
Middlesex University Research Repository

An open access repository of

Middlesex University research

❤tt♣✿✴✴❡♣r✐♥ts✳♠❞①✳❛❝✳✉❦

Raimondi, Franco ORCID logoORCID: https://orcid.org/0000-0002-9508-7713, Skene, James

and Emmerich, Wolfgang (2008) Efficient online monitoring of web-service SLAs. In:

Proceedings of the 16th ACM SIGSOFT International Symposium on Foundations of Software

Engineering. Harrold, Jean and Murphy, Gail, eds. Association for Computing Machinery, pp.

170-180. ISBN 9781595939951. [Book Section] (doi:10.1145/1453101.1453125)

UNSPECIFIED

This version is available at: ❤tt♣s✿✴✴❡♣r✐♥ts✳♠❞①✳❛❝✳✉❦✴✺✷✼✽✴

Copyright:

Middlesex University Research Repository makes the University’s research available electronically.

Copyright and moral rights to this work are retained by the author and/or other copyright owners

unless otherwise stated. The work is supplied on the understanding that any use for commercial gain

is strictly forbidden. A copy may be downloaded for personal, non-commercial, research or study

without prior permission and without charge.

Works, including theses and research projects, may not be reproduced in any format or medium, or

extensive quotations taken from them, or their content changed in any way, without first obtaining

permission in writing from the copyright holder(s). They may not be sold or exploited commercially in

any format or medium without the prior written permission of the copyright holder(s).

Full bibliographic details must be given when referring to, or quoting from full items including the

author’s name, the title of the work, publication details where relevant (place, publisher, date), pag-

ination, and for theses or dissertations the awarding institution, the degree type awarded, and the

date of the award.

If you believe that any material held in the repository infringes copyright law, please contact the

Repository Team at Middlesex University via the following email address:

eprints@mdx.ac.uk

The item will be removed from the repository while any claim is being investigated.

See also repository copyright: re-use policy: ❤tt♣✿✴✴❡♣r✐♥ts✳♠❞①✳❛❝✳✉❦✴♣♦❧✐❝✐❡s✳❤t♠❧★❝♦♣②

http://eprints.mdx.ac.uk
https://eprints.mdx.ac.uk/5278/
mailto:eprints@mdx.ac.uk
http://eprints.mdx.ac.uk/policies.html#copy

Efficient Online Monitoring of Web-Service SLAs

Franco Raimondi
Department of Computer

Science, UCL
Gower Street
London, UK

f.raimondi@cs.ucl.ac.uk

James Skene
Department of Computer

Science, UCL
Gower Street
London, UK

j.skene@cs.ucl.ac.uk

Wolfgang Emmerich
Department of Computer

Science, UCL
Gower Street
London, UK

we@acm.org

ABSTRACT

If an organization depends on the service quality provided by
another organization it often enters into a bilateral service
level agreement (SLA), which mitigates outsourcing risks
by associating penalty payments with poor service quality.
Once these agreements are entered into, it becomes neces-
sary to monitor their conditions, which will commonly relate
to timeliness, reliability and request throughput, at runtime.
We show how these conditions can be translated into timed
automata. Acceptance of a timed word by a timed automa-
ton can be decided in quadratic time and because the timed
automata can operate while messages are exchanged at run-
time there is effectively only a linear run-time overhead. We
present an implementation to derive on-line monitors for
web services automatically from SLAs using an Eclipse plu-
gin. We evaluate the efficiency and scalability of this ap-
proach using a large-scale case study in a service-oriented
computational grid.

Categories and Subject Descriptors

D.2.5 [Testing and debugging]: Monitors

General Terms

Services, Service Level Agreements, On-line monitoring

1. INTRODUCTION
There is a growing trend for IT systems to be integrated
across organizational boundaries. Examples include supply-
chain management using RosettaNet [9], or the Amazon
Storefront web services that enable small retailers to estab-
lish and operate a web store-front on Amazon’s infrastruc-
ture. These services are frequently implemented using web-
service technologies. When organizations do rely on the web
services provided by other organizations for the implemen-
tation of their business processes they usually want contrac-
tual guarantees on service quality. Likewise, the providers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT 2008/FSE-16, November 9–15, Atlanta, Georgia, USA
Copyright 2008 ACM 978-1-559593-995-1 ...$5.00.

want assurances that their clients will not abuse the ser-
vice. These quality and usage constraints are often defined
in Service Level Agreements (SLAs), which specify required
Quality of Service (QoS) and associate penalty payments
with violations. These penalty payments can be seen as an
insurance policy against poor service provision and over-use.

Testing the quality of provided web services using, for
example, performance and reliability tests is necessary but
insufficient. The service quality fundamentally depends on
the provision of computational resources that the service
provider maintains for the web service during the lifetime
of the service, as well as the demand on those resources by
other users of the same service. In order to police a service
level agreement, it is therefore necessary for the service user
to monitor constantly, or at least in statistically significant
intervals, the service quality that is provided at run-time.
Likewise the service provider will have to monitor service
quality at run-time in order to detect usages that exceed
the utilization levels agreed in the SLA. The service provider
will also have to monitor to protect itself against false claims
of poor services. The service provider might also monitor
whether the service quality drops below certain thresholds
in order to determine whether to increase the resource pro-
vision in the hardware infrastructure or to reconfigure the
software architecture that provides the service, as discussed
by [19]. Service monitoring data will also inform the ser-
vice provider whether there is sufficient capacity to increase
service provision to new or existing clients.

In [29] we have delineated how systems of SLAs between
a web service provider, an Internet Service Provider and a
web service user should be arranged in a manner that they
can be monitored in principle. By carefully considering how
a service may affect a client, we have also determined what
conditions relating to QoS should reasonably be included
in an electronic-service SLA. We have implemented sup-
port for these conditions in our SLA language, SLAng [26],
which is precisely defined using standard meta-modelling
languages [28, 27]. We now describe a method for online
monitoring of timeliness conditions that can be described in
SLAng. We distinguish online from offline monitoring. Of-
fline monitoring uses sensors that are woven into the service
provisioning infrastructure to collect data about the service
delivery. Those data may then be analyzed at certain in-
tervals and mined for service quality violations to determine
whether penalty payments are due. This is contrasted with
online monitoring where the data about service delivery is
analyzed while the service is being provided and alerts are
generated as soon as a service-quality violation is detected.

Off-line monitoring has a number of disadvantages. Firstly it
requires the storage of possibly large volumes of data about
the service provision. Secondly, for triggering software ar-
chitecture reconfigurations or resource allocation decisions
in data centres it is necessary to know about service quality
violations as soon as they happen. We therefore focus on
efficient techniques for online monitoring in this paper.

The contributions of this paper are twofold: firstly, we de-
scribe how timed automata [3] can be used as a formalism to
support efficient online monitoring of timeliness, reliability
and throughput constraints expressed in web-service SLAs.
A review of related work indicates the novelty of this ap-
proach, and a theoretical analysis reveals its significance: in
particular, we are able to reduce the question of whether an
SLA is violated to the acceptance of a timed word by a timed
automaton. We show that this is decidable in quadratic and
because we can process each timed letter on the fly, the ap-
proach introduces only a linear run-time overhead for a web
service invocation. Secondly, we present an implementation
of this technique using an Eclipse plug-in and Apache AXIS
handlers. We have evaluated the performance overhead and
scalability of this implementation using a case study that
monitors SLAs in a production grid system.

This paper is further structured as follows. Section 2 re-
views the theoretical analysis of SLAs presented in [28, 26],
and provides an overview of Timed Automata. Section 3 de-
scribes a set of SLA temporal patterns and their translation
into Timed Automata. A methodology for monitoring these
patterns and the analysis of its complexity are presented in
Section 4; its implementation is described in Section 5. An
example application and experimental evaluation results are
reported in Section 6. Section 7 discusses related work, and
concluding considerations are presented in Section 8.

2. BACKGROUND
We first review the analysis of SLAs monitorability pre-
sented in [29], and the discussion of requirements for elec-
tronic service SLAs given in [16]. Under a specified set of
assumptions, these analyses identify both the kinds of con-
ditions that are likely to be required in SLAs, and the lo-
cations in the service provisioning infrastructure in which
monitoring will be required to determine compliance with
the SLAs.

We then summarise the theory of timed automata, which
in the remainder of the paper we show to be capable of
efficiently checking compliance for the kinds of conditions
identified in the foregoing analysis.

2.1 Service Level Agreements for Electronic
Services

In [16] we have proposed that financial risks are a major
disincentive to organisations wishing to outsource electronic
services. The risks arise from the possibility that the QoS
of a provided service will be lower than expected, resulting
in inefficiencies that impact upon the ability of the client
to capitalise on their investment in the service. Also, if the
provider prematurely ceases to provide a service, then the
client will lose the opportunity to recuperate initial inte-
gration costs. We argue that SLAs that associate financial
penalties with poor QoS and early termination are a promis-
ing complementary technology to existing middleware tech-
nologies, having the potential to broaden the market in ser-
vices by mitigating these risks.

C S
I

x y

zw

Figure 1: The three party scenario.

SLAs, in the role that we propose, are instruments by
which one party may become liable to pay a penalty to an-
other. This has two significant implications: parties will
have an incentive to cheat; and parties may be able to force
other parties (which are acting in good faith) to become li-
able to pay penalties. Clearly, for SLAs to be an attractive
mechanism for mitigating risks, both of these possibilities
must be avoided to the maximum extent possible, and to
some degree this can be achieved in the design of the SLAs
themselves. We refer to the contribution that an SLA makes
to ensuring that any disagreement concerning the SLA will
be resolved according to the original intent of the SLA as
the protectability of the SLA. SLAs should also not be ex-
ploitable, meaning that one party cannot by their actions
cause another party to have to pay a penalty unless the sec-
ond party is in breach of their obligations with respect to
the agreement.

The resolution of a dispute concerning an SLA will require
the parties to first agree an account of their behaviour and
the behaviour of the relevant service. Then, the intent of the
SLA will need to be recovered from a concrete document of
the agreement, and applied in the context of the SLA. We
therefore argue that to be protectable, an SLA should be
monitorable, so that the parties can obtain trustworthy in-
formation concerning events of relevance to the agreement,
understandable, so that the intent of the SLA can be recov-
ered, and precise, so that the intent is unambiguous.

In [27] we have shown how meta-modelling techniques
using standards of the Object-Management Group can be
used to specify an SLA language such that the SLAs are
precise and understandable, as exemplified by our language
SLAng (see http://uclslang.sourceforge.net). Ensur-
ing such qualities is one contribution that a formal language
can make to the statements it defines. Another is to render
the statements machine processable, a common requirement
for electronic-service SLAs, the parameters of which may
be relevant to the configuration of a service. However, per-
haps more importantly, the language definition can reduce
the cost of preparation of statements by contributing se-
mantics that anticipate what will need to be expressed. In
the case of SLAng, this was informed by considering what
electronic-service behaviours would be of concern to a client,
what events are monitorable, and therefore what conditions
may reasonably be included in an electronic-service SLA.

Consider the scenario depicted in Figure 1. In this sce-
nario, a Client (C) communicates with a Service Provider
(S) using a network provider (I) to request some operation,
the result of which is returned from S to C using the same
network provider I. The service may also interact with the
world externally to the network, for example, to cause some
goods to be dispatched from a warehouse.

We assume that the client should only be concerned with

the behaviour of the service and the network in so far as it
affects the client, the details of the implementation of the
service and the network being the exclusive concern of the
providers. It is therefore possible to argue that the events
that affect the client are the receipt of responses from the
network (in response to requests that the client has previ-
ously dispatched), and any behaviour external to the net-
work, instigated by the service provider, that may come to
affect the client, for example the delivery of some goods to
the client’s premises.

Communications originating from a service have two main
attributes with which the client may be concerned: what is
returned; and when it arrives. Conditions related to the
interval between a service request and the time of arrival
of a correlated response are variously referred to as perfor-
mance, latency or timeliness conditions. A number of well
established techniques are available for testing functional re-
quirements of services: in this paper we are only concerned
with non-functional timeliness constraints.

Because the client has no access to the implementation of
the service, its expectations concerning the behaviour of the
service will depend on a description of the service given to
them by, or negotiated with, the service provider. Before
entering into an SLA the client will make the choice to inte-
grate the service into its own operations on the basis of this
description. If the service subsequently behaves in a man-
ner other than that described, the client is likely to suffer.
Hence, a condition that the client will want to protect in an
SLA is that the service either behaves as described to a high
degree or the client will be entitled to receive compensation.
Such conditions are normally called reliability conditions.

Communications via electronic services have no other at-
tributes, so we conclude that the client will be primarily con-
cerned with timeliness and reliability conditions relating to
these services, and with conditions relating to the behaviour
of the service external to the system.

Our scenario has three participating parties. With which
parties should C make an SLA in order to be compensated
for violated timeliness and reliability conditions, as mea-
sured at their interface? Also, there are clearly two different
types of service being provided: an electronic service, defined
in terms of the exchange of meaningful messages across in-
terfaces; and the network service, defined in terms of the
movement of data packets between nodes. Do SLAs for
these services need to be defined separately? We answered
these questions for this scenario in [29], by considering the
monitorability of various systems of SLAs for guaranteeing
timeliness properties.

Four events are labelled in Figure 1, x, y, z and w. As-
suming the client has a timeliness requirement of the form
w − z < t (i.e., the temporal distance between event w and
event z is less than t), this can be insured by some com-
binations of several SLAs for the conditions w − z < t,
y − x < t1, z − y < t2, w − z < t3, z − x < t1 + t2,
w − y < t3 + t2, such that t1 + t2 + t3 < t. Assuming any
party may offer an SLA to any other for any requirement,
there are 23×2×6 = 236 ∼ 6.9 × 1010 possible systems of
SLAs in this scenario, which is obviously a large number to
consider.

It is clear that C can directly monitor x and w, S can
directly monitor y and z, and I can monitor all events. In-
formally, in our model we allow one party to report on an
event to another only if they do not enter into an SLA in

respect of a requirement concerning that event. We say that
an event is monitorable by a party if they can directly mon-
itor it or have it reported to them. An SLA is monitorable
by a party if all events that its requirements concern are
monitorable by the party. We are interested in systems of
SLAs in which all SLAs are mutually monitorable both by
the provider and the client of the SLA.

We classify SLAs as safe or unsafe, according to whether
the provider can through their actions guarantee that the re-
quirement being offered will be matched, or if the provider
receives SLAs from other parties to this effect. In this sce-
nario I can guarantee y − x < t1 and w − z < t3. S can
guarantee z−y < t2. Clearly, safe systems of SLAs are desir-
able as parties will not risk paying penalties unless they sub-
stantially control the relevant events, or will receive penalty
payments themselves in the event of a violation. We also
wish to avoid systems of SLAs in which reciprocal or redun-
dant guarantees are offered pointlessly.

We implemented a depth-first search algorithm to effi-
ciently discover systems of SLAs meeting these criteria for
our scenario. The result was significant. Only one system of
SLAs is possible in which the client’s requirement is satis-
fied, and all SLAs are both mutually-monitorable and safe:
I insures w − x < t for C, and S insures z − y < t2 for I.
We also found that reliability could be insured in the same
system of SLAs.

This result tells us that we do not need SLAs at the net-
work level in order to insure end-to-end performance for the
service provider. Both conditions in the system relate re-
quests to responses at a service interface, and the end-to-end
behaviour of the network is implicit in the guarantee that
I makes to C. The events pertinent to each SLA occur at
a single interface with the network, so these locations are
where monitoring must be performed.

In fact, reliability and timeliness conditions are not the
only necessary conditions in this scenario. The ability of a
client to create requests will tend to exceed the ability of the
service provider to produce correct, timely results. There-
fore, without the inclusion of a throughput constraint in
these SLAs, it would be possible for the client to attempt to
exploit these SLAs. We therefore argue that the conditions
that will tend to be required in electronic-service SLAs, are
timeliness, reliability and throughput conditions.

2.2 Timed automata
An automaton is a tuple A = (Σ, Q, Q0, δ, F). As an ex-
ample, consider Figure 2 where Σ = {a, b} is an alphabet,
Q = {0, 1} is a set of states, Q0 = {0} is the initial state,
F = {1} is the final state, and the transition relation δ en-
ables the transitions depicted.

Figure 2: An automaton.

Figure 3: A timed automaton.

Automata recognise languages: given an automaton A,
L(A) ⊆ Σ∗ is the language accepted by the automaton. For
the automaton of Figure 2, L(A) includes the words
{a, ab, abb, abaaaaabaab, . . . }.

A time sequence is a sequence of real numbers τ = τ1τ2 . . .

s.t. τi > τi−1 and the sequence is non-Zeno (i.e., the se-
quence is not bounded). A timed word is a pair (σ, τ)
where σ is a standard word and τ is a time sequence, e.g.,
{(aab . . .), (0.1, 0.3, 1.2, . . .)}.

Timed automata [3] extend automata by introducing a set
of clocks x, y, . . . , a set of time constraints over transitions,
and clock reset operations over transitions. As an example,
consider the timed automaton in Figure 3: here two clocks
appear (x and y). Clock x is reset to 0 with the operation
x := 0 when a transition is performed from state 0 to state
1. Analogously, clock y is reset from state 1 to state 2.
The label (x < 1)? from state 2 to state 3 imposes that the
transition has to be performed when the value of clock x is
less than 1; similarly, the transition from 3 back to 0 has to
be performed when the value of clock y is greater than 2.

Timed automata accept timed words, i.e. they recognise
timed languages; the timed automaton in Figure 3 recognises
the language L(TA) = {((abcd)ω, τ)|(τ4j+3 < τ4j+1 + 1) ∧
(τ4j+4 > τ4j+2 + 2)}

A key idea of this paper is to encode the specification
patterns for Service Level Agreements defined in the next
section as timed automata, so that the correctness (or the
violation) of an execution can be verified by checking its
inclusion in the language accepted by the automata. The
details of this methodology are presented in the following
sections.

3. APPROACH

3.1 Patterns of SLA timeliness constraints
Specification patterns are defined in [11] as the “description
of a commonly occurring requirement”; for instance, safety
and liveness can be considered specification patterns. In this
section we identify a set of specification patterns for timeli-
ness constraints of web services and we show how timed au-
tomata characterising violations can be derived from these
patterns. Generic-purpose specification patterns are anal-
ysed in [11], and an extension to patterns involving time
intervals is presented in [17].

We have analysed the requirements for the services be-
ing developed within the European project PLASTIC (Pro-
viding Lightweight and Adaptable Service Technology for
pervasive Information and Communication) [22]. These ser-
vices are typically developed as web services and we were
able to identify the following recurring patterns, which can
be encoded in SLAng:

Figure 4: Timed automaton for latency violations.

1. Latency requirements. A number of requirements
for PLASTIC web services have the form“the response
of the service must follow the request within t sec-
onds”. Examples include temporal bounds on the no-
tification services of the middleware and various con-
straints on the cooperation of services (such as discov-
ery, composition, etc.). These latency requirements are
instances of the bounded response pattern described
in [11], with the addition of a temporal constraint as
described in [17].

2. Reliability requirements. Another set of require-
ments for services includes constraints on the number
of acceptable errors. Errors are defined as violations of
the latency requirements or as other kinds of timeouts.
Typically, it is required that the number of errors in
a given time window does not exceed a fixed amount.
This kind of pattern (“counting” the number of cer-
tain events in a time window) does not appear neither
in [11] nor in [17]. We show below how this pattern
can be encoded as a timed automaton.

3. Throughput requirements. A third kind of require-
ment appears often in the definition of the interaction
between a service consumer and a service provider:
the provider imposes restrictions on the number of re-
quests that a client is allowed to submit in a given time
window. This requirement is imposed to avoid the ex-
cessive usage of a service by a client, which might cause
a degradation on the quality of service provided and,
consequently, a violation of the latency and reliability
requirements. Similarly to the previous point, this is
a pattern involving “counting” events and we encode it
as a timed automaton below.

3.2 Violations and Timed Automata
Each of the patterns presented above can be translated into
a timed automaton, such that the language accepted by the
automaton characterises exactly the violations of the speci-
fications.

Figure 4 depicts in more detail an automaton accepting
all the timed words in which a label req (encoding a request)
is followed by a label resp after more than t time units. This
automaton encodes violations for the latency requirements
described in item (1) above. Notice that, if requests and
responses are interleaved, it is necessary to match the ap-
propriate pair to detect a violation. One possibility is the
use of different labels; a more efficient approach using AXIS
handlers is presented in Section 5.

Figure 5 represents an automaton accepting continuously
words with three failure occurrences (labelled with fail)
within t time units. As mentioned above, failures can be
identified by latency violations or other kinds of timeouts.

Figure 5: Timed automaton for reliability violations.

Figure 6: Timed automaton for throughput viola-
tions.

The automaton in this figure corresponds to an instance of
the Reliability pattern described in item (2) above; notice
that the number of states of the automaton is equal to the
number of events to be counted + 1.

Figure 6 represents an automaton accepting all the time
words in which three request (labelled with req) occur within
t time units. The timed words accepted by this automa-
ton correspond to violations of the throughput requirements
presented in item (3) above. Notice that this automaton is
structurally similar to the one encoding violations of relia-
bility.

As mentioned in Section 2.1, timeliness, reliability, and
throughput are the conditions that tend to be required in
electronic-service SLAs. In this section we have presented
how (the violation of) these conditions can be encoded as
timed automata. Other patterns are possible and our ap-
proach does not preclude their representation in SLAng and
their translation into timed automata.

4. DETECTING VIOLATIONS
The sequence of events occurring in a client-server interac-
tion, with their time of occurrence, can be seen as a timed
word in the sense of Section 2.2. This observation is key for
the detection of violations of specifications. Indeed, if any
timed sub-word of the timed word encoding the events is
accepted by any of the automata encoding violations of the
requirements, then a violation has occurred.

Reducing the problem of detecting violations to the prob-
lem of verifying that a word is accepted by an automaton has
the additional advantage that verification can be performed
on-line while events are occurring. Specifically, suppose that
an automaton A encodes the violations of a requirement.
Then, to identify a violation it is sufficient to pass all the oc-
curring events (encoded by an increasing timed word (σ, τ))
to the automaton and verify if a final (accepting) state is
reached. In this way, the automaton “evolves” in parallel
with the execution of the services. If, in any given state of
the automaton, an event is passed such that no transition
exists, then the automaton rests to its initial state. In this
case, however, it is not possible to discard all the events that
led to the rejection.

As an example, consider a requirement prescribing that
no more than 2 requests can be submitted in a given minute
(this is a throughput requirement encoded by an automaton
similar to the one in Figure 6). Suppose that the following
sequence of events is observed: request at t = 0, request at
t = 0.9, request at t = 1.1, request at = 1.2. This sequence
of events is a violation of the requirement, because three

requests occur between t = 0.9 and t = 1.2. However, if
these events were passed to the automaton in Figure 6, the
automaton would reset to its initial state at t = 1.1, reset
its clock to x = 0, and it would not detect the violation
at t = 1.2. Therefore, when a state without successor is
reached, it is not possible to discard all the previous history.
Instead, the automaton should be run again by discarding
the first state (at t = 0): in this case the new event would
fire a violation by reaching the final state.

The maximum number of events that need to be observed
to detect a violation can be estimated easily for the patterns
presented in Section 3.1. Essentially, the number of events
required to detect a violation at any given time is equal to
the number of states in the automaton minus 1. Follow-
ing [5], we call this number the diameter of the witnesses
for a violation. The diameter of witnesses is of interest for
two main reasons.

Firstly, some devices may have limited storage capabilities
(e.g., mobile phones). Storing the full log of timestamped
events of executions for a long period of time may be too
space demanding, but at the same time it may be useful
to keep evidence of the possible violations. However, notice
that in doing so, a client can present evidence for the vio-
lations made by a server, but the client could not present
evidence if the server was to make claims about over-usage
of a service: indeed, if this was the case, then the client
should have kept the whole log of events, both for violations
and for correct behaviour. Nevertheless, knowing the diam-
eter of witnesses allows an efficient management of logs for
failures, by keeping only the relevant data for violations.

Secondly, the diameter of counterexamples is used in the
evaluation of the worst case complexity of the approach:

Theorem 1. On-line monitoring for the patterns of Sec-
tion 3.1 has a worst case complexity O(n2), where n is the
number of states of the automaton.

Proof. Let A be an automaton and (σ, τ) a finite timed
word, where σ = σ1 . . . σk and τ = τ1 . . . τk. As mentioned
above, the pair (σi, τi), consisting of a letter and a time,
identifies an event and its time of occurrence. The problem
of on-line monitoring is establishing whether or not a new
event (σk+1, τk+1) causes a transition of A (possibly to the
final state of A), assuming that (σ, τ) was a valid sequence of
events for A. The complexity of establishing whether or not
(σk+1, τk+1) causes a valid transition is linear in the size of
A: indeed, it is sufficient to check the transition relation of A

and verify that (σk, τk) → (σk+1, τk+1) is permitted (in fact,
checking that a word is accepted by a timed automaton is
linear, see [3]). As mentioned above, the maximum diameter
of a witness for a violation is equal to the number of states
of an automaton, which is bounded by n. Therefore, the
verification that (σk, τk) → (σk+1, τk+1) is a valid transition
has to be repeated at most n times.

Thus, our approach has a quadratic complexity. More-
over, the results obtained in Section 6 show that it is of-
ten not necessary to perform n2 operations for the patterns
considered here because the number of transitions that lead
from a state is very small compared to the total number of
states.

Figure 7: Eclipse plug-in for SLAng and monitors.

5. IMPLEMENTATION
We have implemented an Eclipse plug-in to create, edit, and
check the correctness of SLAs written in SLAng. This plug-
in is available from http://uclslang.sourceforge.net/

For the purposes of this work (see Figure 7), we have
created a new plug-in which works in parallel with the edi-
tor for SLAng. This plug-in can generate automatically the
automata encoding violations of SLAng terms for latency,
reliability, and throughput. The automata are stand-alone
Java checkers for the patterns presented in Section 3.1, im-
plementing the ideas of Section 4. Additionally, our tool
produces a Java handler which is used to analyse and dis-
patch messages to the checkers: in our framework we use
the open source AXIS engine from Apache to process SOAP
messages and use its handler mechanism to invoke the au-
tomatically generated checkers. A sample screenshot of the
plug-in is shown in Figure 8. A preliminary version of the
plug-in is available from
http://www.cs.ucl.ac.uk/staff/f.raimondi/uk.ac.ucl.

cs.slangta_0.0.1.zip

The automatically generated Java code can be compiled
and installed both at the client and at the server side. In
particular:

• Handlers are probes in the SOAP message chain. In
our implementation these handlers are AXIS handlers;
on the server side, they are installed in a standard way
as handlers in the message chains for requests and re-
sponses for the service to be monitored (notice that
this approach does not require any interaction with
the existing deployment of the service). Handlers can
also be installed outside of an AXIS server, by us-
ing the system property axis.ClientConfigFile for
AXIS clients.

• Checkers are added at the client or server side. On
the server side, a checker is installed for every client
that should be monitored. A checker is a simple Java
class invoked by the handler; the checker implements
the verification methodology presented in Section 4.

Figure 9 depicts the structure of the deployed monitors.
As mentioned above, the Java code for handlers and check-

ers is generated automatically. Theorem 1 gives a quadratic

Figure 9: Deployment of the monitors

upper bound for the complexity of the verification step: in
our implementation (see the pseudo-code in Figure 10, list-
ing the transition step for the automaton) we are able to
achieve in most of the cases a linear-only overhead by ob-
serving that, if a violation occurs, then the violation is very
likely to be caused by the last observed event, and so the
automaton’s evolution should start from the event that oc-
curred n − 1 steps before the current one, where n is the
number of states of the automaton. In the code of Fig-
ure 10, states is a list of events occurred (each event cor-
respond to a state of the automaton) and MakeTrans is a
function to generate transition steps in the checker. If the
value returned by this function is 1, then a final (accepting)
state has been reached, corresponding to a violation of the
constraint to be checked.

A further improvement in performance can be achieved
when verifying latency: instead of storing a table of mes-
sage IDs with the time of request, we use SOAP attach-
ments to add a timestamp to the messages which should be
checked against latency. This is done by the automatically
generated handler, using a code similar to the one reported
in Figure 11, where “msg” is the actual SOAP message ob-
tained from the handler.

The timestamp can be read from the message context re-
turned by AXIS with the response message. Thus, the check
for latency can be performed by using the information found
in the response message context only.

6. EVALUATION
We evaluate the SLA monitoring method described in this

paper using a grid computing case study. This appears ap-
propriate as there are several grids that use web service tech-
nologies, and computational grids typically span across dif-
ferent organizations, which might have service level agree-
ments with each other. Moreover, the computational load

Figure 8: Screenshot of the Eclipse plug-in for the generation of monitors.

// Every time the handler passes a new event to
// the checker , the f o l l ow ing code i s executed (i f
// more than n events have occurred) .

// The i n i t i a l p lace i s the current index minus n ,
// modulo n (n = num. of s t a t e s)

i n i t p l a c e = (cur index − n) % n ;

// Loops over the past recorded n s t a t e s
for (int i =0; i < n−1; i++) {

// The current i−th p lace
int cur p = (myplace+i) % (numStates −1);

// make a t rans i t i on with the s t a t e at p lace
// cur p
int r e s = MakeTrans (s t a t e s . elementAt (cur p)) ;
i f (r e s == 1) {

// a v i o l a t i on occurred , do something
}

}
// I f no v i o l a t i on occurred , remove the o l d e s t
// s t a t e and update appropr ia te l y .

Figure 10: Pseudo-code for the verification step.

// message i s obtained from the message Contex
AttachmentPart tStamp=msg . createAttachmentPart () ;
S t r ing contentSt r ing1= SomeDateString ” ;
tStamp . setContent (contentStr ing1 , ”text / p l a in ”) ;
msg . addAttachmentPart (tStamp) ;

Figure 11: Attaching timestamp to SOAP message.

in a service-oriented grid is often very significant.
The particular grid application that we use to evaluate

our approach is in the area of computational chemistry and
described in detail in [12]. In this application, a client com-
ponent is used to submit searches to a web service that is
implemented as a BPEL workflow. The BPEL workflow
then eventually calls a number of web services to submit
different Fortran executables to compute resources, to visu-
alize results and to upload the consolidated search result to
a data portal. Figure 12 shows an overview of the differ-
ent services involved and their deployment across different
organizational domains.

The reason why SLAs need to be defined and monitored is
because the service providers do not wish to be subjected to
load that they could not bear, and clients require a certain
level of service quality. To this end, the following Service
Level Agreements can be put in place:

• Because a full search in this application takes about 8
hours an SLA between chem.ucl.ac.uk and cs.ucl.ac.uk
would have a throughput clause that limits the total
number of searches for a given client to 3 per 24 hour
period.

• Likewise the job submission service at doc.ic.ac.uk can
be brought down by a client if jobs are constantly sub-
mitted and we effectively need to demand a throughput
clause of no more than two submissions per second for
the service GridSAM [18] and for the service Plotting.

• Moreover, a client is interested in latency of job sub-
mission and plotting services. For instance a client

Client

Workflow

GridSAM Plotting

chem.ucl.ac.uk

cs.ucl.ac.uk

doc.ic.ac.uk omii.ac.uk

Figure 12: Web services in the Grid Case Study

may require the latency for job submission is less than
1000 milliseconds.

• Finally, we are also interested reliability constraints
and would not wish to see no more than 1 failure in 10
invocations of the job submission service (because of
GridSAM fault tolerance mechanisms), and no more
than one failure in 1000 invocations of the plotting
service.

We have expressed these SLAs using the editor for SLAng,
and we have generated Java checkers using our tool pre-
sented in the previous section.

To evaluate the run-time overhead of our approach, we
have modified the handlers in Axis to print a time stamp
to a log file before and after the invocation of the handler
for monitoring SLAs: by taking the difference of the two
timestamps we can evaluate the time overhead for the SLA
monitor. The experiment was conducted on a grid of com-
modity Linux servers with hyper-threaded CPUs, 2GB of
Memory and Tomcat 5.0 that hosts Axis 1.2.

We have installed monitors at the boundaries between
cs.ucl.ac.uk and omii.ac.uk, and between cs.ucl.ac.uk and
doc.ic.ac.uk (see Figure 12). At the first boundary we check
a throughput clause for the Plotting service, at the second
boundary we check the throughput clause and latency clause
for the GridSAM service. The pattern of the remaining SLA
for reliability do not differ from these and could be analysed
in the same way.

We set a throughput clause of no more than two requests
per second for the Plotting Service and we created a simple
Java client to invoke the service at random intervals between
0.3 and 3 seconds, in order to obtain some violations. All the
violations were correctly identified and reported. Figure 13
reports the experimental results for 1 run: the elapsed pro-
cessing time (in millisecond) is reported on the vertical axis,
while the total duration of the experiment (30 seconds) is
reported on the horizontal axis. As shown in the graph, the
first call to the service took the longest time (4 millisecond),
while the remaining calls took between 1 and 2 milliseconds
for an average of 1.6 milliseconds. The violations occurring
between seconds 10 and 15 did not modify the overall time
required.

We installed two similar monitors for the GridSAM ser-
vice. The first monitor validates that the latency of messages

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 5 10 15 20 25 30

Figure 13: Time (in mS) for monitoring the through-
put clause of the Plotting service.

from a client’s point of view is less than 1000 milliseconds
and the second monitor validates with a throughput clause
that the load a client puts on the job submission provider
does not exceed two requests per second. For this experi-
ment, we monitored the BPEL workflows on cs.ucl.ac.uk (see
Figure 12) generated by clients during 4 hours of activity.
There were approximately 16 batches of jobs (i.e., 16 work-
flows were invoked), generating a total of nearly 230,000
SOAP messages: this can be seen from Figure 14, which
reports the traffic in terms of the number of messages anal-
ysed by the handler per second from the beginning of the
observation (T = 0) till the end (T=14,500, in seconds.)

We have measured the time elapsed for each handler invo-
cation (in milliseconds). In the data set observed in this ex-
periment there are 166,900 data points (of the total 229,000)
with a value of 0. This means that the actual time that
was used for the validation of the latency and throughput
constraint was less than the measurement precision of 1 mil-
lisecond for 72% of the total messages considered. The aver-
age time for the validation per message is 0.4 milliseconds.
The standard deviation is 4 milliseconds. Around 300 data
points were above 5 milliseconds with the largest one being
under 500 milliseconds. The explanation for this distortion
(and thus the large standard deviation) is that the time mea-
surement of the validation overhead is not the only load on
the machines, as they also perform the computational ser-
vices of the experiment. Figure 15 reports the distribution
of the execution times for the handler (notice the logarith-
mic scale). We consider these results extremely encouraging.
We can measure the overhead of our monitoring approach
in the percentage of time used for validation over the total
duration of the experiment. The total time spent validat-
ing SLAs in this experiment was 87.7 seconds and with a
total experiment duration of 14,525 seconds, this gives an
overhead of under 0.6%: indeed, the presence of the mon-
itors was not noticed by the users of these services. Thus,
we have been able to effectively monitor SLAs on a produc-
tion environment, with an average of under 1 millisecond per
service invocation on commodity machines that were under
significant computational load. In order to deploy the val-
idation we did not have to modify any of the web services
and could just configure the SOAP engine to add our auto-
matically generated handlers and monitors.

0

50

100

150

200

250

300

350

400

450

0 2000 4000 6000 8000 10000 12000 14000

Time from start [S]

N
u

m
b

e
r
 o

f
m

e
s
s
a
g

e
s

Figure 14: Number of messages per second

7. DISCUSSION OF RELATED WORK
We build upon the work of Alur et al on timed automata [3],
which have been used for verifying timeliness constraints in
specifications in, for example [6, 10, 2]. The use of timed
automata for monitoring and diagnosis has been suggested
in [1]: in this work the authors propose a methodology to
monitor a certain system (e.g. a plant) and diagnose its
state. In our work, instead, we are interested in monitoring
of service quality according to an SLA between two parties,
and in the automatic generation of monitors: to the best
of our knowledge, timed automata have not been used be-
fore for this purpose and no implementation has been made
available. In previous work [23] we have suggested the use
of automata for monitoring web services; In addition to that
work, here we derive automata directly from SLA specifica-
tions, present a full implementation, and validate our work
against a production case study.

The automatic generation of monitors from requirements
has been investigated by Havelund and Rosu in [15] using a
technique based on states and transitions. Their aim was to
monitor LTL safety properties in program executions. Our
work differs from this approach in that we are interested in
timed properties (which cannot be expressed in LTL), and
we monitor SLAs between different and separated parties
instead of a single piece of software.

SLAs are formal and precise statements of non-functional
requirements. Thus our work is related to requirements
monitoring that was proposed by Fickas and Feather [14].
The implementation of this approach was described in [8],
where Cohen et al use a “Formal Language for Expressing

Assumptions”, which in essence is a temporal logic. How-
ever, their implementation relies on triggers in the AP5 ac-
tive database [7], which is written in LISP. We have used
FLEA and the AP5 implementation for monitoring pur-
poses in [13] and based on this experience are able to assert
that the monitoring approach presented in this paper is both
more lightweight and significantly more efficient.

Our approach presented in this paper has the same aims
as that of Robinson [24], who argues on the importance of
monitoring web service quality. Robinson proposes the use
of temporal logic and KAOS to define timeliness constraints.
Robinson does not discuss, however, how these temporal
logic formulae can be monitored efficiently.

Baresi et al have proposed various techniques for mon-
itoring BPEL web service compositions [4]. This work is
related as they are able to monitor for timeouts, for exter-
nal failures and for functional contracts. They propose two
different approaches. Their first approach uses hand-coded
monitors written in C# to process intercepted messages.
Our approach simplifies the monitor construction consider-
ably by deriving timed automata implementations that per-
form the monitoring automatically from SLAng timeliness
constraints. Their second approach uses our xlinkit rule en-
gine [21]. It is aimed at monitoring functional contracts.
Xlinkit executes first order logic rules but does not support
temporal operators that would be required to express time-
liness constraints.

Mahbub and Spanoudakis proposed a framework for mon-
itoring web service compositions in [20]. They use Event
Calculus [25] to express temporal constraints for service ex-

1

10

100

1000

10000

100000

1000000

0 3 6 9
1
2
1
5
1
8
2
1
2
5
2
8
3
2
3
5
3
8
4
1
4
6
4
9
5
3
5
7
6
0
6
3
6
6
7
0
7
3
7
6
7
9
8
9
9
5
1
0
0

Elapsed time [mS]

N
u

m
b

e
r
 o

f
m

e
s
s
a
g

e
s

Figure 15: Distribution of the execution times for the handler

ecutions. The approach relies on an interpretation of events
from an event database that is fed from a BPEL engine.
However, there are SLA constraints (such as the throughput
clauses we discussed above) that require knowledge about
events that are not observable by a BPEL engine. More-
over, the paper makes no statements as to how efficient these
monitors are. Our evaluation on the other hand has demon-
strated by way of a scalable experiment that we can decide
whether a constraint is violated within a few milliseconds.

Song Dong et al report on their use of timed automata
and the Uppaal libraries for the verification of web service
orchestrations in [10]. The main difference between their
work and the approach we have presented in this paper is
that they intend to analyze properties of orchestrations prior
to deployment, while we are monitoring the timeliness con-
straints of web services and their orchestrations at run-time.

8. CONCLUSIONS AND FUTURE WORK
We have presented a methodology for online monitoring Web
Service SLAs based on timed automata. We have presented
a Java implementation using Eclipse, Axis and Axis han-
dlers.

Our methodology is non intrusive: there is no need to in-
strument existing services with new code. Instead, we inject
handlers in the message chain and we reason on the kinds
of messages exchanged (and their timestamp) to look for
violations of the agreements.

The approach presented in this paper can be deployed
quickly even without knowledge of the underlying applica-
tion: the case study presented in Section 6 involves services

operating on complex scientific data and workflows. Never-
theless, monitoring SLAs between participants only required
the knowledge of the level of service required and the loca-
tion of the services. We have been able to implement our
solution in a production environment in less than a day.

Differently from previous approaches, the performance of
our acceptance checker does not depend on the total number
of messages in the system. Moreover, each SLA checker is
very small (the .class file is typically less than 10Kb). By
using an on-the-fly verification technique we have been able
to handle a few hundreds of events per second and obtain
average verification times of under a millisecond.

Our aim here was to provide an efficient methodology and
to prove its feasibility, and thus various extensions remain
to be investigated. For instance, in the scope of this paper
we considered only time attributes of events. Therefore,
we considered only SLAs dealing with timeliness issues of
services, but SLAs may also impose requirements on non-
temporal properties. Additionally, in our implementation
we did not consider scheduled SLAs, i.e., SLAs varying over
time. For instance, one could think of SLAs changing with
the day of the week, or with other contextual parameters.
To this end, we are currently working with the industrial
and academic partners of the European project PLASTIC
and of the UK EPSRC project Divergent Grid to extend our
methodology.

Acknowledgements

The work described in this paper was partially funded by
EU IST grant 2005-026955 (PLASTIC) and EPSRC Grant

EP/C534891 (Divergent Grid).

9. REFERENCES
[1] K. Altisen, F. Cassez, and S. Tripakis. Monitoring and

Fault-Diagnosis with Digital Clocks. In 6th Int. Conf.
on Application of Concurrency to System Design
(ACSD’06), pages 101–110. IEEE CS Press, 2006.

[2] R. Alur, C. Courcoubetis, and D. Dill. Model checking
in dense real-time. Information and Computation,
104(1):2–34, 1993.

[3] R. Alur and D. Dill. A theory of Timed Automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[4] L. Baresi, C. Ghezzi, and S. Guinea. Smart monitors
for composed services. In ICSOC ’04: Proceedings of
the 2nd international conference on Service oriented
computing, pages 193–202, New York, NY, USA, 2004.
ACM Press.

[5] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu. Symbolic
model checking without BDDs. In Proc. of TACAS’99,
volume 1579 of LNCS, pages 193–207.
Springer-Verlag, 1999.

[6] V. Braberman, A. Olivero, and F. Schapachnik. Issues
in Distributed Timed Model Checking. Int. Journal on
Software Tools for Technology Transfer, 7(1):4–18,
2005.

[7] D. Cohen. Compiling complex database transition
triggers. SIGMOD Rec., 18(2):225–234, 1989.

[8] D. Cohen, M. S. Feather, K. Narayanaswamy, and
S. S. Fickas. Automatic monitoring of software
requirements. In Proceedings of the 19th international
conference on Software engineering, pages 602–603,
New York, NY, USA, 1997. ACM Press.

[9] S. Damodaran. B2B Integration over the Internet with
XML – RosettaNet Successes and Challenges. In Proc.
of the World-Wide-Web Conference, 2004, pages
188–195, 2004.

[10] J. S. Dong, Y. Liu, J. Sun, and X. Zhang. Verification
of Computation Orchestration via Timed Automata.
In Z. Liu and J. He, editors, Proc. of the 8th Int.
Conference on Formal Engineering Methods, volume
4260 of LNCS, pages 226–245. Springer Verlag, 2006.

[11] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett.
Property specification patterns for finite-state
verification. In M. Ardis, editor, Proceedings of the 2nd
Workshop on Formal Methods in Software Practice
(FMSP’98), pages 7–15, New York, 1998. ACM Press.

[12] W. Emmerich, B. Butchart, L. Chen, B. Wassermann,
and S. L. Price. Grid Service Orchestration using the
Business Process Execution Language (BPEL).
Journal of Grid Computing, 3(3-4):283–304, 2005.

[13] W. Emmerich, A. Finkelstein, C. Montangero,
S. Antonelli, S. Armitage, and R. Stevens. Managing
Standards Compliance. IEEE Transactions on
Software Engineering, 25(6):836–851, 1999.

[14] S. Fickas and M. Feather. Requirements Monitoring in
Dynamic Environments. In Proc. of the 2nd IEEE Int.
Symposium on Requirements Engineering, York, pages
140–147. IEEE Computer Society Press, 1995.

[15] K. Havelund and G. Rosu. Synthesizing monitors for
safety properties. In Tools and Algorithms for
Construction and Analysis of Systems, pages 342–356,
2002.

[16] W. E. J. Skene, F. Raimondi. Service-Level
Agreements for Electronic Services. Technical report,
2008. Submitted for Publication.

[17] S. Konrad and B. H. C. Cheng. Real-time specification
patterns. In ICSE ’05: Proceedings of the 27th
international conference on Software engineering,
pages 372–381, 2005.

[18] W. Lee, S. McGough, S. Newhouse, and J. Darlington.
A Standard Based Approach to Job Submission
through Web Servi ces. In S. Cox, editor, Proc. of the
UK e-Science All Hands Meeting, Nottingham, pages
901–905. UK EPSRC, 2004. ISBN 1-904425-21-6.

[19] G. Lodi, F. Panzieri, D. Rossi, and E. Turrini.
SLA-Driven Clustering of QoS-Aware Application
Servers. IEEE Transactions on Software Engineering,
33(3):186–197, 2007.

[20] K. Mahbub and G. Spanoudakis. A framework for
requirents monitoring of service based systems. In
ICSOC ’04: Proceedings of the 2nd international
conference on Service oriented computing, pages
84–93, New York, NY, USA, 2004. ACM Press.

[21] C. Nentwich, L. Capra, W. Emmerich, and
A. Finkelstein. xlinkit: A Consistency Checking and
Smart Link Generation Service. ACM Transactions on
Internet Technology, 2(2):151–185, 2002.

[22] PLASTIC. http://www.ist-plastic.org.

[23] F. Raimondi, J. Skene, W. Emmerich, and B. Woźna.
A methodology for online monitoring non-functional
specification of web-services. In D. K. C. Attiogbé,
editor, Proceedings of the First International
Workshop on Property Verification for Software
Components and Services (PROVECS’07), number
567 in ETH Technical Report, pages 50–59. COLOSS
Team - University of Nantes, 2007.

[24] W. N. Robinson. Monitoring Web Service
Requirements. In RE ’03: Proceedings of the 11th
IEEE International Conference on Requirements
Engineering, page 65, Washington, DC, USA, 2003.
IEEE Computer Society.

[25] M. Shanahan. The Event Calculus explained. In
Artificial Intelligence Today, volume 1600 of LNCS,
pages 409–430. Springer Verlag, 1999.

[26] J. Skene. The SLAng SLA Language. UCL,
http://uclslang.sourceforge.net, 2006.

[27] J. Skene and W. Emmerich. Specifications, not
Meta-Models. In Proc. of the ICSE 2006 Workshop on
Global integrated Model Mannagement (GaMMa
2006), pages 47–54. ACM Press, 2006.

[28] J. Skene, D. Lamanna, and W. Emmerich. Precise
Service Level Agreements. In Proc. of the 26th Int.
Conference on Software Engineering, Edinburgh, UK,
pages 179–188. IEEE CS Press, May 2004.

[29] J. Skene, A. Skene, J. Crampton, and W. Emmerich.
The Monitorability of Service-Level Agreements for
Application-Service Provision. In Proc. of the 6th Int.
Workshop on Software and Performance (WOSP),
Buenos Aires, Argentina, pages 3–14. ACM Press,
Feb. 2007.

