Thus, we directly apply the

EKF algorithm [19] to estimate yt , ct , and θ t as follows:
⎡

⎣

yt |t

ct |t

θ t |t

⎤

⎦ =

⎡

⎣

yt |t−1

ct |t−1

θ t |t−1

⎤

⎦ + Lt

(

dt − wT
t |t−1 yt |t−1

)

(31)

yt |t−1 = τ (ct |t−1, xt , yt−1|t−1) (32)

ct |t−1 = 	(ct−1|t−1, xt , yt−1|t−1) (33)

θ t |t−1 = θ t−1|t−1 (34)

Lt = 	t |t−1 H t

(

HT
t 	t |t−1 H t + Rt

)−1
(35)

	t |t = 	t |t−1 − L t HT
t 	t |t−1 (36)

	t |t−1 = Ft−1	t−1|t−1 FT
t−1 + Qt−1 (37)

where 	 ∈ R
(2m+nθ )×(2m+nθ ) is the error covariance matrix,

Lt ∈ R
(2m+nθ ) is the Kalman gain, Qt ∈ R

(2m+nθ )× (2m+nθ ) is

the process noise covariance, and Rt ∈ R is the measurement

noise variance. We compute H t and Ft as follows:

HT
t =

[

∂ d̂t

∂ y

∂ d̂t

∂c

∂ d̂t

∂θ

]
∣

∣

∣

∣

y= yt|t−1
c=ct|t−1

θ=θ t|t−1

(38)

and

Ft =

⎡

⎢

⎢

⎢

⎣

∂τ(c, x t , y)

∂ y

∂τ(c, xt , y)

∂c

∂τ(c, xt , y)

∂θ
∂	(c, xt , y)

∂ y

∂	(c, xt , y)

∂c

∂	(c, xt , y)

∂θ
0 0 I

⎤

⎥

⎥

⎥

⎦

∣

∣

∣

∣

∣

∣

∣

∣

y= yt|t
c=ct|t

θ=θ t|t

where Ft ∈ R
(2m+nθ )× (2m+nθ ) and H t ∈ R

(2m+nθ ). For

(35) and (37), we use Qt and Rt ; however, these may not

be known in advance. To estimate Rt , we can use exponential

smoothing as follows:

Rt = (1 − α)Rt−1 + αλ2
t

where 0 < α < 1 is the smoothing constant and

λt =
(

dt − wT
t |t−1 yt |t−1

)

. (39)

For the estimation of Qt , we cannot use the exponential

smoothing technique due to our inability to observe the states

at each time instance. Although there exists a wide variety

of techniques to estimate Qt , we use the algorithm in [32],

which provides a highly effective estimate of Qt .

Remark 4: For the EKF derivations of d̂
(2)
t , we change the

observation model in (30), the update in (31), the Jacobian

computation in (38), and the definition in (39) according to

the definition of the architecture in (11). In addition, we also

extend the parameter vector θ t by adding vt , W (α), R(α),

and b(α). Hence, we have θ t ∈ R
nθ , where nθ = (4m + p)

(m+ p)+5m+2 p. For the EKF derivations of d̂
(3)
t , we change

the observation model in (30), the update in (31), the Jacobian

computation in (38), and the definition in (39) according

to (12). Moreover, we modify θ t by removing W (α), R(α),

b(α), W (o), R(o), and b(o) from its definition for d̂
(2)
t . Hence,

we obtain θ t ∈ R
nθ , where nθ = 3m(m + p) + 4m + p.

According to the update equations in (31)–(33) and

(35)–(37), the computational complexity of the updates based

on the EKF algorithm results in O(m8 + m4 p4) due to the

matrix multiplications in (35)–(37).
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C. Online Training Based on the PF Algorithm

Since the conventional training methods [18], [23] provide

restricted performance as explained in the previous section,

we introduce a novel PF-based method that provides supe-

rior performance compared with the second-order training

methods. Furthermore, we achieve this performance with

a computational complexity in the order of the first-order

methods depending on the choice of N as shown in Table I.

In the following, we derive the updates for our PF-based

training method and extend these calculations to the introduced

architectures.

The PF algorithm [21] requires no assumptions other than

the independence of noise samples in (29) and (30). Hence,

we modify the system in (29) and (30) as follows:

at = ϕ(at−1, xt ) + ηt (40)

dt = wT
t yt + ξt (41)

where ηt and ξt are independent noise samples, ϕ(·, ·) is the

nonlinear mapping in (29), and

at =

⎡

⎣

yt

ct

θ t

⎤

⎦ .

For (40) and (41), we seek to obtain E[at |d1:t ], i.e., the optimal

state estimate in the mean square error (MSE) sense. For this

purpose, we first find the posterior probability density function

p(at |d1:t). We then calculate the conditional mean of the state

vector based on the posterior density function. To obtain the

density function, we employ the PF algorithm [21] as follows.

Let {ai
t , ω

i
t }

N
i=1 denote the samples and the associated

weights of the desired distribution, i.e., p(at |d1:t). Then,

we obtain the desired distribution from its samples as follows:

p(at |d1:t ) ≈

N
∑

i=1

ωi
t δ(at − ai

t ) (42)

where δ(·) represents the Dirac delta function. Since obtaining

the samples from the desired distribution is intractable in

most cases [21], an intermediate function is introduced to

obtain the samples {ai
t }

N
i=1, which is called as importance

function [21]. Hence, we first obtain the samples from the

importance function and then estimate the desired density

function based on these samples as follows. As an example,

in order to calculate Ep[at |d1:t ], we use the following trick:

Ep[at |d1:t ] = Eq

[

at
p(at |d1:t )

q(at |d1:t )

∣

∣

∣

∣

d1:t

]

where E f represents an expectation operation with respect to

a certain density function f (·). Hence, we observe that we

can use q(·), i.e., called as importance function, when direct

sampling from the desired distribution p(·) is intractable.

Here, we use q(at |d1:t) as our importance function to obtain

the samples and the corresponding weights are calculated as

follows:

ωi
t ∝

p(ai
t |d1:t )

q(ai
t |d1:t )

(43)

where the weights are normalized such that

N
∑

i=1

ωi
t = 1.

To simplify the weight calculation, we can factorize (43) to

obtain a recursive formulation for the update of the weights

as follows [26]:

ωi
t ∝

p
(

dt |a
i
t

)

p
(

ai
t |a

i
t−1

)

q
(

ai
t |a

i
t−1, dt

) ωi
t−1. (44)

In (44), we aim to choose the importance function such

that the variance of the weights is minimized. Thus, we can

guarantee that all the particles have nonnegligible weights and

contribute considerably to (42) [33]. In this sense, the optimal

choice of the importance function is p(at |a
i
t−1, dt ); however,

this requires an integration that does not have an analytic

form in most cases [34]. Thus, we choose p(at |a
i
t−1) as

the importance function, which provides a small variance for

the weights but not zero as the optimal importance function

does [21], [34]. This simplifies (44) as follows:

ωi
t ∝ p

(

dt |a
i
t

)

ωi
t−1. (45)

We can now get the desired distribution to compute the

conditional mean of the augmented state vector at using

(42) and (45). By this, we obtain the conditional mean

for at as follows:

E[at |d1:t ] =

∫

at p(at |d1:t )dat

≈

∫

at

N
∑

i=1

ωi
t δ

(

at − ai
t

)

dat =

N
∑

i=1

ωi
t ai

t . (46)

While applying the PF algorithm, the variance of the

weights inevitably increases over time so that after a few

time steps, all but one of the weights get values that are very

close to zero [33]. Due to this reason, although particles with

very small weights have almost no contribution to our estimate

in (46), we have to update them using (40) and (45). Hence,

most of our computational effort is used for the particles

with negligible weights, which is known as the degeneracy

problem [21]. To measure degeneracy, we use the effective

sample size introduced in [35], which is calculated as follows:

Ne f f =
1

∑N
i=1

(

ωi
t

)2
. (47)

Note that a small Ne f f value indicates that the variance of the

weights is high, i.e., the degeneracy problem. If Ne f f is smaller

than a certain threshold [33], then we apply the resampling

algorithm introduced in [26], which eliminates the particles

with negligible weights and focuses on the particles with large

weights to avoid degeneracy. By this, we obtain an online

training method (see Algorithm 1 for the pseudocode) that

converges to E[at |d1:t ], where the convergence is guaranteed

under certain conditions as follows.

Remark 5: For the PF derivations of d̂
(2)
t , we change the

observation model in (41) according to the definition in (11).

We also modify at by adding vt , W (α), R(α), and b(α) to θ t .
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For the PF derivations of d̂
(3)
t , we modify (41) according to

the definition in (12). Furthermore, we modify θ t by removing

W (α), R(α), b(α), W (o), R(o), and b(o) from its definition

for d̂
(2)
t .

Theorem 1: Let at be the state vector such that

sup
at

|at |
4 p(dt |at ) < Kt (48)

where Kt is a finite constant independent of N . Then we have

the following convergence result:

N
∑

i=1

ωi
t ai

t → E[at |d1:t ] as N → ∞.

Proof of Theorem 1. From [36], we have

E

[

∣

∣E[π(at )|d1:t ] −

N
∑

i=1

ωi
t π

(

ai
t

)
∣

∣

4

]

≤ Ct

||π ||4t,4

N2
(49)

where

||π ||t,4 � max {1, (E[|π(at ′)|
4|d1:t ′])

1
4 , t ′ = 1, 2, . . . , t}

π ∈ B4
t , i.e., a class of functions with certain properties

described in [36], and Ct represents a finite constant inde-

pendent of N . With (48), π(at ) = at satisfies the conditions

of B4
t . Therefore, applying π(at ) = at to (49) and then

evaluating (49) as N goes to infinity conclude our proof. �

This theorem provides a convergence result under (48).

The inequality in (48) implies that the conditional distrib-

ution of the observations, i.e., p(dt |at ), decays faster than

at increases [36]. Since generic distributions usually decrease

exponentially, e.g., Gaussian distribution, or they are nonzero

only for bounded intervals, (48) is not a strict assumption

for at . Hence, we can conclude that Theorem 1 can be

employed for most cases.

According to update equations in (40), (41), (45), and (46),

each particle costs O(m2 + mp) due to the matrix

vector multiplications in (40) and (41), and this results in

O(N(m2 + mp)) computational complexity to update all

particles.

IV. SIMULATIONS

In this section, we illustrate the performances of our algo-

rithms on different benchmark real data sets under various

scenarios. We first consider the regression performance for

real life data sets such as kinematic [37], elevators [38],

bank [39], and pumadyn [38]. We then consider the regression

performance for financial data sets, e.g., Alcoa stock price [40]

and Hong Kong exchange rate data [41]. We then compare the

performances of the algorithms based on two different neural

networks, i.e., the LSTM and GRU networks [22]. Finally,

we comparatively illustrate the merits of our LSTM-based

regression architectures described in (10)–(12).

Throughout this section, “Architecture 1” represents the

LSTM network with (10) as the final estimate equation,

similarly “Architecture 2” represents the LSTM network

with (11), and “Architecture 3” represents the LSTM network

with (12).

Algorithm 1 Online Training Based on the PF Algorithm

1: for i = 1 : N do

2: Draw ai
t ∼ p(at |a

i
t−1)

3: Assign wi
t according to (45)

4: end for

5: Calculate total weight: S =
∑N

j=1 w
j
t

6: for i = 1 : N do

7: Normalize: wi
t = wi

t /S

8: end for

9: Calculate Ne f f according to (47)

10: if Ne f f < NT then %NT is a threshold for Ne f f

11: Apply the resampling algorithm in [26]

12: Obtain new pairs {āi
t , ω̄

i
t }

N
i=1, where w̄i

t = 1/N,∀i

13: end if

14: Using {āi
t , ω̄

i
t }

N
i=1, compute the estimate according to (46)

A. Real Life Data Sets

In this section, we evaluate the performances of the algo-

rithms for the real life data sets. We first evaluate the

performances of the algorithms for the kinematic data set

[37]. We then examine the effect of the number of particles

on the convergence rate of the PF-based algorithm using

the same data set. Furthermore, in order to illustrate the

effects of model size while keeping the computation time

same, we perform another experiment on the same data

set for the PF-based algorithm. Finally, we consider three

benchmark real data sets, i.e., elevators [38], bank [39], and

pumadyn [38], to evaluate the regression performances of our

algorithms.

We first consider the kinematic data set [37], i.e., a sim-

ulation of eight-link all-revolute robotic arm. Our aim is to

predict the distance of the effector from a target. We first

select a fixed architecture. For this purpose, we can choose

any one of three architectures since the algorithm with the

best performance is the same for all three architectures as

detailed later in this section. Here, we choose Architecture 1.

Furthermore, we choose the parameters such that all the

introduced algorithms reach their maximum performance for

fair comparison. To provide this fair setup, we have the

following parameters. For this data set, the input vector is

xt ∈ R
8 and we set the output dimension of the neural network

as m = 8. For the PF-based algorithm, the crucial parameter

is the number of particles; we set this parameter as N = 1500.

In addition, we choose ηt and ξt as zero-mean Gaussian

random variables with the covariance Cov[ηt ] = 0.01I

and the variance Var[ξt ] = 0.25, respectively. For the

EKF-based algorithm, we choose the initial error covariance as

	0|0 = 0.01I . Moreover, we choose Qt = 0.01I and

Rt = 0.25. For the SGD-based algorithm, we set

the learning rate as µ = 0.03. As seen in Fig. 2,

the PF-based algorithm converges to a much smaller final

MSE level, and hence significantly outperforms the other

algorithms.

In order to illustrate the effect of the number of particles

on the convergence rate, we perform a new experiment on the

kinematic data set, where we use the same setup except the
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Fig. 2. Sequential prediction performances of the algorithms for the kinematic
data set.

Fig. 3. Comparison of the PF-based algorithm with different number of
particles for the kinematic data set.

number of particles. In Fig. 3, we observe that as the number of

particles increases, the PF-based algorithm achieves a lower

MSE value with a faster convergence rate. Furthermore, as

N increases, the marginal performance improvement achieved

becomes smaller compared with the previous N values. As an

example, we observed that even though there is a significant

improvement between N = 50 and N = 100 cases, there is a

slight improvement between N = 500 and N = 1500 cases.

Hence, if we further increase N , the marginal performance

improvement may not worth the increase in the computational

complexity for our case. Thus, we illustrate that N = 1500 is

a reasonable choice for our simulations.

In addition to the simulation for the convergence rate,

we perform another experiment on the same data set in

order to observe the effects of model size while keeping the

computation time the same. To provide this setup, we choose

four different output dimensions, i.e., m, and the number

of particles, i.e., N , combinations so that each combination

Fig. 4. Comparison of the PF-based algorithm with different N -m combina-
tions for the kinematic data set. Note that all the combinations have the same
computation time.

consumes the same amount of the computation time. In Fig. 4,

we observed that as the model size increases, the performance

of the PF-based algorithm decreases. Since the PF-based algo-

rithm approximates a density function based on the particles,

as the number of particles decreases, we expect to obtain worse

approximations for the density function. Hence, Fig. 4 matches

with our interpretation for the PF-based algorithm.

Other than the kinematic data set, we also consider the

elevators [38], bank [39], and pumadyn [38] data sets. For

all of these data sets, we again select a fixed architecture,

i.e., Architecture 1. In addition, we choose the performance

maximizing parameters while forcing the PF-based algorithm

to consume less training time than the other algorithms by

controlling N . With this setup, we have the following para-

meter selection for each data set. The elevators data set is

obtained from the procedure that is related to controlling

an F16 aircraft and our aim is to predict the variable that

expresses the actions of the aircraft. For this data set, we have

xt ∈ R
18 and we set the output dimension of the neural

network as m = 18. For the other parameters, we use the

same settings with the kinematic data set case except that we

choose N = 100, Qt = 0.0016I , Cov[ηt ] = 0.0016I, and

µ = 0.7. Moreover, the pumadyn data set is obtained from

the simulation of Unimation Puma 560 robotic arm and our

goal is to predict the angular acceleration of the arm. We have

xt ∈ R
32 and we set the output dimension of the neural

network as m = 32. In addition, we set the learning rate as

µ = 0.4 and the number of particles as N = 170. For the other

parameters, we use the same settings with the elevators data set

case. Finally, the bank data set is generated from a simulator

that simulates the queues in banks and our aim is to predict

the fraction of the customers that leave the bank due to full

queues. In this case, we have xt ∈ R
32 and we set the output

dimension of the neural network as m = 32. Moreover, we set

the learning rate as µ = 0.07 and the number of particles as

N = 150. For the other parameters, we use the same settings

with the elevators data set case. As shown in Table II, the

PF-based algorithm achieves a smaller time accumulated error
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TABLE II

TIME ACCUMULATED ERRORS AND THE CORRESPONDING TRAINING

TIMES (IN SECONDS) OF THE LSTM-BASED ALGORITHMS FOR THE

ELEVATORS, PUMADYN, AND BANK DATA SETS. NOTE THAT HERE

WE USE A COMPUTER WITH i5-6400 PROCESSOR,
2.7-GHz CPU, AND 16-GB RAM

value while consuming less training time compared with its

competitors; therefore, it has superior performance compared

with the other algorithms in these real life tasks.

B. Financial Data Sets

In this section, we evaluate the performances of the algo-

rithms under two different financial scenarios. We first con-

sider the Alcoa stock price data set [40], which contains the

daily stock price values. Our goal is to predict the future

prices by examining the past prices. As in the previous section,

we first choose a fixed architecture. Since for all architectures,

we obtain the best performance from the same algorithm as

detailed later in this section, we can choose any architecture.

Hence, we again choose Architecture 1. Moreover, we set the

parameters such that all the introduced algorithms converge to

the same steady-state error level. To provide this fair setup,

we choose the parameters as follows. For the Alcoa stock

price data set, we choose to examine the price of the previous

five days, so that we have the input xt ∈ R
5 and we set the

output dimension of the neural network as m = 5. For the

PF-based algorithm, we set the number of particles as

N = 2000. In addition, we choose ηt and ξt as zero mean

Gaussian random variables with Cov[ηt ] = 0.0036I and

Var[ξt ] = 0.01. For the EKF-based algorithm, we choose

	0|0 = 0.0036I , Qt = 0.0036I, and Rt = 0.01. For the

SGD-based algorithm, we set the learning rate as µ = 0.1.

With these fair settings, Fig. 5 illustrates that the PF-based

algorithm converges much faster.

Aside from the Alcoa stock price data set, we also consider

the Hong Kong exchange rate data set [41], for which we

have the amount of Hong Kong dollars that one is able to buy

for US$1 on a daily basis. Our aim is to predict the future

exchange rates by exploiting the data of the previous five

days. We again choose Architecture 1 and then we select the

parameter such that the convergence rates of the algorithms

are the same. We use the same parameters with the Alcoa

stock price data set case except Qt = 0.0004I and Cov[ηt ] =

0.0004I. In this case, Fig. 6 shows that the PF-based algorithm

converges to a much smaller steady-state error value.

C. LSTM and GRU Networks

In this section, we consider the regression performances

of the algorithms based on two different RNNs, i.e., the

LSTM and GRU networks. In the previous sections, we use

the LSTM architecture. Since our approach is generic,

we also apply our approach to the recently introduced

GRU architecture, which is described by the following set of

Fig. 5. Future price prediction performances of the algorithms for the Alcoa
stock price data set.

Fig. 6. Exchange rate prediction performances of the algorithms for the
Hong Kong exchange rate data set.

equations [22]:

z̃t = σ(W (z̃)xt + R(z̃) yt−1) (50)

r t = σ(W (r)xt + R(r) yt−1) (51)

ỹt = g(W (y)xt + r t ⊙ (R(y) yt−1)) (52)

yt = ỹt ⊙ z̃t + yt−1 ⊙ (1 − z̃t ) (53)

where xt ∈ R
p is the input vector and yt ∈ R

m is the output

vector. The functions g(.) and σ(.) are set to the hyperbolic

tangent and sigmoid functions, respectively. For the coefficient

matrices, we have W (z̃) ∈ R
m×p , R(z̃) ∈ R

m×m , W (r) ∈

R
m×p , R(r) ∈ R

m×m , W (y) ∈ R
m×p , and R(y) ∈ R

m×m . Here,

z̃t and r t are the update and reset gates, respectively. To obtain

GRU-based algorithms, we directly replace the LSTM equa-

tions with the GRU equations and then apply our regression

and training approaches. However, the GRU network lacks

the output gate, which controls the amount of the incoming

memory content. Furthermore, these networks differ in the

location of the forget gates or the corresponding reset gates.
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Fig. 7. Comparison of the LSTM and GRU architectures in terms of regression error performance for (a) PF-based algorithm, (b) EKF-based algorithm,
and (c) SGD-based algorithm.

TABLE III

TIME ACCUMULATED ERRORS OF THE LSTM-BASED REGRESSION

ALGORITHMS DESCRIBED IN (10)–(12) FOR EACH ALGORITHM

Hence, they have significant differences. To compare them,

we use the Hong Kong exchange rate data set as in the

previous section. For a fair comparison, we again select a

fixed architecture. Here, since we compare the performances of

the networks rather than the algorithms, we arbitrarily choose

one of the architectures. We select Architecture 1. Moreover,

we choose the same parameters with the previous subsection

so that convergence rates of the algorithms are the same. With

this fair setup, Fig. 7(a)–(c) shows that the LSTM network-

based approach achieves a smaller steady-state error; therefore,

it is superior to the GRU architecture-based approach in the

sequential prediction task in our experiments.

D. Different Regression Architectures

In this section, we compare the performances of different

LSTM-based regression architectures. For this purpose, we use

the Hong Kong exchange rate data set as in the previous

section. For a fair comparison, we select the parameters such

that the convergence rates of the algorithms are the same.

We choose the same parameter with the previous subsection

except 	0|0 = 0.01I . Under this fair setup, Table III shows

that for the PF- and EKF-based algorithms, Architecture 2

achieves a smaller time accumulated error thanks to the

contribution of the regression vector with the control gate αt .

Due to the lack of the control and output gates, although

Architecture 3 also has the direct contribution of the regression

vector, it has a greater error value compared with its competi-

tors. For the SGD-based algorithm, the direct contribution of

the regression vector does not provide improvement on the

error performance. Hence, Architecture 1 achieves a smaller

time accumulated error. However, overall Architecture 2

trained with the PF-based algorithm achieves the smallest time

accumulated error among our alternatives; hence, it signifi-

cantly outperforms its competitors in these simulations.

V. CONCLUSION

We studied the nonlinear regression problem in an online

setting and introduced novel LSTM-based online algorithms

for data regression. We then introduced low-complexity

and effective online training methods for these algorithms.

We achieved these by first proposing novel regression algo-

rithms to compute the final estimate, where we introduced an

additional gate to the classical LSTM architecture. We then

put the LSTM system in a state space form, and then based

on this form, we derived online updates based on the SGD,

EKF, and PF algorithms [17], [19], [26] to train the LSTM

architecture. By this way, we obtain an effective online training

method, which guarantees convergence to the optimal para-

meter estimation provided that we have a sufficient number of

particles and satisfy certain technical conditions. We achieve

this performance with a computational complexity in the

order of the first-order gradient-based methods [5], [16] by

controlling the number of particles. In Section IV, thanks to

the generic structure of our approach, we also introduced a

GRU architecture-based approach by directly replacing the

LSTM equations with the GRU architecture and observed

that our LSTM-based approach is superior to the GRU-based

approach in the sequential prediction tasks studied in this

paper. Furthermore, we demonstrate significant performance

improvements achieved by the introduced algorithms with

respect to the conventional methods [18], [23] over several

different data sets (used in this paper).
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